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. ABSTRACT

In recent work at the NASA Ames Research Center, transformations of nonlinear

systems have been used to design automatic flight controllers for vertical and short
3̂ pH

.H take off aircraft. Under the assumption that a nonlinear system can be mapped to a

> controllable linear system, we motivate by^artTaT^differential equations a method

n to construct approximate transformations in cases where exact ones cannot be found.

>zi We also present an application of the design theory'to a rotorcraft, the UH-1H
t-9
o helicopter.

^ I. INTRODUCTIONo .
o ̂1/1 There are two related problems of interest in this paper. Assuming that a non-

^ linear system is transformable to a controllable linear system, we first derive a
o
£ technique for constructing an approximation of such a mapping. Second, we want to

present test results of the application of nonlinear transformations to the design

of automatic flight controllers for aircraft. Thus the unifying thread is the

theory of transformations of nonlinear systems to linear systems, and we shall pro-

%> vide a brief review of the results in that area.
ffs

NJ If a nonlinear system can be transformed to a controllable linear system, then
CO

^ the transformation is presented as a solution to a system of partial differential
oo

equations (which can be reduced to ordinary differential equations). However, it is

not always possible to solve these equations exactly in order to find the desired map-

> ping. By examining the partial differential equations, we derive an interesting linear

system, called the modified tangent model, and indicate how an approximating transforma-

tion (about a point in state space) can be found from this model. Results concerning
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fs modified tangent model are presented in [3] arid [8].

The second author first outlined his nonlinear to linear transformation •

approach in [12], and it has been applied to several aircraft of increasing com-

plexity. The completely automatic flight control system was first tested on a

DHC-6 [19], and the reference trajectory for the flight test exercised a substantial

portion of the operational envelope of the aircraft. Next, the technique was appli-

ed to the Augmentor Wing Jet STOL Research aircraft with the successful flight tests

reported in [13]. Methods for providing pilot inputs and application to an A-7 air-

craft for carrier landing and testing in manned simulation are summarized in [15],

[16] and [18]. Current work on the UH-1H helicopter and results are contained in

this paper.

II. PRELIMINARIES

Before moving to definitions and basic theory concerning transformations of

nonlinear systems to linear systems, we mention related references in the literature

and the types of systems under consideration. Brunovsky [2] indicated a method for

transforming controllable linear systems to canonical form. The second author to- •

gether with Cicolani in [12] and [13] considered transformations of block triangular

nonlinear systems. Krener [10] and Brockett [1] proved results concerning equiva-

lence of systems under various type of coordinate changes. Closely related to the

theory found in [5], [6], [7] and [17] is the work of Jakubcyzk and Respondek [9].

He examine nonlinear systems of the type (with controls entering linearly)
m

(1) x(t) = f(x(t)) + I u. (t)g. (x(t)),
1=1 x 1

where f,g, ,..'. ,g are C°° vector fields on Rn (or on an open set of 1R ) . For our

canonic linear system we take

(2) y(.t) = AQy(t) + BQv

in Brunovsky canonical form with Kronecker indices K, > KO ....>< withI L. — m
K-, + K 2 + . . . + K m ^n .

The Lie bracket of two smooth vector .fields f and g is

where ^ and -|— are Jacobian matrices. Successive Lie brackets like [f,[f,g]] =
r\ OA 9X O

(ad f,g), [f ,[f ,[f ,g]]l = (ad f,g), etc. can be introduced. A set of vector fields

is involutive if the Lie bracket of any two of them is a linear combination of the

elements in the set.

We are interested in the following sets, and note that the vector fields

g-j > g 2 > - •• >9m may
 be reordered.

K,-l K~-l

C = {g-j_.[f fg-j^]/---, (ad f^) ,g2,[f,g ],..., (ad f ,g_) ,
(3) K_l



...,gm,[f,gm],...,(ad J f,gm)} for j = 1,2,...,m.

The following local result is proved in [7].

