View metadata, citation and similar papers at core.ac.uk

LZEPPZS - 1AL - 91 X303D SiHVd 184S ‘AONTHOW.LNOW 30 QHVYAITNOA 'LE

—— o= SIDDASOIOD

APASS
JoHPASOR
yoispAdSCa¥N
J(pijpdsodor
W dso.ssr

Wwndso/”/
N\odsco”’

~ arl -

R __:- LD 33 -3
oAt TN g
A 4

2 25 0S50 i¥0Q

topy—-vvbk - V33 PRI2E0

provided by NASA Technical Reports Server

-
brought to you by .{ CORE

https://core.ac.uk/display/42840258?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

CEA 444 —Ao {

74’).95"‘75@ - Do

PUBLICATIONS 1985

fra

—
NOM DE L°AUTEUR(S) : lQ AVE RSe _’E -3-.

DATE DE LA (;OHFERENCE : ‘{j - b g,u.wt ’(% 8§

LIEU DE LA CONFERENCE :uM: Ve. &'g S ﬁ*\ Cfe" Y-
An,‘.u A)\,‘oa’L - :ce:%q_.,, weA

SOCIETE ORGANISATRICE :

EQEE GMFJZ« Sa et e,g

TITRE DE L°EXPOSE (ou ARTICLE) :

/rﬂ WCLa _ E'D'IX SCQ:.- e O(ES'C_:LU-C-‘J
"&]io\'\eg:i;* ‘:g;iﬂ\ EELA\‘-€?+§ ;fzg? - vesrSiom e P‘T:S:;;A;L__

NATURE ET REFERENCES DE LA PUBLICATION
(conférence proceedings, titre de la revue et date...)

ool do TeEr " Fres a5 (As* Awal

(Lu\‘&\ha"ﬁme S‘?MFOS\'M o)W ;ifo,.egw aﬁgs—

OU SE TROUVE LE TEXTE ORIGINAL, AVEC SES REFERENCES :

by Harto (Ao tife

THE UCLA DEDIX SYSTEM: A DISTRIBUTED TESTBED FOR MULTIPLE-VERSION SOFTWARE

A_ AviZicais, P. Guaningbergl, J.P.J. Kelly, L. Strigini®, P.J. Traverse’, K.S. Tso, U. Voges*

UCLA Computer Science Departmens
University of California
Los Angeles, CA 90024, USA

Abstract

To establish a long-term research facility for further
experimental investgadons of design diversity as a means of
achicving fault-talerant systems, we bave designed aad
implemented the UCLA DEDIX (DEsign Dlvemsity
eXperiment) sysiem, a distributed testbed for muldple-version
software, at the UCLA Center for Experimental Compuu
Sdenes. DEDIX is mart of the Center’s Olympus Net local
perwork, which utilizes the Locus distributed operating system
16 opcratc a sct of twenty VAX 11/750 eompuwers. DEDIX
will be used in second-gencration expernments now being
designed and coordinated at four universities to measure the
efficacy of design diversity and to investipate reliability
increases under large-saale, controlled experimental condiicos.
Tbhe DEDIX system is deseribed and ics application is disenssed
ip this paper. A revicew of current researeh is also presented.

1 Introdactdon

Originally, fault-tolerant architectures were developed
0 tolcrate physical faults that arc duc to random failure
pbenomera in the hardwarce of a computer systen. Often,
identical hardware channels are usec in simultancous muitiple
compuaticns in orocr 0 atin fault-tolerance. The basic
assumpdon is that the physical faults arc uncorrelsted. More
recently, the tolerance of design f{aults, especially in software,
has pained increased attention. Here, it is not possible to use
identical copies, sinac the same fault will manifest itsclf in all of
them. Design diversity is the approach in which redundant
bardware and software clements are independently designed to
moct sysicm requiremnents. Lhese redundant diverse clemenn
arc used in multiple computations in order to tolerate design
faulrs.

Software design diversity, or A-version programming
{Avi77), is defined as the.gencration of N = 2 sofltware
“wersions” from the same spocification. The goal of the
specification is to state the functional requarements completely
and unambiguously, while lcaving the widest possible choice of
implementations. Thereafler, versioms arc independendy

lOl'll.cavc from Uppsala University, Sweden
Onlaveme-CN'R Fisa, [raly

3 On lcave from LAAS, Taulm::.Fm
4 On leave from KFK. Karlsruhe, F.R.

writtco by N programming tcama that do not intcract with
respect o the prezramming process. Sines the verscns arc
wrilten independertly, it is bypothesized that they are not likely
to conain the same errors, i.c., that errom in their results are
uncorrclated, [n a serics of small saale experiments, multiple
versions have been executed in paralisl and the rosults from
thern bave been compared and voted. These “Oth generation”
cxperiments demaonstrated the feasibnlity of the conaept and its
effectivencss in dealing with software faultns {Chen78]. It was
aobserved that a major compliestion, compared to voting ca
idcntical oopics, is thar the resuits might be different doe o
diversity, but still similar and correct. For example, a flaating
poirt algorithm can be written in several ways yielding slightly
different results. The dedsion algorithm must acocpt these
simiar results so that & version will not be discarded
unpeessaarily. This early research also confirmed the
poactality of imennal invesdgadon and confirmed the
oeed for high-quality sofrware specificatons, sinec many related
errars could be traced to a poor specification.

