58

N86-2802U

19: 9147

RADIOCARBON DATINGS OF YAMATO METEORITES : K.Kigoshi and E.Matsuda , Department of chemistry, Gakushuin University, Mejiro,Toshima-ku, Tokyo

The terrestrial ages of five Yamato Meteorites have been measured by their contents of cosmic-ray-produced carbon-14. Among them three Yamato Meteorites Y-74013,Y-74097, and Y-74136 which are all diogenites, were found at sites apart from one to two kilometers each other on the bare ice sheet. They are considered (1) to be a single meteorite from their apparent shapes and unique texture.

This paper presents an evidence for these three meteorites being a single meteorite. And also presents a method adopted in our experimental procedure which includes a check for modern carbon contamination in the meteorites.

The meteorite sample was pulverized in an airtight alumina crusher for 10 hours. The powdered sample in a platinum boat was put into a guartz tube and was evacuated for a few hours at 100°C. The sample was then heated at 600°C for 5 hours under vacuum(10⁻⁵-10⁻⁶Torr)to remove terrestrial contaminants. The evolved gases were passed through a liquid nitrogen trap, where CO, and other condensable gases were recovered. Noncondensable gases mainly CH_A and CO, were then passed through the CuO furnace heated at 450°C-550°C, where CO was converted to CO2, and were recovered in a molecular sieve 4A cooled in liquid nitrogen. The CO, condensed in a liquid nitrogen trap was purified from SO₂ and H₂O by distillation at -150°C. The temperature of the molecular sieve 3A was raised to dryice-methanol temperature. The gas recovered from the molecular sieve 4A was circulated through the CuO furnace at 800 $^{\circ}$ for 40 minutes to oxidize CH₄ to CO₂ and added to the previously recovered CO2.

The sample in the quartz tube was then heated at 1200°C for 5 hours under vacuum. Evolved CO_2 gas was recovered with the same procedure as in the case of 600°C. The residual sample was heated again at 1200°C for 3 hours in oxygen atmosphere. The CO_2 evolved in this step was collected as 1200°C fraction togather with the previous one. The amounts of carbon RADIQCARBON DATINGS

Kigoshi,K. et. al.

recovered at 600°C and 1200°C were measured volumetrically as CO₂ gases.

2P

The CO_2 gases of both fractions were converted to acetylene through lithium carbide which was prepared by the reaction between metalic lithium and CO_2 . The reaction of lithium carbide with tritium free water gave acetylene. The acetylene was purified by the adsorption in the molecular sieve 4A at 0°C and the desorption at 100°C. The molecular sieve 4A used here was prepared from radium free sodium aluminate and sodium silicate, and it gave no measurable amount of radon in the desorpted gases. The carbon-14 in the acetylene was counted in a proportional counter of 53.0 cm³ which has a background of 0.373 + 0.016 cpm.

As shown in Table 1, all 600°C fractions of recovered carbon have specific radiocarbon concentrations of nearly the same level to that of atmospheric carbon dioxide. This indicates that the 600°C fractions are mainly composed of the carbon of recent contamination on the earth. The terrestrial ages listed in Table 1 are calculated from the C-14 activities in the 1200°C fractions and that of of modern standard which is a mean value of measured C-14 activities of Allende and Bruderheim.

The terrestrial ages of Y-75102,Y-74459, and Y74013 are consistent with the measured values by Fireman⁽²⁾ The agreement of the terrestrial ages of Y-74013,Y-74097, and Y-74136 supports the view that these are a single meteorite.

References

- (1) Takeda, H., Mori, H., and Yanai, K. (1981) <u>Mem. Natl Inst.</u> <u>Polar Res., Spec. Issue, 20</u>, p.81-99.
- (2) Fireman, E.L. (1983) <u>Mem. Natl Inst. Polar Res.</u>, <u>Spec.</u> <u>Issue</u>, <u>30</u>, p.246-250.

RADIOCARBON DATINGS

Kigoshi,K. et.al.

Table l.	Terrestrial a	ges and vac	uum extraction
	of carbon and	C-14.	

Meteorite (Wgt)	Туре	Temp. (°C)	Reco- vered carbon (mg)	14 _C (dpm/kg)	<pre>14 Specific activity (dpm/g C)</pre>	Terrest- rial age (10 ³ yr)
Y-75102 (21.53 g)	L6	600 1000 1200*		$3.7 \pm 1.5 \\ 20.2 \pm 1.7 \\ 18.2 \pm 1.8 \\$	$ \begin{array}{c} 19 \pm 8 \\ 305 \pm 25 \\ \end{array} \end{array} \end{array} $	2.0 <u>+</u> 0.6
Y-74459 (13.17 g)	Нб	600 1000 1200*	6.70 0.68	3.9 ± 1.8 < 1.4 3.6 ± 1.4	ر <u> </u>	19 <u>+</u> 2
Y-74013 (16.9 g)	DIO	600 1200	1.31 0.54	1.9 <u>+</u> 0.8 7.1 <u>+</u> 1.0	24 ± 11 222 ± 31	16 <u>+</u> 1
Y−74097 (15.8 g)	DIO	600 1200	1.41 0.67	3.3 <u>+</u> 1.1 5.3 <u>+</u> 1.1		19 <u>+</u> 2
Y-74136 (14.9 g)	DIO	600 1200	1.44 0.81	2.1 <u>+</u> 1.1 6.7 <u>+</u> 1.5		17 <u>+</u> 1
Allende		600 1200	13.5 35.4	14.0 <u>+</u> 1.5 49.1 <u>+</u> 1.8	—	Modern
Bruderheim	L6	1200		52.9 <u>+</u> 2.3		Modern

* In this case ,sample was recrushed and small amount of graphite was added.

60