Theorem 1. The system (1) is transformable to the system (2) , where the state vari-

ables x, ,Xp,. . . ,x lie in a sufficiently small open neighborhood W of the origin in

B , if and only if the following three properties hold on W;

i) the n vector fields in C are linearly independent,

ii) the sets C. are involutive for j = l,2,...,m, and

iii) the span of C- equals the span of C. n C for j = l,2,...,m.
«J J

For simplicity we assume that W = IRn, avoiding having to say for (x,,x9,...,x )
K] ' ^ n

e W. We also define a new set of vector fields by adding (ad f,g-i),

(ad f,gp)>... ,(ad mf,g ) to C and reordering to obtain

K-i K i "~ 1 kT K"

D = {(ad f.g^, (ad f ,g]),... ,(ad
 2f ,g}, (ad 2f,g2),

Ko-1 K9-l K.J Ko

(ad c f,g ), (ad f,g9),...,(ad
 Jf,gi),(ad f,g9), i

<5) K K -1 K -1 K -1
(ad 3f,g3), (ad'

3 f,9l), (ad
 3 f,gz), (ad

 3 f'93)5

...,grg2,-..,grn}.

Before forming this set we should check K, > KO>...>< . If K, = KO, then_, 1 — 2— — m 1 L

(ad f.g-,) appears after (ad f,g2) = (ad f,g2), etc.

For the remainder of this paper we assume that system (1) satisfies the hy-

potheses of Theorem 1. Next we consider the problem of constructing transformations.

III. MODIFIED TANGENT MODEL

To build a transformation taking system (1) to system (2) we must solve the

partial differential equations (here a, = Kn, a0 = KT+KO* a0 = K,+KO+K_,...,a =
i \ £ \ d 6 \ . t. 3 m

' _L — \ y

• <dTx, (ad^f ,gi)> == 0,j = 0,1,...,̂ -2 and i = l,2,...,m,

<dT ,,,(ad f,g.)> = 0,j = 0,l,.../K_-2 and i = l,2,...,m,O1+l i ^x .
.

<dT ,/ad^f ,g.)> = 0,j = 0,1,.. .,< -2 and i = l,2,...,m,
w T "T" _!. J- * J11
m-1

(6) <dTk/f> = TU^T,k = If2f...fa;k

m
,f > + I u i<dT1 , (ad



K ,-* ""* J.
<dTo2 , f> ±

m
<dT ,

n
u.<dT

ic -1
m

L
, (ad f , g . ) > = Tn+m

with the, matrix

(7)

f / g - i ) >.. .<dT. , (ad

<dT
1m-l m-1

being nons ingula r . Here + is for K. odd and - is for K. even. The important
equations in (6) to consider are the f i r s t . m , the others fo l lowing by easy Lie
(different iat ion. Of course, it is not always possible to solve the ordinary
different ia l equations in closed form, and that is the reason for the method to be
introduced shortly. We want to emphasize a related set of partial differential
equations that a t ransformation T must solve. These can be deduced from (5) and a
Leibniz formula (see [7]).

<dT 1 , ( ad D f / g i )> = 0, j = 0,1,. .. ,^-2 and i = l , 2 , . . . ,m ,

<dT2 / (adDf , g j _ ) > = 0, j = 0,1,. .. ,^-3 and i = l , 2 , . . . f j n .

<dT
°1--

<dT , , ( a d 3 f , g . ) > = 0, j = 0 , l , . . . , K 0 - 2 and i = 1,2,o1+i i 2

(8 )<dT Q +2, (adDf ,g i)> = 0, j = 0,1,.. . , ̂ -3 and i = l , 2 , . . . , m ,
X •

<dTQ _1 /g i> = 0, i = 1 ,2 , . . . , ]

<dT , (ad jf , g . ) > = 0, j = 0, !,...,< -2 and i - l ,2 , . . . , ra
x ra



_i+2,(ad
:if,gi)> = 0, j = 0,l,...,Km-3 and i = l,2,...,m

<dTo -1'V = 0, i = l,2,...,m,
TO

and we again want the matrix (7) to be nonsingular.
With these equations in mind we turn to our development of the system called

the modified tangent model. A comparison of this model and the tangent model [11]
will be made later in this section.

Suppose we take a pointx in state space and linearize a transformation T about
XQ and denote the linear part by T

£. Then T£ solves equations (8) where each

(adjf,g.j) is replaced by (adjf,g.)(x ). The motivation behind the modified tangent
model is to find a linear system

•

(9) x = f(x ) - Ax + Ax + Buo o •-•

so that the Lie brackets of Ax and B=(b,l,b^,...b ) agree with the corresponding

brackets of f and 9i >92" •• >9m
 at *0-

Definition 2. The system (9) is called the modified tangent model at x for system '

(1) if A and B satisfy (take + for k even and - for k odd)

A1^ = +(adkf,gi)(xo) , k = 0,1,...,KI

Akb2 = +(ad
kf,g2)(xo) , k = 0,1,...,

(10)

Akbm =±(ad
kf,gm)(xo) , k = 0,1,..., Km

A transformation taking Ax + Bu into Brunovsky .canonical form (2) satisfies

equations (8) where each (adjf,g.) is evaluated at x .

