A Reproduced Copy OF

NASACR-176,967

Wamble
EEC 241086
MAGE EESEGKO CENTER
LEARY, NASA
IWMFTOX, VIRGIN

Reproduced for NASA by the

NASA Scientific and Technical Information Facility

Stanford Universigy

$$
\text { JHAA TR }-68
$$

THP LINT OF SHARP-WADHN-RDGRD DEETA WMNGS WHTER BLOWING

BY

Domingo A. Tavella :Stanford univ. $22 \mathrm{~F} \quad$ CSCi 01a
\section*{Stanford University}
Department of Aeronautics and Astronautics
Stanford, CA 9\&305

DECMMDER 1985

THE LIFT OF SHARP-LEADING-EDGED
 dezta inings bith blohing

Doningo A. Tavolla

The sork presented here has bean supported by NhSA Anes Research Center uncer contrace NASA NCC 2-34D

ABSTRACT

Abstract

An analysis of the lift augmentation due to a thin jet of air issuing from a slot along the leading edge of a delta wing is presented. Tha problem is treated with an extension of the method of Brown and Michael, representing the separated flow on the lee side of the wing by e pair of concentrated vortices and corresponding feeding sheets. It is assumed that the jet is not affected by Coanda forces. The analysis produces qualitative agreement with experiments.

NOKESCLATUBE

2	ving semi-span
c_{μ}	Jet momentum coefficient
e_{1}	- $\cos \beta$ - isin β; corplex unit vector in dixection of ejection
f, 8	universal functions in lift coefficient expressions
F	resultant force on singularity systen
F_{8}	force on connecting vortex sheet
${ }^{\text {v }}$	force on vortex
1	$i^{2}-1$
k	constant in lift augrentation expression
m_{j}	jet momentum fiux per unit length
p	exponent in lift augmentation expression
V_{∞}	free streara velocity
∇_{d}	velocity at center of vortex
v	complex potential in czoss-flow plane
α	angle of attack
β	engle of ejection with respect to the span, positive downars
6	half apex angle
r	vertex intensity
ρ_{j}	fot Eluid density
p	free stream fluid density
σ	complex representation of physical cross-flow coordinates
θ	complex representation of transformed coordinates
	vortex equilibrium location
(')	Indicates complex conjugate

CONTENTS

pageAbstract i
Nomenclature ii
Introduction 1
Mathematical Model 3
Results and Discussion. 8
Conclusions 9
Refarences. 11
Figures 12

IRIRORUCTION

A thin jet of air ejecting from a slot along the leading edge of a delea wing alters the equilibrium position of the vorticity system on the wing upper surface, causing a change in the pressure distribution, which results in lift augmentation.
The jet may leave the wing surface in two different ways, as shown in Fig. la and $1 b$. In one mode, the jet may leave the wing surface with a direction determined by the orientation of the slot alone, the jet never attaching to the wing surface. This mode will be called detached blowing. In another mode, the jet may leave the surface in a divection determinad through its contact with the wing surface. This mode will be called tengential blowing, with the reorientation of the jet after it leaves the slot being caused by Coanda forces.
In this work only the first form of blowing will be considered, a case for which an inviscid formulation can be postulated. The problem in conical symetry with blowing in the direction tangent to the wing the span, was soived by Barsby ${ }^{1,2}$, who based his anslysis on Smith's ${ }^{3}$ description of the separated flow about a conicai, Elat delta wing. Aithough Barsby analyzed both flat and cambered wings, his procedure didn'e reveal the analycical relationships between the different paraneters, nor was the angle of ejection an independent verfable. His results are in qualitative egreement with experiments regorted by Trebble ${ }^{4}$.
The objective of this report is to conduce a first investigation of the effect of the engle of ejection as an additional parameter, in much simpler mathematical framework than that used by Earsby, and to infer plausible scaling laws becween the wing and jet parameters. Parallel to this study, two additional efforts are under way at Stanford; a more extensive, fully non-linear analysis of this problem is being conducted, and an experimental phase is planned to enlarge the presently quite poor data base. To achieve the objectives of this study, the theory first proposed by Brom and Nifchael ${ }^{5}$ is extended to account for blowing st an arbitrary angle with che span. In this approach the separated flow on the wing is represented by a pair of vortices connected to the leading adges by straight vortex sheets, as shown in Fig. 2. Brown and Michael solve the problem in the cross-flow
plane by requiring that the forces, but not the moments, acting on the singularity systen should be in equilibrium. This method leads to a complex-valued, implicit equation for the equilibriun position of the singliarity system. Once the equilibrium position is established, the vortex and sheet intensieses are detarmined from the tangency condition at the leading edge, and with this the lift is readily obtained.
The procedure developed here follows the same steps, oxcept that the force-balance condition is altered to account for the momentum ejected from the wing, at a given angle with the span. The implicit relationship for the equilibriun position of the singularity system in this case differs from that of brown and Michael's in that it contains a source tem, proportional to the momentum intensity of the jet.

