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ABSTRACT

A viscous-inviscid interaction methodolbgy based on a zonal
description of the flowiield is developed as a means of predicting
the performance of two-dimensional thrust augmenting ejectors.
An inviscid zone comprising‘the irrotational flow about the
device is patched together with a viscous zone containing the
turbulent mixing flow. The inviscid region is computed by a
higher order panel method, while an integral method is used
for the description of the viscous part. A non-linear, con-
strained optimization study is undertaken for the design of
the inlet region. In this study, the viscous-inviscid analysis
is complemented with a boundary layer calculation to account
for flow separation from the walls of the inlét region. The
thrust-based Reynolds number as well as the free stream velocity
are shown to be important parameters in the design of a thrust

augmentor inlet.
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NOMENCLATURE

coupling coefficient matriéies for reduced egquations
right hand sides of reduced equations

characteristic width of turbulent region

weighting coefficients in the penalty function
transformation

pressure coefficient

shroud thickness

objective function after the penalty function
transformation

shroud inner half-width

eddy viscosity scaling constant

augmentor shroud length

horizontal length of the viscous-~inviscid interaction
zone

pressure

ramp function

shroud nose radius

Reynolds number based on jet characteristic velocity
and shroud inner width

constants in Eg. (2.14)
2-D gross thrust

2=-D primary thrust

X,y velocity components

velocity at outer edge of jet velccity wprofile



uy maximum excess velocity in viscous zone

Uco ‘ free stream velocity
g jet characteristic velocity
G approximate viscous solution
Vy ' velocity component normal to the jeﬁ boundary
X, ¥y coordinates in the viséous solution
Xend final station at which the viscous and inviscid solutions

are matched

X, ¥ coordinates for the shroud descriptién

Xo jet nozzle location |

X1, length of inlet 1lip

a in(2)

¥ ratio of free stream velocity to jet characteristic
velocity

r x-momentum conservation operator

o1 penalty functions

9 lip rotation angle

I molecular viscosity

ve © eddy viscosity

& ~ dummy variable of integration

P fluid density

~

Reynolds stress in 2-D boundary layer approximation
thrust augmentation ratioc
velocity potential

relaxaticn parameter
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( Jinv

()n
( dvis

(*)

quantity computed from the

inviscid solution

iteration level n

gquantity computed from the viscous solution

denotes differentiation with respect to x
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1. INTRODUCTION

A thrust augmentor consists of a high momentum primary
jet which is exhausted into the confines of an aerodynamic shroud.
As the jet evolves, it undergoes turbulent mixing with the surround-
ing stream, and as a result induces an entrained flowfield about
the device. Augmentation in thrust is realized through the
combined effects of the jet being discharged into a region of
lowered pressure, and as a result of the induced pressure distribu-
tion on the surface of the shroud.

One important application of the thrust augmentor is found
in vertical takeoff aircraft in which the weight of the aircraft
exceeds the thrust produced by the jet engines in a standard
configuration. The thrust is boosted to a level sufrficient
to overcome the weight of the aircraft through the use of a
pair of thrust augmenting ejectors mounted along the fuselage
at the wing roots. Figure 1 shows a cross-section of such a
vertical takeoff aircraft. Study of this ceonfiguration is the
rrimary motive of the present work, but the methodology developed
here is general and may be used to study other VSTOL configurations.

In the design of VSTOL aircraft to ke fitted with thrust
augmentors, a means of evaluating the performance of various
ejector configurations is needed in order to realize the optimal
benefit. Considerable work has been undertaken in recent years

in order to develop theories aimed at predicting thrust aucmentor
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performance. While mﬁch progress has been made in this guest,
as of the present time no methods exist which are efficient
or rcbust enough to be used in detailed parametrib‘or optimization
studies. The goal of this work is to develop a robust mocdel
suitable to be used by the engineer as a design toc.

The earliest a%ttempts at mcdeling the thrust augmentorfl]
were based on control volunme approaches which rely on a uniform
flow assumption for the inviscid portion of the flowfield and
satisfaction bf the equations of motion only in a alobal sense.
Sich theories possess the advantages of utmost simpiicity, yielding
closed form analvtic solutions, but at the same time they suffer
from the fact that the details of the flowfield in the near
vicinity of the shroud are not resoclved. With their lack of
ability to provide surface velocity or pressure informaticu,
the global formulations are not able to predict the outcc.a
of perturbations to the shroud geometry. Furthermore, the unifornm
flow assumption for the inviscid flow enteriﬁg the sh»oud can
be considered dubious for cases in which the nozzle is loacategd
ahead of the entrance of the shroud since experiments have showr
that this assumption is by no means valid[1C],

At the opposite extremes of both robustness and computational
simplicity lies a solution to the proplem through the use of
a nunmerical analysis of the full Navier-Stckes equations. a
detailed simulation such as this would provide with good assurance
all the necessary information needed to evaluatz the perform=-

ance of any arbitrury geometrical cenfiguratiocn. However, the

[N
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time required to evaluate one flowfield in this fashion is on
the order of ten hours on the ¢bc 7600[2). oOptimizaticn studies
typically reguire hundreds of flowfield evaluations. Thus one
can expect on the order of a thousand CDC 7600 hours of computaticnal
time if a full Navier-Stokes simulation is used to optimize
an augmentor design.

In light of the individual shbrtcomings of the two afcore
mentioned methods, much of the current effort in thrust augmentor
modeling has focused on a methodology which retains much of
the detailed information proviced by a Navier-Stokes solution,

while at the same time requiring only a mcdest computational

:

effort. Fore-runners of such methodologies are viscous=~inviscid

interaction algorithms.

In the viscous=-inviscid approach, the flowfield is subdivicded
into separate regions or “zones' jin which the character of the
flow is distinctly different. Typically an inviscid zone is
established which is postulated to be free of shear; As a counter-
part, a viséous zone 1s established in which =slews and rotational
effects are expected to play an important role. within each
zone the simplest justifiable approximations to the equations
of motion are made. Each zone may then be solved quasi-independently
with coupling infofmation appearing through the common boundary
conditions existing at the interface between them.

" Bevilaqua et al.[3/4] developed a viscous-inviscid algorithm
for the performance prediction of two-dimensional thrust augmentors.

Bevilagua's code makes use of a combined panel/vortex lattice
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method to compute the inviscid flow about the shroud, while
the turbulent zone is computed using a fihite difference solution
to a parabolic set of equations. This method has been used
to predict the performance of two-dimensional thrust augmentors
of low aspect ratio in which the turbulent jet has not yet expanded
to the point of the channel walls by the time of exit from the
shroud. ' |
Tavella and Roberts[5] have studied the limit of large
aspect ratio thrust augmentors in which the jet has encountered
the walls by the time of exit. In their algorithm, the inviscid
solution was obtained using the technique of conformal mapping,
and the viscous turbulent zone was ccomputed using an integral
method. This algorithm proved to be extremely economical and
several parametric studies were performed. Aside from the attrac-
tiveness of its efficiency, the methédology lacked robustness
with the conformal mapping only admitting shroud gecmetries
which could be described by small perturbations to flat plates.
In the present work, the integral formulation of Tavellafs
model is retained, while the inviscid solution is generated
using a higher order panel method(®l. Use of the panel method
for the inviscid solution removes the limitations of slightly
perturbed shroud geometrias imposed by the conformal mapping
fechnique of Tavella's wodel. The model is still restricted
to augmentors of high aspect ratio, but can be uxtended to study
the low aspect ratio regime as well. With most practical augmentor

designs falling within the capabilities cof the model, this restric-
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tion on'aépect ratio is not a serious handicap.

V Unlike all other models contained in the literatpre fo
date which are limited to a quiescent far field, the present
one can treat thrust augmentors which_are iﬁmersed in a moving
free stream. The advantage of this feature is that it is now
possible to-explore the differénces which occur in the thrust
augmentor performance as the aircraft accelerates toward flight
speed. _

Another feature of the present model_is that'é boundary
layer calculation is performed on the surface of the shroud,
thereby providing a meaﬁs of predicting flow separation over
the inlet region ¢f the device. This detail is important because
boundary layers subject to the adverse pressure gradient inherently
present within the entrance region of the thrust augmentor ére
prone to separaticn. Separated boundary layers in the inlet
region of the thrust augmentor imply a significant loss of stagnation
pressure, and hence a reducticn in performance. with this
problem understaod, and properfy mddeled, configurations may

be designed which do not suffer from inlet stall.



2. ZONAL DESCRIPTION AND VISCOUS-INVISCID INTERACTICHN

2.1 DESCRIPTION OF THE PHYSICAL PROBLEM

A typical thrust augmentor has the property that the flow
field contains well defined viscous regions imbedded within
a largely inviscid field. The viscoﬁs effects introduced by
the jet are restricted to a finite zone near its axis. The
turbulent zone produced by the jet serves to mix the high energy
fluid within the jet with the low energy fluid in the invisciad
region. This mixing and its associated entrainment provides
the mechanism of thrust augmentation.

A second region where viscous effects may be identified
is in the boundary layers which develop on the surface of the
shroud. Momentum transfer takes place in the boundary layer
as manifested by skin friction and a no-slip velocity condition
at the shroud surface. Evolution of the boundary layer also
deternmines whether or not the flow will separate from the walls
of the shroud in response to the adverse pressure gradients
always present within the duct of the thrust augmentor.

Both the viscous zones containing the jet and boundary
layer share the property that the streamwise velocity gradients
are small when compared with %the gradients ncrmal to the flow
direction. This fact has long been known for boundary layers{i7],
and that for jets more recentlyl(18], 1In these two cases it

is possikle to neglect the streamwise velocity diffusicn terms



in the Navier-Stokes equations, thereby reducing these elliptic
equations to a parabolic set. Solutions to parabolic egquations
are more tractable in general than elliptic ones, and lend themselves
to a variety of efficient numerical marching schemes.

While the viscous regions are small and well contained
within the inviscid region, there exists a surprising degree
of interaction betwéen these two zones. This interaction is
better understood by dividing the flowfield into four regions
as shown in Figure 2.

Region 1 becomes important only for configurations in which
the nozzle is located ahead of the shroud. When this region
is present, the jet develops under the influence of the surrounding
entrained inviscid flow. This entrained or secondary flow will
depend on the shape cof the shroud, suction into the inlet, and
entrainment distribution of the primary jet. As the growth
characteristics of the jet are intimately related to the secondary
flow, it may be expected that the viscous-inviscid interaction
will be quite strong in this region. '

Region 2 is similar to region 1 with the exception that
the jet and its entrained inviscid flow are bounded by the channel
walls. The viscous-inviscid interaction still takes place as
in region 1, but becomes less intense with increasing distance
from the inlet. The inviscid flow becomes approximately uniform
as the downstream end of the region is reached. Boundary layers
are developing on the shroud walls and merge with the inviscid

flow.
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Region 3 is characterized by a turbulent flow which éompletely
£ills the channel, thus terminating the viscous-inviscid interac-
tion. The pressure increases with downstream disténde as a
'result of momentum dissipation. At the end 6f region 3 the
préssure has become equal to the atmospheric value. The.bqundary
layers on thé channel walls continue to grow, but now nmerge
Qith the turbulent instead of inviscid flow,

Region 4 contains the wake. 1In ﬁhis‘region the exhausting
mixed flow acts like a free jet issuing from the shroud exit.
Further mixing with the inviscid flow takes place downstream
cf the shroud, but because;the primary momentum has now been
greatly diffused, the viscous-inviscid interaction is much weaker
here as compared with the region near the jet nozzle. For this
reason the wake region is treated as a ndn—mixing slipstream
which extends infinitely far downstream of the ejector. Mora
information on the wake modeling will ke given in a subsequent

section.

2.2 MATHEMATICAL MODEL

The flowfield of a generic two-dimensional thrust augmenter
is divided into a viscous and an inviscid zone as illustrated
in Figure 3; The viscous zone originates at the jet nozzle
and increases ‘in width at a linear rate with streamwise distance.
In oxder to avoid .a sharp corner in the inviscid region, the
linear growth of the viscous zone is halted when the jet is

a short distance fror the channel walls. At this peint a_seﬁicircle
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is used to bridge the gap between the visccocus zone and the channel
wall (the necessitybof this alteration will be illuminated in
the forthcoming section which describes the inviscid solution).
The inviscid zone encloses much of the shroud and extends far
away from the shroud in all directions. The common boundary
between the viscous and inviscid region is represented rhysically
by the region where the shear due tb the turbulent mixiang has
beccme negligible.

The choice for a linearly growing turbulent region downstream
of the primary nozzle merits some discussion. For the case
in which the nozzle is located well ahead of the shroud, a dimen-

sional analysis provides the justification for a wedge shaped

turbulent region, as it is easily shown that for a two-dimensional
free jet the characteristic width scale must grow linearly with
the distance from the virtual origin. Experiments confirm this
scaling law and provide a wedge half angle of 12 degrees for
which the shear has diminished to a negligible valuel13], rFor
the case in which the nozzle is located within the shroud, it
is harder to justify the wedge shaped viscous zone since the
addition of the length scale introduced by the channel width
makes it unclear that the growth rate should be a linear function
of the streanwise distance. Indeed if the channel extends infinitely
far downstream, 1is expected that all length scales will asymptot-~
ically approach some constant fraction of the channel height.
However, when the width of the jet is small compared with the

channel width, the walls may be thought to be located at infinity
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in termé of a local coordinate system assigned to the jet.
It is therefore expected that the free ﬁet result for a linear
growth rate will hold near the virtual origin, and a slowing
of the growth rate will occur as the jet width becomes of the
same order as the channel width. Thus if‘the wedge concept
is used for the confined jet, it mey be expected that the width
of the turbulent zone will be cver pre&icted as the distance
from the virtual origin is increased. This fact pocses no serioﬁs
difficulty within the present framework, since the model for
the viscous region recovers the inviscid solution at large distances
from the centerline of the channel. Thus no harm is done if
the wviscous calculation is used to predict a small portion of
the inviscid flow at large distances from the channel centerline.

The performance of the device is assessed in terms of the

augmentation ratio defined as

o — (201}

The augmentation ratio is computed in either of two ways; direct
integration of the surface pressure, or using the Blasius theoren
for a control volume surrounding the device. The two methods
agree within two percent in all cases. All results presented

here are based on an integration of the suriace pressure.

10
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253 I.NVISCID—PROBLEM AND ITS SOLUTION

The inviscid flowfield is assumed to be irrotational and
-incompressible, and hence a potential flow fo;mulation is approp-
riéte; Within the framework of the potential formulatien, the
velocity fieid.is derivable from the scalar velocity potéhtial

function as follows

vV =v3. o T (2.2)
Substitution of the above form for the velodity into the incompres-
sible continuity relation leads to the result that the velocity
potential satisfies Laplace's equation

V%= o. (2.3)

An integral of the momentum equation gives the familiar Bernoulli

equation which relates the pressure to the veleocity potential

P 1
5 * -2-V§~V§= const. (2.4)

e Several approximate methods exist for solving Lagplace's

equation on an arbitrary domain. As a subset of these, both
surface singularity and finite difference schenes will be considered
in more detail below. Before discussing various solution schemes,

a description of the geometry and boundary conditions which
11
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define the solution domain is provided.

Exploiting the assumed symmetry of the shroud geometries,
it 1s possible to focus attention on only the upper half plane.
Abstracting from Figure 3, the geometry and boundary conditions
defining the inviscid problem is defined as shown in Figure
4. The solid boundary extending in front of the shroﬁd represents
the dividing streamline which approaches.the device. The following
linear segment represents the jet boundary with permeable boundary
cohditions included to accouht for the jet entrainment. The
half circle at the upper end of the jet boundary serves as a
control station with a uniform flow transpiration boundary condition
imposed there. The need for the control station arises from
the fact that panel methods become inaccurate in a concave corner
regionl®:7], 1Inserting a smooth curve such as a half circle
greatly reduces this inherent difficulty. The uniform flow
condition imposed at the control station is justifiable since
experiments have shown that the inviscid flow becomes nearly
uniform after about one half channel width into the shroud.

The augmentor shroud is modeled as an impermeable boundary.
For the wake, the assumption is made that the slipstream surface
which exists between the exhausting jet and the inviscid flow
at the exit of the device is a continuation of the same streamline
which defines the body shape. Physically this assumption is
equivalent to ignoring the £fluid shear which exists at the slipstrean
interface. This is found to be Jjustifiable, however, since

conputations have shown that modeling of the mixing taking place

12



downstrean of the shr-oud has a negligible effect on global quantities
such as the augmentation ratio.

Several methods are investigated for the computation of
ﬁhe inviscid region. Surface singularity schemes such as a
panel methods are highly desirdble because of their ease of
implementation and computational efficiency. However, the need
to compute the flow inran internal region of the thrust augmentor
inlet requires special treatment. A finite difference calculation
requires no special treatment in an internal region, but reguires
a grid generation and is not nearly as efficient as a panel
nethod. A hybrid scheme composed of both surface singularity
and finite difference calculations has certain advantages.

These three particular methods are analyzed in more detail below.

2.3.1 PANEL METHOD DESCRIPTION

Panel methods belong to a general class of surface singularity
methods in which a solid boundary is replaced.with various forms
of singular elementary solutions (sources, sinks, doublets,
vortices, etc.). In panel methods the surface of a solid body
immersed in the field is decomposed into many small surface
elements or "“panels" over which sources are distributed. The
intensity of each of these source panels is determined by requiring
that when the influence of all panels as well as the free strean
are considered, specified boundary conditions’ be satisfied at
a discrete number of collocation points. In most non-lifting

problems which arise in aerodynamics, the flow tangency condition

13
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imposed at thevgeometric center of each panel provides the necessary
bourdary conditions to close the system. The solution process
involves a system of simultaneous linearlequations for tﬁe source
étrength on =ach pénel. The coupling matrix in this systen
contains the so called aercdynamic influence coefficients which
describe the het induced velocity at the collccation point of
ohe panel as a result of the presence of another panel. With
the order of the system equal to the number of surface elements,
(on Ehe order of 100 surface elements are needed) solution of'
this system is easily achieved in a direct fashion using Gaussian
elimination.

Various forms of panel methods arise from different approxi-
mations to the surface shape as well as the source distribution.
In the classical form of the panel method, the sﬁrface is described
by linear elements formed by joining adjacent discrete points
which lies on the body. 1In this formulation, the scurce strength
takes on a constant value over each panel. 1In the.classical
methoed, the aerodynamic influence coefficients are easy to derive
and may be rapidly coméuted numerically.

So called higher order schemes result when better approximations
are made to the scurce distribution and/or the surface shape.
In practical hiéher order methods, the surface curvature is
accounted for by fitting parabeclas to the surface contained

"within two points on the body, and the source distribution is
described by linear or guadratic sections. These more sophisticated

methods result in a nore tedious derivation for the aerodynamic

14
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influence coefficients as well as increased effort ir numerical
computation. However, as shall be shown, they lead to increased

accuracy.

2.3.2 CLASSICAL PANEL METHOD

Use of a classical panel methodl?] in which the singularity
strength is constant over each linear surface element is £first
investigated. Figure 5 shows that this method provides an accurate
description cf the inviscid flow field in the regions external
to the shroud, but produces poor results in the internal region
between the two lobes of the shroud. It is observed»that mass
is not conserved in the internal region, and that a discontinuity
in both velocity magnitude and direction is present at the control
station. Increasing the number of surface elements in the internal
region weakens the velocity disceontinuity, but satisfactory
results can not be obtained even with as many as ioo panels
in the internal region alone. The failure of the first crder
panel methed may be attributed to ¥Yleakage" effects caused by
the jump in singularity intensity between adjacent panels.
Because of a symmetry property present in the error caused by
the discontinucus source distribution, errors cancel fortuitcusly
in exterr-1 regions and compound in internal regions[61. Ev.dently
as a result of this compounding of the errcr, leakage persists
even as the surface element size is dramatically reduced.

It is concluded that the first order panel method alcne

will not provide sufficient accuracy for the purposes of this

15
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study. However the fact that the fir st order panel methed is
capable of efficiently producing accurate results ior the external
region of the inviscid flow field leads to the 3evelopment of
a novel hybrid scheme in which the external flow is computed
with the first order panel method, and the internal portion
of the inviscid flow is computed using a finite difference tech-

nique. This method is discussed in the fcllowing section.

2.3.2 CLASSICAL PANEL METHOD WITH A YCFD PATCHY

The basic idea of the hybrid scheme is to first compute
the entire inviscid flcwfield using the first order panel method.
The internal region is then refined by inserting a computational
mesh and performing a finite difference <alculation. Figure
6 shows the idea more clearly.

The panel sclution provides values of the velocity potential
to be used as a Dirichlet boundary condition for the finite
difference calculation at the inflow boundaries of the grid.
Neumann boundary conditions for the normal drrivative of the
velocity potential (equivalent "o the velocity component normal
to the boundary) are specified at all other boundaries.

The grid is generated using a simple algebraic scheme which
results in a nen-orthogonal grid. A coordinate transformation
is used to map the physical domain into an indicial computational
space. The Laplacian operator is not invariant under this tansfor-
mation and consequently takes on a more complicated form[14],

The soluticon to the problem is carried ocut in the computaticnal
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domain and the result mapped back inte the physical plane.

The finite difference approximation results in a large
order system of simultaneous linear equations which are beyond
the capabilities of direct solver routines{l4)l, 1In this case
a successive over relaxation scheme (SOR) is used to obtain
an approximate solution to the finite difference equations.
The Neumann boundary conditions are ihcorporated in the relaxation
process as suggested by Steger(15],

As displayed in Figurev7, it is found that this hybrid
schene produces an inviscid flow field with good accuracy both
in the internal and external regions. The solution blends smoothly
between the panel and finite difference regionsvand mass is
conserved in the internal region. While the method provides
the desired accuracy, the numerical efficiency is greatly compromised
with the finite difference calculation taking roughly an order
of magnitude meore computational time than is reqﬁired for the
panel soluticn alone. ©On the other hand, thevhybrid schamea
is expected to be an order of magnitude faster than a finite
difference calculation used to model the entire inviscid field.

As will be discussed in the next section, for tha cases
treated here consisting of irrotational incompressible flow,
a more sophisticafed panel methocd fornmulation may be used to
obtain results with accuracy comparable to the hybrid schene.
However for cases in which compressikble and especially rotaticnal
effects play a role in the secondary flow, the hybrid scheme

developed here would be of greater advantage. As an example,
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a transonic full pétential formulation could be used to model
the external regicn with an Euler formulation used in the internal
region. The merits of combining transonic full potential and
Euler equation calculations for computations iﬁvolving airfoils

has already been shown[15],

2.3.3 HIGHER CRDER PANEL METHOD

The problem of "leakage" inherent to a firs:v order panel
methed in én internal region may be remedied through a slightly
different formulation. The jump in singularity strength between
two adjacent panels responsible for the leakage is removed by
allowing the singularity distribution to ke described by higher
order curves(6l., Use of a linear variation in the singularity
intensity over each surface element produces an overall singularity
distribution which is continucus. Further improvement in accuracy
for a given nunmber of panels is achieved by using quadratic
sections to describe the singularity intensity variation ove:
each panel. In this case it is necessary for matdematical_consié—
tency to describe the surface geometry with second order curves
as welll6],

In this work the formulation given by Hess[®é] which uses
quadratic surface elements and allows for quadratic variation
in singularity intensity is followed (see Appendix A for the
details of the method). This higher order formulation invcives
more complicated calculations in order to establicsh the aerodynamic

influence cocefficients. In addition, the need for the local

18



curvature of the surface geometry requires a second ordef interp-.
olation scheﬁe. Des?ite these increases in complexity, the
higher order formulation stili produces'a system of simﬁltaneous
linear équations of order ecqual to the number of panels. Thus
the solution can easily be obtained with a direct sélvar as
in the case of the classical panel method. A

Shown in Figure 8 are the rgsults of the higher order formu-
lation, which produces an inviscid flow field which is accurate
in the internal regions as well as the external-regions; _ Mass
is conserved in the internal region and the discontinuity in
velocity magnitude and direcﬁion at the control station is less
than five percent of the velocity there. The time required
to compute the higher order solution is foughly one and a half
Itimes that needed to compute the classical panel solution.

