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ABSTRACT 

The aerodynamics of a rectangular wing with a jet exhausting 

in the spanwise direction from the tips has been explored experi­

mentally. By effectively changing the span of the wing as well 

as outwardly displacing the tip vortices, such jets can induce 

aerodynamic forces that could be used for roll and lateral control 

of aircraft. The concept has been investigated for a variety 

of jet intensities, angles of attack, and aspect ratios. The 

results appear to confirm theoretically predicted scaling laws 

for lift gain and moment generation due to blowing. 
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NOMENCLATURE 

A wing aspect ratio 

b wing semi-span 

c wing chord 

Cp jet momentum coefficient 

C, rolling moment coefficien~ 

0, measure of the rolling moment coefficient 

CL lift coefficient 

C lift coefficient for zero blowing Lo 

d tip vortex outward excursion 

h slot width 

qoo free stream dynamic pressure 

Uoo free stream velocity 

a angle of -attack 

~ equivalent aileron deflection 

6CL lift coefficient iricrement due to blowing 

6p difference between plenum and static pressures 
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1. INTRODUCTION 

A thin jet of fluid exhausting in the spanwise direction 

from a wing tip, and roughly aligned with the chord will affect 

the forces acting on the wing by modifying the effective aspect 

ratio of the wing. To some extent the jet behaves as an extension 

of the wing; it can support a finite pressure difference between 

its two sides in the vicinity of the tip, which is reflected 

in a curvature of the jet sheet and a spanwise displacement 

of the tip vortex. Modification of both the net lift and the 

rolling moment of the wing may be obtained by modulation of 

jet strength in the absence of any moving surfaces. Wing tip 

blowing could therefore be considered' as advantageous to augment 

wing lift or to provide ,control response in flight ~egimes where 

conventional systems would be ineffective, e.g. stalled flight . 

Tailoring of the jet parameters (slot length, position and efflux 

angle) may also have a positive effect on stability derivatives 

(yaw due to roll etc.) and aeroelastic interactions such as 

control reversal, associated with high aspect ratio wings. 

The intent of this research program was to investigate the 

relative importance of each of the parameters and to obtain 

a fundamental understanding of the fluid phenomena and their 

relative merits. The results reported here correspond to systematic 

variations in jet intensity, aspect ratio and angle of attack. 

Ongoing work includes parametric investigation of jet exit confi­

guration, jet exit angle, and jet location. 
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A symmetrical NACA 0018 airfoil section was chosen and the 

model dimensions fixed to produce a maximum aspect ratio of 

3.1, which could then be ·varied by sliding a splitter plate 

along the wing span. 

The following chapters of this report cover the experimental 

apparatus and techniques, a compilation of the data obtained 

and an initial discussion of the important phenomena. 

Since previous work on this concept emphasized its application 

to lift augmentation, as. opposed to roll or lateral control, 

it dealt with blowing intensities considerably larger than were 

investigated here. Ayers and Wildel reported measurements on 

a wing of aspect ratio 1.39 and 50 degrees of sweep, showing 

significant gains in lift with lateral blowing, as well as 

beneficial effects of blowing on stall. Carafoli2 conducted 

experiments with a straight wing of aspect ratio 2, and attempted 

a theoretical formulation with limited success. Later, Carafoli 

and camaracescu3 reported experiments on small aspect ratio 

wings, observing that lift augmentation due to wing tip blowing 

was greater for smaller aspect ratios. Further experimental 

work was conducted by White4 , who noticed that beneficial effects 

on drag were possible. Briggs and Schwind5 considered this 

concept as a lift augmentation device for STOL aircraft. Their 

experiments suggest that a net gain in STOL capabilities would 

be possible. Hickey6 tested swept win~s of aspect ratios 1.9 

and 2.5 and observed that the rate of gain of additional lift 

was greater for weaker blowing. Wu et a17 ,8 studied the concept 
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of tip blowing where several discrete, thin jets ejected from 

wing tips, and inferred similarities with the winglet concept. 

Tavella and Roberts9 developed a theory for the concept of lateral 

blowing, and obtained scaling laws valid for weak blowing. 
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2. EXPERIMENTAL APPARATUS AND TECHNIQUES 

2.1 Low Speed Wind Tunnel 

The Stanford low speed wind tunnel has a 18" by 18" test 

section with a length of 32". It is a continuous operation, 

closed-loop facility driven by a variable pitch fan. Speed 

control is achieved by remote adjustment of the blade pitch 

and a maximum centerline free stream speed of 57ms-l is obtainable. 