GATHEMATLCAL MODEL

In order to determine the condition for equilibrium of the singularity system, consider the cross-flow plane with the control volume shown in Fig. 3. The resultant force acting on the singularity system must balance the momenture transfer through the volume walls.

$$
\begin{equation*}
F=\int \rho_{j} \nabla \cdot \cdot n d A \tag{1}
\end{equation*}
$$

Assuming that the monentum associated with the jet sligns itself with the direction of the core within the control volume, and interpreting F as a complex quentity, Eq. (1) becomes

$$
\begin{equation*}
\mathbf{Y}-\quad-m_{j} c_{j} \tag{2}
\end{equation*}
$$

Here F must be the sum of all the aerodynamic forces acting on the singularity systera. Expressions for these forces are derived in the complex plane, with the force vectors represented as comples numbers. In the complex representation of the cross-flow plane the wing span is definsd on the real axis, as shown in fig. 4. Eq. 2 is now rewricten

$$
\begin{equation*}
F_{z}+F_{v}=-1 . j E_{y} \tag{3}
\end{equation*}
$$

The force acting on the feeding sheet is, to first order

$$
\begin{equation*}
F_{s}=i \rho V_{\infty} \frac{d r}{d x}\left(\sigma_{0}-\varepsilon\right) \tag{4}
\end{equation*}
$$

The force acting on the main vortex is

$$
\begin{equation*}
F_{v}=-i \rho\left(V_{d}-V_{\infty} \frac{\sigma_{0}}{3}\right) \Gamma \tag{5}
\end{equation*}
$$

3
whers v_{d} is the veloeity induced at the main vortex position by the disturbance potential produced by the wing and the rest of the singularity system. Substituting Eqs. (4) and (5) into Eq. (3) we Eind

$$
\begin{equation*}
\nabla_{d}-V_{\infty} \epsilon\left(\frac{2 \sigma_{o}}{a}-1\right)-1 \frac{\underline{m}_{j} a_{j}}{\rho \Gamma} \tag{6}
\end{equation*}
$$

To compute v_{d} we make use of the transformation

$$
\begin{equation*}
\theta=\sqrt{a^{2}-a^{2}} \tag{7}
\end{equation*}
$$

which maps the cross-flow plane into a plane where the wing is represented by a slot along the imaginary axis, as illustrated in fig. 4. In the eransformed plane the resultanc complex potential is

$$
\begin{equation*}
W(\theta)=-\frac{i \Gamma}{2 \pi} \log \frac{\theta-\theta_{2}}{\theta+\theta_{0}}-i V_{\infty} \alpha \theta \tag{8}
\end{equation*}
$$

The conjugrte of the velocity induced at the location of the right-hand vortex is decermined from the limit

$$
\begin{equation*}
\bar{v}_{\mathrm{d}}=\lim _{\sigma}\left[\frac{\mathrm{dW}}{\mathrm{~d} \theta} \frac{\mathrm{~d} \theta}{\mathrm{~d} \sigma}+\frac{1 \Gamma}{2 \pi\left(\sigma-\sigma_{0}\right)}\right] \tag{9}
\end{equation*}
$$

where the second term in the right-hand side represents the velocity induced by the vortex under consideration.
Carrying out this limit and introducing y_{d} in Eq. (6) we find the following implicit expression for the vortex equilibriur position

$$
\begin{equation*}
\frac{i \Gamma}{2 \pi}\left[\frac{1}{\theta_{0}^{2}+\hat{\theta}_{0} \theta_{0}}-\frac{1}{\hat{\theta}_{0} \varepsilon_{0}}-\frac{1}{\theta_{0}^{2}}+\frac{a^{2}}{2 \sigma_{0}^{4} \theta_{0}^{2}}\right] \sigma_{0}-V_{\infty} t\left(\frac{2 \bar{\sigma}_{2}}{a}-1\right)-\frac{1 \overline{i n}_{j} \bar{\epsilon}_{j}}{\pi \Gamma} \tag{10}
\end{equation*}
$$

The requirement that the velocity at the leading edge be finite yields

$$
\begin{equation*}
\frac{2 \pi V_{0} \underline{a}}{\Gamma}=\frac{1}{\theta_{0}}+\frac{1}{\theta_{0}} \tag{11}
\end{equation*}
$$

Introducing now the following definition of the jet momentum coefficient:

$$
\begin{equation*}
c_{\mu}=\frac{2 a_{j}}{\rho V_{\infty}^{2} a} \tag{12}
\end{equation*}
$$