It is found that this panel method formulation is highly
sensitive tc discontinuities in the curvature of the beody surface,
a preblem which is absent in a classical panel method formulation
due to neglect of the surface curvature. Cluste?inq panels
in regions of inherent curvature discontinuities as well as
using cubic spline fits to describe the surface whenever possible
is necessary to achieve a smooth velocity distributicn oh the
surface of the shroud. Figure 9 shows a typical panel distributicn
required to produce a good velocity distribution. out of three
inviscid methodolecgies investigated here, the higher order formu-
lation provides the most economical route to an accurate solution,

and thus has been chosen for the inviscid flow method of solution.
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2.4 VISCOUS SOLUTION .

As mentioned above, the governing equations for the jet
flow may be approximated by a parabolic set identical to the
familiar boundary layer equations. One class of solutions to
these equations is comprised of finite difference schemes for
which straightforeward numerical technigques are well developed[193.
While finite difference formulaticns have associated with them
large array storage regquirements and time-consuming iteration
processes, they have the advantage that almost all schemes approach
the exact solution as the grid becomes infinitely fine.

An alternate approximate form of solution teo theiboundary
layer equations exists which dces not become exact in any practical
limit, but which still provides an accurate solution with good
numerical efficiency. This form of solution is known as the
integral method as first developed by Von Karman[20] and
Pohlhauseal21],

In tle integral formulation, the streamwise momentum equation
is converted from a statement of local force balance to one
of average force balance by first integrating in a direction
normal to the flow. The resulting integro-differential equation
is then further simpiified by assuming a functional form of
the solution which has a number of free parameters and satisfies
the given boundary conditions. Depending on the number of free
parameters, the system is closed by requiring that the error

made by the assumed solution form be orthogonal to a set of
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independent functions (én idea borrowed from the method of Galerkin).
The end result is a set of coupled ordinary differential equations
which may be readily solved by marching downstream from initial
data. '

From a numerical standpoint, the integral methcd is ideal
since it poses no large storage requirement, and better still
requires no iteration. Success of the intégral method has been
demonstrated for boundary layers({22] as well as for free and
confined jets[23]. The acknowledged approximate nature of the
integral method is of no great concern when computing a turbulent
flow as dona here since uncertainties in the turbulent stress
nodel are expected to obscure any increases in accuracy gained
in a fine mesh finite difference calculation.

A thorough study by Tavella and Roberts(8] provides justifica-
tion for the use of the integral method for the thrust augmentor
problem. In their report, regressions to experimental data
are given which validate the use of selected approximate solution
forms. Solution of the problem using the interral method are
also shown to yield good correlation with experiment for the
jet velocity profile and pressure evolutjon within the mixing
channel. The calculations prove to be rapid indeed, requiring
only a fraction of a second of CPU time on the IBM 3081 machine.

The demonstrated accuracy and efficiency of the integral
method provide the motivation to include it in the model as
the method of soclution for the viscous zone. “he particulars

of the method used here are well described elsewherel$,8,24],
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For the sake of completenéss the essential features of the method
are repeated here.

The bdundary layer assumptions made for a statistically
-stationary, steady, incompressible twb-dimensionél flow in which
the mdlecular and normal turbulent stresses are neglectéd,‘gives
rise %o the foliowing equatioﬁ for ﬁhe coniservation of momentum

in the x-direction

Y
du _ 9u fou, . lap _ let
I'(u) = U — a5+ - = -~ = 0, (2.5)
ax Ay J ax Pax pay
0 .

The mass conservation relation used implicitly above is

au + v
% 3; = 0. {(2.6)

A further result of the boundary laver approximation is that
the pfessure does not vary in the direction normal tc the stream.

Equatidns (2.5) and (2.6) are simplified by postulating
that the velocity field is expressible from the nozzle to the
exit piane in the manner shown in figufe 10 by a function of

the following form

A . o y2 ]
U(X,y) = ug{x) + uy({xjexp|~a__2__ I. (2.7)
b(x)4J

It should be noted that this representation ignores the boundary
22




layer on the inside of the channel walls(8],
The turbulent shear s*ress is modeled using the simple

eddy viscosity concept

w2, (2.8)
p y . )

with the following scaling hypothesis
vt = kulbo (2-9)

Experimental observations for the growth rate of a free jet
is used to assign a value of 0.0283 to the constant k.

Now substitute Egs. (2.7)-(2.9) into Egs. (2.5) =znd (2.6),
to obtain a simplified set of ordinary differential equations
in terms of the unknown functions uj;(x), ug(x), b(x), and p(x).
A system of independent equations for these quantities is obtained
by taking successive moments of of the momentum equation as

follows

H

fynr(ﬁ)dy = 0. (2.10)
0

These moments together with the continuity relation constitute
a closed system of equations expressible in the following matrix

notation

23

1 e et e - e i e e e it e e st T




(a1¢ 5, = (B}. (2.11)

This coupled non-linear set of ordinary differential equations
is solved by marching away from initial data provided at the

virtual origin.

2.5 VISCOUS~-INVISCID MATCHING

Communication between the viscous and inviscid zones takes
place in the form of shared boundary condition data at the zonal
interface (the outer edge of the shear layer produced by the
jet). The goal of the viscous-inviscid‘matching is to make
as many as possible of the flow variables continuous at the
zonal interface. Continuity in both velocity and pressure fields
along the djet boundary is achieved in the limit of an iterative
process.,

The boundary condition for the inviscid solution is the
normal ccmponent of transpiration velocity used to sinmulate
the entrainment of the jet. Solution of the inviscid problem
subject to this boundary condition yields the u and v components
of velocity at the zonal interface. A boundary condition for
the viscous solution is created by making use of the fact that
&o may be found by numerically differentiating the u component

cf velocity as obtained from the inviscid solution along the
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jet boundary. This allcws Eg. (2.11) to bewrittenwith ﬁo appearing

as a forcing ternm

[A){b = (B} + {C)ug.  (2.12)

This set of equations is solved together with a given set of
initial conditions, and the v component of velocity at the jet
boundary found from the solution through'ﬁse of the continuity
relation. Thus the v componént of velocity along the jet boundary
may be calculated from both the viscous and inviscid formulations.
The aim of the iteration scheme is to find the distribution
- of normal transpiration velocity, used as a bbundary condition
for the inviscid solutien, which matches the v component of
velccity alceng the jet boundary as computed from the viscous
and inviscid solutions. Physically this cerresponds to finding
the proper entrairaent distribution for the givén jet initial
conditions and geometrical boundary conditions. Matching of
the pressure field at the jet boundary is achieved automatically
.when the velocity‘fiéld is conmpatirle, since the pressure in
+he inviscid region of the jet profile is required to obey the
Bernoulli equationfg].

To start the iteration preccess, an initial guess for the
boundary conditiorn to the inviscid flcw'problem is chosen (a
reasonable choice is a uniform flow boundary condition). The
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cycle is terminated when the v compcnents of velocity agree

to some specified tolerance.

2.6 STABILITY CEARACTERISTICS OF THE ITERATION S8CHEME

It has been found that the iteration process is unstable
when the correction to the transpiration velocity boundary condition
is made using a classical relaxation scheme with a constant

relaxation factor such as

vtl = vy + w(Vyis = Vinv)s (2.13)

where Vy is the normal component of transpiration velocity at
the jet boundary, n the iteration level, and vyjg and vjpy the
y component of velocity as computed by the inviscid and viscous
solutions respectively. Under such a scheme, an instability
develocps near the control station and grows rapidly as is propagates
upstream towards the nozzle. Regardless of its value, inclusion
of a constant relaxation factor w is shown to have little effect
on controlling the instability.

The assessment 1s made that the stability characteristics
of this scheme vary with the distance from the virtual origin
of the jet, and thus the motivation arisess to let the relaxation
factor become a function of the streanwise coordinate x. 1In
this way the scheme nay be damped wmore in the region which is
most sensitive to the boundary condition correction. A linear
variation in of the form
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w= (r+ tx), (2.14)
where

r=1.0, t=-=0.7/(Xend)r (2.15)

is found to stabilize the algorithm. Here %gopng is the x coordinate
of the furthest downstream station at which the viscous and
inviscid solutions are matched. While this scheme is under-
relaxed for most of the jet trajectory, thé nurber of cycles
needed to achieve a three decade drop in the solution errcr
is about 4. This scheme is quite robust, and no further stability
problems are encountered even for a wide range of geometrical
cbnfigurations and flight conditions.

Once cconvergence is achieved, the viscous-inviscid matching
is complete and the remainder cof the viscous flow within the
mixing channel is computed by marching the fuil set of Egs. (2.11)

downstream from the control station to the shroud exit. -

2.7 EXIT PRESSURE MATCHING

Upon exit of the shroud, the requirement is pesed that
the pressure be continuous across the slipstream created between
the viscous and inviscid calculations made there. The pressure
computed by the inviscid solution at the primary jet nozzle
is used as an initial condition for marching of the viscous
solution. At the exit of the shroud, the pressure predicted
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there by the viscous sélution is compared with the préssure
computed by the inviscid solution. Compatibility between these
preésure fields is achieved by iterctively adjusting the momentum
flux of the primary jet (equivalenﬁ to adjusting the initial
value of uj). The fellowing relaxation scheme is used to éorrect

the jet initial conditions in response to a exit pressure inbalance

up (0)™*1 = uy ()™ + @(Pinv * Pvis)s (2.16)

where ' : _ '
w= 20. ' (2.17)

No stabiiity problems are encountered with this scheme.
The pressures on either side of the slipstream at the shroud

exit can be compared only once the velocity field is matched

.at the jet boundary. For this reason it is necessary to nest

the iteration scheme for matching the velocity at thes zonal
interface within the iteration loop for matching the pressure
at the exit. starting with a given value of u; to be used as
the initial conditfon in the integral method, the viscous and
inviscid zones are first matched, thereby allowing the viscous
and inviscid pressure predictions at the exit to be compared.
The outer loop is closed as the initial centerline velocity
of the jet (ul)vis adjusted in response to the computed pressure
inbalance. ‘The overall scheme is shown schematically in Figure

11.
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2.8 BOUNDARY LAYER CALCULATION

The boundary layer calculation performed here is bkased
on von Karman's integral formulation of the boundary layer equat-
ions.  Transition and separation are predicted by monitoring
the local shape factors as suggésted by Epplerfg]. As theories
for a turbulent boundary layer which evolves in a turbulent
ocuter field are not well developed, the boundary layer calculation
is terminated at the point at which the jet first interacts
with the surface of the shroud. The lack of ability to calculate
the boundary layer throughout the entire s . ad prohibits the .
computation of skin friction over the entire device. For this
reason the boundary layer calculation serves only to indicate
separation at the inlet and not to ppovide a measure of the
drag induced by the shroud. In addition to this, no attempt
is made to account for the displacement effects of the boundary
layers, It 1s anticipated that the displacement erfects do
not appreciably affect the overall perfocrmance of the device,
and without displacement thickness infcrmation within the mixing

channel, there is little point in making a correction.
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3. COMPARISON WITH EXPERIMENT

Laboratory.

The augmentor algorithm is compared with a series of measure-
ments taken by Bernal and Sarohiall0] at the Jet Propulsion

A cross-section of the two-dimensicnal model tested
is shown in Figure 12.

The surface pressure distribution predicted
by the augmentor code is compared with experiment in Figure
13.

predicted.

The agreement is seen to be quite good over most of the
shroud with the suction peak location and magnitude procperly

The pressure deviates most within the mixing channel,

which 1s likely to be a consequence of the crude turbulence
model used in this region.

Note the strong adverse pressure
gradient following the suctiocn peak.

The boundary layers which
develop on the shroud walls are prone to separatse in this region
and for this reason close attention must be paid to the boundary

layer development in the design of a thrust augmentor in order
to avoid inlet stall.

Figure 14 shows the evolution of the jet velocity profile
within the mixing channel.

The overall agreement is good, t"ith
the computed profiles reproducing the correct shape and velocity
magnitude.

l.26

The code predicts an augmentgtion ratio of

Tha five percent
discrepancy in augmentation ratic falls within the uncertainty
of the reported value.

while the experiment yields a value of 1.2.
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The CPﬁ time required for the computation of a single converged
flowfield is approximately two minutes on the VAX-1l 7/780 system.

The close agreement with the experimental data suggests
that the viscous-inviscid assumption as well as the eddy viscosity
turbulence model prcvide a good approximation to the physical
processes. The computational time is slight enough to allow
an optimization study to be undertaken in which hundreds of
separate configurations must be evaluated. Such an optimization

study is discussed in the next section.
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4. OPTIMIZATICN STUDIES

As illustration of the capabilities of the nodel, a sinple
study for the optimizaticn of the inlet detaii for the shroud
stddied by Bernal and Sarochia is undertaken. A dimensional
analysis is performed in order to determine similarity rules,
which aside from their own utility, serve to reduce the number
of free parameters. A gquasi-Newton optimizaticn routinellll]
is coupled with the augmentor code in order to systematically
search through the free parameters which survive the dimensional
analysis. The constraints imposed both by gecmetric restrictions
and flow separation are incorporated into the optimization schene
through algebraic penalty functions which discount the performance

rating once a constraint is violated.

4.1 A SIMPLE INLET DESIGN PROBLEM

Figure 15 shows a perturbed version of the previously studied
shroud in which the Jjet nczzle is free to move along the plané
of symmetry, and a section of the inlet lip is allowed to rotate
out of the plane of the mixing channel. The gecmetric design
variables are the jet nozzle location X,, the overall length
of the shroud L, the height of the mixing channel 2H, the thickness
of the shroud 4, the length of the inlet section rotated Xp,
and the rotation angle 8. In addition to the geometric param-
eters, the free-stream speed ux , as well as the thrust of the

primary nozzle T4, are included as design variables. In order
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to isolate'the effects of inlet shape, shrouds with diffusers
have not been considered, and the mixing channel walls remain

parallel up to the.exit station in all cases.

4;2 DIMENSIONAL ANALYSIS
The thrﬁst developed by the aﬁgmentor is expected to depend
.on the each of the design parameters. Thus symbolically the

statement is made
T= T(Toll-‘lprueo ILIZHIdIXOIXLIO)‘ (4.1)

The dimensions of the 11 parameters which appear above are all
composed of the three basic dimensions of mass, length, and
time. The Buckingham pi theoreml[25] of dimensional analysis
states that the number of dimensionless groups is equal to the
nunber of independent parameters minus the number of independent
basic dimensicns. Thus in this case 8 dimensionless groups
exist. Due to a further result 6f the pi theorem, one greup

may be expressed as a function of all the rest. Thus

T U  VTo/P2H(2H) Xo X, o L 4
' P e 0 —|° (4.2)
To VTo/02H n/p 2H 2H 2H 2H

This relation states that the thrust augmentation ratio is a
function of seven :dimensionless parameter groups. The first
group appearing abnve is a a dimensionless measure of the free~stream
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speed. The characteristic velocity used in its normalization,

To

- P ey |

uc =
p2H (4.3)

is derived from the momentum flux of the primary jet. It has
the physical interpretation as being the éxit veiocity of a
fictitious jet with the same nmomentum flux as the primary jet,
but with an exit width equal to the mixing channel height, 2H.
This same velocity scale is usediin the definition of the Reynolds
number, which is the second parameter in Eg. (4.2). The jet
characteristic velocity is used in faver of the free-stream
velocity in this case so that the Reynolds number remains defined
when configurations are evaluated in the absence of a free-stream.

The remaining parameters in Eqg. (4.2) are dimensionless
measures cf the gecmetric detail of the thrust augmentor configura-
tion. In an effort to contain the scope of the pptimization
study, tae shroud aspect ratio, L/2H is held fixed at 3.28,
and the chroud thickness relative to the mixing channel height,
d/2H is held fixed at 0.5. With these two parameters fixed,
the overall dimensions of the optimized configurations are identical
to the shroud tested by Bernal and Sarochia. As an additional
consequence, the opﬁimization problem is reduced from a seven

to a five parameter search.

4.3 OBJECTIVE FUNCTION AND CONSTRAINTS

The primary objective of the optimization study is to maximize
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the thrust augmentation ratio. Naturally then the objective

function is taken to be that which defines ¢ (Eg. (4.2) with

L/2H and d/2H deleted). A concise statement of the problen

“is

Xo Xr ug }\/TO/pZH (2R)

Maximize ¢ = £ , , 0 ’ (4.4)

’
2H 2H VTo/P2H “/p

where the elements of f belong to the constraint space defined
below. The dimensionless free-strean velocity and Reynolds
number are treated as parameters rather than design variables
in the optimization process. That is, a free-stream velocity
and Reynolds number are chosen, and then the inlet gecmetry
oﬁtimized for that particular flight condition.

The constraints arise both from geometric restrictions
and boundary layer separation over the inlet region of the shroui.
As the search path of the optimization routine can not be contrclled,
is is necessary to enploy geomnetric constraints in order to
aveoid situations in which the evaluaticn of a non-physical configura-
tion is attempted. As an example, without constraints, the
optimization routine may call for the evaluation of a configuration
whose combination of lip rotation point and negative rotation
angle would require that the two lobes of the shroud cross over
each other along the symmetry plane. Each geometric design
variakle is.constrained within limits which insure a realizable

geometry.
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An additional constraint is imposed by the boundary layer
behavior along the inlet region of the shroud. Since inlet
stall greatly detraqts from the performance of the devicé,'config-
‘urations for which boundary l;yer sebaration is predicted are

rejected in the optimizaticn process.

4.4 PENALTY FU_NCTION TRANSFORMATION

Unconstrained optimization problems are much simpler to
treat than are constrained ones(12], For thié‘reason the’#xesent
constrained problem is recast as an unconstrained problem through
the use of the penalty function transformation(12]. The use
of penalty functions allows the constraints tc be ignored until
one of them is violated. When a constraint is violated, the
performance rating is artificially lowered in an effort to redirect
the search away from the forbidden regicn. In the present study,
algebraic penalty functions based on guadratic relations are

used. The transformed objective function is defined as
. o2
Maximize g = ¢ - Zci(oi) ’ : {4.5)

where the C; are weighting ccefficients and the §; are the peralty

functions. The penalty functions are defined as

d

X Lj 1
R _E.."' - 2+ J -2y
8y = ﬁn 2H (2H)tan(12°) 2 J (4.6)
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82 = R[Eﬁ - XL-"

2H 28] (4.7)
5y = R[;ggtan(l2°) - ;%tan(e? ~ g]:‘ (4.8)
8 = R['}z—{—g - g—% - gg]' . (4.9)
85 = R(1.0 = Scrit). (4.10)

where L is the horizontal length of the viscous~-inviscid interactien
zone, Rp is the nose radius, Sgpit 1s the surface cocrdinate
at which the boundary layer has separated, and R is the ramp
function. The surface cocrdinate Sgpit is normalized such that
its origin corresponds toc the stagnation point and the control
statioh corresponds to a value of 1. If the boundary layer
remains attached Snpi+ is assigned a value of 1.

Penalty function &3 insures that the lip rotation point
is upstream of the control station. Penalty function §, insures
that the lip rotation point is downstream of the nose radius.
Penalty function 85 insures that the 1lip does not rotate into
the viscous region. Penalty function &4 limits the distance
at which the nozzle may be placed upstream of the shroud. This
restriction insures that the jet has not yet expanded to a widin

greater than that of the mixing chamber upon entrance into the
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device. Penalty function &8s insures that the boundary layer
remains attached over the inlet region of the shroud.

The weighting coefficients are a measure of the relative
importance of respect for the constraints and the desire to
obtéin the highest possible thrust augmentation ratio. Low
values of C imply 1little attention is paid to the constraints,
while large values of C increase their importance. Difficulties
in achieving convergence arise when the weighting coefficients
take on very large values. Each of the weighting coefficients
are started at a value of 1, and then increased to a value of
10 as the optimal point is neared. In some instances the values
of individual weighting weighting coefficients may have to be

adjusted slightly in order to achieve convergenée.

4.5 OPTIMAL SOLUTICNS

Optimal configurations are determined for a wide range
of Reynolds number (Rp) for three values of the dimensionless
free-stream velocity (¥). Figure 16 shows the variation in
the performance of a thrust augmentor with an optimizea inlet
as a function of both Reynolds number and free stream speed.
The results show that the performance is an increasing function
of Reynolds number, with strongest dependence in .the low Reaynolds
nunber range. The rapid increase in performance at low Reynolds
numbers is associated with transition from a\laminar to a turbulent
boundary layer. A laminar boundary layer can not withstand

the severe adverse pressure gradient which is present in the
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inlet region. In an effort to avoid inlet stall, the optimiza-
tion routine seeks configurations which reduce the pressure
rise in the inlet region by decreasing the degree of>tufbu1ent
-mixinngithin the shroud. In so doing,vthe performénce is decreased
since.the mechanism of thrust augmentation relies on nixing
of the high moméntum jet with the amﬁient fluid. kAs the Reynolds
number is increased to a value sufficient to induce transition
to a turbulent boundary layer, the performance_is greatly enhanced
due to the fact that the turbulent boundary layer is able to
negotiate the intensified pressure rise associated with increased
mixing within the shroud. |

When a non-zero free~stream speed is included, the presence
of a strong favorable pressure gradient fdllowing the stagnétion
point at the‘shroud nose helps to energize the boundary layer,
thus making it more resilient to separation as the pressure
rise in the inlet region is encountered. In Contrast to this,
in the case of static operation, the boundary layer begins at
the tail end of the shroud, and due to its lengthy evolution
and less favorable préssure gradient, becomes thick and sluggish
by the time it has traveled the distance necessary to be swept
into the inlet. The resulting thick, poorly energized boundary
layer experiendes separaticn at a smaller pressure rise than
the one which the more favorably energized boundary léyer can
withstand. For this reason, increased levels of performance
are noted in the laminar regime when a free-stream velocity

is present.
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In the high Reynolds number regime, performancé decreases
with increasing free-stream speed. This is due in part to the
normalization used in the definition of the thrust augmentation
ratio, and due in part to a reduction in shear at the jet boundary.
The thrust augmentation ratio is defined és the gross thrust
divided by the the thrust produced by the primary nozzle when
exhausted in an otherwise guiescent ﬁedium. When a free~-stream
velocity is present, the actual thrust produced by the primary
jet is reduced by an amount équal to the momentum flux of the
free-streanm across the jet nozzle area. As a conseguence of
this, the gross thrust is also reduced, and thus when compared
e , with the primary thrust produced in a quiescent medium, an apparent
| drop in the thrvst . :»mentation ratio arises. An alternate
definition of thrust augmentation ratio could be developed in
which the gross thrust is normalized by the free-stream reduced
primary thrust. However the standard definition is used here.

In addition to the apparent drop in performance due to
the rnorralization, there exists a physical loss of performance
due to the reduced rate of shear in the jet layer which occurs
as the free-stream velocity effectively lowers the differernce
between the ambient fluid velocity and jet velccity. A reduction
in entrainment of tﬁe ambient fluid follecws the reduction in
the rate of shear and thus the performance drops.

A few representative optimal shapes corresponding to the
perfornmance curve are shown in Figures 17 and 18. The results

show that the optimal design shapes are a much stronger function
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of Reynoclds numbef than free-stream speed. At low Reynolds
number, Figure 17 shews that the optimal nozzle position is
located up to one channel width ahead of the shroud, while the
inlet is slightly expanded. This combination éerves to minimize
the adverse pressure gradient in the inlet region as regquired
by the laminar boundary layer which develops there. In Figure
18 as the Reynolds number is increased'and the boundary layers
undergeo transition, the nozzle moves roughly up to the entrance
plane of the shroud. The inlet lips rotate through the horizontal
and then towards the jet as the Reynolds nuimber is increased.
The length of the inlet lip which is rotated is seen to increase
with Reynolds number.

More detail on the beshavior of the wvarious design parameters
as the Reynolds number and dimensionless free-stream speed are
varied is shown in Figures 19-21. Figure 19 illustrates the
optimal lip rotation angle as a function cf Reynolds numrber
for three values of the dimensionless free-stream speed. It
can ke seen that the optimal lip rotation angles follcw a similar
trend for all three values of dimensionless free-stream velocity.
As the Reynolds number is increased, and 1amingr boundary layers
give way to turbulent ones, the lips rotate quickly from large
positive angles to a position of roughly 2zero angle. Further
increase in the Reynolds number causes a continual gradual decline
in the lip rotation angle. Differences in the cptimal lip rotation
angle due the free-stream speed become increasingly small as

in the high Reynolds number regine.
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Displayéd in Figure 20 is the optimal primary nozzie location
és é function of Reynolds number for the three values of the
dimensionless free-stream Speed. The trends are qualiﬁatively
'similar for eachvof the three values of free-stream speed.
In the low Reynolds number 1limit, the nozzle is located well
in front of the shroud due to the fragile nature of the laminar
boundary layers. As the Reynolds number is increased and the
boundary layers becone turbuient, the 6ptimal nozzle pesition
moves gquickly to a limiting point juét inside the shréud. In
light of the forward stagnation point induced by the free-stream
and its positive effect on the boundary layer development, the
optimal nozzle location moves forward more quickiy when 2 free-
stream is present as compared to static opération.