There is an interesting geometrical interpretation of the modified tangent

model. Letting C(x ) and C.(x ) denote the evaluations of the sets in (3) and (4)

at x , we find that for every j>l£j<m, C.(x ) n C(x ) spans the tangent space at x

of the integral manifold of C-: n C guaranteed by the Ffobenius Theorem. Since

Ki-1 V1

C(x) = (b-Ab...,^ ' b b,-Ab ;..., +A ^ b,...,

K--2 K.-2 <r2
Cj(xo) = br-Abr...,+/\

 J brb2,-/\bz,...,+/\
 J b2,...,bm,-Abm,...±A

 J bm)

j = 1 ,2 ..... m.
the same is true for the corresponding brackets generated by equations (8).

We remark that it is extremely easy to calculate A and B from (10) despite the

nonlinearities of the equations involved. We form the (n+m)(n+m) matrix whose first

column is the first vector in (5) plus m, zeros, second column is the second vector

in (5) plus in zeros, etc.



-tfse orthogonal coordinate changes on Kn to take this matrix to "generalized

lower Hessenberg form" as in [4]. The linear independence of b ,b ,...;,b,,Ab ,
j^_ ^ "j ffl ffl~ r I PI

Abm_.|,..., Ab-j ,... ,A b-j (i .e. the vectors in C(x )) allow us to trivially solve

in order for b ,b ,,...b,, the last column of A, the (n-l)th column of A)..., the

first column of A.

The purpose of the theoretical part of this paper is to construct an approximate

transformation taking equations (1) to equations (2). This approximate mapping is
found by giving appropriate solutions to equations (8), where each Lie bracket is

evaluated at x . As remarked earlier, the transformation that moves Ax+Bu in the

modified tangent model to Brunovsky form is designed to solve those equations. A

simple algorithm for taking a controllable linear system to canonical form is pro-

vided in [4]. It involves taking the modified tangent model to a "block triangular

system" (see [4]), and the orthogonal coordinate changes mentioned earlier accomp-

lish this. Next,' "Lie differentiation" completes the linear transformation for

Ax+Bu. For the approximate transformation, this Lie differentiation is done with

respect to f(XQ)-A(XO)+AX.

The tangent model approach was introduced in [11] and applied on a trajectory

autopilot for a helicopter. For the tangent model we write equations in the same

form as (9)

(11) x = f(xQ)-Axo+Ax+Bu,

except that A is the Jacobian matrix of f(x) at x , and B=(b,,b~,...b ) is an nxm

matrix with g-j(x ) as its first column, g?(x ) as its second column,...,g (x ) as its

last column. The first step in constructing an approximate transformation by use of
(11) is to take Ax+Bu to linear canonical form. However, it is not in general true

that -[f ,g-]](xo)=Ab.j, [f .ĝ ftx )=Ab2, etc. (an example is provided in [3]). Hence, a
transformation derived in this manner may not have the desirable geometric inter-

pretation possessed by the modified tangent model. However, the tangent model seems
to provide an adequate transformation in many cases, as illustrated by its use on

the simulator for a tail-sitter aircraft.'

iv. APPLICATION'™ A HELICOPTER
The helicopter will be represented by a rigid body moving in three-dimensional

space in response to gravity, aerodynamics, and propulsion. The state,

(12) x = (r,v,C,co)T e X c IR3 x R3 x S0(3) 'x IR3

where r and v are the inertial coordinates of body center-of-mass position and veloc-

ity, respectively, and C is the direction cosine matrix of the body-fixed axes rela-

tive to the runway-fixed axes (taken to be inertial). The attitude C moves on S0(3).

The body coordinates of angular velocity are represented by u>.

The controls are



13) u = (UM,UP)T e U c]R3 x K

Mwhere u is the three-axis moment control, that is, roll cyclic and p-itch cyclic,

which tilt the main-rotor thrust, and the tail-rotor collective, which controls the
p

yaw moment; and u is the main-rotor collective, which controls the main-rotor thrust.