With Eqs. (11) and (12) the equilibrium condition becomes

$$
\begin{align*}
& {\left[\frac{1}{\theta_{0}^{2}+\theta_{0} \theta_{0}}-\frac{1}{\theta_{0} \theta_{0}}-\frac{\varepsilon^{2}-2 \sigma_{0}^{2}}{2 \sigma_{0}^{2} \theta_{0}^{2}}\right] \sigma_{0}+i \frac{\epsilon}{\alpha}\left[\frac{1}{\theta_{0}}+\frac{1}{\theta_{0}}\right]\left[\frac{2 \dot{\sigma}_{0}}{\alpha}-1\right] } \\
&=\frac{a}{4 \pi} \frac{c_{\mu}}{\alpha^{2}}\left[\frac{1}{\theta_{0}}+\frac{1}{\theta_{0}}\right]^{2} \bar{e}_{j} \tag{13}
\end{align*}
$$

The eerm in the right-hand side contains the blowing information.
Let's consider the expression for the lift coeffictent derived by Brom and Michacl

$$
\begin{equation*}
C_{\mathrm{L}}-\frac{4 \pi}{a^{2}} \epsilon \cot \hat{\theta}_{0}+2 \pi \alpha \epsilon \tag{14}
\end{equation*}
$$

The first term on the right-hand side represents the vortex lift, a non linear function of α, and the second term represents the linear part of the life, that which would be produced by the wing in the attached flow case. To assess what form Eq. (14) will take in our case, we notice that the ape: angle, angle of attack, momentum coefficient appear in two groups in Eq. (13), winile the direction of blowing, β, appears through the definition of ε_{j}. Since the product $\theta_{0} \bar{\sigma}_{0}$ is obtained by solving Eq. (13), the lift coefficient will take the following form

$$
\begin{equation*}
C_{L}=\frac{4 \pi}{a^{2}} \epsilon \alpha f\left(\frac{\epsilon}{\alpha}, \frac{C_{\mu}}{\alpha^{2}}, \beta\right)+2 \pi a \epsilon \tag{15}
\end{equation*}
$$

In this expression fepresents a universal function of its arguments, and is not given analytically since no exact analycic solution of Eq. (13) is possible. For some limiting values of the arguments, however, anaiytical approximations to Eq. (15) are possible. Notice that the blowing information appears in the group C_{μ} / α^{2}. This dependence could be helpful in arranging the problem paramaters when conducting experiments.
To obtain such limiting forms consider first the approximation to the lift coefficient in the absenca of blowing, as obtained by Brown and Michael through linearization of Eq. (13) ${ }^{5}$

$$
\begin{equation*}
\frac{C_{L}}{\epsilon^{2}}-\frac{2 \pi \alpha}{\epsilon}+k(\alpha / \epsilon)^{5 / 3} \tag{16}
\end{equation*}
$$

Hence, the condition that the no-blowing case should revert to Eq. (16) gives

$$
\begin{equation*}
\frac{C_{L}}{\epsilon^{2}}=\frac{2 \pi \alpha}{\epsilon}+k_{1}(\alpha / \epsilon)^{5 / 3}\left[g\left(C_{\mu} / \sigma^{2} ; \beta\right)+I\right] \tag{17}
\end{equation*}
$$

Here g is another universal function of its arguments. To analyze the form of g for small values of its argument, we will consider the case of $\beta=0$. It can be shown numerically that g is regular for $c_{\mu} / \alpha^{2} \rightarrow 0$. Expanding g in C_{μ} / α^{2}, wa ge the following liminting form, valid for small C_{μ} / α^{2} and β ar 0 :

$$
\begin{equation*}
\Delta C_{L}=k(\epsilon / a)^{1 / 3} C_{\mu} \tag{18}
\end{equation*}
$$

where k has been redefined as a constant to be determined from experiments. The constraint imposed on blowing intensity in order for Eq. (18) to be applicable guarantees that no singularity at zero angle of attack will occur. Verification of Eq. (18) would require extremelly small blowing intensities. For moderate values of C_{μ} / α^{2}, and within a range of such values, a convenient representation is obtained by expressing the function in Eq. (17) as a power of its argument, this leads to

$$
\begin{equation*}
\Delta C_{i}=k \epsilon^{1 / 3} \alpha^{(5 / 3-2 D)} C_{\mu}^{p} \tag{19}
\end{equation*}
$$

Experiments ${ }^{4}$ heve shown that the lift grows slowly for inareasing a at moderate blowing intensity; this fact imposes the constraint $p<5 / 6$. It can also be shown, by numerical evaluation of the function g, that the dependence on angie of ejection is rather weak for $\beta<30^{\circ}$, so that Eqs. (18) and (19) can also be considered a good approximation for small ejection angles.