Figure 21 illustrates the optimal length of the inlet 1lip
plotted as a function of Reynolds number with the dimensionless
free~-strean velocity appearing as a parameter. The general
trend of a short lip at low Reynold: number, maximumblip length
at moderate Reynolds number and a decline in 1lip length with
very large Reynolds number is seen to hold for all three values
of the dimensionless free-stream velocity. A&Again due to the
fo?ward stagnation point, there is a shift in Reynolds number
when the resulﬁs for static operation are compared with those
for a non~-zers free-stream. The rapid change in the lip length
when moeving out of the low Reyneclds number regime is due to

boundary layer transition.
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5. CONCLUSIONS AND DISCUSSION

A viscous-inviscid nethodology for the calculation of
two~dimensional ¢hrust augmentor performancebis developed, which,
through combining a higher order panel meﬁhod with an integral
nwthod,allowsforeconomicandrcbustcbmputaticn. Good qualitative
and gquantitative agreement with experiment is obtained with
the thrust augmentation prediction matching the experiment within
5%. The ccmputational time necessary to compute the flowfiéld
is roughly two minutes on the VAX/11-780 machine. The potential
for use of the code as a practical design tool is demonstratedv
through an optimization study for the inlet shape and nozzle
placement. Reynolds number effects captured through a boundary
layer calculation are shown to be an important design paraneter.

‘>_An interesting cbservation is that barring Separaticn,
and constraining the mixing channel height to be a constant,
the optimal configurations have an inlet which constricts the
entering flow. As the inlet is narrowed, the entrained flow
is forced to achieve a higher speed as it enters the shroud.
This increase in inlet velocity reduces the rate of shear produced
at the jet boundary; thersby reducing the entrainment. However,
at the same time the increased inlet velocity erhances the convective
acceleration about the nose, thereby increasing the induced
thrust. Evidently the increase in fluid speed about the nose

plays a more important role than does the decrease in entrainment.
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Bevilaqua has observed a similar trend for the case of a straight
walled inlet in which thz ratioc formed between the inlet area
and the jet nozzle area was variega{3].

An important conclusion of the coptimization study is tkre
fact that inlet boundary layer separation is the determining
factor in the maximum obtainable performance. In low Reynolds
number operation, the presence of laminar bocundary layers poses
a problem because of their tendency to separate in the region
of pressure recovery w.thin the inlet. In order to design a
configuraticn to be free of inlet stall in the laminar regime,
the performance must be compromised by reducing the degree of
turbulent mixing which takes place within the inlet region of
the shroud. The designer should be alerted to this fact and
tryAtc either force the boundary layer to become turbulent or
exploy scme other means of boundary layer control. It is clear
that some form of bcocundary layer management will not only substan-
tially increase the performance, but will also allow a single
configuration to cperate efficiently over a wider range of Reynolds
numbers and free-stream speeds. As a means of boundary'layer
control, the use of a wall jet may be advantageous since it

is likely to enhance the turbulent mixing within the shroud.
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Figure 1. Lifting ejector for vertical takeoff applicétions.
The shaded regicn shows the idealized ejector in which the geometry
is somewhat simplified. In the present study the interference
introduced by the aircraft and the other ejector are neglected,

leaving a single ejecteor in isolation to be the focus of attention.

Figure 2. Viscous flow regions.
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<:>Inviscid Zone computed with a higher order panel method.

(:) Viscous zone computed with an integral method.

Figure 3. fThrust augmentor and the zonail approach.
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Figure 4. The inviscid problem.
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Figure 5. 1Inviscid flowfield computed using a classical panel

method. (A) Far field, (B) Near field. Note well behaved far

field and local inaccuracy near the control station.
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Figure 6. Hybrid scheme. The far field is computed using the
classical panel method. Dirichlet data from the panel soluticn
is used at the inflow boundaries to couple the farfield in with

the local solution provided by the finite difference calculation.
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Figure 7. Near field computed using the hybrid scheme. Compare

with Figure 5 for the classical panel method alone.
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Flgure 8. Near fi2ld detail of the inviscid seclution as computed
using the higher order panel method. To plotting accuracy the

velocity field is identical to that of the the hybrid scheme.
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Figure 9. Panel distribution used for the higher order method.

(A) Overall view, (B) Inlet detail. Not all the panels extending

fore and aft frcm the thrust augmentor are shown in (aA). fThe

panels continue four shroud lengths ahead of and behind the

ejector.
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Figure 12. Test configuration. L/2H = 3,28, X /2H = 1.0,
= 0.5. (Taken from Ref. 10).
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Figure 15. Optimization parameters. X,, X;., and ¢ are variable,
L/2H is fixed at 3.28, 4/2H is fixed at 0.5. wu, and Ty are

additional parameters.
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APPENDIX A

FORMULAE FOR THE INDUCED VELOCITY COMPONENTS

The panel metﬁod’constructicn reéuires calculation of the
velocity components at an arbitrary field pcint as induced by
an isolated panel (say the jth one) on the body Surface;> In
the higher order method, the geometric features of the two neigh-
boring panelé (j-1 and j+1) must be included when considering
the jth panel. Figure A.l shows the geoméﬁry'and relevant nomen-
clature for three panels j-1, j, and j+1. | | _

First three coordinate transformations are undertaken which
take the global %,y system into local systems based on normal
and tangential directions to the surface at the three control
~points j-1, j,‘j+1. Each transformation has the same form as

illustrated for the jtB panel

ETA2 = (X~XIj)cosaj + (Y-le)sinaj, _ _ (A.1)

ZETA2 = ~(X-XIj)sinaj + (Y-YIj)cosaj. : (A.2)

The local coordinates affixed to the panel j-1 are labeled ETAl
and ZETAl, while those for the panel j+1 are labeled ETA3 and
ZETA3.

Parabolic £it parameters for the source distribution are

defined as

€7



where

PDj = 55T’ (A.3)
1rRy _ Py :

PE§ = *[—i - ——3—]' - 0 (A.9)

PFj = 5757’ (A.5)

PGy = 5= v (A.6)
PHj = == (A.7)
FPIy = zoo7’ _ (A.8)

. 1
Qj = Dj + _Z_[Dj.,l + Dj+l], (A-g)

Pj = Dj + Dj-l, {(A.10)
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Ry = Dj + Dj41. - | (A.11)

Distances from the extremes of each panel tc the field
.point are computed (for example for the jth panel) according

to

RP22 = (ETA2 + D3/2)2 + 2ETA22, (A.12)

RM22 = (ETA2 - Dj/2)2 + ZETA22. (A.13)

The distances for the j-1 panel are lakeled RPl and RM1l, while
those for the j+1 panel are labeled RP3 and RM3.

The velocity components at the field point are computed

from
Vyx = VElcosaj.; + VE2Cosay + VE3Cosag4; =
Vleinaj_l - VZZsinaj - VZ3Sinaj+1, (?&.14)
Vy = VElsingj-; + VE2siney + VE3sinajiy +
VZlcosay.y + VZ2cosay + VZ3cosajsys (A.15)
where
VELl = VEI1(PF4y-1)Dj-3 + Vszl(PPIjnl)Dzj-l, (A.16)
69



VE2 = VEO2 + VElZ(PEj)Dj + VECZ(Cj)Dj +

VE22(PHj + 2c2j)02j, (A.17)
VE3 = VE13(PDj+1)Dj+1 + VE23(PGj+l)D2j+1, (A.18)
VZ1 = VZ11(PFj.1)Dj1 + VZ21(PPIj_1)D24.,, (3.19)

V22 = V02 + VZlZ(PEj)Dj + VIC2(Cy)Dy +

V222 (PHy + 2c2j)92j, o 'A | -(A.zo)
V23 = VZ13(PDj4+1)Dysy + vzzz(psj+ljn2j+l, (A.él)
and where
VEOLl = 1n(RP1/RM1), | (A.22)
vzoz_f 1n(RP2/RM2), . (A.23)
V203 = 1n(RP3/RM3), ' (A.24)
vicz = _i[%Z(ETA2)V202 + 2(2ETA2)VE02 + ETA2(23T32)335], (A.25)
D5 RP2< (RM24)
VELL = Djil[%éiazfv201) + ETAL(VEOL) 'ZDj-l]f (A.26)
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l[ZE’I‘AZ (VZ02) + ETA2(VEO2) = ZDj],

VE12 = = (A.27)

Dj .

1 . . ] '
VELD = = [EETAz(vzo3) + ETA3 (VE03) 2DJ+1J, (A.28)
J+1

VE21 = 1 [Z(ETAl)ZETAl(VZOI) + (ETA12-2ETA12)VEOl -

D j'l

2(ETA1)Dj_%], (A.29)
VE22 = 1 {%(ETAZ)ZETAZ(VZOZ) + (ETA22-2ETA22)VE02 -

D45

Z(ETAI)Dj], ' {A.30)
VE23 = - i [ﬁ(zras)zETA3(vzoz) + (ETA32-2ETA32)VE03 -

D341

2(E’I‘A3)Dj+l:', : (A.31)

-1 ZETAL(D4_1)

vzo1l = 2tan J (A.32)

14
(ETA1°+ZETA1Z) - (Dy.1/2)2
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2ETA2 (Dj-1)

2tan~i ,
(ETA2°+Z2ETA2Y) - (D3/2)2 (A.33)

vZo2 =

b

vzos = 2t 071 ZETA3§Dj+l) ’ (A.24)
(ETA3Z+ZETA3Z) = (D441/2)° ! .-
_ _Yla(zETA2)vzo2 + ~(ETA2)VEO02 - 2(0')[; +
VZC2 = - 3
J L
(ETA22+ZETA22)2 - (ETA22-ZETA2«;(D5/-,2 ) (A.35)
- ' . P
RP2< (RM24) ;
1
vzl = _[ETAI(VZOI) ZETAl(VEOIJ}, (A.326)
-1 :
L .
vzZ12 = BT[érAz(vzoz) ZETAZ(VE02{], (3.37)
3
v 1 . - , ,
- vz13 = 5 [ETAB(JZOB) ‘TA3(V203)], (A.38)
. \ : j+l
Ve
'\ff'f"’" : 3
ok b R ] 2. 2
Ji vz21 = 5 :__[ 2(ETALl} ZETAL(VEOLl) + (ETAl12-ZETA12)vZOl +
y “7;_1
-
2(ZETA1)Dj-1], (A.29)
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V222 = = j[ 2{ETA2)ZETAZ (VEOZ) + (ETA2<=2ETA2¢)VZI02 +,

2(ZETA2)Dj], (A.RQ)

1

Vz23 = 5y

[-Z(ETAB)ZETAB (VEO3) + (ETA34-ZETA3°)VI03 +
j+1

2(ZETA3)Dj+1]. (A.41)

The local surface curvatures cj used in Egs (A.17) and
{A.20) are computed from a quadratic spline fit.

Now having established the induced valocity companents,
a set of simultanecus linear equations is constructed in order
to determine the scurce strength for each panel. The general
strategy is to compute the normal component of velocity inducad
by the j%P panel at the control point of the itR punel, assuming
unit source strength. The preocedure is repeated for each ceontrol
point, where account is made for the velocities dua to the unit
strength singularity on each individual panel. A matrix of
areodynamic influence coefficients results where a generic alam@ﬁt

is defined as
Wiy = -Vxijysinaj + Vyjqcosay. {A42)

Now the inner product formed with the ith row of this matrix
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and the source strengths 4§ results in the net induced velccity
at the ith control point. This net induced velocity is set
equal to the component of the free-stream velocity normal to
the iy panel plus any prescribed transpiration velocity, to
give a single constraint equation for the system. The sane
procedure is repeated for each panel, and a closed system of

equations result which may be written in matrix form as
(Wi{q} = (B}, (A.43)
where the Bj are given as
Bi = uw sinaj = Vyj. (A.44)
and the Vyj are the transpiration velocities defined tc be positive
for suction.
The system of equations given by Eg. (A.41) is cf the orxder

"0f the number of surface elements, and may be solved in a direct

mode.,
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PANEL

e &

Figure a.1 Relevant nomenclature for the kigher order Fanel
method. Depicted are panels j-1, . and je1. Quantities are

shown for the j*h parel enly.
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APPENDIX B

FORTRAN CODE

This appendix contains a source listing of the FORTRAN
program which computes the thrust augmentation ratio énd boundary
layer behavior for an arbitrary two~dimensional ejector. The
code 1s also currently on disk file at the NASA AMES Research
Center in the directory NE ::FFFO:[koening.lund.augment.auglib].

In addition to the subroutines listéd here, the progran
must be linked to the double precision version of the IMSL mathemat-
ics library.

Docunentation on the use of the program is provided in

the forn of comment statements included with the source listing.
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SUBROUTINE AUGMENT({ RE.' »SCRIT,PHT)

Chixrk kb kAR b AR FAAR AR AR A IR AT A AR AR RARRER AR Ak k kb kbbb hhhhdkhkiehiks

THIS ROUTINE WAS WRITTEN FOR THE JOINT INSTITUTE FOR AERONAUTICS AND
ACQUSTICS, STANFORD UNIVERSITY/NASA AMES RESFARCH CENTER, BY THOMAS IUND.

LATEST REVISION 2 JULY 1985

SUBROUTINE AUGMENT CCMPUTES THE THRUST AUGMENTATION RATIO OF A TWO-
DIMENSIONAL THRUST AUGMENTOR CF ARBITRARY GEOMETRIC CONFIGURATION. THE
CODE IS BASED ON A VISCOUS-INVISCID INTREACTION ALGORITHM IN WHICH THE
INVISCID REGION IS COMPUTED USING A HIGHER ORDER PANEL METHOD, AND THE
VISCOUS ZONE IS COMPUTED USING AN INTEGRAL METHOD.

THIS CODE IS OF EVOLUTICONARY ORIGIN, AND CONSEQUENTLY CONTAINS ISOLATED
REGIONS QF PCOR LOGIC STRUCTURE. COMMENTS ARE INCLUDED FOR CLAIRITY
WHEREVER POSSIBLE TO AIDE IN FOLILOWING THE PROGRAM STRUCTURE. QUESTIONS
REGARDING THE USE OF THIS CODE MAY BE DIRECTED TO THE AU'I‘POR AT STANTFCORD
UNIVERSITY.

*%# SUBROUTINE DESCRIPTIONS *#%*
ANGLE - COMPUTES THE GEOMETRIC FEATURES OF EACH OF THE SURFACE ELEMENTS
USED IN THE PANEL METHOD. THE PANEL LENGTHS, RADIUS OF CURVATURE,
AND ORIENTATION IN SPACE ARE CALCULATED.

AUGLYR - COMPUTES THE BOUNDARY LAYER DEVELOPMENT OVER THE INLET REGION CF
’ THE DEVICE.

BODGEN -~ GENERATES A SET CF BODY COCRDINATES FOR SIMPLE SHROUD SHAPES USED
IN THE OPTIMIZATION STUDY

CHANEL - COMPUTES THE VISCOUS VOLUTION IN THE CHANNEIL DOWNSTREAM OF THE
STATION AT WHICH THE VISCOUS-INVISCID MATCHING IS ENDED.

COEF - COMPUTES THE AERODYNAMIC INFLUENCE COEFFICIENT. FCR USE IN THE
PANEL METHOD

DATIN - READS THE DATA FILE WHICH CONTAINS THE BOLY SURFACE COORDINATES
AND TRANSPIRATIOCN VELOCITIES

ll&ﬂr#ﬂ'ﬁlﬂixbt-ﬁﬂrb#*‘ﬁiﬁ&‘tﬂ‘d—ﬂrﬁtﬁttﬁﬁ'tﬁﬁ-ﬁﬁ

FAPP - COMPUTES THE LOCAL SKIN IRICTION COEFFICIENT AND LOCAIL DISSIPATION®
CCEFFICIENT FOR THE LAMINAR BOUNDARY IAYER EQUATICNS *

*

FCN1 - COMPUTES THE DERIVATIVES OF THE JET PARAMETERS FOR USE IN MARCHING®
THE VISCOUS SOLUTION THROUGH THE VISCOUS-INVISCID REGION _ ®

%
FCN2 - COMPUTES THE DERIVATIVES OF THE JET PARAMETERS FOR USE IN MARCHING*
THE VISCOUS SOLUTION IN THE MIXING CHANEL DOWNSTREAM OF THE REGION®

OF VISCQUS-INVISCID MATCHING *

®

FCNL. - COMPUTES THE DERIVATIVES OF THE IAMINAR BOUNDARY PARAMETERS FOR ®

e e Ro o NeReRe oo Re e e e e e Ko NeNe Ne Ko Ne Ko No Ne No No Ko No o Ro o o Ne No Ne o Ne NoNo No Ro No No No o No NP NO NS
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USE IN MARCHING OF THE BOUNDARY LAYER EQLJATIONS

L I B N 2 N NE NS R B AR R Ak A O R

FCNT = - COMPUTES THE DERIVATIVES COF THE TURBULENT BOUNDARY LhYER
PARAMETERS FCOR USE IN MARChING OF THE BOUNDARY IAYER EQUATIONS
FIX - UPDATES THE DATA FILE CONTAINING THE 'I'QANQP"RATION VEIDCI’I‘I...S
’ ONCE CONVERGENCE IS OBTAINED. :
FLDVEL - COMPUTES THE VELOCITY COMPONENTS AT AN ARBITRARY IOCATION IN THE
INVISCID FIELD FROM THE PANEL SOLUTION _ »
INTRPV - INTERPOLATES THE FUNCTION AND DERIVATIVE VALUES FROM A CUBIC
: SPLINE FIT PRODUCED BY IMSL ROUTINE ICSCCU
JET - MARCHES THE VISCOUS SOLUTIOM THROUGH THE VISCOUS-INVISCID REQION
LINTRP - INTERPOLATES THE FUNCTION AND DERIVATIVE VAIUES FROM THE LINEAR
SPLINE FIT ROUTINE LNSPLN ’
INSPIN -~ COMPUTES THE PARAMETERS FOR A LINEAR SPLINE FIT
MATRIX = COMPUTES THE COPLING COE?FICIB@T MATRIX AND RIGHT HAND SIDE OF THE*
VISCOUS SOLUTION SYSTEM »
L
PANVIC - COMPUTES THE VEIOCITY VALUES ALONG THE JET BOUNDARY FROM Tz{E *
INVISCID SOLU'I‘IO‘\I *
*
PARMIN -~ READS A DATA FILE CONTAINING GEOMETRIC PARAMETERS ASSOCTATED WITH *
THE SHROUD *
*
PERFRM -~ COMPUTES THE THRUST AUGMENTATION RATIO FROM THE CONVERGED *
SOIUTION *
*
RK2 — PERFORMS NUMERICAL INTEGRATION ACCORDING TO THE SECCND ORDER RUNCGE#*
: - XUTTA METHOD _ *
. : &
SIMQ - SOLVES A SET O7 SIMULTANECUS LINLAR EQUATIONS *
. *
SIZE =~ READS THE DATA SET CONTAINING THE BODY COORDIN WTES IN ORDER TO *
ASSESS ITS SIZE *
. i
SOLVE3 -~ PERFORMS THE SIMULTAN‘"OUS LINEAR EQUATION SOLUTION NECESSARY TO *
' DETERMINE THE DERIVATIVES OF THE JET PARAMETERS *
. *
STREN = CCMPUTES THE SINGULARITY INTENSITY DISTRIBUTION FOR USE IN THE i
PANEL METHOD »*
*
SURFVEL~ CO’GHJ'I’ES THE VELOCITY AT THE SURFACE OF THE QHROUD FOR USE IN THE *
BOUNDARY TLAYEFR CALCULATION *
®
%% DARAMETER DESCRIPIION ¥k *
*
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INPUT:
RE = THRUST BASED REYNOLDS NUMBER

OUTPUT:
SCRIT - SURFACE CCORDINATE AT WHICH SEPARATION OCCURS. IF THE BOUNDARY
IAYER REMAINS ATTACHED SCRIT = 1.
PHI = THRUST AUGMENTATION RATIO

*#%% DATA FILES ##w*

INPUT:

BODY = CONTATNS THE COORDINATES OF THE SHROUD SURFACE AS WELL AS THE
TRANSPIFATION VELOCITY REQUIRED OVER EACH PANEL. THE FORMAT
Is X, ¥, VN IN A FIELD OF 3F10.4

PARAM - CONTAINS SCALE INFORMATION FOR THE BODY GEOMETRY. THE PARAMETERS
ARE XO,XC,XEXIT,NJS,NJF,NLS,NLF,VO,BETA,ULO, IN A FIELD CF
3F10.5,414,,,2F10.4,/,F10.4. X0 IS THE NOZZILE LOCATION NORMALIZED
BY THE CHANNEL HALF-WIDTH, XC IS THE CONTROL STATION LOCATION
NORMALIZED BY THE CHANNEL HALF-WIDTH, XEND IS THE SHROUD END
IOCATION NORMALIZED BY THE CHANNEL HALF-WIDTH, NJS IS THE PANEL .
NUMBER AT WHICH THE JET STARTS, NJF IS THE PANEL NUMBER AT WHICH
THE CONTROL STATION ENDS, NLS IS THE PANEL NUMBER AT WHICH THE THE
INLET LIP BEGINS, NLF IS THE PANEL NUMBER AT WHICH THE INILET LIP
ENDS, VO IS THE FREE-STREAM VELOCITY NCORMALIZED BY THE VELOCITY AT
THE CONTROL STATION, BETA IS THE ANGLE OF ATTACK, AND Ul0 IS THE
INITIAL CENTERLINE VELCCITY OF THE JET. THE PANELS ARE NUMBERED
SEQUENTIALLY STARTING FROM THE PANEL FURTHEST UPSTREAM

VEL = INITIAL JET CENTERLINE VELOCITY AS WELL AS THE JET ENTRAINMENT
VELOCITY DISTRIBUTION. THE FORMAT IS Ul0 IN A FIELD OF F20.4
AND THEN THE VORMAL VELOCITIES AT THE PANELS WHICH REPRESENT TEE
JET IN A FIELD OF F1l0.4. VEL IS UPDATED AT EACH ITERATICN.

OUTHUT:

DIAG =~ CONTAINS ERROR MESSAGES. DIAG SHOULD BE CONSULTED AT THE
COMPLETION OF EACH RUN TO CHECK FOR ERROR CONDITIONS. IN ADDITION
DIAG CONTAINS DIAGNOSTIC PRINTOUTS IF THE LOGICAL VARIABLE DUMPL
IS SZT TO0 TRUE

PERFORM=-CONTAINS THE AUGMENTATION RATIO AS CCMPUTED BOTH BY INTEGRATICON OF
THE SURFACE PRESSURE AND A BIASIUS CCONTROL VOLUME ANALYSIS. 1IN
ADDITION A SUMMARY OF THE BOUNDARY LAYER CALCULATION IS PROVIDED

#kk LINKING *%%*

THIS ROUTINE MUST BE LINKED TO THE AUGLIB LIBRARY AS WELL AS THE DOUBLE
PRECISION VERSION OF THE IMSL LIBRARY.

*%#% PRECISICN *#%
ALL PARAMETERS AND INTERNAL VARIABLES ARE DOUBLE PRECISION.