The princpal aim of the subscquent first geocraton
rocerch was the investigaton of software specifics ion
techniques and the types and cawses of softwarc design faulos,
[mprovemeats both in software specification techniques, and in
the use of those techniques, were proposed [Kell&3).

Planning for the second generation cxperiments is now
underway, UCLA is cooperating with the University of Llinois,
the University of Virginia, and Nerth Carolina State University
to conduct large scalc experiments under o sponsorship of
NASA. Hypotheses on axrclsted errors have boaen faormulaced
and will be validated, also the cost effectivencss and the
reliability increase will be cstimated. To establish & long-term
rescarch faclity for theswe scoond geocration expecimental
investigagons, the DEsign Diveruity eXperiment system
(DEDIX), a dismributed tstbed at the UCLA Certer for
Experimenmal Computer Sciencs has boem designed and
:mgﬂarcn!cd.ﬁnpmd:aﬂnth:qummudbﬂ)m
the N-version cavironment, and the deign, mpl::n:nuum.
and current experience with DEDIX. Besides serving as an
cxperimental vehide, DEDIX is availablc as a nodc with very
high rcliability for other usery at UCLA.

deseam AL
} 4

T ————— — . o o e

1.1 DEDIX Puacticaal Requirements
The general funcrional requirerrents of DEDIEX are:

Distribadon: the veraions ahauld be able to execute oo sepmnatc
physical sites in order o take advanmge of physical isolaticn

between sites, to benefit from panalle]l excaution, and to wrvive .

a cruah of a mincrity of sites;

Tracspaceacy: the appliatcn programmer must pot be
required to writc specal software to ke arc of the
multiplicty, and a version roust be able to run in a systcrn with
an arbitrary value of N without modifications:

Decidon algorithm: & relisble decision alporithm that
Getermines & single decition result from the multiple versicn
resuls must be provided. The algorithm must be abic to
tolerate and to treat allowable differcoecs in sumcrical valucs
and slightly differeat formats (c.g., misspellings) in buman-
readable results;

Eeviroament: DEDIX must run oo the distributed Locus
eavironment at UCLA and must be caslly porablc to other
Unix systems, DEDIX must be able to run concurreatiy with
all other normal actvities of the local nerwork,

The DEDIX system can in many ways be looked on as
an cxwension of the SIFT system, [Wems78] that is able to
tolerate both hardware aad software faults. Both have the
same type of partitioning, with a decision algorithm at each site
that processes brondaast results, and & Global Exeautive at each
site that mkes consistent reconfiguration decisions. DEDIX is
exended to allow diversity is resaits and in verstion execution
dmes. The SIFT system is & clock (frame) synchrenous system
that uses & dock to predict when rosults should be available for
diversity in executon times and unpredictable delays in the
communication, which both can be found in a distributed N-
vension environment, Instead, a synchronization protocal is
used in DEDIX, which docs nof use reference o agy ootica of
global time wirkin the system_

1.2 Reclated Research

A seecnd approach to fault-talerant software is the
recovery Block technique, in which alternatwe software versions
ere orpavized in a manoer similar to the dynamic redundancy
(mndbygwquzmdhm:c[mu The
objective af the recovery block technique is to perform softvare
design fault detection doring rustime by an acocptance test
performed on the resois of one version, as opposed o
comparing results from scveral versiom. If the wse fails, an
alternze version I3 exccuted to implement reowery. This
technique is auready being investigeted at several locations
and DEDIX aa suppert the execution of distributed rocovery
block programs with relative ecase. Scveral important rescarch
actvitics related to N-veniion ing and recovery block

bave boca rocently [Ande83, Cris82,
Gee<i?9, Kim84, Rama8l, VopeS2]

W

2 Ponctional Deacripdoun of the DEDIX System
2.1 Services acd Structure

DEDIX together with the diverse program versions has
the ability o tolerate software design and implementation
fanls. They Intcract with cach other and with thelr
cavirooment, i.c., & uscr, 30 that together they an br secnas a
system. DEDIX itself does not add any funcrions to the system.
Ity purposc is to cahance the reliatlity of the systcm and to
provide a transparent interfacc to the users, versions, and
input/cutpt system, so that they should pot be swarc of
multiple verzions 2nd recovery algorithrms, As abstract vicw of
& system with N versions is given in Figure L I[nformally
speaking, DEDIX provides the follawiog acrviccs:

L iz handlcs requests from the wser and dEstributes them to
all active versions;

L it bandles requests from the versions to hav= rosuls
corrected, and to datribute corrected results o the
veraioms and 1o the vser

° it takes decitions on whether or not the results from the
versions agrec;

. it akes decisions on whether or not o diseard faulty
versioms.
USER INTERFACE

ETHERNET

g 1. The N sitas of CEDIX

Pactitioning of DEDIX. The required savioes of
DEDIX cs be mapped cither ontwo a single prooossor runming
all versions scqueatially, or cato a multiprocessor system,
rapning one local version on each proocssor. If it is mapped
aoto a single . then the system is vulncrable to some
bardware and softwarc faults that may cause eToes in the
operating system or DEDIX software. It is of course possible to
e dxign diversity bere as well, but some hardware faulty will
sill cawsc the single shared to fal. Alo, a
performacoe penalty fs paid if the versions share the same

proccuoe. [n a oultiprooscor eaviroament, It s possible o
partition the sysiem o proceet It against most hardware faules
as well This can be dooe by providing each prooor with i
own [ocal verzsion, opcrating syzicm, and decision algorithm.
Some intsrprocessor commumication facility must be common to
all proocwsors in order 1o be sble o exchange resulen It should
be noted that the DEDIX design is saitable for any specificd
oumber N = 2 of procsssors and versions

The Masolfcstation of Faalts. A bhardwarc or scftware
{ault will affect a program version asd {t may also affect the
undcrlying system. DEDIX is designed to be able o identify a
malfuncticning 1tc and to tolcrate both cascs of tault cffecs,
provided that the errors can be detected. [n the first case, when
the errors and the faults can be isolated to a version caly, the
sitc will anempt to correct the internal state of the local
version with dedsion resulee. [5 the second fanlt e, the site
usually will pot be able to recover by itself aad a global
recomfiguration decisicn is necessary. All fouitr will mantfesns
themsclves a3 cither “incorrect results”™, o “missing resulta®.