Calibration and setting of the tunnel is by observation of a 

reference pressure difference across the contraction, the two 

reference locations being sufficiently removed from the test 

section to avoid model interference. 

2.2 Wind Tunnel Model 

The requirements for the model were symmetry about the chordline, 

simplicity of construction, modest aspect ratio, and minimum 

jet interference with the wind tunnel walls. The final design 

was fixed as a NACA 0018 airfoil section with a chord of 15cm 

and a span, not including the tip piece,. of 22. 6cm. The basic 

aspect ratio of the wing model was 3.1. This thick section 

was chosen to facilitate the incorporation of both a plenum 

duct and a large number of pressure tappings. Initial scalings 

of the mass flow requirements and expected translations of the 

tip vortex suggested that a slot height of O. 15cm would be sui table. 

The slot was positioned in the plane of symmetry, over 73% of 

the chord and exiting in the spanwise direction with no deflection. 
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The tip shape was chosen to be given by a diameter distribution 

equal to the wing thickness distribution. The resulting planform 

and overall dimensions are shown as Fig. 1. The model was mounted 

on a 20. 3cm diameter circular disc which was flush mounted into 

the tunnel floor and which could be manually rotated to provide 

incidence adjustment. An additional circular splitter plate 

which could slide along the span of the "wing was manufactured. 

This enabled measurement of the effects of varying aspect ratio 

upon the effectiveness of lateral blowing. 

A total of 192 surface pressure tappings, divided equally 

between 8 spanwise stations, were installed in the model. At 

each station the pressure tappings were divided equally between 

the" upper and lower surface. An additional tapping was provided 

in the model plenu~ to assess the blowing pressure. 

An existing high pressure air supply capable of providing 

a maximum of 0.25Kgsec-l of mass flow was used for the tip jet 

blowing. The mass flow was measured using a venturi type mass 

flow meter and correlated with estimates obtained from the meas­

urements of the internal duct pressure. 

2.3 Data Acquisition 

The 192 pressure tappings in the wing were connected to 

a 4-barrel "J" series Scanivalve module with 48 ports per barrel. 

The Scanivalve was automatically stepped and the data acquired 

by a PDP 11/23 minicomputer, enabling a full spanwise load distri­

bution to be recorded by a single pass of the Scanivalve. 
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Each individual scanivalve pressure was obtained as the average 

of 30 samples at a frequency of approximately 1KHz. The data 

was reduced to pressure coefficients, section lift coefficient, 

and overall load and rolling moment coefficient, and stored 

for future reference. On-line graphical display of local pressure 

distributions and global results was available. In this manner 

a wide variety of conditions could be examined in a short space 

of time. 

A five-hole pitot probe was also used to measure the flow 

vectors downstream of the wing tip. Flow angles of up to 45 

degrees could be measured using the probe, which was connected 

to a computer-controlled,' 3-axis traversing gear. Cross flow 

velocity vectors on planes normal to the free. stream could be 

measured downstream of the wing. 
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3. RESULTS 

This initial study was formulated to provide information 

regarding the fundamental aspects of wing-tip blowing. As such 

a test matrix was constructed to sequentially vary jet strength, 

angle of attack, and aspect ratio. 

The blowing strength is characterized by the jet momentum co-

efficient, which is here defined as 

( 1) 

where ~p is the difference between the total pressure of the 

jet and the static pressure in the environment where it discharges. 

Here ~p is considered to be equal to the gage pressure in the 

plenum, since tunnel static pressure was very close to atmospheric. 

Results in Figs. 2 through 19 correspond to model aspect ratio 

set to its basic value 3.1. 

Fig. 2 shows the velocity field on a plane normal to the 

free stream, one chord behind the wing trailing edge, as obtained 

with the five-hole probe. 

Fig. 3 shows the trajectory of the wing-tip vortex core on 

a plane normal to the free-stream. 

Fig. 4 shows the horizontal displacement of the vortex position 

as blowing is applied. 

Figs. 6 to 9 show isobar contours for the upper and lower 

surfaces, for selected angles of attack and blowing intensities . 
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Fig. 10 depicts a three dimensional view of the load distribution 

on upper and lower surfaces with and without blowing. 

Fig. 11 shows the lift coefficient as a function of angle 

of attack, parametrically in blowing intensity. 

Fig. 12 shows the lift increment as a function of angle of 

attack and parametrically in blowing intensity. 

Figs. 13 and 14 repeat the same data as function of blowing 

intensity, parametrically in angle of attack. 