*%% ENVIRONMENT *#+*
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C VAY/11-780 OR VAX/11-785 ' *
c , . . *
c**********5‘:****************‘k*******************'k’i%******************k*****i****
c

IMPLICIT REAL#8 (A~H,0-2)

DIMENSION XJ(250,2),XI(250,2),VN(250),ALPHA(250),

& D(250),Q(250) ,W(250,250),P(250,250) ,VIN(50),

& XS (250) ,VS(250) ,SC(100) UEX'I‘(IOO)

COMMCN /UNIF/ VO

COMMON /AREA4,/ PATM

COMMON /AREA10/ XC

COMMON /AREA12/ XEXIT

COMMON /DUMP/ DUMP1

LOGICAL DUMPL,STAG,DUMP,SEP

REWIND 1

REWIND 2

*%% DUMP CONTROLS DIAGNOSTIC PRINTING #dk*
DUMPl=.FAISE.
*4% TOL)L IS THE CONVERGENCE TOLLERENCE FOR THE VISCOUS~-INVISCID #*#%%

*%% MATCHING, TOL2 IS THE CONVERGENCE TOLLERENCE FOR THE EXIT  #%%
*%% PRESSURE MATCHING whd

nnNnaan 000

TOL1=5.0D~4
TOL2=5.0D~4

0

CALYL SIZE(M)
CALL DATIN(XT,VN,M)

*%% N IS THE NUMBER OF SURFACE ELEMENTS *#%#%
N=M~1

O 000

CALL PARMIN(U10,VO,BETA)
CALI, ANGLE (XJ,N,XI,ALFHA,D)

*%% IF L=1 THE AERCDYNAMIC INFIUENCE COEFFICIENTS ARE COMPUTED, %%
*%% IF I=0 THE COEFFICIENTS FROM THE PREVIOUS ITERATION ARE USED #*x%*

N 0000

»10
(J. NE 1.0R.I.NE.1) I=0
CALL STREN({XI,Q,VN,ALPHA,D,W,N,P,VO,BETA,L)
CALL PANVLIC (XTI, ALFHA,D,Q,N)
CALL JET(U10,VN,RES)
IF(RES.LT.TOLl) GOTO 20
10 CONTINUE
20 CALL CHANEL{PEXIT)
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40

50

100

110

*%% COMFUTE THE STATIC PRESSURE IN 'I‘I-E INVISCID FIELD AT THE wkn

#%* SHROUD EXIT
PINV=PATM~0.5*VO*VO

. R=(PINV-PEXIT)
WW=4 .0D0+0.5D0*U10
UCOR=WW*R

kot S"‘I‘ BOUNDS ON CORRECI‘ION FAC.'COR IN ORDER TO AVOID ##%*
*%% INSTABILITIES *w#*

IF(UCOR.GT.5.0) UCOR=5,0D0
IF(UCCR.1LT.=5.0) UCOR=-5.0D0

Ul0=U10+UCOR
WRITE(S,40) PINV,PEXIT,Ul0 :
FORMAT(/,' IN AJG}‘IZNT PINV = !, Fl2.8,! PEXIT = ',Fl2.8,

& ' V10 = ',F12.8,/)
IF(DABS(R) .LT.TOL2) GOTO 90

CONTINUE - ,

CONTINUE

CALL SURFVEL(XI,ALFHA,D,Q,N,SC,UEXT NEXT,)EEN S'I‘AC)
DUMP=.FALSE.
NETEP=20
CALL AUGLYR(SC,UEXT,NEXT,RE,STAG,DUMP,NSTEP, SEP,SCRIT)
IF(SEP) THEN
WRITE(4,100)
FORMAT (' SEPARATED BCUNDARY LAVER'Y,/)
EISE
WRITE(4,110)
FCRMAT (' NC SEPARATICH',/)
END IF
CALL PERFRM(XI,ALPHA, D Q,N,U10, PHI)
RETURN
END
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SUBROUTINE ANGLE(XP,N,XI,ALFHA,D)

00

*************************************************k***************************ﬁ

SUBROUTINE ANGLE COMPUTES THE SURFACE ELEMENT LENGT ,.RADIUS oF
CURVATURE, AND ORIENTIATION IN SPACE FOR USE IN THE PANEL METHOD.

**%% PARAMETER DESCRIPTION #*#*

INPUT:
XP - SURFACE COORDINATES STORED AS X, Y PAIRS IN A (N-1) X 2 MATRIX
N -~ NUMBER OF SURFACE ELEMENTS

w
*
*
*
*
*
*
*
*
OUTEUT: *
XI - COORDINATES OF THE CONTROL POINTS STORED AS XY PATRS INA N X 2 *
MATRIX *

ALPHA - VECTOR OF INVERSE TANGENTS OF THE SLOPE OF FACH PANEL *
(ORIENTATION ANGLE) *

D - VECTOR CONTAINING THE IENGTHS OF EACH PANE *
*

*

*

&®

*

*

*

SENT DIRECTLY TO SUBROUTINE COEF IN A COMMON STATEMENT ARE THE PARABOLA
FIT PARAMETER VECTCRS PD,PE,PF,PF,FH,PPI, AS WELL AS THE VECTOR CONTAINING
THE CURVATURE OF EACH PANEL C, AND A LOGICAL VARIABLE PFERDT SET TO TRUE
FOR A BODY WITH PERIODIC GECMETRY

I T R T Tt T T e R T Y e T T T EE o T T Y

0ONO0OOOONONOONNANNANNNN

IMPLICIT REAL#S (A-H,0-2)

DIMENSICN XP(N+1,2),XI(N,2),ALPHA(N),D(N)

- COMMCN /DUMP/ DUMPL

LOGICAL DUMP1

COMMON /ANGLE1/ PD(100),PE(100),PF(100),PG(100),PH(100),
& PPI(100),C(100)

COMMON /ANGLE2/ PERDT

LOGICAL PERDT

PI=3.141593

c
c ##% CHECK FOR PERIODIC GEOMETRY #*+%
c
XDIFF=XP(M, 1) =XP(1,1)
YDIFF=XP(M,2)-XP(1,2)
IF(DABS (XDIFF).LT.1.E~3.AND.DABS(YDIFF) .LT.1.E-3) PERDT=,TRUE.
c _
¢ #+4% INDIVIDUAL PANEL CRIENTATICON ANGLE AND LENGTH ***
C .

PO 10 I=1,N
DX=XP( (I+1),1)-XP(I,1)
DY=XP({I+1),2)-XP(I,2)

IF{DABS{DX).LT.1.E-5.AND.DY.GT.0.0) GOTO 1
IF(DABS{DX).LT.1l.E-5.AND.DY.LT.0.0) GOTO 2
IF({DABS(DY).LT.1.E~-5.AND.DX.LT.0.0) GOTO 3

ALPHA (1) =DATAN (DY/DX)




IF(DY.LT.0.0.AND.DX.LT.0.0) ALPHA(I)=ALPHA(I)-FI
IF{DY.GT.0.0.AND.DX.LT.0.0) ALPHA(I)=ALPHA(I)+PI
GOTO 4 :
1 ALPHA(I)=PI/2.0
GOTO 4
ALPHA (I)==PI/2.0
GOTO 4
ALPHA(I)=PI
D(T) =DSQRT (DX**2+DY#%2)
0  CONTINUE

**+% COMPUTE THE CURVATURE OF THE FIRST PANEL *#%%

OO0 &W

IF(.NOT.PERDT) GOTO 12
L1=K-1
L2=N
L3=1
DENOM=(XP(L1,1)~XP(L2,1)) *(XP(L2,2} ~XP(L3,2))
& ~(XP(L2,1)-XP(L3,1)) *(XP(L1,2)-XP(L2,2))
IF(DABS (DENOM) .LT.1.E~6) GOTO 12
XO=.5#% ({XP(L1,1)#**2=XP(L2,1) **2+XP(L1,2) *#2=XP(L2,2) #*2)
*(XP(L2,2)-XP(13,2))
~(XP(L2,1) #*2=XP (L3, 1) #*2+XP(L2,2) *%2~XP (L3, 2) ¥*2)
* (XP(L1,2)~XP(12,2)))/DENOM
YO=.5% ((XP(L2,1) #42=XP (L3, 1) ##2+XP(L2,2) *%2=XP (L3, 2) #*2)
*(XP(L1,1)°XP(12.I))
~(XP(L1,1)##2-XB(L2,1) ##2+XP(L1,2) %52-XP(12,2) ##2)
*(XP(L2,1)~XP(L3,1)))/DENOM
Cl=1./DSORT ( (XP(L2,1) ~XO} ##2+ (XP(12,2) ~YO) ##2)
IF(ALPHA(L1).LT.O..AND.ALPHA(L2) .GT.0. ) GOTO 13
IF(ALPHA(L2) .GT.ALPHA (L)) Cl=-Cl
GOTO 13 -
2 Cl=0.

£ R Ry

R"R’R‘

*%* COMPUTE THE SURFACE CURVATURES AND PARABOLA FIT PARAMETERS %4+

HOOO

3 DO 100 I=1,N
IF(.NOT.PERDT.AND. (I.EQ.1.0R.I.EQ.N)) GOTO 50
Li=I-1
12=T
L3=I+1
IF(I.EQ.1) ILl=N
IF(I.EQ.N) L3=1
DENOM= (XP(L1,1)~XP(L2,1) ) #{XP(12,2) -XP(L3,2) )
& -(XP(I2,1)-XP(L3,1)) *(XP{L1,2) -XP(L2,2))
IF(DABS (DENCM} .LT.1.E-6) GOTO 20
XO=. 5% ((XP(L1,1) #*2-XP(L2,1) #*2+XP (L1, 2) ##2-XP (12, 2) ¥#2)
*(XP(L2,2)-XP(L3,2))
- (XP(L2,1}**2-XP (L3, 1) #x2+XP(L2,2) *#%2~XP (L3, 2) #%2)
*(XP(L1,2)=XP(L2,2)))/DENCM
YO=, 5% ((XP{L2,1) **2=XP(L3, 1) #*2+XP (L2, 2) **2~XP (L3, 2) **2}
*(XP(L1,1)-XP(L2,1))

R R
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= (XP(L1, 1) ##2-XP(L2,1) *%2+XD (L1, 2) #*2=XP (L2, 2) #*2)

&
& *(XP(I2,1}=XP(L3,1)))/DENOH
C2=1./DSQRT( (XP(L2,1) =XO) #*2+ (XP(L.2,2) ~¥0) #%2)
IF (ALPHA (L)) .LT.0. .AND.ALPHA (L2) .GT.0.) GOTO 30
IF (ALPHA(L2) .GT.ALPHA(L1) ) C2=-C2
_ GOTO 30

20 c2=0.

30 C(L1)=.5%(Cl+C2)

c " IF(Cl.LT.0..AND.C2.GT.0.) C(Ll) =0.

c IF(C1.GT.0..AND.C2.LT.0.) C(L1)=0.
c1=C2
Q=D(I2)+.5%(D(L1)+D(L2))

R=D(L2)+D(L3)
P=D(L2}+D(L1)

- PD(L2)=~R/Q/P
PE(L2)=(R/P~P/R)/Q
PF(L2)=P/R/Q
PG(L2)=2./P/0Q
PH(L2)==4./P/R
PPI(12)=2./R/Q
IF(ABS(C(Ll)).LT.1.E=3) GoTo 35
DEL=1./DABS(C(L1))~DSQRT((1./C(L1) ) #*2=(D(L1)/2.) **2)
GOTO 18

35 DEL=0.

38 IF(C(L1).LT.0.) GOTO 40
XT(L1,1}=.5%(XP(L1,1)+XP(L2,1) ) ~DELADSIN (ALPHA (L1} )
XI(L1,2)=.5%(XP(Ll,2)+XP (L2, 2) ) +DELADCCS (ALPHA (L1) )
GOTO 50 .

40 XI(T1,1)=.5%(XP(Ll,1)+XP(L2,1))+DEL*DSIN (ALFHA (L1))
KI(Li,2)=.5% (XP(LY,2)+XP(L2,2) ) -DEL*DCOS (ALPHA (L1) }

50 © CONTINUE

100  CONTINUE
TF(PERDT) GOTO 110
XTI (N=1,1)=.5%(XP(N-1,1)+XB(N,1))
XI(N=1,2)=.5% (XP(N-1,2)+XP(N,2))
XI(N,1)=.5% (XP(N,1)+XP(N+1,1))
XI(N,2)=.5% (XP(N,2)+.D(N+1,2))
IF{.NOT.DUMPl) GOTO 200
110 WRITE(3,120)
120 FORMAT(4X,'XT?*,2X,'¥J?,6X,'XI*, 2%, 'YI',4X, *ALPHA J',1X,
& VLENGTH 3'.,' C'.//)
K=N+1 .
DO 140 I=1,K
IF(I.EQ. (N+1)) GOTO 132 -
WRITE(3,130) XP(I,1),XP(I,2), XI(I,1) XI(I,2), ALFHA(T), D(I),

& C(I)
1390 FCRMAT (7F10.4)
GOTO 140 .
132 WRITE(3,135) XP(I,1),XP{I,2)
135 FPORMAT (2F10.4)

140  CONTINUE
200 - CONTINUVE
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SUBROUTIMNE AUGLYR(X,V,N,R,STAG, DUMP,NSTEP, SL. ,SCRIT)

Qo0

ARAERRAEREAR R LR SR ALE R RE AR AR Ik Ak oAb hhddhhddk . “Ahdhdhhhaddhhdhditks

THIS CODE WAS WRITTEN FOR THE JOINT INSTITUTE FCR AERONAUTICS
AND ACQUSTICS BY THCMAS LUND. IATEST REVISION 8 SEPT. 1984.

THIS SUBROUTINE COMPUTES LAMINAR AND TURBULENT BOUNDARY LAYER
DEVELOFMENT, GIVEN AN EXTERNAL VELOCITY DISTRIBUTIUN. THE EQUATICNS
SCLVED HERE ARE BASED ON AN INTECGT.L FORMULATION OF T E BOUNDARY
LAYER EQUATICNE. 1IN THE TURBULENT CASE, THE NORMAL TURBULENT
STRESSES ARE NEGL. * ED IN COMPARISON WITH THE TURBULENT SHEARING
STR=SS. THE TURBULLNT BOUNDARY LAYER EQUATIONS USED HERE ARE FOUND
IN SCHLICHTING (7TH ED) P. €76, EQS. (22.7a,b), (22.8a,b), AND
FIG 22.7 '

THE VELCOCITY DISTRIBUTION DESCRIEED NEED NOT EAVE A
STAGHATICN PCINT (SEE DESCRIPTION CF PARAMETER STAG). THE CODE
ASSUMES THAT ALL BOUNDARY LAYERS HAVE A LAMINAR ORIGIN. TO AVOID
CINGULRITIES AT THE ORIGIN,. INITIAL VALUES COF THE VARICUS CHARAC-
TERISTIC THICKNESSES AND SHAPE FACTORS ARE ASSUMED BY COMPUTING
THESE QUANTITIES AT A SMALL DSTANCE FROM THE CORICGIN USING ANALYTIC
EXPRESSIONS FOR A LAMINAR BCUNDARY IAYER IN A ZERO-PRESSURE GRAD~
IENT OUTER STREAM.

THE LAMINAR BOUNDARY IAYER EQUATIONS ARE MARCHED AWAY FRCM THE
INITIAL DATA UNTIL THE END OF THE BODY IS REACHED, OR EITHER TRANS~-
ITION TG TURBULENT FIOW, OR LAMINAR SEPARATION IS DETECTIED. IF
IAMINAR SEPARATICN IS DETECTED, THE CCCDE HALTS AT THE POINT CF
SEPARATION. IF TRANSITICN IS DETECTED, THE CCDE SWITCHES TO THE
TURBULENT BOUNDARY LAYER EQUATIONS, AND CONTINUES TO MARCH UNTIL
EITHER THE IND OF THE BODY IS REACHED, OR TURBULENT SFPARATION IS
DETECTED. IF TURBULZINT SPARATICN IS DETECTED, THE CODE HAITS AT
THE POINT OF SEPARATICH.

IF QUTPUT IS SPECIFIED (SEF DESCRIPTION OF PARBMETERS DUMP AND
NSTEP) THE FOLLOWING DATA WILL BE PRINTED TO UNIT 3 FCR SPECIFIED
VAIUES CF THE SURFACE COORDINATE: SHAPE FACIOR H32, DISPLACEMENT
THICNESS, MCHMINTUM THICKNESS, ENERGY THICKNESS, AND ILOCAL SKIN
FRICTICN COEFFICIENT

#%*PARAMETER DESCRIPTIONS**

INFUT:

X = VECTOR OF IZNGTH N CONTAINING THE VAILES OF THE SURFACE
COORDINATE 2T WHICH EXTERNAL VELCCITIES ARE GIVEN. THE
SURFACE COORDINATES MUST START FROM ZIRQO (X(1)=0.0}, BE
IN INCREASING CRDER, AND BE NORMALIZED BY THE SURFACE
LENGTH (X(¥)=1.0}.

V - VECTOR OF LENGTH N CONTAINING THE VAIUES OF TEE EXTERNAL
VELOCITY WHICH CORRESPCHD TO THE SURFACE CORRDINATES
CONTAINED IM VECTOR X. THE EXTERNAL VEICCITY MUST BE
NORMALIZED BY THE CHARACTERISTIC VEICCITY OF THE PROBLIM

N - NUMBER OF SURFACE COCURDINATE AND EXTERNAL VELCCITY DATA
PAIRS (LENGTH OF VECIORS X AND Vj.

R - GLOBAYL REYNOIDS NUMBER DEFINED AS R=Uc*L/vis, WHERE Uc

e e e K e R e Ko e e Ne Ne e Ne Rr e Re Re Re Ne Ne Re Ne Re e Re Ne No NoNr o NoRe NoNo No RoRo o N Ro RO NO NP RO N &)
LV A
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STAG -

DUMP -

NSTEP -

CUTPUT:
SEP -

SCRIT -~

IS THE CHARACTERISTIC VELOCITY OF THE PROBLEM, L IS THE
SURFACE LENGTH, AND vis IS THE COEFFICIENT OF KINEMATIC
VISCOSITY. o

IOGICAL VARIABLE USED TO SPECIFY WHETHER OR NOT A
STAGNATION POINT EXISTS. 1IF STAG IS SET TO .TRUE. A
STAGNATION POINT IS ASSUMED, IF SET TO .FALSE. NO STAG-
NATION POINT IS ASSUMED.

IOGICAL VARIABLE USED TO SPECIFY WHETHER OR NOT OUTPUT
IS TO BE GENERATED. IF DUMP IS SET TO .TRUE. OUTPUT IS
SENT TO UNIT 3, IF DUMP IS SET TO .FALSE. NO OUTFUT IS
GENERATED. ' '

INTEGER VAIUE USED TO SPECIFY THE NUMBER OF STATIONS AT
WHICH QUTPFUT IS TO BE GENERATED. THE STATIONS ARE EQUI~
SPACED. o

IOGICAL VARTIABLE USED TO INDICATE A SEPARATED BOUNDARY
IAYER.  IF EITHER LAMINAR OR TURBULENT SEPARATION IS
DETECTED, SEP IS SET TO .TRUE. IF NO SEPARATION IS .
DETECTED, SEP IS SET TO .FALSE.

DIMENSICNLESS SURFACE COORDINATE AT WHICH THE BOUNDARY
IAYER HAS SEPARATED. IF NO SEPARATION OCCURES SCRIT = 1
INDICATING THE END OF THE BODY

IMPLICIT REAL*S(A-H,O0~Z)
EXTERNAL FCNL,FCNT
DIMENSION X(100),V(100),C(24),W(2,9),¥(2),¥N(2)

COMMON

/BLCVEL/ XX (100} ,VV(100),RR

 COMMON /BICSPIN/ SPLN(100),NN
COMMON /AREA10/ XC
COMMON /AREA12/ XEXIT
LOGICAL STAG,IMNR,SEP,DUMP

kk%k

FUNCTION Fl RETURNS H12 GIVEN H32 %*%*

F1(H32)=H32/(3.0D0O*H32~4.0D0)

*dkk
* ok

*%% AND THE REYNOLDS NUMBER BASED ON MOMENTUM THEICKNESS RD2.

FUNCTION WSHR RETURNS THE IOCAL TURBULENT SKIN FRICTION
COEFFICIENT DIVIDED BY 2, GIVEN THE SHAPE FACTCR Hl2

WSHR(H12,RD2)=0.0245D0* (] ,0D0-2.0959D0*DLOG10 (H12) ) **1.705D0

P S 2R I B R NN CEE CNE N R NE N N AR

REARAARRALTRAREAL AL A AR TR R A AT hhkh i Rhrhdi ikt hbhhhd b bkt hdhdddhibd b tdik

*kk
*kk
*R*k

& /RD2#*%0.268D0
#%% IN ORDER TO PASS GUBROUTINE ARGUMENTS IN COMMON AS WELL, *¥#
**% WE HAVE TO DEFINE REDUNDANT ARRAYS XX AND VV, AND *kk
#%% CONSTANTS RR AND NN *hk
Do 1 I=1,N
XX (T)=X(I)
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YV (I)=V(I)

1l CONTINUE
RR=R
NN=N
NF=N-1
c .
c #%% SPLINE FIT THE VELOCITY DATA USING AUGLIB ROUTINE LNSPLN ##%%*
C

CALL INSPIN(X,V,N,SPLN,IER)
IF(IER.NE.O) THEN
WRITE(3,642) IER

642 FORMAT (' IN SUGROUTINE AUGLYR INSLPIN RETURNED WITH THE ERROR'
& "CONDITION IER =',IS)
STOP
END IF
c
c *** DS IS THE INTEGRATION STEP SIZE, SI IS THE INITIAL CONDITION #*%*
c #%% STATION - *kk
c
DS=5.0D~4
SI=0.05D0
c
c *%% DEFINE INTEGRATION DO LOOP UPPER LIMIT *##
c
TEND=NINT((1l.000~SI)/LS)
c
c #%% DEFINE THE NUMBER OF INTEGRATION STEPS BETWEEN PRINTOUTS *#%%
c
NPRINT=1.0DG/ (DFLOAT (NSTEP) #DS)
CALL LINTRP(SI,X,V,SPLN,N,VI,VID,IER)
IF(IER.EQ.1) THIN
WRITE(3,71) SI
71 FORMAT (' IN AUGLYR LINTRP RETURNED WITH AN ERROR FIAG',/,
& ' X HAD THE VALUE',F10.6,' CN ENTRY'
STOP -
END IF
c
c *** CHECK FOR STAGNATION PIONT, AND SET INTITIAL VALUES *#*%
c *%% ACCORDINGLY ddk
c .
IF(STAG) THEN
IF (DUMP) WRITE(3,3)
3 FORMAT (10X,' STAGNATION POINT ')
H32=1.61998D0
D2=0.29004D0/DSQRT (R*VID)
D3=H32*D2
ELSE
IF(DUMP) WRITE(3,5)
5 FORMAT({10X,' NO STAGNATICN POINT ')

H32=1.57258
D2=0.66411*DSQRT (SI/ (R*VI))
D3=H324D2
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END IF
IF(DUMP) THEN
WRITE({3,6) R,H32,D2,D3,S5I,VI

6 FORMAT(/,10X,' REYNOIDS NUMBER = ',E10.4,//,10X,
& ' INITIAL VALUES',//,10%,' H32 = ',E10.4,/,10%,
& ' MOMENTUM THICKNESS = ',E10.4,/,10X,
& ' ENERGY THICKNESS = ',E10.4,/,10X,' ABSCISSA = °,
& E10.4,/,10X%,' VELOCITY = !,E10.4,/) -
WRITE(3,7) _
7 FORMAT (! X VELOCITY')
DO 9 I=1,N
WRITE(3,8) X(I),V(I)
8 FORLAT (2F10.4)
9 CONTINUE
END IF
RD2=R*VI+D2
c
c *%% COMPUTE INITTAL LAMINAR SKIN FRICTION *#%*
¢
CALIL FAPP(H32,H12,EPS,D,KAPS)
CFL=EPS/RD2
CD=2.0DO*CFLAVI*VI
D1=H12#*D2

IF(DUMP) WRITE(3,10)

10 FORMAT(//,7X,'X',11X,'H32"',10X%, 'D1',11X,'D2¢, 11X, 'D3',11¥, 'CD', /}
DUM=0.05800
IF(DUMP) WRITE(3,20) SI,H32,D1,D2,D3,CD,DUM

0 FORMAT (7E11.4)

2
C
C *%% INITIALIZE PARAMETERS FOR THE INTEGRATION IOOP *#%%
C

IMNR=.TRUE.
SEP=.FALSE.
S=SI
Y(1)=D2

Y (2)=D3
RMARGN=1.0D0
R2=0.058D0
R3=R2

R4=R2

R5=R2

R6=R2

NE=2
TOL=0.001D0
IND=1

K=0

**%* ENTER THE INTECRATICON LOOP ##%%*

oo

DG 50 I=1,IEND
K=K+l
S=5+DS
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[ NeKoXo]

72

QOO0 Q00NN noao

noon 0o

*%% INTEGRATE EITHER THE LAMINAR OR TURBULENT BOUNDARY IAVER #k#
*#* EQUATIONS DEPENDING ON THE VALUE OF IMNR USTING RK ok k
IF(IMNR) THEN
CALL RK2(NE,FCNL,SI,Y,S)
ELSE o
CALL RK2 (NE, FCNT, SI,Y, S)
END IF
D2=Y (1)
D3=Y(2)
H32=D3/D2
CALL LINTRP(S,X,V,SPLN,N,VS,VSD, IER)
IF(IER.EQ.1) THEN o
WRITE(3,72) S '
FORMAT(! IN AUGLYR LINTRP RETURNED WITH AN ERROR FLAG',/,
' X HAD THE VAILUE',F10.6,' ON ENTRY')
STOP .
END IF
RD2=R*VS#D2

*** JF STILL LAMINAR, CHECK FOR TRANSITION ##%

IF(IMNR) THEN '
IF((H32-(DLOG(RD2)+46.78D0) /34.2D0) .LE.0.0) THEN
STRANS=5
LMNR=. FALSE.
END IF
END IF
IF (LMNR) THEN

**% CHECK FOR LAMINAR SEPARATION IGNORE SEPARATTON WHICH IS *#%
**%* IS PREDICTED DUE TO NOISY VELOCITY DISTRIBUTTION BEFORE s+
##%% THE NOSE . ok

IF(H32.LT.1.52509.AND.S.GT.0.7) GOTO 70
*** COMPUTE LAMINAR SKIN FRICTION #%#

CALL FAPP(H32,H12,EPS,D,KAPS)

CFL=FPS/RD2

CF=2.0D0*CFLAVS*VS

ELSE

*%% CHECK FOR TURBULENT SEPARATION #%#

IF(H32.IT.1.5) GOTO 70
*%% COMPUTE TURBUTENT SKIN FRICTION #%%

H12=F1(H32)
CFT=WSER (H12,RD2)
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CF=2.0DO*CFT
END IF
D1=H12+D2
IF (K.EQ.NPRINT.AND,DUMP) WRITE(3,20) S,H32,D1,D2,D3,CF,RMARGN
IF (K.EQ.NPRINT) K=0
50  CONTINUE

SCRIT=1.0D0

IF(IMNR) THEN
IF(DUMP) WRITE(3,60)

60 FORMAT(//,10X,' LAMINAR THROUGHOUT',/10X,' NO SEPARATION')

ELSE

IF (DUMP) WRITE(3,65) STRANS -

65 FORMAT(//,10X,' TRANSITION AT S = ', ¥8.4,

& /,10X,' NO SEPARATION') -

END IF : -

GOTO 200
c
c *%%* IF CONTROL IS PASSED TO LINE 70 SEPARATION HAS OCCURED AND THE *%%
c. #%* INTEGRATION IS SUSPENDED AT THE POINT OF SEPARATION. ok
G .
70 SEP=.TRUE.