For example, a “missing” result from a sitc an be
amed by an crroncous version, which is in an infinitz loop, a
deadlocked operating system, a bardware fault aansing an error
in DEDIX softoare, cte. A missing reselt st a site might also
be caused by an excessive communication delay. The result was
produced but pever reached the other sites It I3 pomible o
identify why it is missing. When It is exeessively delayed, the
partcular sending site will detect the discrepancy between what
iz sent and what the otber sites observed,

Thnc-oat Foaction. The only way to deteer that a
verzion did not produuce & result whea it was expected w0 or
when the result is “stuck” somewhere in the communicadon
sysicm i3 W0 usc & time-out function, ie., to require thar a
version must produce a result withia a dme-interval Two
similar to the time-aceptance test in the recovery block
technique, A Gme-out functioo is started at the begiming of
cach picce of computation and all verzicns must produce rexulo
within this time interval o pass the time acccpana: st The
length of the interval as cither be adjusted 1o cach segment of
compunten or o & “worst case” intexval for all computadens.

In the sceond technique, the dme.out Interval is staxted
when a majority of results have arrived at & ste. For cxample,
the time-out is smaried when the third result arives o a
anfiguration with five active versions. This tecimique is based
<o a compariscn botween relative execution times instead of
using an absolute time, as in the first techaique. The tim=-our
B ef course tcrminated if all results amive before the tme-
intcrval capires. A palfunctioning version sending results o
carly will not cause any problems, tince they will not start the
time-cut. [nterestingly, the problem is similar to “compasing
results with akew”: the median aumber (result aumber 3 out of
5) comstitutes the doscst to the “ideal valuc”™ and the skew
cotresponds to the time interval. One advanmge with this
technique, compared to the previous, is that there s no necd to
assign an individual time-out for cach segment of computation.
This is sn advantage, sine= the execution time might depend on
‘tan a prioi unpredicable input, which mipht puot the
computadon into a {oop of long duradon,

Lsyer=d Design. The Iayered design of DEDIX has
wmany advanmges. Onc of the most important {s that it rechaces
complerity. Tbe furpose of cach layer is to offer 1
servicer to the higher layers, shiclding the higher layers
denails on bow the offered scrviocs actually are
Each layer adds acw scrviass to thoxe ided by the
layers. The structures and algocithms of ane layer
visible cutside that layer. For example, a layer can ide
fault-talcrant scrvicc that indudes redundancy and algorithma
for fault-detection and recovery. Anctber important advanage
is that the implementation of & given layer aan be changed
without affecting the other layers, c=ded the servics of the
Iayer is unchanpged.

iigaé

g

of services, which are described below and shoown in Figure 2.

VERSION LAYER
TOCAL
VERSION i
DECISION AND EXECUTIVE LAYER
TOCAL DECISION| | GLOBAL
FUNCTION SRoER
R
SYNCITRONTZATION LAYER
SYCH SYNCH SYNCH
enoer | |RECEIVER| | mRECONE
TRANSPORT LAYER
R} [RANSFORY [TRANSPORY
SENDER | |RECEIVER| | RECONF

Fig. 2. The layers at site | of DEDOC

2.2 The Traasport Layer

Purpose: This Lyer cootrals the communication of
mezages (containing the results) between the sites. Micisages
arc broadcast to all active xtes. The layer makes surc that no
message is lost, duplicated, damaged, or misaddressed, and it
preserves the ordering of sent mewmager. A discomnection is
reported to the layer above.

Commentsy Sinas thete is 0o such thing as a fault-{res
coapection, the Transport Layer mmmt be identified with the
likelibood that a mesaage is lost or damaged, ic., the reliabilicy
of the servics must be sated. Also of intenst for the higher
layers are it respomse tise and throoghput. The Traosport
Layer is expected to use a redundant underlying communicaton
strucrure to meet the reliability requirements.

[mplementation: Currently, a single ring structarre of
inter processor UNIX pipes is used. Sinec this implementaton
does pot allow a site qash, a redundant iotercomnection
siructure is under implementation. The inidal ring
implementadon provided us with some determinism in the
system which made it much casier to observe and debug the
Transport Layer.

23 The Synchroegization Layer

Purpase: Foc cach phyzically distributed aite, this lnyer
broadcasts results (using the Transpart acrviee) and collects
messapes with the results, (Cee-verzar®) from all other sitet. The
layer cnly acepss results that are both broadeast within a
ecrtain time intervel and that will arrive within the samc tme
interval. The oollected results are delivered to the Dedsica
funcrion. The layer acoepts a new sct of results whea every site
bas confirmed that all or coough of the previcus resuins have
been delivered.