Fig. 15 and 16 show the relative lift gain as function of 

angle of attack and blowing intensity. 

Fig. 17 shows the same data plotted against the ratio of 

blowing intensity to angle of attack. 

Fig. 18 shows a measure of the rolling moment coefficient 

that would result from one-sided blowing in the case of a full­

span wing. The rolling moment coefficient is defined as 

c, = rolling ~oment 
span qoo WIng area (2) 

The measure of the rolling moment coefficient reported here 

is computed as follows: 

(3) 

These two quantities are not identical since in the full-span 

case one-sided blowing affects the loading along the entire 

span of the wing. However, a theoreticai study 9 indicated that 

8 

.. 



r· 

they are reiated through a factor close to unity. 

Fig. 19 shows the effective deflection of conventional ailerons, 

covering 25% of the chord and 25% and 50% of the semi-span, 

needed to produce the same rolling moment as measured in the 

half-span model. The information on rolling moment produced 

by conventional ailerons was taken from referencelO , where measure­

ments on a wing model of the same planform as the one of interest 

here were reported. 

Fig. 20 shows the effect of varying the aspect ratio on the 

lift gain, for selected values of blowing intensity and angle 

of attack. 

It is estimated that the general degree of accuracy on globally 

derived results 'is ,better than ~ 5%. This takes into account 

variations in tunnel speed, blowing rate, transducer calibration, 

inaccuracies in the setting of the angle of attack, and the 

resolution of the AID converter presently in use. 

In all the presented results, even for the totally symmetrical 

case presently under investigation, a gain in the lift coefficient 

is apparent as tip blowing is applied. Results for 0 degree 

angle of attack are not shown since· the wing must have finite 

lift to indicate meaningful results. 
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4. DISCUSSION 

The global mechanism responsible for the lift gain due to 

blowing is best observed by studying the features of the wake 

behind the wing. Fig. 2 shows the wake structure at a distance 

of one chord behind the trailing edge, as mapped with the five-hole 

probe. As shown in Fig. 3, the tip vortex moves upwards and 

outwards as blowing is applied. It is known that the asymptotic 

position of the vortex core far downstream is related to the 

wing span through a weak function of aspect ratio11 (a constant 

for elliptical wings). Hence, the outward movement of the vortex 

core indicates an effective change of the wing aspect ratio 

as a functio~ of blowing, 'suggesting that to some extent the 

jet behaves as a fluid extension of the wing, 'supporting a pressure 

difference between its surfaces. Fig. 4 shows that the outward 

distance that the vortex moves is a non-linear function of blowing 

intensity. From these figures it can be concluded that the 

jet curls up and merges with the tip vortex. A plausible three­

dimensional view is sketched in Fig. 5. 

The source of lift gain can be identified in greater detail 

by analyzing the isobar patterns shown in Figs. 6 to 9. Over 

most of the upper surface, blowing causes a general shift of 

the isobars towards the trailing edge indicating increased suction, 

except in a small region near the corner of the trailing edge 

and the tip, where suction decreases. The increase in suction 

is more marked near the tip and on the rear two-thirds of the 

10 
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chord. The lower surface shows a less complex situation: there 

is a fairly uniform gain in the pressure excess. Fig. 10 shows 

how blowing affects the load distribution on the upper and lower 

surfaces. Over most of the upper surface the pressure changes 

by an almost uniform value, except near the tip, where three 

regions can.be distinguished. Close to the leading edge, suction 

is slightly decreased. This is probably due to the effective 

contouring imposed by the jet on the wing planform. A larger 

portion of the region near the tip is subjected to a significant 

increase in suction. This added suction denotes an acceleration 

of the fluid due to entrainment into the jet and velocity induced 

by the rolled up tip vortex, indicating the presence of both 

viscous and inviscid mechanisms. The decreased suction in the 

small region near the trailing edge is probably due to the removal, 

by blowing, of the tip vortex which had established itself above 

that area of the wing before blowing was applied. 

On examination of the load distribution on the lower surface 

we see that the increase in pressure is more pronounced near 

the tip. since viscous entrainment into the jet is also expected 

to be present on its lower surface, and would tend to accelerate 

the flow, the observed deceleration suggests that the inviscid 

effect of span increase is more important than the effect of 

viscous entrainment for a symmetrical arrangement of the slot. 

The main source of lift is the redistribution of downwash along 

the span, causing a change in the effective angle of attack. 