SCRIT=S

IF(IMNR) THEN
CALL FAPP(H32,H12,EPS,D,KAPS)
CF=2 . 0DO*EPS/RD2*VS#VS
D1=Hi2#D2
IF(DUMP) WRITE(3,20) S,H32,D1,D2,D3,CF,RMARGN
IF(DUMP) WRITE(3,80) S

80 FORMAT(//,10X,' LAMINAR SEPARATION AT S = ',F8.4)

ELSE
H12=2.9993D0
CF=2.0+*WSHR (H12,RD2)
D1=H12#*D2
IF(DUMP) WRITE(3,20) S,H32,D1,D2,D3,CF,RMARGN
IF(DUMP) WRITE(3,90) STRANS,S

90 FORMAT (//,10X, ' TRANSITICN AT S = !',F8.4,
& /,10X,' TURBULENT SEPARATION AT S = ',F8.4)
END IF
GOTO 200
200 RETURN
END
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SUBROUTINE BODGEN (XCDIVL, XLDIVL,THETA,HDIVL,VO)
C
ChkkdkiehbkhhkhhRRARhkhkdhhrhbhhhkihhihhdhhhhhfthAdhhkdkthhhhhrddkhdAhkbkhhrrdkhinr C
. *
THIS SUEROUTINE GENERATES AN AUGMENTOR BODY WITH VARIABLE PARAMETERS NOZZLE * C
LOCATION, LIP ROTATION POINT, LIP ROTATION ANGLE, AND MIXING (CHAMBER HEIGHT.* C
ON INPUT ALL GEOMETRIC PARAMETERS ARE NORMALIZED BY THE BODY LENGTH. THE *IS
SCALING IS CHANGED INTERNALLY WITH ALL GEOMETRIC QUANTITIES BEING REFERENCED* *
TO THE CHANEL HALF WIDTH, WHICH IS ASSUMED TO BE UNITY. - v *

**% PARAMETER DESCRIPTION #**#*

]
%*
*
INPUT: *
JET NOZZLE POSITION DIVIDED BY THE BODY LENGTH *
LIP ROTATION POINT DIVIDED BY THE BODY LENGTH *
LIP ROTATICN ANGLE IN RADIANS *
CHANEL HAILF-WITDH DIVIDED BY THE BODY LENGTH : e
FREE-STREAM VELCCITY NORMALIZED BY THE VELOCITY AT THE CONTROL ¥
*
»*
¥
*
*
*
*
*

.

STATION

c

C

o

c

o

o

c

c

c

c

c

C XLDIVL
c

c

(o

o]

c

c QUTPUT:
C THE OUTPUT IS PROVIDED IN THE FORM OF DATA FILES. BODY.DAT CONTAINS THE
C SURFACE COORDINATE PAIRS AS WELL AS THE TRANSPIRATION VEILOCITY OVER EACH
C PANEL. DPARAM.DAT CONTAINS SCALE INFORMATION FOR THE BODY. '
o
c

************************ﬁ****************ﬁ****************ﬁ****************** C

IMPLICIT REAL*8(A-H,O0-2)
DIMENSION XP(20),XTEMP(150),YTEMP(150) , VNTEMP (150)
DIMENSION XNOSE(25),YNOSE(25),XSPLN(10),YSPLN(10),SPLN(30)
LOGICAL FLAG
REWIND 1
REWIND 2
PI=3.1415926
FORMAT (3F1G.4)

*%% DEFINE JET BCUNDARY SIOPE TO BE 12 DEG #*%
SLOPE=DTAN{12.0D0/180.0D0*PI)

*%* COMPUTE THE SCALED BODY LENGTH *#%
XEND=1.0/HDIVL

*%% COMPUTE THE SCALED NOZZLE LCCATION #ix
XO=XODIVL*XEND

*%% COMPUTE THE CONTROL STATION IOCATION *%x

XCONT=(XODIVLA0.7#HDIVL/SLOPE) *XEND

0O 000 000 000 000w
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#%% COMPUTE THE NOSE RADIUS (CONSTANT FRACTION OF L) *#%*

0o

RNDIVI~1.0D0/12.0D0
RN=RNDIVL*XEND

#%% COMPUTE THE LIP ROTATION POINT ##*

XLIP=XLDIVL*XEND
*%# IF THE LIP ROTATION POINT IS LESS THAN THE NOSE RADIUS, SET *##*
##% THE LIP ROTATION POINT EQUAL TO THE NGSE RADIUS IN ORDER TO #%*
*#% AVOID A CONTORTED BODY SHAPE *##

IF(XLIP.LT.RN) XLIP=RN
x%# CKECK TO INSURE THAT THE CONTROL STATION IS BEHIND THE LIP #%#w

*%% ROTATION POINT, IF NOT PRINT ERRCR MESSAGE AND SUSPEND *F%
*%% EXECUTION wh%

OO0 OO0000 OO0

IF(XLIP.GT.XCONT) THEN

WRITE(3,10) XODIVL,XLDIVL,HDIVL,THETA

FORMAT (' IN BODGEN XLIP WAS GREATER THAN XCONT. PARAMETERS',
& ' ON ENTRY WERE',/,' XODIVL =',F8.4,' XILDIVL =',F8.4,
& ' HDIVL =',F8.4,' THETA =',F3.4)

STOP
END IF

[
(o]

#*%% CHECK TO INSURE THAT THE CONTRCL STATION IS _AHZAD OF THE BODY #*%%
%*%* END, IF NOT WRITE AN ERROR MESSAGE AND SUSPEND EXECUTION *hk

oNoNeoXNe

IF (XCONT.GT.XEND) THEN
WRITE(3,11) XODIVL,XIDIVL,HDIVL, THETA
11 : FORMAT(* IN BODGEN XCONT WAS GREATER THAN XEND. PARAMETERS',
& ' ON ENTRY WERE' ,/,' XODIVL =!',F8.4,' XLDIVL =',F8.4,
& : * HDIVL =',F8.4," THETA =!,F8.4) :
s1CP -
END IF

**% DEFINE EXTREMITIES OF THE SYMMETRY PLANES %%

QOO

%1==20.
XM=26.

k%% INITIATATZE PARAMETERS #**%*%

[sXeXNe

FLAG=.TRUE.,
DIST=X0-X1
XI=.06
XIM1=0.

#%% GENERATE A STRING OF COORDINATES WHICH HAVE A RATIO OF **=%
*%* SUCCESSIVE LENGTHS EQUAL TO 1.5 %%

[sXeNe]
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DO 50 I=1,20
XP(I)=XI
XI=2.5%XI-1,5%XIM1
XTM1=XP(I)
IF (XIM1.GT.DIST) GOTO 60

50 CONTINUE

60 N=I
i =0o

J=0.

DO 70 I=1,N
X=XO-XP(N-I+1)
J=J+1
XTEMP (J) =X
YTEMP (J) =Y
VNTEMP (J) =VN

CONTINUE

(o]

*%% GENERATE A SET OF COORDINATES FOR THE JET BOUNDARY WHICH HAS *kk
*%% THE FOLIOWING PROPERTIES: PANEL LENGTHS INCREASE IN A RATIO OF #**
*%%x 1.5 AS ONE TRAVERSES AWAY FROM THE JET NOZZLE, AND AS ONE S
*%#% TRAVERSES AWAY FROM THE 7ONTROL STATION MOVING TOWARDS THE *kk
*%% NOZZLE. THE INCREASINC /ANEL LENGTH IS HALTED WHEN THE LENGTH #*%%
*#4% TS APROXIMATELY 0.3. TunZ MIDDLE SECTION OF THE JET BOUNDARY Hkk
#®%% CONSTANT X INCREMENT OF 0.2851. *kk

OO0 0O0OO000N

DX=0.2851D0
DO 80 I=1,16
VN=.15#DSQRT (1./ (X=XO+0.1) }+.2

J=J+1
IF(I.EQ.1) 'THEN
JS=J
X=X0
=0.,0D0
END IF
IF(1.LT.I.AND.I.LE.6) THEN
X=XO+XP (I-1)
Y=SLOPE* (X=XO)
END IF
IF(6.LT.I.AND.I.IZ.13) THEN
X=X+DX
Y=SLOPE* (X-XO0)
END IF

IF(13.LT.I.AND.I.1E.18) THEN
X=XCONT~XP(17-I)
¥=SLOPE* (X-XO)
END IF
XTEMP(J) =X
YTEMP (J) =Y
UNTEMP (T ) =VN
80  CONTINUE
€0  JF=J

94




*%% GENERATE THE POIWIS WHICH DEFINE THE CONTROL STATION #%%

anon

X=XCONT
Y=SLOPE* (X~X0)
R=.5%(1.-Y)
YC=Y+R
DANG=PI/8.
ANG=-PI/2.
DC 100 I=1,8
VN=DCOS (ANG+DANG/2. )
J=J+1
XTEMP (J) =X
YTEMP (J) =Y
UNTEMP (J ) =VN
ANG=ANG+DANG
X=XCONT+R*DCOS (ANG)
Y=YC+R*DSIN (ANG)
100  CONTINUE

c *%% GENERATE NOSE POINTS AND STORE **=*

XS=RN* (1. -DSIN(THETA) )
X=Xs
Y=1.+DTAN (THETA) * (XLIP~X)
XC=X+RN*DSIN (THETA)
YC=Y+RN#DCOS (THETA)
DEL=0.0
IF (DABS (DSIN(THETA) ) .GT.1.E-3)
& DEL=2.0DO*RN* (DTAN (THETA) = (1.0D0~DCOS (THET2) ) /DSIN (THETA) )
ANG=PI
NRN=NINT (RN*PI/0.1500)
DANG=PI/DFLCAT (NRN)
NCIR=NRN+1
DO 150 I=1,NCIR
XNOSE(I)=X
YNOSE(I)=Y
ANG=ANG-DANG
XCI=RN*DCOS (ANG)
ETA=RN*DSIN (ANG)

XIM1=X
X=XC+XCI*DCOS(PI/2.-THETA) ~-ETA*DSIN(II/2.-~THETA)
- XITMP=X
¥=YC+XCI*DSIN(PI/2.-THETA)+ETA*DC0OS (PI/2.~THETA
150 CONTINUE .
C
C *%% SPLINE FIT THE SECTION BETWEEN THE CONTROL STATICN AND NOSE *#*+%
C

DO 105 I=1,3
XSPLN (I)=XNOSE (4=I)
YSPIN(I)=YNOSE{4-I)
105  CONTINUE

@5
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XSPIN (4)=XLIP
YSPIN(4)=1.0D0
Do 107 I=1,3
XSPLN (4+I) =XCONT~XP (4~-I)
YSPLN (4+I)=1.0D0
107 CONTINUE
NSPL=7
NFSPL=6
CALL ICSCCU(XSPIN,YSPIN,NSPL,SPIN,NFSPL, IER)
IF(IER.EQ.129.0R.IER.EQ.130.0R. IER.EQ.130) THEN
: WRITE(3,109) IER
102 FORMAT (* IN BODGEN ICSCCU RETURNED WITH THE ERROR VALUE !,I5)
STOP - :
END IF

#%%% GENERATE POINTS BETWEEN THE CONTROL STATION AND NOSE USING THE *#**
**% SPLINE FIT . Fhk

[pXeXo NP

X=XCONT
¥=1.
VN=0.0
J=J+1
XTEMP (J) =X
YTEMP (T} =Y
DO 110 I=1,3
J=J+1
X=XCONT~XP(I)
XTEMP (J) =X
CALIL INTRBV(X,XSPLN,YSPLN,SPIN,NSPL,Y, YD)
YTEMP (J) =Y
VYNTEMP (J ) =VN
110  CONTINUE
DX=0.15D0
TEND=NINT ( (X-XS)/DX)
DX=(X~XS) /DFLOAT (IEND)
XN=RN#DCOS (THETA)
FLAG=,TRUE.
1=0
DO 120 I=1,IEND-1
J=J+1
X=X~DX
XTEMP(J) =X
CALL INTREV(X,XSFLN,YSPIN,SPIN,NSPL,Y,YD)
YTEMP(J) =Y
VNTEMP (J) =VN
IF(X.LE.XLIP) THEN
L=I+1
IF(L.EQ.1) THEN
JIS=J-1
FLAG=,FALSE.
END IF
END IF
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151

155

157

160

CONTINUE

#*%% GENTERATE THE NOISE POINTS USING THE STORED DATA #%%

X=XS

DO 151 I=1,NCIR ,
IF (FLAG.AND.I.EQ.1) JLS=J
J=J+1
XTEMP (J) =XNOSE (I)
YTEMP (J) =YNOSE (I}
VNTEMP (J) =VN

CONTINUE

*%% GENERATE POINTS FROM NOSE TO INFINITY *#%*

DO 155 I=1,2
XSPLN (I} =XNOSE (NCIR-2+I)
YSPLN({I)=YNOSE (NCIR-2+I)
CONTINUE
Y=(1.+2.*RN)+DTAN(THETA) * (XLIP+DEL~XTMP)
XSPLN (3 ) =XTMP
YSPIN(3)=Y
XSPIN (4)=XLIP+DEL
YSPIN(4)=1.0DG+2.0DO*RY
DO 157 I=1,3
YSPIN(I+4)=1.0D0+2.0D0*RN
CONTINUE
CALIL ICSCCU(XSPIN,YSPLIN,NSPL,SPIN,NFSPL,IER)
IF(IER.EQ.129.0R.IER.EQ.130.0R.IER.EQ.130) THEN
WRITE(3,109) IER
STOP
END IF
XI=XTHP
1=0
DO 170 I=1,80
X=XT
J=J+1
IF(X.LT.XCONT~.1) THEN
CALL INTREV(X,XSPLN,YSPLN,SPIN,NSPL,Y,¥YD)
ELSE
Y=1,0D0+2.0DO*RN
END IF 4
IF(X.GT. (XLIP+DEL)) THEN
L=L+1
IF(L.EQ.1) JLF=J
END IF
XTEMP(J) =X
YTEMP(J) =Y
VNTEMP (J ) =VN
XT=2.2#XI~1.2*XIM1
XTMl=X
IF(XI.GT.XM) GOTO 220
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170
220

240

CONTINUE
NMAX=J
BETA=0.
U10=24.1066 + 6.6881*X0
DO 240 I=1,NMax
WRITE(1,5) XTEMP(I),YTEMP(I),VNTEMP(I)
CONTINUE
WRITE(2,260) XO,XCONT,XEND,JS,JF,JLS,JLF,VO,BETA,UL0
FORMAT (3F10.4,4I4,/,2F10.4,/,F10.4)
RETURN
END
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SUBROUTINE CHANEL{PEXIT}

c**********************}************************k******************** ek ek ok kk -
SUBROUTINE CHANEL MARCHES THE JET EQUATIONS FRCM YHE STATICON AT WHICH

THE OUTER VELOCITY HAS BECOME CONSTANT TO THE SHRCUD EXIT. THE INITIAY

CONDITICNS FOR THE TIME MARCH ARE PASSED VIA COMMON BLOCK FROM SUBRCUTLHNE

JET. SINCE THERE ARE NOW FOUR UNKNCWN QUANTITIES, THE INITIAL CONDITLCN

VECTOR IS EXTENDED 70 4 ELEMENTS BY INCLUDING AN INITIAL VAIUE FOR UG OF

1.0.

k%% PARAMETER DESCRIPTION **%*

INPUT:
NONE

OUTPUT: .
PEXIT - PRESSURE AT THE SHRCUD EXIT AS COMPUTED BY ThRE VISCOUS SOLUTION

I IR A I I I

'

hhkkdkhkkhkXhhhkhhhhkhhkhkbhrhtkhhtikbbhkhhhddhkbhhhbhhhbhhdrdshhkhkhRbdhthhhdtrhkihkikAk

NONONNNQAQANANNN00N

IMPLICIT REAL*8(A~H,0-Z}
DIMENSICN C(24}),W{4,9),RD(4)
COMMON /AREA3/ S(3),X,U0
CCMMON /AREA4/ PATM

COMMON /AREA7/ R(4)

CCMMON /AREA10/ XC

COMMON /AREA12/ YEXIT
EXTERNATL, FCN2

*%% TUITIALTZE DEPENDENT VARIABLE VECTOR ***

nna

R(1)=U0

R(2)=S(1)

R(3)=5(2)

R(4)=5(3)

N=4

Nw=4

TOL=. 01

IND=1

NEND=20

DX= (XEXIT~X) /DFLOAT (NEND)

**%* MARCH THE VISCOUS SOLUTION *%*

[eXp Xp]

DO 50 I=1,NEND
XEND=X+D¥, :
CALL DVERK(N,FCN2,X,R,XEND,TOL.IND,C,NW,W, IER)
CALL FCN2(N,X,R,RD)

0  CONTINUE

5

- C
C *%% DEFINE THE EXIT PRESSURE ***%
c
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SUBROUTINE COEF(XI,X,Y,J,ALPHA,D,N,3,B)

C
Chdddkdkdeddhdhhdedhkdkhkhhhhhhdthdhicdhikkddhhhbrhhrhhhhkhdhk kR khhkhkkkdkkokkdRhkhkhksk
c ' *
C SUBROUTINE CCEF COMPUTES THE AERCDYNAMIC INFLUENCE COEFFICIENTS FOR - %
C USE IN THE HIGHER ORDER PANEL METHOD. *
c %*
(o} *%% PARAMETER DESCRIPTION *#% *
c *
C INPUT: ' : *
cC XI - COCRDINATES OF THE CONTROL POINTS STQORED 2S X,Y PAIRS - *
c X - X COORDINATE AT WHICH THE INFLUENCE COEFFICIENT 1s ’I‘O BE *
Cc CALCULATED *
c Y = Y COORDINATE AT WHICH THE INFLUENCE COEFFICIENT IS TO BE *
C CAICULATED . -k
c J = PANEL NUMBER AT WHICH THE INFLUENCE COEFFICIENT IS TO BE *
C CATCULATED *
C ALPHA - VECTCR OF SURFACE SI_DPES FOR EACH PANEL *
cC D - VECTOR OF PANEL LENGTHS *
C N -~ NUMBER OF PANELS *
C SENT IN COMMON FROM SUBRCUTINE ANGLZE ARE THE PARABOLA FIT COEFFIECINTS AS =*
C WELL AS THE VECTOR OF SURFACE CURVATURES *
c *
C OUTPUT: *
C A = INFLUENCE COEFTFICIENT FOR THE X COMPONENT OF VELOCITY *
C B = INFLUENCE COEFFICIENT FOR THE Y COMPONENT OF VELOCITY *
C : *
CRARRE R AR AR AR R T RR AR T AR AR TR AR R RIAARIRRAE R AR R E kRS dhh R Rtk kakhd ok kkdiokdk
p ) ;

IMPLICIT REAL*8(A-H,C-2)

DIMENSION XI{N,2),ALPHA(N),D(N)

COMMON /ANGLEl/ PD(100),PE(100),PF(100),PG(100), PI-’(lOO),
& PPI(100),C(100)

COMMON /ANGLE2/ PERDT

%%* PERDT IS A LOGICAL VARIABLE SET TO TRUE IF THE GECMETRY IS %%%
*%%* DERIODIC %k %

oaGnOn

LOGICAL PERDT

PI=3.141593

IF(.NCT.PERDT.AND. (J.EQ.1.0R.J.EQ.N}) GOTO 100
L1=J-1

12=J

L3=J+1

IF(J.EQ.1) L1=N

IF(J.EQ.N) L3=1

#%% PERFORM A SET OF COORDINATE TRANSFORMATIONS TO LOCAL ***
*%* SYSTEMS BASED ON THE PANEL WHOSE SCURCE INFLUENCE IS #*%
k%% BEING CCNSIDERED AND ITS TWO NEIGHECRS *hk

[eNoNeRe N ?]

