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ELEMENT DISTRIBUTION AND NOBLE GAS ISOTOPIC ABUN

DANCES IN LUNAR METEORITE ALLAN HILLS A81005

U. Krahenbiihl, Laboratorium fiir Radiochemie, An-

organisch chemisches Institut and O. Eugster and

S. Niedermann, Physikalisches Institut, Universi-

ty of Bern, Switzerland.

Antarctic meteorite ALLAN HILLS A81005, an anorthositic brec-

cia, is recognized to be of lunar origin [1]. Bogard and John-

son [2] analyzed the noble gases in this meteorite and found

solar-wind implanted gases, whose absolute and relative concent-

rations are quite similar to those in lunar regolith samples.

We obtained an 0.279 g sample (A81005,51) of this meteorite
8 1

for the analysis of the noble gas isotopes, including Kr, and

for the determination of the elemental abundances. In order to

better determine the volume derived from the surface cor-

related gases* grain size fractions were prepared. After

crushing the sample using a stainless steel mortar 0.022 g ma-

terial was used for bulk analyses. The remaining mass was sepa-

rated by sieving in acetone into the following grain size frac-

tions: <l5ym.(0.0031g) , 1 5-35ym(0. 0048g) , 35-74ym(0,01Og), 74-149ym

(0.0216g) and >149ym(0.1925g).

Chemistry. About 20% of each size fraction was irradiated in
14 _ 2 -1

suprasil quartz vials for 4 days at 10 n cm s . The results of

the instrumental measurements of the gamma radiation are given

in Table 1.
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Table 1. Major and trace elements in grain size fractions of

A81005,51. One sigma errors are ± 5% for Na, Fe, Cr,

Co and Sc; ±5-10 % for Ca, La, Eu and Hf.

fraction
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>149ym
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0.
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24
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22
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10.5
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12.4

11.6

10.5

Fe
%

3

4

3

3

-

.95

.75

.25

.60

Cr
ppm

780

800

770

750

710

Co
ppm

13

18

17

19

17

Sc
ppm

9.2

9.4

10.3

8.5

8.8

La
ppm

1

1

1

2

-

.90

.60

.70

.2

Eu
ppm

0.50

0.53

0.61

0.63

0.61

Hf
ppm

0.60

0.55

1 .05

0.60

0.60

Concentrations were calculated relative to those in the refe-

rence sample IAEA soil-5 and in USGS standard BHVO-1. Our data

agree well with those reported by Laul et al. [3] and by Palme

et al. [4]. The anorthositic composition of this Antarctic me-

teorite is indicated by the high Ca value, the rather low Fe

concentration and the typical values for La and Eu compared with

the ones found in chondrites. All the five fractions show essen-

tialy the same distribution pattern. That means we have not

produced a major mineral fractionation by the grain size sepa-

ration. In order to determine the blank levels a sample of

suprasil quartz powder was subjected to the same grinding and

sieving scheme as .the meteorite sample. High contamination was

observed for Ba and Br; therefore, no values are reported for

these two elements. Blanks for Na, Fe, Co, Sc, Cr and La amount

to less than 3% in the 35-74ym fraction. Blank corrections for

the <15ym fraction are about 10 times larger than for the 35-74ym

fraction (smaller sample weight, longer and lacrfc thorough contact

with sieving apparatus and acetone).

For Fe and La, blank corrections for the finest material are

larger than 60%; therefore, no values are reported. For Ca, Eu

and Hf blank corrections are negligibly small.
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Production rates for cosmogenic noble gas nuclei

Because this meteorite spent less than 1 my in space as a small

body [5] it must have resided in the lunar regolith during most

of its cosmic ray exposure time. The shielding depth within the

lunar regolith was determined from the ratio of cosmogenic Xe/
126

Xe = 4 ± 1 , which corresponds to an average shielding depth of

<50 g/cm . Production rates for cosmogenic noble gases were cal-

culated from the data given by Regnier "et al. [6] and Hohenberg

et al. [7] for 2ir irradiation at a shielding depth of 40 g/cm

using the target element abundances given in Table 1. For Mg, Al,

Si, K and Ti values reported by Plame et al. [4] were used. Zir-

conium concentrations were calculated from Hf values using a ra-

tio Zr/Hf of 31.8. The resulting production rates are given in

Table 2.

Table 2. Concentrations of cosmogenic noble gases, production

rates and exposure age of A81005.51 (preliminary data).

3He 21Ne 38Ar 83Kr 126Xe

Concentration 18 36 66 1.5x10~2 1.55x10

(10~8cm3 STP/g)

av. for bulk and

grain size fractions

Production rate 1.24 0.118 0.113 2.8x10~ 2.8x10

(10~8cm3 STP/g, my)

Exposure age

(106 y)

15 305 584 536 554

Lunar surface residence time.

From the amounts of cosp.ic ray produced noble gases and respective

production rates, the lunar surface residence times were calcula-
21 3

ted (Table 2). The_ Ne exposure age and, in particular, the He



exposure age are erroneously low due to diffusion loss of these

noble gases, as typically observed for lunar rocks and soils.

From the fact that a plateau is obtained for three heavier noble

gases we 'conclude that the lunar surface residence time is about

half a billion years. More detailed results, including the terrest-
p *

rial age of A81005 calculated from the Kr concentration, will be

given in a later publication.
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