Comments: The processors peed to be cvent.
syochronized in order 1o ensure that resulss from cormesponding
compunations are comparcd. Otherwise, if two scis of rosults
from two different computations are cnopared, the Dedsion
algorithm might wrongly conclude thar some of the procesars
arc faulty. Traditonally, this synchoomization has boen obmined
by referring to a common dock or st of docks. The SIFT
system [Mell82] is one example of such a dock synchronous
sysem. I SIFT it is predicied when the rosults thould be
available for & comparison. To corme that the resuls are
available in SIFT, scveral design mrasures arc taken w0
climicate all unpredictable delays, such as using a fully
csunected communication structure, using strict periodic
scheduling, oot allowing externai intzrrupt (culy dock
ioterrups are allowed for scheduling), and regularly
syochremizing the clocks,

The underlying distributed systcm acd the venions have
the (cllowing characteristics which make the dock synchronous
wechmique difficalt to use or impraciaal in DEDIX:

L) the versiom bave different erecusion rimes borwern the
crons-check paints;

[] the veruiom will rua comcurneruly with atber network

activitics, which means that processors temporasily an
be beavily lowded, and henae prolong the dme 1w
eXctuts ome versions;

. e commmmication perwork has ioherendy varying
tansport delays of mesuges.

Lmplementaton: A syochroniratizu protocal s designed
10 provide the service It cosure that the m=ulny that are
compared by the Dec'sion funetica are from the same coss-
chack (c¢) point in each venios. The veions are stopped ol
all of them bave reached the samc cc-pain?, und they are not
sarted again untl e resyits are exchsrzod and a dediion s
made. To be able 10 detect venions that arc in an infinite loop
aod 0 allow slow versins 0 arch up, the previowly
mentioned tme-out techrique is used by the protocsl

Using this protocol meass that the synchronization of
the system is based on:

. the fact that aoxrrectly working versioms mnt produas
exactly the tame number of cc-vectors;

L] that correctly working versions Bave similar execution
times, i.e., they will produas resujts within or beforc a
specified dme-out interval;

L) that “mining® or disagrecing resuls do not cxist at &
majority of uitex.

Each site kas both a Scoder and a Reasiver endty in
this layer, which commumicate with the other s
correspanding entitics according to the protoeol. The Recciver
catity calleers messages from the Scaders and it delivers them
to the Dedsion fusction. After the dclivery, it senda
acknowledgements back to the Seaders o eoafirm the delivery.
When a Sender cotity has collected acknowledgemenns from all
the other gtes or when {t Bas at least a majority of
acknowledpements, it will indicate this to the Decision and
Executive layer. This indicaton is wsed to restart the versions
It might scem umenewsary 10 wse acknowledgements, sinc= a
Recxiver can inform the Sender that it has received encugh
results. However, the Roccivers might have an incomsistent
vicw cn the number of received results. For example, in a three
alte egvironment, two sitcs might get three rosult immerdfiately
while the third aitc only gets two. The third sitc cannot yet
acept a oew set of resulns. By using this indication, it s
cosured that ali Receivers are ready to acxcpt a oew et of
renults. The specifiaticn aad veriication of the protocal is
described in 2 companion paper {Guangs).
2.4 The Decisdon and Exceutive Layer

Parpase: This layer reccives results (specificd as “cross-
cheek vectos”) from I3 loaal version, takes agrecment
decisions cn results reccived {rom o] other versioms and
delivered by the Synchronizadon layer, detarmines whether the
local version is fauity or pot, and takes recovery deciticns
Coarrecred results are forwarded 1o the loenl version. It controls
the input/ourpyt of the local version, All exacptions that cannot
be bandled elsewhere are direced to this layer.

Implementatdoa:The layer has four entities, a Sender, a
Dedision furazion, and two catitics for amtrolling the recovery
process, a Local Exccutive and a Global Exccutive. The Sender
cotity roocives the requerts from the loal version and it
responds to the verzion wbhen a decision bas been taken with
cxrectcd results. There are four dEfferent types of normal
compariscn requeses: intermedlate sizie CC-VECIOY, owiput CC-
veor, inpws, and version terminaron. All of them are
bromdcast to the other sites, and run through the Dedsion
function to cosure consistency and syochronization. At ag ingus
roquest, & decision is first taken oa the format vector before the
actual input read is perfonmed. When the local version has
raiscd an execprion from which it curnot recover, it will uwse the
abnormal exception request, which is immediately directed to
the Local Executdive.

The Sender entity ataches a0 occwrrence mumber 10 the
aorent co-ideatifier (e-id) of the oc-vector. The oocurrenas
gumber is used to vnigquely identify & oc-id, sioee the same ec-id
will appear in loops and other repeated program sequenaes. For
each time a version is requesting a dedsion, the aconrmenee
sumber for that ac-id request is inarcmented.

Inpat/Ontpot System. The inputioutput system to the
versions is designed to be replicated as well. However, (o the
arrrent implementadon a aatralized terminel coanoction i
used for all input/ourput, and the datra to be printed or read is
distributed to ail versions. They will vicer the dat as replicated.
The interface betwoen DEDIX aod the input/output system is.
similar to the interface between DEDIX and the local version.
For examgple, s read from a torminal might be dmed-out if it
docs 0ot respond in phase with the ocher terminals, and the
cutput data is run through the Dedsion functdon befare the
sctual output. The request to read data is also nm through the
Decision function to exsure consistency.