XSTAR1=X~XI (L1,1)
101




® ' v e T

[ NUR PO S

YSTARL=Y~XI(L1,2)

ETAl= XSTAR1*DCOS (ALPHA (L1))+YSTARI*DSIN (ALPHA(L1))
ZETA1=YSTAR1*DCOS (ALPHA (L1) ) =XSTAR1*DSIN (ALPHA (L1) )
XSTAR2=X-XI (L2, 1)

YSTAR2=Y-XI(L2,2)

ETA2= XSTAR2*DCOS (ALPHA (L2) ) +YSTAR2*DSIN (ALPHA (L2))
ZETAZ=YSTAR2*DCOS (ALPHA (L2} ) ~XSTAR2 #DSIN (ALPHA (12) )
XSTAR3=X-XI(L3,1) o
YSTAR3=Y~XT (L3, 2)

ETA3= XSTAR3*DCOS (ALPHA (L3) ) +YSTAR3*DSIN (ALPHA (L3))
ZETA3=YSTAR3*DCOS (ALPHA (L3) ) ~XSTAR3*DSIN (ALPHA (L3) )

%*%% COMPUTE DISTANCES FRCM THE PANEL WHOSE SOURCE IS BEING *#*%*
*%* CONSIDERED AND ITS TWO NEIGHBCORS TO THE PCINT X,Y L

NOOON

RP1=(ETA1+D(L1)/2.) #*2+ZETAL1#%2
RM1=(ETA1=D(L1)/2.) #*2+ZETAL**2
RP2=(ETA2+D(L2) /2.) **2+ZETA2#*2
RM2=(ETA2-D(L2) /2.) **2+ZETA2**2
RP3=(ETA3+D(L3) /2. ) #*2+ZETA3 %2
RM3=(ETA3~D(L.3) /2. ) #*2+ZETA3*%2

*%% COMPUTE THE CQOEFFICIENTS IN THE POWER SERIES EXPANSION *#%%
**% FOR THE INFLUENCE COEFFICIENTS hkk

(o XeNeXe]

VEO2=DLOG (RP2/RM2}
DEN=ETA2#%2+ZETAZ#*#2~(D(L2) /2. ) **2
RNUM=ZETA2+D(L2)

VZ02=2 . *DATAN (RNUM/DEN)

IF(DABS (RNUM) .LT.1.E~3 .AND.DEN.LT.0.) GOTO 2
IF(RNUM.GT.0..AND.DEN.LT.0.) VZC2=VZ02+2.*PI
IF (RNUM.LT.0..AND.DEN.LT.0.) VZ02=VZ02-2.*PI
GOTO 3

2 VZ02=2 . *PT '

3 VE12= (ZETA2%VZO2+ETA2#VEC2=2 . *D(L2) ) /D(12)
VZ12=(ETA24VZ02~ZETA2*VEC2) /D(L2)

VEC2=(=2. *ETA2%VZ02+2 . *ZETA2*VEOZ+ETAZ *ZETA2#D (1.2 ) **3

& /RP2/RM2) /D(L2)
VZC2=(2.*ZETA2*VZ02+2 . *ETA2#VEC2-2. *D(L2) * (1. +

& ( (ETA2%%2+ZETA2%*2) *#2= (ETA2%*2-2ETA2#%2)

& *((D(L2)/2.)**2))/RP2/RM2)} /D(L2)
VE22=(2.*ETA2*ZETA2 %7202+ (ETA2*#2~ZETA2* %2} *VEO2
& =2 *ETA2*D(L12) )/ (D(L2) **2)

VZ22=( (ETA2%*2=-ZETA2%*2) *VZ02-2 . *ETA2 *ZETA2 #VEO2
& +2.*ZETA2+D(L2) ) / (D(L2) **2)
VEO1=DLOG (RP1/RM1)
DEN=ETAl*#2+ZETAl*#*2~(D(L1) /2.) *%2
RNUM=ZETA1*D(L1)

VZO1=2.*DATAN (RNUM/DEN)

IF(DABS (RNUM) .LT.1.E~3.AND.DEN.IT.0.) GOTO 4
IF(RNUM.GT.0..AND.DEN.LT.0.) VZOl=VZOl+2.*PI

IF (RNUM.LT.0..AND.DEN.LT.0.) VZOl=VZOl=-2,*PI
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GOTO S
4 VZO1=2,*PI
5 "VE1l=(ZETAl*VZOl+ETA1#VEO1-2.*D{L1))/D(L1)

VZ11=(ETAl*VZ0O1=-ZETAL*VEOl) /D (L1}
VE21=(2.*ETAl*ZETAL*VZO1+ (ETAL*#2=ZETAl*42) *VEOL
& -2, *ETA1#*D(L1) )/ (D(L1)**2)

VZ221=( (ETAl**2=-ZETA1#*%2) *VZ01=2 , *ETAL*ZETA1*VEOL
& +2.*ZETAL*D(L1) )/ (D(L1) **2)
VEO3=DLOG (RP3/RM3)
DEN=ETA3**2+ZETA3**2=(D(L3) /2. ) **2
RNUM=ZETA3*D(L3)

VZ03=2 . *DATAN (RNUM/DEN)

IF (DABS (RNUM) . LT.1.E-3.AND.DEN.LT.0.) GOTO 6

IF (RNUM.GT. 0. .AND.UEN.LT.0.) VZO3=VZO3+2.*PI
IF(RNUM.LT.O0..AND.DEN.LT.0.) VZO3=VZO3-2.*PI

GOTO 7
6 VZ03=2.%PI
7 VE13=(ZETA3 *VZO3+ETA3*VEO3=2.*D (L)) /D(L3)

VZ13=(ETA3*VZ03-ZETA3*VEO3) /D(L3)

VE23= (2. *ETA3*2ETA3*VZ03+ (ETA3#%2=-ZETA3#%2) *VEO3

& =2, *ETA3*D(L3) )/ (D(L3) ##2)
VZ23=((ETA3#*2-ZETA3*#2) 4V203-2 . *ETA3#ZETA3 *VEO3

& +2.%ZETA3*D(L3) )/ (D(L3) *#*2)
VE2=VEO2+VE12*PE(L2) *D(L2) +VEC2% (=0.5*C(L.2) ) *D(12)+
& VE22% (PH(L2)+2.% (=0,5%C(L2) ) #%2) *D(1.2) #*2
VE1=VEL11%PF (L1) *D(L1) +VE21%PPI (L1) #D(L1) #%2
VE3=VE13*PD(L3) *D(L3)+VE23%PG (L3) *D(L3) *#2
VZ2=VZ02+VZ12*PE(L2) #D(12)+VZC2% (=0.5%C(L2) ) *D(L2) +
& VZ22% (PH(L2)+2.% (=0.5%C(L12) ) #*2) D (L2) **2
VZ21=VZ11#PF (L1) *D(L1)+VZ21*PPT (L1)*D(L1) **2
VZ3=VZ13*PD(L3) *D(L3)+VZ23%PG (L3) *D(L3) **2

c
c #%% COMPUTE THE INFLUENCE COEFFICIENTS *i+#
c
A=VE1*DCOS (ALPHA (1.1) ) +VE2*DCOS (ALPHA {1.2) )
& +VE3*DCOS (ALPHA (L3) )
& -VZ1*DSIN (ALPHA (L1) ) ~VZ24DSIN (ALPHA (L2))
& ~VZ3*DSIN (ALPHA (L3) )
B=VEL*DSIN(ALPHA(L1) ) +VE2#DSIN (ALPHA(12))
& +VE3*DSIN(ALFHA(L3))
& +VZl*DCOS(AlPHA(Ll))+V22*DCOS(ALPHA(L2))
& +VZ3*DCCS (ALPHA (13) )
GOTO 9
c
c *%% TREAT THE END PANELS (IE 1 AND N ) SEDARATELY #%4
c
100 I2=J

KSTAR2=X-XI (L2, 1)

YSTAR2=V-XI (L2, 2)

ETA2= XSTAR2*DCOS (ALPEA (L2) )+¥STAR2*DSIN (ALEHA (12))
ZETA2=YSTAR2+*DCOS (ALPHA (1.2) ) ~XSTAR2#DSIN (ALFHA (L2} )
RP2=(ETA2+D(L.2) /2. ) %*2+ZETA2#*2
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RM2=(ETA2-D(L2) /2.) **2+ZETA2%*2

VEO2=DLOG (RP2/RM2) ‘
DEN=ETA2%*2+ZETA2%*2=(D(L2) /2. ) **2
RNUM=ZETA2+*D(L2)

VZ02z=2. *DATAN (RNUM/DEN)

IF(DABS (RNUM) .LT.1.E-3.AND.DEN.LT.0.) GOTO 102
IF(RNUM.GT.0. .AND.DEN.LT.0.) VZO02=V202+2.%EI
IF(RNUM.LT.O..AND.DEN.LT.0.) VZ02=VZ02-2.*PI
GOTO 103

VZ02=2.*PI :

A=VEO2*DCOS (ALPHA (L2) ) ~VZO2+DSIN (ALPHA (L2))
B=VEO2*DSIN(ALPHA (L2) ) +V202*DCOS (ALPHA (12) )
CONTINUE

RETURN

END
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SUBROUTINE DATIN (XJ,VN,M)

CRAARERERZARIAR KRR RRR AR AR A dhhkhhhhhhrhthhhmhkhthkkhbhkhhkhkhhkhhbhhkhhkhhkrkhikhkhhikhk

SUBROUTINE DATIN READS THE DATA FILE BODY.DAT TO OBTAIN THE COORDINATES
OF THE SHROUD GEOMETRY AS WELL AS THE NORMAL VELOCITY AT EACE PANEL.

*
*
*
*
*%% PARAMETER DESCRIPTION #%%* *
INPUT: *
THE INPUT IS THE DATA FILE BODY.DAT WHICH CONTAINS THE X AND Y COORDINATES *
ALONG WITH THE TRAMNSPIRATION VELOCITY FOR EACH PANEL IN FIELDS OF 3F10.4  *
*

*

*

*

*

%*

%

OUTPUT:
XJ - THE BODY COORDINATES STORED AS X,Y PAIRS

VN « VECTOR OF PANEL TRANSPIRATION VELOCITIES
M -~ NUMBER OF COORDINATE PAIRS

ARERAATRERAA LR kbR AL S hhdhhdbhhihhhihhkhbhhthhhthhhhdhbhhhbhhkdddehddhhhhlhkdhkkhkdkhikk

0000000 ONO0OO0O0

IMPLICIT REAL*8(A-H,0~Z)
DIMENSION XJ(M,2) ,VN(M)
FORMAT (3F10.4)
REWIND 1
DO 30 I=1,M
READ(1,10) XJ(I,1),XJ(I,2),VN(I)

30  CONTINUE

RETURN

END

[
[
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SUBROUTINE FAPP{H32,H12,EPS,D,KAPS)

khhkkkkhkfrhdhrhhddhrbhlArththhrhibhhhhhhkkhrdhhkhrkkhrrbrAbhidkdihhhhkhhkkdhkhkikik

THIS SUBROUTINE COMPUTES THE LOCAL SKIN FRICTION COEFFICIENT (EPS), AND
_THE LOCAL DISSIPATION COEFFICIENT (D) FOR THE LAMIMAR BOUNDARY EQUATIONS.

*%%* PARAMETER DESCRIPTION ##%*

C

c

C

c

c

c

c

C

c INPUT:

C H32 - SHAPE FACICR
C Hl2 -~ SHAPE FACTCR

o

(o] OUTPUT:

C EPS -~ LOCAL SKIN FRICTION COEFFICIENT
CcC D ~ LOCAL DISSIPATION COEFFICIENT

C

o]

c

c

KAPS - LAMINAR SEPARARION PARAMETER. KAPS=1 FOR ATTACHED FIOW AND
KAPS=0 FOR SEPARATED FLOW

* % % % %k A % X F N * ¥ * %

fekdkdkhhhhhdhdidhhkhdhhhdhkhkhkddkhhdhhhhbkhthkhdhtkhkhdhkhhihikdhhhhhhhkhhhk b hkdkid

IMPLICIT REAL*S(A-H,O-2)

KAPS=1
D=7.853976D0~10.260551D0*H32+3 . 418898 *H32#H32 -
IF(H32-1.51509D0) 10,20, 30

10 KAPS=0
RETURN

20 H12=4.02922D0~(£83.60182D0-724.55916D0*H32+227.1822D0
& *H32*H32) *DSQRT (H32-1.51508D0)
EPS=2.512589D0-1.686095D0*H12+0.391541*H12*H12-0,031729%H12%%*3,D0
RETURN

30 IF(H32-1.57258D0) 21,21,40

21 GOTO 20

40 H12=79.870845D0-89.582142D0*H32+25.715786D0*H32*H32
EPS=1.372391~4.226253*H32+2.221687*H32*H32
RETURN
END
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SUBROUTINE FCNL(NE, S, Y, YD) o
c : . .
Chrkihhkkkihhhhhkhhkhhkkhhhhkhhhhhnkhhhdrhhktdhkhhhhhohihhhrkhwdrhrrbhhhhhbahhhkk
C .
o] THIS SUBROUTINE COMPUTES THE DERIVATIVES OF D2 AND D3 FOR THE LAMINAR
C BOUNDARY IAYER EQUATIONS. A CALL TO SUBROUTINE FAPP IS NECESSARY.

*%% PARAMETER DESCRIPTION #*

&

NUMBER OF DIFFERENTIAL EQUATIONS, IN THIS CASE 2

SURFACE CCORDINATE

- VECTOR CONTAINING THE VALUES OF D2 AND D3 AT THE STATION S
-+ VECTOR. CONTAINING THE DERIVATIVE VAILUES OF D2 AND D3 AT THE STATION S

K<
1

o
* %k K % k% A K *

******************************************************************************

NDOOOOQOO0OO0O00

IMPLICIT REAL#3(A-H,0-Z)
DTMENSION Y (NE) ,YD(NE)

COMMON /BLCVEL/ X(100),V(100),R
COMMON /BLCSPIN/ SPIN(100),N
D2=Y(1)

D3=Y(2)

H32=D3/D2

~ %%% COMPUTE THE FRICTION AND DISSIPATIOHN COEFFICIE&TS Fkk
CALL FAPP(H32,H12,EPS,D,KAFS)

*4% COMPUTE THE IOCAL SURFACE VELOCITY AND ITS DERIVATIVE ##%*
*%% FROM THE LINEAR SPLINE FIT *kd

N0 a0

CALL LINTRP(S,X,V,SPIN,N,VS,VSD,IER)
IF(IER.EQ.1) THEN
WRITE(3,71) S -
71 FORMAT(' IN FCNL LINTRP RETURNED WITH AN ERROR FIAG',/,
& ' X HAD THE VALUE',F10.6,' ON ENTRY')
STOP
END IF
RD2=R*VS*D2 : :
CFL1541%H12+%H12~0,031729%H12%%3.D0
RETURN
30 IF(H32-1.57258D0)21,21,40
21 GOTO 20
40 H12=793.870845D0-89.582142D0*H32+25,715786D0*H32*H32
EPS=1.372391~-4.226253*H32+2.221637*H32*H32
RETURN
END
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SUBROUTINE FCNT(NE,S,Y,¥D)
c
Chkhikhhhhrhihhkhhhhkhhhibdhhthhhhhhdhhhihkhhhdhrhkrkhhrkahhhhbktrhhkhhhhhkhronhrkd
c
c THIS SUBROUTINE COMPUTES THE DERIVATIVES OF D2 AND D3 FOR USE IN THE
C MARCHING OF THE TURBULENT BOUNDARY LAYER EQUATIONS.

*%% DPARAMETER DESCRIPTION #*%#%

- NUMBER OF DIFFERENTIAL EQUATIONS, IN THIS CASE 2-

= SURFACE COORINATE

VECTOR CONTAINING THE VALUES OF D2 AND D3 AT THE STATION S

YD = VECTOR CONTAINING THE DERIVATIVE VAILUES OF D2 AND D3 AT THE STATION S

&ma

%*

%

*

*

*

. *
INPUT: *
*

*

*

*

¥*

-

KRAARAEEERRRAEAT R AR IRk Rkkhihhkdkhhhhdbhthhhhkhdkhkhhhhrhkhdhkhhfohkdkhhhhhihkhhdtikihr

e XeKeXeNeNeRe e Ne e Ne!

IMPLICIT REAL*8 (A-H,0~2)
DIMENSION Y(NE),YD(NE)

"COMMON /BLCVEL/ X(100),V(100),R
COMMON /BLCSPIN/ SPIN(100),N

*#%% FUNCTION F1 RETURNS H12 GIVEN H32 #ww
F1(H32)=H32/(3.0D0*H32~4.000)
*#% FUNCTION WSHR RETURNS THE LOCAL TURBULENT SXIN FRICTION *#%#

#k% COEFFICIENT, GIVEN THE SHAPE FACTOR H12, AND THE REYNQLDS *#®#*
*%% NUMBER BASED ON MOMENTUM THICKNESS RD2 #®#*%

NOQON0 Q00

WSHR(H12,RD2)=0.0245D0% (1.0D0~2.0953D0*DLOG10 (H12) ) **1.705D0
& /RD2%%(Q,.2638D0

**% FUNCTION CDISS RETURNS THE LOCAL TURBULENT DISSIPATION #*%#*
#*#% COEFFICIENT *%%

(o ReReNe

CDISS (H32,RD2)=(0.00481D0+0.0822D0* (H32-1.5D0) **4.81D0)

& *(H32/RD3)**(0.2317D0*H32-0.2664D0=-0.87D5% (2.0D0~H32) **20)
D2=Y (1)

D3=Y¥(2)

H32=D3/D2

H12=F1(H32)

**x% TO AVOID SINGULARITIES AT SEFPARATION, PUT BARRITRS ON **#%
%k H32 AND H12 *%%* '

000N

IF(H32.1T.1.5) H32=1.51
IF(H12.GT.3.0) H12=2.99

*%% FIND THE LOCAL SURFACE VELOCITY AND ITS DERIVATIVE THROUGH #***
*%% USE OF THE LINEAR SPLINE FIT *##

(s NeRrNe]

108




et BT TR

5
3
i

CALL LINTRP(S,X,V,SPLN,N,VS,VSD,IER)
IF(IER.EQ.1) THEN
WRITE(3,71) S
71 FORMAT (! IN FCN™ LINTRP RETURNED WITH AN ERROR FIAG',/,
& » ' X HAD THE VALUE',F10.6,' ON ENTRY')
STOP
END IF
RD2=R*VS*D2
RD3=R*VS#D3
CT=WSHR (H12,RD2)
CD=CDISS (H32,RD3)
¥D(1)=~(2.0D0+H12) *D2/VS*VSD + CT
¥YD(2) =-3.0D0*Y (2) /VS*VSD + 2.0DO*CD
RETURN :
END
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SUBROUTINE FIX

c .
Chikkkddkhhkhhhhkhhihkhhohdhkhdhhhhhhhhhhihrhhhhidhhrhkkdthhhbhhkhhhkhdhkhbihbihkhk
¢ : :
c SUBROUTINE FIX UPDATES THE ENTRAINMENT VELOCITY DISTRIBUTION AND JET
C INITIAL CENTERLINE VELOCITY AS CONTAINED IN THE DATA FILES BODY.DAT AND
c PARAM DAT.

c ' o
e T I e L T L P T e T T L 2

Cc .

* % ¥ % ¥

DIMENSION XJ(250), YJ(ZSO) ,VEL(250)
REWIND 1
REWIND 2
REWIND 12

#*%#% UPDATE UlO IN DATA FILE PARAM.DAT (UNIT 2) #%*

[eXe K¢

READ(2,10) XO,XC,XEXIT,NJS,NJF,NLS,NLF,VO,BETA
10  FORMAT(3F10.4,4I4,/,2F10.4)

READ(12,20) U0
20  FORMAT(F20.4)

WRITE(2,30) U0

36 FORMAT(F10.4)

s :

c %%# UPDATE THE ENTRAINMENT VELOCITY DISTRIBUTION IN FILE *#%
c *#%% BODY.DAT (UNIT 3) e
c .

DO 50 I=1,100
READ(1,60,END=85) X,¥,VN

60 FORMAT (3F10.4)
IF(I.LT.NJS.OR.I.GT.NJF) GOTO 70
READ(12,5) VN

5 FORMAT (F10.4)
70 . XT(I)=X
YT (I)=Y
VEL(I)=VN

90  CONTINUE
95  NMAX=I-1

REWIND 1

DO 100 I=1,NMAX

WRITE(1,60) XJ(I),YJ(I),VEL(I)

100  CONTINUE
110 RETURN

END
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SUBROUTINE FLDVEL(XI,ALFHA,D,Q,N,X,¥Y,U,V)

ChhkrnnhkhkidRbhkhdkhhhhdhdhhdhhhhkbhdhdhhhhkkdbhkhtdhhhdhdhhdhkhidkhdhbdhdhhr b kb dhhd

SUBROUTINE FLDVEL COMPUTES THE VEICCITY AT AN ARBITRARY POINT IN THE
INVISCID FIELD.

*%% DARAMETER DESCRIPTION %%

o
*
*
*
*
*
INPUT: *
COORDINATES OF THE CONTROL STATION LOCATICNS STORED AT X,Y PAIRS *
VECTCR OF SURFACE SLOPE ANGLES *
VECTOR OF PANEL LENGTHS *
VECTIOR OF SCURCE STRENGTHS : *
WUMBER OF PANEIS *
ABSCISSA OF THE POINT AT WHICH THE VELOCITY IS CALCULATED *
ORDINATE OF THE POINT AT WHICH THE VELOCITY IS CALCULATED *

%*

-*

*

*

*

#

M>¢ZOU§§

QUTPUT:
U = HORIZONTAL COMPONENT OF VELOCITY AT (X,Y)
v = VERTICAL COMFONENT OF VELOCITY AT (X,Y)

kkhkhhkREddRbhbhhdhhbhbihbihbhhthdddhdhhihdidhd b hh i d ki hhhdhrhhdthhtthhdhh vk

e N e Xe XeNeXe Ko Ko Ne Ko Ko Ne e Ne e Re e R NeNe Ko

IMPLICIT REAL*S (A-H,0~2)
DIMENSION XI(N,2),ALPHA(N),D(N),Q(N)
COMMON ,UNIF/ VO

SUM1=0.

SUM2=0.

*%% WEIGHT THEINFLUENCE COEFFICTIENTS WITH THE SOURCE STRENGHTS #**+%
*%* AND SUM TO FIND THE VELOCITY COMPONENTS *Rk

0nonNoOn

DO 20 C=1,N
CALL COEF(XT,X,Y,J,ALPHA,D,N,A,B)
SUM1=SUM1+Q(J) *A
SUM2=SUM2+Q (J) *B
20 CONTINUE
U= (VO+SUM1)
V=SUM2
60  RETURN
END
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SUBROUTINE INTRPV(X,XP,Y2,S,N,P,PD)

RRAFERRARNRRE LA R IR R RRAL R R A ddekh ke RhRARA AR ALKk A XA Lk hdhdhdhh kvt hkikhhrkihd

THIS SUBRQUTINE USES CUBIC SPLINE FIT PARAMETERS PRODUCED BY IMSL
ROUTINE XCSCCU 7O FIND INTERPCLATED VALUES OF A FUNCTION AND ITS DERIVATIVE
AT ANY STATION X. IN TEIS VERSION, THE SPLINE FIT PARAMETER MATRIX, SPIN,
IS PASSED THRCUGH THE ARGUMENT LIST AS A VECTOR. WITHIN THE BODY OF THE
ROUTINE IT IS RECONSTRUCTED IN MATRIX FORM. THIS VERSION IS HELPFUL WHEN
VECTORS OF DATA TO SPLINE FIT ARE OF VARIABLE DIMENSION.

*kk* DARAMETER DESCRIPTION #+#%

*
*
*
*
*
-
*
L3
*
*
INFUT: *

X = INDEPENDENDENT COORDINATE. X MUST BE WITHIN THE RANGE OF WHICH WAS *
SENT TO SUBROUTINE SPLINE. *

XP - VECTOR OF LENGTH N CONTAINING THE X CORDINATES OF A FUNCTION P. *
YP - VECTOR OF LENGTH N CONTAINING THE VALUE OF P AT X STATICNS *
CORRESPONDING TO THOSE IN XP. *
SPLN - VECTCR OF SPLINE FIT PARAMETERS AS OBTAINED FROM A CALL TO SYSTEM *
* ROUTINE ICSCCU. *

- NUMBER OF DATA PCINTS USED IN THE SPLINE FIT (DIMENSION OF VECTORS XP *
AND YP) *

%

*

*

*

*

*

*

4

OUTHUTS
P - INTERPOLATED VALUE OF THE FUNCTION AT TiE STATION X
DP - INTERPOLATED VAILUE OF THE FIRST DERIVATIVE OF THE FUNCTION AT THE
STATION X

FhIhkRAEEEARRA TG AR b kR kb ke hdddhddhbbdk Akt hhbdhbdbdhdbhkddhhthtRehdhbhhhthkritk

el Er e Ne e NeRe NeReRe o e oo Ne Re e NeNe NeRe o No NoNo No e o N e

IMPLICIT REAL*8(A-H,0-Z)
DIMENSION XP(N) ,YP(N),S(450),5PIN(150,3)

c
c *%% VERIFY THAT X IS WITHIN THE PROPER RANGE #*%#%
c %% EPS IS USED AS A TOLLERANCE FOR ROUND-OFF ERROR *#w=
c

EPS=1.0D-6

IF{(XP(1)-X) .GT.EPS.OR. (X~XP(N) ) .GT.EVS) GOTO 100
c
c #%% RECONSTRUCT THE SPIN MATRIX #*#*
c

NF=N-1

Do 5 I=1,3

DO ° J=1,NF
SPLN(J, I)=S ((I-1) *}™+J)

3 CONTINUE
5 CONTINUE :
c *%* SEARCH THROUGH THE ABSCISSA VECTOR TO IOCATE THE INTERVAL IN ##*
c *%% WHICH X LIES. xRk
c

DO 10 J=1,NF
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o )

IF(J.EQ.NF) GOTIO 20
IF((XP(J)-EPS) .LE.X.AND.X.LT.XP(J+1)) GOTO 20
10 CONTINUE . : )

*%% COMPUTE INPERPCLATED VALUES ###

[CEeNeXe!