This confirms the previous statement, that lateral blowing effec-
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tively changes the wing aspect ratio. with regard to the effect 

of the aerodynamic twist imparted to the wing by the curled-up 

jet, it appears to be localized near the tip and of minor importance 

relative to the total lift coefficient. However, this phenomenon 

might be of some significance in connection with the rolling 

moment, where the importance of pressure changes near the tip 

are amplified. 

Figs. 11 and 12 reveal that the increment of lift due to 

lateral blowing is a non~linear function of angle of attack. 

A change in angle of attack at fixed blowing rate causes the 

wing aspect ratio to change, modifying the loading at the tip, 

which in turn affects the aspect ratio. The combined effect 

of these changes suggest that the lift slope will be singular 

about the value of angle of attack for zero lift. Figs. 13 

and 14 also show a non-linear dependence of lift gain vs blowing 

rate. This non-linearity can also be explained in terms of simul­

taneous changes affecting each other; an increment of the blowing 

rate causes a change in the loading of the wing near the tip, 

and this affects the length that the jet projects into the free 

stream. This explanation would suggest that the singular behavior 

occurs about Cp = o. 

The relative increment of lift coefficient for a set blowing 

intensity becomes larger for smaller angles of attack, confirming 

the non-linear way the lift increment approaches zero. When 

the data points in Figs. 15 and 16 are combined in the form 

presented in Fig. 17, they collapse on a single line closely 
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described by the ratio of blowing intensity to angle of attack 

raised to a suitable power which appears to be close to 0.7. 

In a theoretical discussion9 , this exponent is shown to be 2/3. 

In Fig. 17 the data points corresponding to angle of attack 

of 2 degrees fail to collapse, this was due to an error in the 

angle of attack setting for that particular case. 

The rolling moment due to one-sided lateral blowing is discussed 

in terms of the quantity 0, as shown in Fig. 18 . This quantity, 

called "measure of the rolling moment coefficient", also exhibits 

non-linear dependence on blowing intensity and angle of attack. 

The considerably more scatter in Fig. 18 is probably due to 

magnification of experimental uncertainties near the tip. In 

order to evaluate the potential of this concept as a means of 

generating .rolling moments, the deflections for two different 

conventional aileron configurations, required to produce the 

same rolling moment (for this purpose it is assumed C, = G, ), 

are shown in Fig. 19. The ailerons are on wings of identical 

planform to that presently under consideration, cover 25% of 

the chord and extend over 25% and 50% of the semi-span respective­

lylO. The moments produced by the deflection of only one of 

the ailerons in the full-wing was used to compute the deflection 

angles in Fig. 19. 

Finally, the effect of aspect ratio on lift increment was 

investigated. This was done by placing a movable splitter plate 

over the wing section, and simulating different wing spans by 

different plate positions. The results for selected values 

13 



of angle of attack and blowing intensity are summarized in Fig. 20. 

We see that the lift increments become larger for smaller aspect 

ratios. In fact, it is expected that the lift gain would become 

unbounded for infinitely small aspect ratio. This is a consequence 

of a relative change in span for constant blowing strength becoming 

ever more significant as the aspect ratio decreases. 

14 
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5. CONCLUSIONS AND RECOMMENDATIONS 

The experiments have shown that tip blowing can be utilized 

as a means of producing changes in the wing loading, leading 

to augmentation in lift and the generation of rolling moments. 

In cases where there is in'terest in small forces and moments, 

such as in roll and lateral control, tip blowing of small and 

moderate intensity appear promising. 

The way this concept generates forces differs from conventional 

flaps or ailerons primarily in two respects: 

The forces and moments are non-linear functions of angle 

of attack and blowing intensity. This will have a bearing on 

the dynamic behavior of the aircraft. 

The forces are produced by an effective change in the span 

of the wing, as opposed to a change in the wing camber, which 

is the case in conventional ailerons or flaps. This causes 

the forces generated by tip blowing to be distributed over the 

entire span of the wing. 

with regard to the rolling moment, experiments conducted 

with half-span models can only provide an estimate of the effects 

of one-sided blowing on a full-span wing. Further work in this 

area should aim at establishing a more exact relationship between 

the rolling moment produced by tip blowing, and the "measure 

of rolling moment", reported here. 

15 
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Fig. 17 Collapse of relative lift increment data. 
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Fig. 18 Measure of rolling moment coefficient. -.. 
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Fig. 19 Equivalent aileron deflexion angle. 
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Fig. 20 Effect of wing aspect ratio on lift increment. 
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