The Global Exemmtive. The pwrpose of the Global
Exccotive is 1o a) collect error reparts from the Dedision
fuoction aod the Local Exccudve. b) cschaage efror epoits
with every other active Global Exceutive, and ¢) decide on a
ocw reconfiguration, based oa all error reports. The current
implementation is rudimentary. The fusctions of the Global
Exccutive are basically the same as in the SIFT sysz=m. One
differenae is that the SIFT execudve is iavoked at
timc. intcrvals at all sites. This is not possble in the DEDIX
systicm, sinee the sites rmipght have & different sawz of
computation st the ssme time. Iostead, the Global Execudve s
iovoked after a preset sumber of exchanges of results (=
gumber of decisions) bas taken place. The number of exchanges
& the only contistenr computation sate in all dies. That ks, by
referring w this number, it s pousible to cosure that all
correctly working sites will exchange exror reports and decide
on a rooonfiguraton at the same sawe of computadon. This
oumber is kept consistent by the synchronization protoeal.

Error Reports. Every loal Executive has an arvor
mcport table, with one entry for each site. In the current
implemenation this enay is an error counter for that site. The
Local Executive increments the counter for a sitc, cach time
that the sit= has cither a disagreeing or mimsing resolt. This
mnsdn:r.thonlEmwmdu:dbungtmhh:mn
aissing result and a delayed rosult Sinee sites tight get

\;’]

differeat oumbers of msults due o varying communication
delays, sites may have slightly Efferent errar reporns,

The conmrol s maved w the Glotal Execurive when an
exchange of relts should take place. The Global Executive at
a ute will temporurily take the place of the local version and
we the broadcasting aod decision functions of the underlying

* layers. The Error Repont [s put into a regular message and

delivered to the Synchronization layer, which docs not perccive
the difference. The Synchronization layer collocts racssages as
wual and they arc run through the Dedsion function in order
to casurc that cvery aitc bhas a consisteat view oo the crror
repart.

The Reconfiguration Decidon. The Giotal Execudve
vmga-mtmrepmtouvhncbudmducnthe
don. Iln the cwrent implementmdon, only «
degradation caa ke done. It Is pot possible to start an inactive
site. A site is proposed to be discomnected if the number in the
errar reports counter cxoceds & predefined threshold value, say
50% of all exchanges. Al Globel Exroutives proposc a ncw
configuration that is alsg broadeast to every other site and nm
through the Dedsion funcion. The proposed configuradons are
voted on bit-by-bit which will cosurc a consistent vicw on a ncw
ccofiguration at every earrectly working site.

A degradation means that the Lol Erccutive instruces
the recciving catities to stop listen to that site, or if the fauley
verzien is local to the sume site, to terminate the version and to
mmudingmga.'rh:mnmtzzda:pwedmﬂsu
adjusted accordingly. After a sitc i3 degraded, it will aill
mﬂeamg:ndqxnzmpudmnput.buluvﬂlnotdchva
themn w the local verzion, provided that the fault ooly affects
the version.

The Locsl Execntive. The Local Executive is activated
when the Dedsion functicn Indicates that the result is not
unanimous, or when some uvarecoverable cxacption is signaled
from the locai vemion or some other layer, The Loecal
Exccutive will first try ta recover locally from the fault before it
cither reports the problem to the Global Excautive or, if it is
cmtidered as fatal to the site, doses down the site, There are
three dasses of execptions that are coctidered, as dicansed
below.

Functional exceprions are specificd In the funcrional descripdon
of DEDIX and they are independent of the implemencation.
Among them are the fuised exceptions (rom an ynanimoms
result, when & communication link is disconnecicd, and when a
ec-vector is completcly missing. Far these exacptions the Locaal
Executive will amempt to kecp the site active, possibly
tcrmipating the local version, while kecping the inputioutput
operating.

Implerneruation ciceptions are dependent on the spexific
computer system, language, and implementation technique
chasen. All UNIX signals, like segmentadon faults, prooess
termnination, igvalid system all, cie, belong ta his dass.
Otber examples are all the cxceptions defined in DEDDX, like
signaling when a function is aalled with an invalid paraceter,
or when an inoonsistent state cxiste. Most of these cxocpd

will foree an orderly dose dowa in order ta be able to provide

data for analysis.

Esceprions generased by the local version. The local version
program may include faclities for exception handling and same
of the exacprons may not be recaverable within the version.
These cxaptions anc 3ent w the bayer as requests. The Loaal
Ezecutive will terminate the local version while kerping the site
alive.

1.5 The Version Layer

The purpae of this layer is 10 inwerface the i-th (local)
verzioy with the DEDIX sysiem and to correct the siate of the
variabies that are iccomect acoording o the Dedision funetien.
The function daing the interfacing is called the Cross-Check, or
CC-Function since it is called as a function ‘o the version, at
cach ec-paint. Painters to the rewlts to be cotrexted are sent as
paramctery to this funcion. The CC.Function tranifers the
venion reprocatation of rowldts inw a ac-vector o that the
inwmal represeacation of a ec-vector in DEDIX is hidden o the
results into the version.

2.6 The Deciddon Algerithm

Tbe Derision Algoritha: is used to determine a single
decsion resule from the Neverzion resuln. The Dedsion
Algorithm may utilize only a subsct of all N rosuls for a
decision; for example, the Grat rewlt that msses an acccprance
test may be chasen. [n the aase thac o decision result exnnot be
detarmined, a bigher level recovery prosedure may be invoked.