RESULTS AND DISCUSSION

Fig. 5 shows the comparison between theory and the axperimental results of Trebble ${ }^{4}$, currently the only available source of experimental informition. In this case the angie of ejection is equal to zero. The calculations reproduce the correct trend, but they produce values significantly lower that the measurements. In contrast, Barsby's theoretical results were significantly higher than the measurements. The discrepancies betwe n the present method and the experiments are mnst likeiy due to the oversimplifying assumptions of the model, which make it intrinsically weak.
Figs. 6, 7, 8 and 9 illustrate the increment of lift coefficiont in carpet form, for different angies of ejection and the same apex angle. The angie of ejection is considered positive downward. It can be seen that the influence of ejection angle on the aerodynamic compouent of the lift is quite small for angles less than 30°. Fo: the same inclination with respect to the span, the jet pointing upward causes more deterioration of lift gain.
The measurements presented in Ref. 4 didn't lend thenselves to an accurate evaluation of the exponent p in Eq. (19). However, using the healtriest part of such isca, a preliminary assessment was made; it was found than for C_{μ} in the range .1 to .175 the estimated value of p from the uxponert of a in Eq. (19) was about .77, while the value of p from the exponent of C_{μ} was in the range .7 to .75 .

conclustons

The problex of blowing from the leading edges of a slender delta wing has bean analyzed using a generalizatich of the vortex-connecting-sheet model for the separated flow on the lee side of the wing. The results lead to the following observations:
Blowing from the leading edges of slender delta wing ceuges an increment of lift, beyond the vertical component of ejected momentum. Both theory and experiments suggest that with birwing coefficients of about 0.05, gains in lift of the order of 30% are possible. This lift improvement is rather insensitive to small values of the angle of ajection. For ejection angles of up to 30° there is little effect on lift augmantation. The aerociynamic component of lift augmentation deteriorates more guickly as function of angle of ejection in the case of downard ejection. It appears that the optimur angle of ejection is about 0°.

The theory reproduces the same trends as the ones shown by che only availeble source of experimental informacion. However, it underpredicts the lift gain by about 30 .
The theory suggests a way of grouping the different non-dimensional quantities of the problem, in such a manner that the non-innear part of the lift becomes a function of $\epsilon \alpha$. c / α, and C_{μ} / α^{2}. Since the angle of attack appeara in more than one non-dimensional group, chacking this conclusion would requize condueting experiments with wings of differe: aps angles.
It is expect ${ }^{\text {d }}$ that this particular way of grouping the wiog -Fi ; : wasmettrs will reduce considerably the size of the matriy of ti experimental program.
Results indicate chat for small values of C_{μ} / a^{2} the lift gain is a linear function of blowing intensity.
For smail values of α / ϵ and ejection angles of less than 30°, the ifft gain dus to tlowing is expected to scale in the following form:

$$
\frac{\Delta C_{L}}{\epsilon^{2}}-k(\alpha / \varepsilon)^{5 / 3} g\left(C_{\mu} / a^{2}\right)
$$

When both α / ϵ and C_{μ} / α^{2} are small, the scailing takes the form:

$$
\Delta C_{L}=k(\varepsilon / \alpha)^{1 / 2} c_{\mu}
$$

For moderate c_{μ} / a^{2} the following arrangement could be used for fitting experiemtnal data:

$$
\begin{aligned}
\Delta C_{L} & =k e^{1 / 3} a^{(9 / 3-2 p)} C_{\mu}^{2} \\
p & <5 / 6
\end{aligned}
$$

Although the exponent p is not independent of blowing setting, such an arrangenent could still be helpful in conducting a best fit withing a range of blowing intersity.

REEERENCES

1. J.E. Barsby: Calculations of the efect of blowing from the leading edges of a slender delte wing: ARC REN 3632, 1971.
2. J.E. Barsby: Calculations of the ffacts of blewing from the lesding edges of a cambered teles ving. ARC R\&M 3800, 1978.
3. J.H.B. Saith: Improvec calculations of leading odga scparation from slender deita uings. RAE TR 66070, 1966.
4. W.J.G. Trebble: Explorstory investigation of the effects of blowing from the leading edgo of a dalce wing. ARC R\& 3518, 1966.
5. C.E. Brown and W.K. Michael: On slender dale wingz with leading edge sepsration. NACA TN 3430, 1955; Journai of the Aerospace Sciances, Vol 21, 1954.

EXCESS

(a)

(b)

Fig. 1 Detached and tangential blowing schemes.

Fig. 2 Brown and michael model.

Fig. 3 Jet sheet control volume.

Fig. 4 Conformal transformation of cross-flow plane.

Fig. 5 Comparison of theory and experiment, $\epsilon=20^{\circ}$.

\because

Fig. 8 Ferformance piot.

Fig. 9 Performance plot.