The effectively 12-dimensional state equation consists of the translational and

rotational kinematic and dynamic equations:

f = v

v = fF(x,u)
(14).

C = S(u)C

where f and f are the total force and moment generation processes, and (x,u) are

u = f (x,u)

fF and fM

defined by Eqs. (12) and (13).

MIn general, the moment generation process f is invertible with respect to the

pair (u>,u ), and for the restricted class of maneuvers being considered in this

experiment (i.e., no 90° rolls), f is invertible with respect to the pair(v~,u ).

So the four controls u may be related to four accelerations (w,v,,) by a nonsingular

transformation, say,

(15) u = hM(x;(<L,v3))

If (o),v-j) are chosen to be the new independent control variables (a,a.,) to replace
M Pthe natural controls (u ,u ), then the state equation (14) becomes the following:

f = v

= f°(r,v,C) + f'O.v.C.u.U.a,)]
V2 '

(16)
<J *J

C = S(u)C

a) = a

The function f in (15) represents (nonlinear) zeros:

(17) f1 = ei(r,v,C)u> + e2(r,v,C)a + e3(r,v,C)a3 + f
2

where f is second or higher order in (u),a,a.,). In the case of the actual heli-
2copter, f is very small and completely negligible. Consequently, the first condition

for linearizability, which requires that controls (a,a.,) enter linearly into the state

equation is in fact satisfied. With the new controls, the state equation becomes,



r = v

*l\• = f°(r,v,C) + £l(r,v,C)u, + e?(r,v,C)a + e,(r,v,C)a,V 2 / ] 2 3 3

°3 = a3

C = S(u))C

to = a

The primary means for controlling the horizontal motion of the helicopter is through

f°. The e. teams are parasitic and negligible for regulator bandwidths below 0.5

rad/sec. The dominant team f° is invertible with respect to the pair ((v, v9,E_),C)
I 9 L. *5

in which E3, a rotation (angle \}>) about the veritical, defines the heading of the

helicopter. So, the helicopter, attitude C can be related to horizontal acceleration

and heading (a,.a^.E-) by a nonsingular transformation, say,

(19) C = hF(r,v,(ara2,E3)).

From (18) with e.=0 and (19) it follows that angular velocity

(20) io = hF(r,v,a,E3)(ara2^)
T

where h is nonsingular and a=(a, ,a?,a,) , T now deno t ing t r a n s p o s e .
I £. O

In the actual implementation of the control scheme, the inverse transformations

h and h do not appear explicitly. Instead the Newton-Raphson algorithm is used

to compute u from f and C from f . The Jacobian matrix h^ in (19) is available as

a by-product of the algorithm.

The canonic model .has the Kronecker index set {4,4,2,2}. The canonic coordinates

y and control y are chosen to be the following

y1 = (r],r2)
T

y2 = (Vv/
(21) 3 ' * T

y = (a1,a2,r3,E3)

y4 = (a1,a2,v3,ij;)
T

5 j

The map from canonic controls y back to natural controls u is given in two steps.

First, commanded angular acceleration is computed by taking the time derivative of

(20) along the model trajectory, y(t), and neglecting h ,

(22) a = h^(r,v,a,E3)(a1,a2,^)
T

Then the controls u are computed from (15),

(23) u = hM(x,U,a3))

where x is the natural state defined by (12).



Extensive testing indicates that, at least in the present application of the

particular helicopter, the two approximations f =0 and h^fO, which greatly reduce

the computing load on the flight computer, cause insignificant errors.' The design is

robust with respect to modeling errors such as weight and location of the center of

mass. However, in high speed flight there is too much sensitivity to errors in wind

estimates. The problem is due to the independent control of heading, which, in high

speed, should point the helicopter in the .direction of the relative air velocity

vector. The uncontrolled helicopter has a natural tendency to point into the total

wind. This and other benign built-in characteristics are removed by the transformation

to Brunovsky form. A control system structure that allows the retention of the

benign characteristics of the plant is shown in Figure 1.
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The transformations

Structure of the Generalized
Model Follower.

,W are nonsingular. The usual configuration

(see [13]) is then a special case in which the model dynamics u-^x and regulator

dynamics uj- ̂x^ are both Brunovsky (i.e. T23 and W^ are identities). With the

additional freedom provided by the new structure, it was possible to retain the
benign weather cock stability of the helicopter and thereby reduce the system

sensitivity to wind estimator errors to tolerable level.
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