Algorithm which may be replaced by ver writen routines
provided thar the interfaccs are presered. This allows
applicaton-specific decision algerithms to be incorporated in
those cases where the default mechanisew are inappropriate; for
cample, this may oocur boause of lack of scasdvity, or
unncocssary climinaticn of program verzions.

The generic Decision Algerithm is hicrarchical In
mature. The algorithm attemprs to determine a decision by
applying the following major dedsion classes sequentially:

(1) bit by bit - identGeal match cnly;

) commetic - detecting chancrer soing differences caused
by minpelling cr character substitution;
() vumeric - intrger and real oumber derisions.

All oameric dedisians uac 8 median valuc and It cac be
proved that, 30 long as the majority of versions are not faulty,
the median of all responscs is acxcptably dosc to a supposcd
ideal value, Numecric valucs arc allowed to be different within
some “skew interval” thus allowing results to be non-idendcal
but stll similar.

»

27 User [aterface

Thcua:r!ntaﬁdeEDD(nﬂmu:cnmddmgm:syum
uwcnulhcveﬂuu.uuﬁwrm:apatdmo{:bcmm.
-pplys:imulimtbcsy:t:m.mdmcnuauanpiﬂ:udanduriug
experisrentation.

Breakpalot. The break command emables the wser o set
oreakpoints. At a breakpaint, DEDIX 1tops cxecuting the
vertions and gocy into the user intarfacc where the user can
catcr commands o cxamine the current syatem states, cramine
paar execution history, or lnject stimuli to the system. The
remove command deletes breakpoints act by the break
cwmmand. The contmue command resumes exccudon of the
verions at a breakpoint. The uscr may torminate execution
using the quir command.

Moagitaring. Thc wser can cxamine the anrest contenny of the
mesage pasiung trough the Transport layer by wing the
dlplay command. Since every message is logged, the aser may
also specify condidons in the displry command to cxamine any
mesage logged in the pasr. The user cam also cxamine the
intcrnal system states by using the thow command, c.g., to
examine the brezkpainn which have becn s2t, the results of
voting, ctc.

Sdmoll Injecton. The user is allowed to inject faults to the
system by changing the sysicm state, c.g., the ac-vector, by
using the modfy cotnmand.,

Stadistic Collection. The macr intcrfac: gathers cmpirical data
and colleens satstis of the caxperiments. Every message
passing the traasport layer is logged {nto a file with a time.
samp. ‘This emables the wer w0 do postexccution analysis or
even replay the experiment. Sttstia like clapsed time, system
dme, number of cc-painty executed, and their resulty of dodaion
arc also collocted.

3 Experimental Goals of the DEDIX Testhed

Thbe second gencradon experiments at UCLA Bave two
fundameotal goals: the invesrigation and svalmados of varicus
fault-toletance mechanium and the apalysis and
characterization of the fault distributions of highly relisble
program versions.

3.1 Faolt Telersnce Mechaatems

We cxpect to obuin quantative cxperimenal resules

about the effectivencss of the fanlt tolerance mechanisms. We

alo plan to evaluaw the possible loss of performanee duc to the
operation of the fauli-tolerance mechanism in the absenac of

"faulny, a3 well a3 the cost of error recovery.

A problcm arca that Is being thoroughly cxamined is the
recovery of failed versions through backward and forward
recovery, and roinitializadon. Since we gasume that all versions
arc Lkely w0 contain design fault, it Is cridaal w be able o
recover these versions as they fail, rather than moely degrade
to N-1 vcisions, then N-2 vasions and 30 oo A pilec
axperiment is underway in which failed versioms are recovered
without requiring the ipecifienden of the catire internal s,

An immpormant and interesting application arca that often
requires very high rcliability mnd availability b real-time
ezocution of time<riticaal appliatiom. However, the corrent
implemenuaton wing Loaws is likely o be too sow for this
purposc. Dexpite this limitadon of Loan, I functional
architocture can be used with {aster tramport acrvice and faster
scheduling policies in a real-ime system, while Locus can be
used 10 simulste real-time execudon.

We will investigate the effectivencss of design diversity
as s means of inceasing saftware reliability within
cstrained budget. We are interested in the cona of remaving
bugs and of ecbancement. By combining relatively ugverified,
urnvalidaterd software versions to producee highly reliable muld-
version softwarc we may be able w decreasx oot while
increasing reliability. Most errors [n the aoftware versions will
be detected by the Decsion Alpgorithm during om-line
productive wse af the system. The saftware fauits then an be
fixed while imit'ng their effocts oo system availabulity.

Enhancing mltiple scftware versions is more diilicult,
Specifiations should be sufficicatly modular and structured so0
that cohanccmeat will geocrally affect few modules. The
extent 1o which cach module is affected can then be wed o
dctermine whether (1) existing versions should be madified o
reflect the cobapccment, (2) existing verstions should be
discarded and new versions produced, or (3) pew versions
shmﬂdt:pmdt:cdmmplmtlhccnhnmumddd

kept to implement the original requircmenty
mwﬂlhmmmmghnmmmcmm
t0 be used for a chaice.

In the “mail-arder”™ conccpt members of fault toleranes
rescarch groups at scveral universities will write softeare
mfmnﬂcmnhrgccpa‘lmt We expect that saftware
versions produccd at geographically separate locations, by
poople with different expsticnee who e different
programming languages, will contin substantial desiga
diverzity. It may be possible to utilize the rapidly growing
porulatica of computcr bobbyists oo a contractusl basis o
provide individual module veriioms at their cwn locatons. This
would not require a large eonaentradon of skilled people and
would allow for the loss of individual programmer .