G D=X-XP(J)
P=SPIN(J,3) *D**3+SPIN(J,2) *D**2+SPIN(J, 1) *D+YP(J)
PD=3. *SPIN(J,3) *D**2+2, *SPLN (J, 2) *D+SPLN (T, 1)

_ GOTO 200

100 WRITE(3,11C) X ,

110 FORMAT('IN SUBROUTINE INTERPOIATE X IS OUT OF BOUNDS.',/,
& 'X HAS THE VALUE ',F10.4) '

200 RETURN

END
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SUBROUTINE JET(U10,VN,RES)

C****k*********ﬁ******i********************************************************

c SUBROUTINE JET PERFORMS THE VISCOUS CALCULATION WITHIN THE VISCOUS- *
C INVISCID INTERACTION REGION. THE DERIVATIVE OF UO IS FOUND FROM THE *
C INVISCID SOLUTION VIA A LINEAR SPLINE FIT, AND IS USED AS A FORCING TERM IN #*
C THE VISCOUS SOLUTION. *
Cc w
C  **% PARAMETER DESCRIPTION ##% *
C *
c INPUT: &
C U0 - JTT INITIAL CENTERLINE VELOCITY *
¢ VN - VECTOR CONTAINING THE NORMAL VELOCITIES ‘TO THE PANELS ALONG THE JET *
¢ BOUNDARY IN THE VISCOUS-INVISCID INTERACTION REGION *
C *
c OUTPUT: *
C VN - UPDATED NORMAL VELOCITY VECTOR *
C RES = MAXIMUM RESIDUAL IN THE VISCOUS=-INVISCID MATCHING *
C *
C**************ﬁ************************************************************&**
C

IMPLICIT REAL*S (A-H,0=2)

DIMENSION A(4,4),T(4),W(3,9),C(24),SD(3),VN(100)
c
c **% CONTAINED IN ARFAl ARE SPLINE FIT PARAMETERS FOR THE %%
c *%% HORTZONTAL COMPONENT OF VELOCITY ALONG THE JET BOUNDARY %%
c .

COMMON /AREAl/ XE(40),YE{40),UE(40),VE(40),SPIN(150),NE
c

COMMON /AREA3/ S(3),X,U0

COMMON /AREA4/ PATM

COMMON /AREA8/ NJS,NJF

COMMON /AREA1l/ XO

EXTERNAL FCN1

REWIND 12

WRITE(12,1) Ul0
1 FORMAT (F20.4)

NEF=NE-1
e v
c *%% SPLINE FIT THE HORIZONTAL COMPONENT OF INVISCID VELOCITY *#%
c *%% AIONG THE JET BOUNDARY : ko
c

CALL INSPIN(XE,UE,NE,SPIN,IER)

IF(IER.NE.O) GOTO 80
c

PI=3.141592D0

THETA=12.*PI/180.

W1l=1.0

ALP=0.69300

N=3

NW=3
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TOL~.01D0
IND=1
X=X0+0.1

*%* OBTAIN THE INTERPOLATED VALUE OFF'I'}{L.'-‘ HORIZONTAL COMPONENT QF #*¥%
*%%x INVISCID VELOCITY ALONG THE JET BOUNDARY *kk

[pEoNo XY

CALL LINTRP(X,XE,UE,SPLN,NE,UO,U0OD, TER)
IF(IER.EQ.1) THEN
WRITE(3,4) X
FORMAT(' IN JET LINTRP RETURNED WITH AN FRROR FLAG',/,
& ' X HAD THE VALUE',F12.6,' ON ENTRY')
STOP
END IF

>

%%+ COMPUT® THE TOTAL PRESSURE IN THE INVISCID FIELD ASSUMING ®#%
wke THAT THE STATIC PRESSURE AT THE JET NOZZLE IS ZERQO %#¥

PATM=0.5D0*U0*UQ

*%* DEFINE INITIAL VAILUES OF THE JET PARAMETERS, B IS SET TO A %¥%*
®w#x SMALL VAIUE TO AVOID THE SINGULARITY AT THE ORIGIN Lt

N0Oo00 0000

S(1)=U10

$(2)=.01D0

S (3) =PATM=0.5D0*U0*UO
RES=0.0

[sNoXel

##%* ENTER LOOP TC MARCH THE VISCOUS EQUATIONS

DO 10 J=2,NE
XEND =XE(J)

*%% TMSL SUBROUTINE DVERK MARCHES THE SOLUTION *#%*

0nonNon

CALL DVERK(N,FN1,X,S,XEND,TOL,IND,C,NW,W,IER)
IF(IND.LT.0.CR.IER.GT.0} GOTO 100

*%% OBTAIN THE LOCAL DERIVATIVE VALUES OF THE JET PARAMETERS ##%
CALL FQ1(N,XEND,S,SD)

**x* COMPUTE THE LOCAL INVISCID VELOCITY AND ITS FDERIVATIVE #x=

aOnon o006

CALL LINTRP(XEND,XE,UE,SPLN,NE,U0,U0D, IER)
IF(IER.EQ.1) THEN

WRITE(3,12) XEND
12 FORMAT(' IN JET LINTRP RETURNED WITH AN ERROR FIAG!,/,
: & ' X HAD THE VAILUE',F10.6,' ON ENTRY')

STOP
- END IF
" BET=ALD/ (S (2) #*2)
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YSTAR=2.4*S(2)

*%**% COMPUTE THE VERTICAL COMPONENT OF VELOCITY AT THE JET *#¥
*** BOUNDARY FROM THE VISCOUS SOLUTION *k

[oNoXoNe]

V=~ (UOD*YSTAR+SD (1) /2. *DSQRT (PI/BET)
*DERF ( DSQRT ( BET) *YSTAR)
+2.,%S (1) *ALP/ (S (2) **3) *SD(2) *
(=YSTAR/2./BET*DEXP (~BET*YSTAR**2)
+.25/BET*DSQRT (PI/BET) *DERF (DSQRT (BET) *YSTAR) } )

R R R

*%% COMPUTE THE LOCAL RESIDUAL BY COMPARING THE VISCOUS AND *#*%
*%% INVISCID VERTICAL COMPONENTS OF VEIOCITY AILONG THE JET k%%
%%% BOUNDARY Yok v

00000

R=V-VE(J)
IF (DABS(R) .GT.RES) RES=DABS(R)

#k% MAKE A CORRECTION TO THE LOCAL ENTRAINMENT VELOCITY #%*#*

Nneon

Wl=1.-.7/DFLOAT (NE-2) *DFLOAT (J=2)
UNEW= VN (NJS=1+J)=-W1*R

#%% MAKE FIRST PANEL SUCTION EQUAL TO THE SECOND TO ENHANCE #*#
*## STABILITY *hR

NDOO0

IF(3.EQ.2) VN(NJS)=VNEW
VN (NIS=-1+J ) =VNEW
IF(J.EQ.2) WRITE(12,7) VNEW
WRITE(12,7) VNEW
7 FORMAT (F10.4)
9 CONTINUE
10  CONTINUE
GOTO 200
80  WRITE(3,90) IER
90  FORMAT('AFTER CALL TO SPLINE IER HAS THE ERRCR VAIUE ',I5)
GOTO 200
100 WRITE(3,150) IND,IER
150 FORMAT(/,'IN JET IND= ',15,' IEL= ',I5,/)
200 RETURN
END
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SUBROUTINE LINTRP(X,XP,YP,SIOPE,N,P,PD, IER)

RhRRAAA AR AR dhR bRk hkdek ek hkdhrhbddihivkdidhhdbth kb kddbkhdhbdh bk hkbhiikkdkx

SUBRCUTINE LINTRP WAS WRITTEN FOR THE JOINT INSTITUTE FOR AERONAUTICS
AND ACOUSTICS AT STANFORD UNIVERSITY BY THOMAS IUND, TLATEST REVISION 9
OCTOBER 1584.

THIS SUBROUTINE USES SLOPES GENERATED BY SUBROUTINE INSPLN TO FIND
INTERPOLATED VALUES OF A FUNCTION AND ITS DERIVATIVE AT ANY STATICN X.

**PARAMETER DESCRIPTION**

*
*
*
*
*
*
*
*
*
*
*
INPUTS: ®

X =~ INDEPENDENDENT COCRDINATE. X MUST BE WITHIN THE RANGE OF WHICH WAS *
SENT TO SUBROUTINE INSPIN. *

XP = VECTOR OF LENGTH N CONTAINING THE X CORDINATES OF A FUNCTICN PF. *
YP = VECTOR OF LENGTH N CONTAINING THE VAIUE OF P AT X STATIONS *
CORRESPONDING TO THOSE IN XP. *
SIOFE - VECTOR OF SLOPES AS OBTAINED FROM A CAILL TC SUBROUTINE LNSPIN. b
N = NUMEER OF DATA POINTS USED IN THE SPLINE FIT (DIMENSION OF VECTORS XP *
AND YP) *

*

*

*

*

*

*

*

*

*

*

*

*

*

OUTPUTS:
P -~ INTERPOLATED VAIUE OF THE FUNCTION AT THE STATION X
DP = INTERPCLATED VAIUE OF THE FIRST DERIVATIVE OF THE FUNCTION AT THE
STATION X
IER ~ ERROR PARAMETER, CN SUCCESSFUL TERMINATION IER IS SE’I‘ TO ZERO, IER=l
INDICATES THAT X WAS OUT OF BOUNDS OF THE
SPLINE FIT SIOPES.

**PRECISION#** - ATY, PARAMETERS AND INTERNAI VARIABRIES ARE DOUBLZ PRECISION

hhhhkkhkhRohbhhhtbhdddhhihhrhh bk kAt hdt bbbkt hhRhdddhrdhhrbhdthrthhdktidkihtk

o Xe Ko Ke Ko R Ko Xo Ne N R Ro Koo Re Ro o Ro N Eo Ro No No o o No Ro Ro N No Ro NO NS RO N RO

IMPLICIT REAL#*8 (A-H,0-2)
DIMENSION XP(N),YP(N),SLOPE(N~1)
IER=0

NF=N-1

*x% VIRIFY THAT X IS WITHIN THE PFROPER RANGE **%*
*%% EPS IS USED AS A TOLLERANCE FOR ROUND=CFF ERROR #%%

[sNo RO N¢]

EPS=1.0D-6

IF((XP(1l)=X).GT.EPS.CR. (X=XP(N)).GT.EPS) THEN
IER=1
RETURN

END IF

C #*% SEARCH THROUGH THE ABSCISSA VECTOR TO LOCATE THE INTERVAL IN #w#
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c *e% WHICH X LIES, %4+
DO 10 J=1,NF
IF(J.EQ.NF) GOTO 20
IF ( (XP(J) ~EPS) .LE.X.AND.X.LT.XP(J+1)) GOTO 20
10 CONTINUE : :
c
c . *¥%% COMPUTE INPERPOLATED VALUES ##%
c
20 D=X-XP(J)
P=YP(J) +D*SLOPE (J)
PD=SLOPE (J)
RETURN

END
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SUBROUTINE INSPIN(X,Y,N,SIOPE, IER)
ot 2 L T T L T I S P T T T e T

THIS SUBROUTINE WAS WRITTEN FOR THE JOINT INSTITUTE FOR AERONAUT-
ICS AND ACCUSTICS, STANFORD UNIVERSTY BY THCMAS ILUND. IATEST REVIS=-
ION 13 SEPTEMBER 1%84. :

SURROUTINE INSPIN (LINEAR SPLINE FIT) IS USED TO GENERATE THE
SIOPE OF A DESCRETE FUNCTICN THROUGH THE USE OF LINEAR SEGMENTS. THE
SIOPF AT THE MIDPOINT OF EACH INTERVAL IS COMPUTED USING FIRST
ORDER ACCURATE BACKWARD DIFFERENCING. SUZROUTINE LINTRP IS CALLED
TO DO THE ACTUAL INTERPOLATING.

**PARAMETER DESCRIPTION**

C

c *
c *
c *
c *
C *
C %*
c *
C *
C %*
c *
C *
c *
o] INPUT: *
c X - VECTOR OF LENGTH N CONTAINING THE ABSCISSI. THE ELEMENTS OF *
C X MUST BE ORDERED SUCH THAT X(I+1)>X(I). *
c Y = VECTOR OF LENGTH N CONTAINIGN THE ORDINATES. *
C N = LENGTH OF THE INPUT VECTORS. N MUST BE GREATER THAN CNE. *
c *
c %
c *
c *
c *
c *
(o %*
c *
c *
c *
c *
c *
c *

OUTPUT:
SIOPE -~ VECTOR OF LENGTH N-i: CONTAINING THE SIOPE OF EACH INTERVAL
IER - ERROR PARAMETER. ON NORMAL EXIT IER IS SET TO ZERO. IER=1
INDICATES THAT N WAS LESS THAN 2. IER=2 INDICATES THAT
S X(T+1)<=X(I).

**LTNKING##* - NO EXTERNAL SUBROUTINES TO LINK.

**PRECISION** -~ ALY, PARAMETERS AND INTERNAL VARIABLES ARE DOUBLE
PRECISICN.

LI R Y R R R R 22 X XX LT PR TETLILTS FL LT T ZE LT DL LN TELPIT L2 T T FE 2T ITFL
IMPLICIT KEAL*8(A-H,0-Z)
DIMENSION X(N),Y¥(N),SLOPE(N-1)
NF=N-1

c CHECK FOR ERROR CONDITIONS
IER=0
IF(N.LT.2) THEN
TER=1
GOTO 200
END IF
DO 10 I=1,NF
IF(X(I+1l) .LE.X(I)) THEN
TER=2

GOTO 200
END IF
10 CONTINUE
o COMPUTE FIRST ORDER ACCURATE SIOPES

DO 20 I=1,NF
SLOPE(I)=(Y(I+1)-Y(I))/(X(T+1)~X(I))
20 CONTINUE
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SUBROUTINE MATRIX (H,HD,B,UO,UL,A,T)

C*********************************************k********************************

THIS ROUTINE COMPUTES THE MATRIX ELEMENTS R.H.S. OF THE SYSTEM:

! A(L,1) A(1,2) A(1,3) A(L,4) ! ! DUO/DX ! 1 T(1) b
VA(2,2) « o o « o « o A(2,4) ! ! DUL/DX ! ! T(2) !
1A(3,1) « v « o« . o A(3,4) !} DB/DX ! = ! T(3) !
! A(4,1) « « o« « o « . A(4,4) ! | DP/DX ! U T(4) !

THE FIRST THREE EQNS ARE THE FIRST, SECCND AND THIRD MOMENT OF THE
MOMENTUM EQUATION. THE LAST EQN IS CONSERVATION COF MASS. THE UNKNOWNS
ARE THE X~DERIVATIVES OF UO, Ul, B AND P, WEERE THE FIRST THEREE ARE
DEFINED BEICW AND P IS THE PRESSURE DEVIDED BY THE DENSITY. NO
NONDIMENSIONALISATIONS ARE ASSUMED.

*%% DARAMETER DESCRIPTION ##*

INPUT:
H < UFPER LIMIT OF INTEGRATION IN THE MOMENTS OF THE MOMENTUM EQN. FOR
A NOM-CONFINED JET H IS A MULTIPLE OF B S.T. THE STRESS IS NEGLIGIBLE
AT THAT DISTANCE. FOR A CONFINED JET, H IS THE HALF WIDITH OF THE
- CONFINING CHANNEL.
REPRESENTS DH/DX AND IS ONLY NEEDED IN CONFINED JETS, SINCE IT ENTERS
ONLY IN LAST EQN. FOR NON-CONFINED JETS IT CAN BE LEFT UNDEFINED.
CHARACTERYISTIC HALF WIDTH OF JET.
SEE BELOW
Ul - PARAMETERS DEFINING VELOCITY PROFILE IN EXPRESSICON:

U = U0 + UL*EXP({=0.,593 # Y#%2/Bx%2)
DEL~ FRACTION OF B (USUALLY DEI=0.78%B), WHER: THE LINEAR DECREASE OF EDDY
VISCOSITY BEGINS. :
ETA- MULTIPLIE OF B WHERE EI'DY VISCOSITY VANISHES (USUALLY ETA = 4.8*%B).
EPS~ SCALING CONSTANT IN EDDY VISCOSITY (USUALLY EPS = 0.0283)

(o]
001
[ |

CUTPUT:
A(I,J) - MATRIX ELEMENTS
T(I) = RIGHT HAND SIDE

CAUTION ON DEL AND ETA:

IF ETA » H, SET ETA = H.

IF AISO OEL > H, SET DEL = H - (SMALL AMOUNT)

THE SMALL AMOUNT IS A VERY SMALL FRACTION OF H. THIS CHANGE IS NEEDED TG
AVOID THE DIVISIONS BY ZERO THAT WOULD ARISE IF BOTH DEL AND ETA WERE
EQUAL TO H. ALL THESE CHINGES ARE TO BE DONE EXTERNALLY.

A % K & % % kA ¥ o % F k% ¥ F N A %% N %R AR RO Nk ¥ kN F Bk Ak * % F %
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IMPLICIT REAL*8(A-H,O0-1)
DIMENSION A(4,4),T(4)
PI=3.141592D0




AL=0.693D0

DEL=.78+B

ETA=4.8%B

EPS=.0283

IF(ETA.GT.H) ETA=H

IF(DEL.GT.H) DEL=H~-.001

VIS=EPS*B*Ul

H2=H*#%2

H3=H**3

B2=B**2

B3=B##3

U12=U1#%2

AI2=2%AL

ATA=4*AL

ER1=DSQRT (PI/AL) *DERF (DSQRT (AL) *H/B)
ER2=DSQRT {PI/AL2) *DERF (DSQRT (1L2) *H/B)
ERDEL=DSQRT (PI/AL) *DERF (DSQRT (AL) *DEL/B)
ERETA=DSQRT (PI/AL) *DERF (DSQRT (AL) *ETA/B)
EX1=DEXP(-AL*H2/B2)
EX2=DEXP(=-AL2#*H2/32)

EXDEL=DEXP (~AL*DEL##2/B2)

EXETA=DEXP (~AL*ETA*#2/B2)

UH=UO+U1*EX1

AUX1=(1~EX1)/AL2

AUX2=(1-EX2)/AL2

AUX3=EX1* (1+AL*H2/B2)

AUX4=EX1* (H/AL2/B+H3/3/B3)

AUXS5=EXDEL* (1+AL*DEL#**2/B2)
AUX6=EXETA* (L+AL*ETA%*#2/B2)

*%* COMPUTE MATRIX ELEMENTS ##%

A(1,1)=2+H*UO+U1*B*ER1-UH*H

A(1,2)=(UO~TH/2) *B*ER1+UL*B*ER2
A(3,3)=(24U1*UO-UHAUL) * (ER1/2~H*EX1/B) +U12* (ER2/2~H*EX2/B)
A(l,4)=H

A(2,1)=U0*H2/2+UL*B2*AUX1+U1*B2/AL* (1=AUX3)
A(2,2)=U0%*B2*AUX1+UL*B2*AUX2+ULl/2*B#ER1# (B*ER1/4~H*EX1)
A(2,3)=Ul%UC*B/AL* (1~AUX3)+U12/2% (B*ERL**2/4~H*EX1*ER1+B*AUX2 )
A(2,4)=H2/2

A(3,1)=UO*H3/3+U1*B2/AL2* (B*ER]/2-H*EX1)

1 +U1*3#B3* (ER1/AL4~AUX4)

A(3,2)=UO%*B2/AL2* (B*ER1/2~H*EX1)+U1*B2/AL2

1 * (B*FR2/2~H*EX2) +U1*B3/AL2% (ER2~ER1*AUX3)
A(3,3)=U1*UO*3*B2* (ER1/AL4~AUX4)

1 +U12%B2% (-ER1/AL2 *AUX3+5*ER2/ (8*AL) ~H*EX2/AL4/B)
A(3,4)=H3/3

A(4,1)=H

A(4,2)=B*ER1/2

A(4,3)=Ul*ER1/2-Ul*H*EX1/B

A(4,4)=0
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c #%% RIGHT HAND SIDE ELEMENTS, ASSUMES THAT STRESS AT *%*
C *%% DISTANCE H IS ZERO. kkk
(o

T(1)=0

T (2) =VIS#ULl# ( {1-EXDEL)+ETA/ (ETA=-DEL) * (EXDEL~EXETA) )

1 - ~VIS*Ul#*(B*ERETA/2-B*ERDEL/2+DEL*EXDEL-ETA*EXETA) / (ETA-DEL)
T (3)=VIS*Ul* (B*ERDEL~2#DEL*EXDEL) +VIS*U1*ETA/ (ETA~DEL)

1  #(B*ERETA-B*ERDEI+2*DEL*EXDEL~2*ETA*EXETA)

2 +2*VIS*Ul*B2/AL/(ETA-DEL) * (AUX6-AUXS5)

T(4)=-HD*UE

RETURN

END
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SUBRCUTINE PANVLIC(XI,ALPHA,D,Q,N)

KR ART kR kR AR R LR R R Rk Ak kAR R AR A AL hk kR kR AR Tk hAr kR AR R AR Ah R R R hhkkkkhkkkkkht sk

SUBRCUTINE PANVLIC COMPUTES VAIUES OF THE VELOCITY COMPONENTS AT THE JET
BOUNDARY (CONDITION EXTERNAL DENOTED BY APPENDED E). THIS SUBROUTINE MAKES
REPEATED CALLS TO SUBROUTINE FLDVEL WHERE THE VELOCITY COMPONENTS ARE
CAICULATED. THE VELOCITY COMPONENTS ARE SENT TO SUBROUTINE JET VIA COMMON
IN AREAL.

*%% PARAMETER DESCRIPTICN #**

*
*
*
*
*
*
*
*
INPUT: *
pas -~ COCRDINATES OF THE CONTROL POINT LOCATIONS STRCRED AS X,Y PAIRS *
AIPHA -« VECTOR CONTAINING THE SURFACE SLOPES *
D = VECTOR CONTAINING THE FANEL LENGHTS - : *
Q = VECTOR CONTAINING THE SOURCE STRENGTHS *
N - NUMBER OF PANELS ' Co*
*

*

*

s

*

*

*

%

*

%

*

QUTPUT:

XE «~ VECTOR CONTAINING THE t‘LBSCISSA OF THE STATIONS AT WHICH THE
VEIOCITIES ARE CALCULATED

YE = VECTCR CONTAINING THE ORDINATE OF THE STATIONS AT WHICH THE
VELOCITIES ARE CLACULATED

UE = VECTOR CONTAINING THE HORIZONTAL COMPONENT OF VELOCITY

VE - = VECTOR CONTAINING THE VERTICAL COMPONENT- OF VELOCITY

ALL OUTPUTS ARE PASSED TO SUEBROUTINE JET VIA COMMON IN AREAlL

e Xe XeXe Xe Xe Ko Xo Ke Ko Ko R Ko Ko o Ne NeRoNe Ko XoRe NoNoNoRoRo Nl

AR AR AN A A R AR R R S R S A R AR AR AR R AN AR AR RS SR AR R A AT R T AR Rtk
IMPLICIT REAL#*8 (A-H,0~Z)
DIMENSION XI(N,2),ALPHA(N),D(N),Q(N)
COMMON /AREAY/ XE(40),YE(40) U“(40),VE(40),SPLN(150) NE
COMMON /AREA4/ PATM
COMMON /AREA8/ NJS,NJF
COMMON /AREA1l/ XO

*%% CALCULATE AND STCRE VELOCITY CCMPONENTS *#*#

[eXeRe

S=NJS
NF=NJF
NE=NF~NS+1
DO 10 I=dS,NF
X=XI(I,1)
¥Y=XI (T,2)
CALL FLDVEL(XI,ALPHA,D,Q,N,X,Y,U,V)
XE (I-NS+1)=X
YE(I-NS+1)=Y
UE(I-NS+1)=U
VE (I-N5+1)=V
10  CONTINUE
RETURN
END
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SUBROUTINE PARMIN(U10,VO,BETA}

C**********************&***************i******kh**************************k****

[eNeReNoNeNoNoNoNoRoNoNo NoRo No NoNoNo RO Ne RO NS

THIS SUBROUTINE READS INDUTS FROM DATA FILE PARAM.DAT. THE INFORMATION
AQUIRED PCRTAINS TO THE DETAILS OF THE SHROUD BODY AS WELL AS THE FLOW

CONDITICNS.

*%% PARAMETER DESCRIPTION ##%
OUTPUT:
Ul0 =~ JET INITIAL CENTERLINE VELOCITY
VO = FREE-STREAM VELOCITY
BETA =~ ANGLE OF ATTACK

*k%* DASSED IN COMMON #%%

X0 = X CCORDINATE OF THE JET NCZZLE POSITION
XC = X CCORDINATE OF THE CONTROL STATICN
XEXIT- X COORDINATE OF THE SHROUD END

NJS = PANEL NUMBER AT WHICH THE JET BEGINS

NJF = PANEL NUMBER AL CHICH THE JET ENDS
NLS - PANEIL NUMBER AT WHICH THE NOSE LIP STARTS
NLF = PANEL NUMBER AT WHICH THE RCSE LIP ENDS

RERRARDI AR R RAR AR ARAR R LR LA AR AR AR AR R RN AR R RS R AR AR L TR DRI TR A IS S b AR bkt

COMMON /AREA8/ NJS,NJF
COMMON /AREAS/ NLS,NLF
COMMON /AREALC/ XC
COMMON /AREALL/ XO
COMMON /AREAL2/ XEXIT

*
*
*
*
*
*
*
%
*
%*
*

Tk
*
*
&
*
*
*
*
*
&

READ(2,10) XO,XC,XEXIT,NJS,NJF,NLS,NLF,VO,BETA,ULC
10  FORMAT(3FlC.5,4I4,/,2F10.4,/,710.4)

RETURN
END
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SUBROUTINE PERFRM(XI,ALPHA,D,Q,N,Ul0,PHIS)

Chihkhhkhhkhhkhrhhkhhrhhhhhhhk A hhdkb kA hhhhhhhb s chdhdhhhhikhkhhbhhkhkdhhhhrrhhhhidhds

THIS SUBROUTINE CCMFUTES THE THRUST AUGMENTATION RATIC IN .TWO
INDEPENDENT CALCULATIONS; EY INTEGRATION OF THE SURFACE PRESSURES, AND BY A
CONTROL VOLUME ANALYSIS USING THE BLASIUS MOMENTUM THECREM. A SUMMARY CF
THE PERFORMANCE PARAMETEKRS ARE WRITTEN TC THE OUTPUT FILE PARAM.DAT.

*%% PARAMETER DESCRIPTION #%#%

INPUT:

- COCRDINATES OF THE CONTROL POINTS STORED AS X,¥ PAIRS
VECTOR CONTAINING THE SURFACE SLOPES FOR EACH PANEL
VECTOR CONTAINING THE PANEL LENGTHS

VECTOR CONTAINING THE SOURCE STRENGTHS

NUMBER OF PANELS

10 = JET INITIAL CENTERLINE VELOCITY

%iﬁ

caZou
[ |

OUTPFUT: .
PHIS = THRUST AUGMENTATION AS COMPUTED THROUGH INTEGF 7"ON OF THE SURFACE
FRESSURE

X A F F Nk % A % NN KA F R

NOOOOOQOO0OO0O0NOO0O000000

RERERRARRAAEAARERR LA ACRARARA AR AL AR LA RE AR TR RIRAS A DRI LR SRR AADL R RS hhbdhdrdhhdhid

IMPLICIT REAL#*8(A-H,0-Z)

DIMENSION XI(N,2),ALPHA(N),D(N),Q(N)
COMMON /UNIF/ VO

COMMON /AREA4/ PATM

COMMON /AREA7/ S(4)

COMMON /AREAS/ NLS,NLF

COMMON /AREALO/ XC

COMMON /AREAll/ XO

ALP=-DLOG (. 5D0)

BO=0.01

PI=3.1415%926
*%%x COMFUTE INVISCID FIWID SPEED AT THE JET NOZZIE dekk
**%% USING THE BERNOULLI RELATION. THE STATIC PRESSURE *%#*
%*kd% AT THE NOZZLE VANISHES BY CONSTRUCTION Rk

UO=DSQRT (2. 0DO*PATNM)

*%* COMPUTE THE MOMENTUM FIUYES. XMJ IS THE MOMENTUM FLUX *%%*
**% OF THE PRIMARY JET, XMI IS THE MOMENTUM FLUX ACROSS THE***
#%% INTET BOUNDARY OF THE CONTROL VOIUME, AND XME 1S THE fakaded
*¥% MOMENTUM FLUX ACROSS THE EXIT BOUNDARY OF THE CONTROL  ##%*
*%k%* VOLITME % %k

NONOOO0N0 QOO0OQON

XMI=U10*Ul0*BO*DSQRT (FI/2./ALP)
XMI=2.0D0*BO*ULO* (2.1283D0*U0+0.7527D0*U10) +VO*VO

125



a0 anonoaow

naaQao

[eXoXp]

Q

o
(o]

XME=2.*S(1)‘*S(1)+4.*S(1) *S5(2)*(S(3)/2.*DSQRT (PI/ALP)

R

*DERF (DSQRT (2. *ALP) /S (3)))
WRITE(4,35) XMJ,XMI,XME :
FORMAT(® JET MCMENTUM FILUX = *,F10.4,/,' ENTERING MOMENTUM',

& 'FIUX = *,Fl0. 4 i/t EXI‘I‘ING MOMENTUM FI.UX = !,F10.4)

T"XME-XMI

%%% COMPUTE THE THRUST AUGMENTATION RATION USING THE *#*
## i MOMENTUM THEOREM Tkk

‘PHTI=(XMT+T) /3XMT

WRITE (4,40) PHI.

FORMAT(/, ' AUGMENTATION RATIC COMPUTED USING THE MOMENTUM',
& * THEOREM',F12.8)

NS=NLS

NF=NLF

SUM=0.

*%% INTEGRATE THZ SURFACE PRESSURES ###*

DC 50 I=NS,NF

X=XI(I,1)

Y=XI(I,2)

CALL FLDVEL(XI,ALPHA,D,Q,N,X,Y,U,V)
SUM=SUM+ (U#U+V#V) *D (I} *SIN (ALPHA(I) )

_ CONTINUE
#%% SUBTRACT THE BASE PRESSURE IN ORDER TO OBTAIN wx%#
*#% THE CORRECT THRUST Ak
T=SUM~-VO*VO

#*%% COMPUTE THE THRUST AUGMENTATICN RATIO THROUGH #*%%
*#% INTEGRATION OF THE SURFACE PRESSURES ' sk k

PHIS=(T+XMT) /XMT
WRITE(4,60) PHIS

FORMAT (' AUGMENTATION RATIO CCMFPUTED FROM SURFACE FRESSURES',

& ‘F12.8,//)
'RETURN
END
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SUBROUTINE RK2(N.ICN,X,Y,¥END) ]
o T L e I d

THIS ROUTINE WAS WRITTEN FOR THE JOINT INSTITUTE FOR AERONAUTICS
AND ACOUSTICS, STANFORD UNIVERSITY BY THOMAS LUND. LATEST REVISION
20 JAN 1985.

SUBROUTINE RK2 INTEGRATES A FIRST ORDER SYSTEM OF ORDINAKRY DIFFER-
ENTIAL EQUATIONS USING A SECOND ORDER ACCURATE RUNGE~-KUITA SCHEME.
EACH CALL TO RK2 ADVANCES THE SCLUTION FOREWARD IN TIME ONE INTERVAL.

***PARAMETER DESCRIPTICQN***

*
*
*
*
*
%
*
*
*
*
*®
N = RANK OF THE FIRST ORDER SYSTEM. *
FCN - N-DIMENSICONAL FUNCTION WHICH DEFINES THE SYSTEM DERIVATIVE. *
X = INDEPENDENT VARIABLE, INITIAL VALUE FOR INTEGRATION STEP. *
Y = VECTCR OF LENGTH N WHICH ON INFUT CONTAINS THE INITIAL VALUES *
AND ON OUTPUT CONTAINS THE APPROXIMATE SOLUTION ADVANCED IN *

TIME ONE INTERVAL. *

XEND - VAIUE OF THE INDEPENDENT VARIABLE AT THE END OF THE INTERVAL. *
THE INTERVAL SIZE IS DEFINED AS XEND-X. *

*

*

*

*

Y

*

*

#

*

*

*%*PRECTSION##*#
ALI, PARAMETERS AND VARTABLES ARE DEFINED AS DOUBLE PRECISION
#% ¥ENVIRONMENT * % #

VAX 11-780

NDOOONANONANCOOO0000000N000000000

AR R AR AR R TR AR AN A A RAIRREER A RR AR RARINRR AR AR RA A ARk ek Ak kA Sddededkkdk ik
IMPLICIT REAL*8 (A-H,0~2)
DIMENSION Y (N),YP(10),YHAT(10),YHATP(10)
H=XEND-X
CALL FCN(N,X,Y,YP)
DO 10 I=1,N
YHAT (I)=Y (I} +H*YP(I)
16 CONTINUE
CALL FCN(N,XEND, YHAT, YHATP)
DO 20 I=1,N
Y (I)=0.5D0* (Y (I)+YHAT(T)+H*VEATR(I))
20 CONTINUE
=XEND
RETURN
END
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SUBROUTINE SIMQ(AD,A,B,N,ND,KS)

[od 2222832 22 3R 2 222 b2ttt s s 28T TSI RLIL LSS 2 32 338 3

SUBROUTINE SIMQ IS AN COLD IRM SYSTEM USED TO SOLVE A SYSTEM OF
SIMULTANEQUS LINEAR EQUATIONS. THE ALGORITHM IS GAUSSIAN ELIMINATION.

#%% DARAMETER DESCRIPTION #%¥%

*
*
*
*
*
*
INPUT: : . _ *
~ MATRIY OF COUPLING COEFFICIENT *
- *

%*

*

*

*

*

»®

WORK SPACE MATRIX OF DIMENSION IDENTICAL TO THAT CF AD
RIGHT HAND SIDE VECTCOR

RANK OF THE SYSTEM

NUMBER OF EQUATIONS IN THE SYSTEM (USUALLY EQUAL TO N)
ERROR PARRBMETER, KS=1 FCR A SINGULAR MATRIX

aézw:vg

RAERARRA R R R AR AR R AR A RN AR R AR RN RN AR AR AL AR ke hh kAR AT AR AR ke ®

(o XeXoNe NoRoNo Ne Ne NoNo o Ro No No X9 )

IMPLICIT REAL*Q (A-H,0-Z)
DIMENSION B(ND) ,AD(ND,ND) ,A(1)
II=0 :
DO 130 K=1,N
PO 130 I=1,N
IT = IT+1
130 A{IJ) = AD(L,K)
132 TOIL=Q.0
KS=0
JI==N
DO 65 J=1,N
JY=J+1
JI=IT+N+L
BIGA=0
IT=JJ-J
DO 30 I=J,N
IT=I1T+1 :
- IF(DABS(BIGA)~-DABS(A(XITJ))) 20,30,30
© 20 BIGA=A(1J) :
IMAX=I
30 CONTINUE
IF (DABS(BIGA)-TOL) 35,35,40
35 KS=1
GO TO 220
40 I1=J+N*(J-2)
IT=IMAX~J
DO 50 K=JT,N
I1=I1+N
I2=I1+IT
SAVE=A(Il)
A(I1)=A(12)
A(I2)=SAVE
50 A(I1)=A(Il)/BIGA
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80

SAVE=B (IMAX)
B(IMAX)=B(J)
B(J)=SAVE/BIGA

IF(J-N) 55,70,55

TQS=N=* (J-1)

DO 65 IX=JY,N

IXI=IQS+IX

IT=J~IX

DO 60 JX=JY,N

IXTX=N* (JX-1)+IX
JIX=IXTX+IT

A(THTIX) =A(IXTX) - (A(IXT) *A(ITX))
B(IX)=B(IX)~(B(J)*A(IXT))
NY=N-1

IT=N*N

DO 80 J=1,NY

IA=IT-J

IB=N-J

IC=N

DO 80 K=1,J
B(IB)=B(IB)-A(IA)*B(IC)
IA=IA~N

IC=IC~1

220 IF (N.EQ.ND) RETURN

110

IJ = NaN+1
DO 110 I=1,N
DO 110 K=1,N
17 = I0-1

AD(N~-L+1,N=-K+1) = A(IJ)

RETURN
END
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SUBROUTINE SIZE(M)

c . .

Chhkhhh Ak ki hdle kAR Ak R R AR AR R AR A TR RS RAR R A T d A ARk Ak hh ek dehkkkow kR kok
c ' *
(o SUBROUTINE SIZE READS THE DATA SET BODY.DAT IN ORDER TO DETERMINE THE *
C NUMBER OF ELEMENTSCONTAINED THERE. THIS IS NECESSARY TO ALIOW RUN-TIME *
C DIMENSIONING OF THE ARRAYS IN THE INFUTING SURBRROUTINE DATIN. *
C . *
c *k% PARAMETER DESCRIPTION #*** *
C *
C OUTPUT: *
¢ M - NUMBER OF LINES IN DATA FILE BODY.DAT *
c *

Chhedkdhkdfdihkhrdlhhkkhhkhhhhrhihkhhrhkrthhddhhhhhddhhbrrdtrdhkbkhhbhkhdk bk krihkodikk

¢
IMPLICIT REAL*8(A-H,0-Z)
10  FORMAT(3F10.4)
15  FORMAT(2F10.4)
READ(1,15) DUM1,DUM2
DO 20 I=1,110
READ(1,10,END=60) DUM1,DUM2,DUM3
20  CONTINUE
60  M=I-1
RETURN
END
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. SUBROUTINE SOLVE3(3A,T,UOD,R)

C -
ChakrhrkkhkkhdkkkrhhkrhkAtAb R Ak hANAShhdhdrdhhkhbbhhkhbhhhhkhhhkhkhhrhhkrddkbhkrhrhkrht .
c : . : *
c SUBROUTINE SOLVE3 SOLVES THE SIMULTANEOUS LINEAR EQUATIONS NECESSARY TO *
C DETERMINE THE DERIVATIVES OF THE JET PARAMETERS FOR USE IN MARCHING THE *
C JET SCLUTION IN THE VISCOUS-~INVISCID REGION. *
c *
< *%% PARAMETER DESCRIPTICN ##*% *
< *
“ INPUT: _ . *
C A - COUPLING COEFFICIENT MATRIX *
C T = RIGHT HAND SIDE VECTOR *
C UOD~ DERIVATIVE OF THE EXTERNAL VELOCITY UO AS DETERM‘IN“D BY THE INVISCID *
c SOLUTICN. *
C *
C OUTEFUT: *
C R = VECTOR CONTAINING THE DERIVATIVE VALUES FOR U1, B, 2AND P. *
c *
ChuERBARARRERLARRBARAARARRANTE XA AR IR RR A A ARk hAh ki kb h kR hhdhhk kb bhhdhdahhdthdhkikhd
c

IMPLICIT REAL*8 (A-H,O0-2)
DIMENSION A(4,4),T(4),B(3,3),P(3,3),R(3)

e . '
c **% CREATE 3X3 SYSTEM FROM 4X4 INPUT BY USING EXTERNAL VELOCITY *##
c **% DERIVATIVE UOD AS A FORCING TERM #%#
c
I=0
M=4
DO 10 I=1,4
IF(L.EQ.M) GOTO 9
I=T+1
R(I)=T(L)-UOD*A(L,1)
DO 5 J=1,3
B(I,J)=A(L, (J+1))
5 CONTINUE
9 CONTINUE
10  CONTINUE
c
c *##% SOLVE SYSTEM USING SIMQ *#*
c
CALL SIMQ(B,P,R,3,3,1ER)
RETURN
END
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SUBROUTINE STREN(XI,V,VN,ALPHA,D,W,N,P,VO,BETA,L)
c
Chhkkkkhk kR RE AR AR AR RRAARKIARRIAFIARRN AR LR IR TR ARk AT A Ak kkh kb hkkkhkkhhhkkhhdkd

SUBROUTINE STREN COMEUTES THE PANEL SOURCE STRENGTHS.
#%%* PARAMETER DESCRIPTION %%

INPUT:

COORDINATES OF THE CONTROL STATION LOCATIONS STORED AS X,Y PAIRS
VECTOR CONTAINING THE TRANSPIRATION VELOCITY FOR EACH PANEL
VECTOR CONTAINING THE SURFACE SIOPE ANGLES FOR EACH PANEL
VECTOR CONTAINING THE PANEL LENGTHS

MATRIX OF AERODYNAMIC INFLUENCE COEFFICIENTS

NUMBER CF PANELS

WORK SPACE MATRIX

FREE-STREAM VELOCITY

ANGLE OF ATTACK

PARAMETER WHICH SPECIFIES WHETHER OR NOT THE AXRODYNAMIC INFLUENCE
COEFFICIENTS ARE CAICULATED. WHEN L=1 THE AERODYNAMIC INFLUENCE
COEFFICIENTS ARE CALCUILATED, FOR L OTHER THAN 1 PREVIQUS VALUES
OF THE AERODYNAMIC INFLIJENCE COEFFICIENTS ARE USED

T R R S Y

CUTFUT:
v = VECTOR CONTAINING THE SOURCE STRENGTHS

* ¥ X * ¥ % F X

REARGTRERAERAR LN R AR A AR AR AR RRE N T Rh bl bbbk ki hrddhhd ik bkt Adisd

e e e e e Ko Ko No XoXe e Ko No NeRe Ro ReNe Ny N NoNo R

IMELICIT REAL*S(A-H,0-Z)

DIMENSION XI(N,2),V(N),VN(N),ALFHA(N),D(N), W(N N) ,P(N,N)
COMMON /TUMP/ DUMPL

LOGICAL DUMP1

c
c *#% GENERATE THE MATRIX AND RIGHT HAND SIDE
c
DO 10 I=1,N
V(I)=VO*DSIN (ALPHA(I)-BETA)-VN(I)
X=XI(I,1)
Y=XI(I,2)
IF(L.NE.1) GOTO 9
DO 5 J=1,N
CALL COEF(XI,X,Y,J,ALPHA,D,N,A,B)
W(I,J)=B*DCOS (ALPHA (I} ) ~A*DSIN(ALFHA(I))
5 CONTINUE
9 CONTINUE
10  CONTINUE
c
c *4% SOLVE THE SYSTEM USING SIMQ *#+
c

CALL, SIMQ(W,P,V,N,N,IER)
TF(.NOT.DUMPL) GOTO 50
WRITE (3,20)
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FORMAT(//, ' SOURCE STRENGTHS', /)
DO 40 I=1,N
WRITE(3,30) I,V(I)
FORMAT(I2, 5X,F10.4) .
CONTINUE
CONTINUE
RETURN
END

134

PO



- SUBROUTINE SURFVEL(XI,ALPHA,D,Q,N,SC,UEXT,NEXT,XLEN,STAG)
C .
C*******************#***k************k**************x*************************4-

THIS SUBROUTINE COMPUTES THE SHROUD SURFACE VELOCITY FROM THE INVISCID
SOLUTICN FOR USE IN THE BOUNDARY IAYER CALCULATION.

‘#%%% PARAMETER DESCRIPTION *#%

INPUT:

- COORDINATES OF THE CONTROL STATION LOCATIONS STORED AS X,Y PAIRS
VECTOR CCNTAINING THE SURFACE SLOPE ANGLE FOR EACH PANEL '

VECTOR CONTAINING THE PANEL LENGTHS

VECTOR CCONTAINING THE SOURCE STRENGHTS

NUMBER OF PANELS

VECTOR OF SURFACE COORDINATES AT WHICH THE VI:LOCITIES ARE

CAICULATED. THE SURFACE CCCRDINATES ARE NORMAILIZED SUCH THAT THE

CONTROL STATION IOCATION IS 1. THE ORIGIN IS THE STAGNATION POINT

IF A FREE~-STREAM IS PRESENT AND THE SHROUD TRAILING EDGE FOR

STATIC OPERATION

gzoogﬁ

UEXT =~ VECTOR CONTAINING THE SURFACE VELOCITIES

NEXT = NUMER OF STATIONS AT WHICH THE VELOCITY IS CALCULATED

XUEN <« LENGTH OF THE SURFACE OVER WHICH THE THE VELCCITIES. ARE.CALCULATED
STAG =~ LOGICAL VARIABLE SET TO TRUE WHEN A STAGNETION POINT IS PRESENT

***;k A ALAREATER AR A IRIR KRR AR IR AR EERIR A AR RAAE R AT RR T AR Ak o Rk hdkdddhhdhh vk ik

OO0 0000O000000000Q0O000

IMPLICIT REAL#8 (A-K,0-2)

IOGICAL STAG

DIMENSION XI(N,2),ALPHA(N),D(N),Q(N)
DIMENSION SC(100),UEXT(100)

COMMON /AREA10/ XC

COMMON /ARFA12/ XELIT

IOGICAL FIAG

*%% FIND PANEL INDEX OF SHROUD TRAILING EDGE *##

000

DO 10 I=N,1, -1
IF(XI(I-1,1).LT. XEXIT) GOTO 20
10 CONTINUE

20 NS=I
N&JI=NS
c , .
Cc *%% FIND THE PANEL INDEX OF THE CONTROL STATION #**
C
FLAG=.FALSE.

DO 30 I=NS,1, -1
IF{XI{I~1,1).GT.XI(3,1)) FLAG=.TRUE.
IF(FIAG.AND.XI(I,1).GT.XC) GOTO 40

30  CONTINUE

40  NF=I+1

NFI=I
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K=0

*%% STORE THE SURFACE COORDINATES AND COMPUTE THE #%*
#%% SURFACE VELCCITIES *h&

(o XeNeNe]

DO 106 I=NS,NF,-1

IF(I.EQ.NS) THEN
=K+1
S=XEUIT-XI(I,1)
SC(1)=8
X=XI(I,1)
¥=XI{I,2)
CALL FILDVEL(XI,ALFHA,D,Q,N,X,¥Y,U,V)
UEXT (K) =DSQRT (U*U+V*V)

ELSE
8§=8+D(I+1)/2.0D0+D(I)/2.0D0

*%% FILTER THE VELOCITY DATA WHICH IS TAKEN IN A REGION ##%
#%% ADJACENT TO THE CONTROL STATION SINGULARITY. *kk

anona

X=XI(I,1)

Y=XI(I,2)

CALL FLDVEL(XI,ALPHA,D,Q,N,X,Y¥,U,V)
UMOD=DSQRT (U#U+V#V)

IF(S.1T.5.0) THEN

#%% INCLUDE THE LOCAL POINT ONLY IF THE ##%%
*%% VELOCITY IS INCREASING . L kA%

anoonoon

IF (UMOD.GT.UEXT(K) ) THEM
K=K+1
SC(K)=S
UEXT (K) =UMOD
END IF
EISZ
K=K+1
SC(X)=5
UEXT (K) =UMOD
END IF
END IF
00  CONTINUE

#%% SEARCH FCOR THE STAGNATION POINT (MINIMUM VELOCITY MODULUS) ##*

a0

UMIN=10.0D0
DO 105, I=1,K
IF (UEXT(I) .LT.UMIN) THEN
UMIN=UEXT (I)
I=T
END IF
105  CONTINUE
IF(L.EQ.1) THEN




noono

anonon

110

STAG=.FALSE.
ELSE

ST2G=.TRUE.
END IF

*k% CORRECT IF NOT ALL DATA IS FROM THE SAME SIDE OF THE #*%*
*%% STAGNATION POINT kk

IF(STAG) THEN
TEST=(UEXT (L+2) ~UEXT (I41) } / (UEXT (I+1) ~UEXT (L) )
IF (TEST.GT.10.0) L=L+1

END IF

*k% NORMALIZE SURFACE COCRDINATES SKIPPING OVER POINTS SUFFERING hiek
*#% FROM SINGULARITIES NEAR THE CONTROL STATION {LAST THREE POINTS) **

NEND= (K=2)

IF(STAG) THEN ,
SO= SC(L) = (SC(L+1)=SC(L))*UEXT (L)} / (CEXT (L+1} ~UEXT(L))
SC(1)=0.0D0
UEXT (1)=0.0D0
NEXT=K~L
K=1

ELSE
SO= 0.0D0

* NEXT=NEND
K=0

END IF _

XLEN=SC (NEND) -S0

DO 110 I=L,NEND
K=K+1
SC(K)=(SC(I)~S0) /XLEN
UEXT (K) =UEXT (1) ‘

CONTINUE

RETURN

END
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