32 Thc Paalt Distributions of Highly Rellable Verslone

The other major poal of the accond generation
experiments concerns the distributicn of faults in highiy reliable
program versions. A recent theoretical analysis of redundant
sofroare bas claimed that there are mejor differercaes between
the models peeded W describe redundant soltwzre faults and
independent bardware faults [EckhiS). Indeed, a clear noed
was soen for anpirical Gata ta truly essexs the cffects of con
oo highly reliable softorare systems.

A model cxperiment has beco sedfied in which 15
gcn:ﬂlgmd:hn:mdmm.ﬁ;mhmldmuﬁd[l&unl
and sccond-gencration taton is mow undcrway at
four universitics (UCLA. Univenity of Virginia, University of
Ulincis and North Carolina Sate Univerity) [AviB4] to
measure the efficacy of design divesity and to demonsorate
polcntial rcliability lscresses uadx large-scale, contrulled
experimental eondidons.

We intrnd 10 produce these software versions under
asotrolled coodiions that aproxirate the development
tactbodologics and covironmean used by advanced Industrial
facilitien. We will conduct extemive logging of wrork periods
and cveaws such a3 error discovery, spedficdor quesdons and
answers, and et suite axecution. The exparimenters will
provide a complete high-lovel external specificaton. At all
smages, questions abet the specifications will be mbmiced by
clectronic mail, revicwed by the exporimenters, and responded
to by clectronic mail. The deteimination that a qustion
reveals a flaw in the sperificatiors will cause a chaage o be
broadeast to all programmers at all sites. The deliverable items
will include a design documen’, & acries of orograms

representing the results of the top doem development at cach
abstraction laycr, a test plan and text log, and the final
program. Tbhe delivered softwarc is then subjected to an
acoeptance test. We will study fault distributions by eonducring
cxtengve testing of the versions with randomly seocrated test
data. The paturc and cauxe of all detected crrors will be
analyzed,

4 Specification [wues

Significint progress has occurred in the development of
formal specifiation languages sinec our previcus experiments
[Avi84]. Ousr current goal Is to compare and sssess the
spplicability to practical use by spplicadon programmers the
fallowing (ormal program spedification methods:

(1) The CLEAR spcification language developed at
Edinburgh University and SRI Interatianal; [Burs81]

developed at Xerax Palo Alto Reearch Center and at
M.LT.; {Gurs3]

@) The ORI specification langusge developed at UCLA;
[Gogu?9]

(4) The Inx Jo specificadon langusge developed at SDC;
(Locas0]

(&) The "M specifiaton language, descended from “Z2°;
[Meyes4]

(6) The applicability of Concurrent Frolog as a method of
formal specification.
The study focuses oa the assessment of the following
aspects of the spodification lasgusges: (1) The purpose and
scope {problemn domain); (2) Completeness of developmeng (3)
Qtnhryudmddmnum {4) Existence of support
environments; (5) E.tea.:ul:'hl:y l.nd suimbility far npld

s D
excepuon bandling; (8) Extcnn'bﬂ.l:y for the specification of
fault-talerant muld-version saftware.

The gutcome of the study will be the sclecrion of two o
more specification laaguapges for the subsequent experimental
assesznent af their applicability io the design of fault-tolerant
muld-veriion softwarc. Two major clements of the experiment
will bes

@ Thc LARCH family o specfication languages

| b

(1) The concurrent verifiation of the specificadans by
symbx:lic execution and mutual interplay;

'rs) An stscssment of the pracioal applicability of the
specifications, =t they are used by application
programmen in aa N-verzion software experiment.

The next swep in DEDIX development will be a fortnal ,'

speciflication of parts of the curremt DEDIX prototype
(impleracoied in C): the Synchronization layer, the Dedsion
funcion, and the Local and Glodml Exccutives. The
srxification will provide an exscumble prowtype of the
DEDIX supervisory opcrating system as weil as the applicaticn
versiom. This functional specification should allow oot oaly the
migradon tc real-time systerm, but also the use af muld-verion
saftwzn: techniques for the fault-tolcrance mechanisms of
DEDIX Jacmsclves. The gaal is 8 DEDIX systcm that supports
deaign diversity in application programs snd which is itel!
diversc in design at cach site.

Independent specifiations of some DEDIX sysn:x;

modhles in two or mare formal languages will serve o compare
the meriny of the methods. Further research is planned io the
npphanmofduﬂdim!‘amﬂq:nﬁaumwehmtc
similar crrors traceable to specifieation faults and to inarase
the dependability of the specification,

S Coundadon

This paper has presented an oveview of a major effort

" to develop a rescarch enviroumeat for software design diveraity

rescarch at UCLA. The eompicte DEDIX prowtype bes been
implemented, and socond-generation cxperimenty are
underway. Scveral other rescarch cffors also have been
initated,
6 Ackuowledgement
The rescarch described in this paper has been

by the Advanced Camputer Sdeoas of the FAA, by
NASA contract NAGI-512, and by NSF grant MCS 81-21656.

Refefenee-
iA.nd:Sl] 'l_'.—Andu-'l-m ;.nd PA. Lo, Faulr Tolawc:‘
Principles and Proctice, London, England:
Preotice Hall Inocroadonal, 19810
[Andc83] T. Anderson and J.C Knight, “A

Framework for Software Fault Talecrance in
Real-Time Systerma,™ JEEE Trancacrions an
Software Engincering, Vol SE9, No. 3, May
1983, pp. 355-364.

[Avi77] A. Avilicnis gad [Chen, “On the
Implementaton of N-Version Programming
{er Software Fault-Toleranoe during Program
Exceution,” in Proceedings COMPSAC 77,
1977, pp. 149-155.

o)

[avisa]

(Burs1]

[Cxa78]

(Cris82]

{Ecibas)

[Goei?9)

[Gogn79]

[Guan8S]

(Guets]

[Keu82]

A. Avificnie ané J. Kelly, “Fault-Tolerance
by Dcigs Divenity: Conepa and
Experiments,” Computer, Val. 17, No. 8,
August 1984, pp. 67-80,

RM Bunull and LA Goguen, “Aa

Informal [nooducton w Specifications Using
CLEAR,” o The Correciness Problem In
Computer Sclence, R. and H Mooare,
Ed. New Yorke Academic Prens, 1981, pp-
18s-213.

L. Chco and A AviZicaois, "N-Yeruon
Programming: A Fault-Toleranee Appreach
w Reliability of Software Oneration.” in
Proceedings 8tk JEEE [Internasional
Sympostum on Fault-Tolerars Compuring
Syvsteme, Toulouse, Fracess June 1978, pp.
39.

F. Crisdan, “Exccption Handling and
Safterare Fault Toleranee,” IEEE
Transactiony on Computers, Val, C31, Na.
6, Iunc 1982, pp. 531-540.

D.E. Eckbardt and LD. Lee, “A Theoretical
Basis for the Anslyos of Redundan:
Saftware Subpct to Caoddent Eoon,”
NASA, Hampton, Virgioia, Tech. Rep.
86365, January 198S.

L. Gmeiner and U. Voger, “Saftware
Diversity in Reactor Protecton Syswems: An
Expeximent,” o Proceedings Sgfety of
Computer Control Systems., [FAC Workshop,

J.A. Goguen and JIJ. Tardo, “An
Incoducticn o OBJ: A Lagguage for
Wridng and Tewing Formal Alzcbnic
Program Specfiatiom,” in Proceedings
Specificasions Relloble Software Tecknology,
Cambridge, Mass.: 1979, pp. 170-189.

P. Gunningherg and B. Pehnion, “Protocal
and Verifiadon of a Synchromizadea
Protocal for Comparison of Resultn,” in
15k [EEE Internadonal Sympostam onm
Fault-Tolcrant Computing, Ann Arbor,
Michigan: Junc 1985.

IV. Gumag and JJ, Homing, "An
Incoduction to the Larch Shared Language,”™
in Procecdings IF[P Congress &3, 1983, pp.
809-814.

JL.PJ. Kelly, “Specifieation of Fault-Tolzant
Multi-Version Scftware: Experimenaal
Studics of a Deuigo Diversity Approach,”
UQLA, Computer S Department, Los
Angeles, QCalifornia, Tech. Rep. CSD-
820927, September 1982,

[Kelg3]

[Kim8+]

[Locas0]

[Melis2]

Meyesd]

[Ramag1)

JPJ. Kely and A, AviHienis, “A
Specification Oricoted Muld-Versdion
Scftware Experiment,” In Proceedings 13tk
IEEE Intermarional Sympodum om Faull-
Tolerant Computing Systcms, Milan, lialy:
June 1983, pp. 121-126.
KH Kim, <“Dismibuted Exeentoa of
Recovery Blockss An Approach o Uniform
Treatment of Hardware sod Softosce
Faults,” In Proceedings IEEE 4th
Internarional Cosference om Dioribated
Computng Systems, San Frandsoo,
California: May 1984, pp. 526-532.

R. Loasso, J. Sched, V. Schomre, and P.
Eggert, “The Ina Jo Specification Laoguage
Refarcnce Macual,™ System Dewclopment
Corp., Saota Monica, CA, Tech. Rep. TM-
€889/000/01, Navember, 1980.

P.M. Mclllar-Smith and R.JA. Schware,
“Formal Specification and Mechanical
Verifiaden of SIFT: A Fault-Talerant Flight
Coorrol System,” JEEE Trauactions on
Computerz, Vol. C31, Na. 7, July 1982, pp.
616-234.

B. Meyer, “A Syseem Descriptdon Method.”™
in Jmsernadonal Workshop on Models and
Languages for Software Specification and
Design, B.G. Babd [T A. Mili, Ed. Orlaado,
Fla.: March 1984, pp. 4246,

C.V Ramamoorphy and er af., “Applicadion

for the Development and
Vuhdauuu of Reliable Procens Cooprral
Softerare,” LEEE Tran. Soft. Eng.. Val. SE-7,
No. 6, November 1981, pp. 537-555.

[Voges2]

[Wens78]

U. Voges, F. Fench, asd L. Gmeiner, “Use
of in a Safety-Oricnted
Reactor Shut-Down Svstem,” I8 Proceedings
EUROCON, Lyngby, Deomarkc June 1982,
pp- 493-497.

JH Wemley, L. Lamport, J. Goldberg,
MW. Green, KN, Levitt, PM. MclGar-
Smith, R.E. Sbostak, and CB. Welnstock,
“SIFT: Design and Aoalyxs of a Fault-
Tolerast Computer for Alncraft Contal,”™
Proceedings of the IEEE, Vol. 66, No. 10,
Ocwober 1978, pp. 1240-1255.

