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ON THE SOLUTION OF INTEGRAL EQUATIONS 
WITH A GENERALIZED CAUCHY KERNEL* 

by 

A.C. Kaya and F. Erdogan 
Lehigh University, Bethlehem, PA 

Abstract 

In this paper a certain class of singular integral equations that may 
arise from the mixed boundary value problems in nonhomogeneous materials 
is considered. The distinguishing feature of these equations is that tn 
addition to the Cauchy singularity, the kernels contain terms that are sin
gular only at the end points. In the form of the singular integral equations 
adopted,the density function is a potential or a displacement_and co~se
quent1y the kernel has strong singularities of the form (t-x) 2, xn- (t+x)n, 
(n~, O<X,t<b). The complex function theory is used to determine the funda
mental function of the problem for the general case and a simple numerical 
technique is described to solve the integral equation. Two examples from 
the theory of elasticity .are then considered to show the application of the 
technique. 

1. Introduction 

In elasticity or in potential theory if the medium contains a planar 
imperfection representing a discontinuity in displacements or potential (e.g., 
a crack, a plane insulation, a barrier), or in stress or flux vector (e.g., 
a plane inclusion, a distributed source), the related mixed boundary value 
problem may be formulated in terms of either a system of dual integral equa
tions [1] or a singular integral equation [2,3J. If the IIcut li corresponding 
to the plane of potential or flux discontinuity is fully embedded in a homo
geneous component in the medium, it is known that the dominant part of the 
integral equation contains only a simple Cauchy kernel associated with the 
corresponding infinite domain and the remaining geometry of the medium is 
represented by a Fredholm kernel. On the other hand, if the medium is· 
nonhomogeneous with discontinuous material parameters and if the cut inter
sects such a plane of discontinuity, then it is also known that the dominant 

(*>This work was supported by NSF under the Grant MEA-8414477 and by NASA
Langley under the Grant NGR 39-007-011. 
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kernel of the integral equation contains other singular tenns in addition to the 
Cauchy kernel [3J. These kernels (which are sometimes known as the general
ized Cauchy kernels) become unbounded as the variables approach the end 
of the cut responding to the point of intersection with the bimaterial inter
face. 

In the case of singular integral equations with ordinary Cauchy kernel 
the solution of the problem is quite straightforward and there are very highly 
efficient numerical techniques to obtain it. Most of these simple techniques 
are based on a variety of quadrature formulas developed for singular inte
grals (see, for example [4J). Another such technique introducing further 
computational economy as well as maintaining the basic numerical simplicity 
in the applications was discussed in a recent article [5J. The main features 
of this technique are (i) potential rather than flux type quantities are 
used as the unknown functions in deriving the integral equations resulting 
in a dominant kernel with a singularity stronger than that of the standard 
Cauchy kernel, (i 1) the unknown function is expressed in terms of the fun
damental solution of the problem and a bounded function containing a set 
of unknown coefficients, (iii) interpreting the integrals with strong singu
larities in the Hadamard sense, some useful formulas are developed to 
evaluate the integrals corresponding to the dominant part of the integral 
equation in closed form, and (iv) an appropriate collocation method is used 
to solve the resulting functional equation for the unknown coefficients. 
In [5J this method was used to solve also a special case of singular integral 
equations with a generalized Cauchy kernel, namely that of a cut intersect
ing a free boundary, and was shown to have distinct advantages over the 
conventional quadrature methods with regard to accuracy and computer time. 

In this paper the mixed boundary value problems leading to singular 
integral equations with a generalized Cauchy kernel are reconsidered by 
formulating them in terms of "potentials" as the unknown functions. The 
terms in the resulting dominant kernel would then have strong singularities 
and must be interpreted in the Hadamard sense. It is shown that the complex 
function theory can again be used to determine the fundamental solution. 
The main objective of the paper is to develop a simple and efficient tech
nique for solving singular integral equations with generalized Cauchy kernels. 
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2. Integral Equations 

Consider first the simple problem in potential theory described in Fig. 
1. In the terminology of elasticity the problem is one of antiplane shear 

, 
loading of a nonhomogeneous medium which consists of two bonded half spaces 

q(r) 
0000 ---t---

Fig. 1 Bonded Half-Planes (Antiplane Shear Loading) 

with shear moduli ~l and ~2. The medium contains a crack along e=~, a<r<b 
and, in the perturbation problem considered, the crack surface traction 
crlez(r,~)=q(r) is the only nonzero external load. If wl and w2 are the z
component of the displacement vector in materials 1 and 2, respectively, it 
was shown that (see, for example, [6,7]}:the differential equations and 
boundary conditions 

crlez(r,~) = q(r) , (a<r<b) 
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would give the following integral equation: 

b 

71'1 f (_1_+_:\_) 1jJ(t)dt = 1.... q(r) , (a-;r<b) (5) 
t-r t+r ~l 

a 
where 

1jJ(r) = aar [wl (r,71'+O) - wl (r,71'-O)] , (6) 

A = (1l1-1l2)/(1l1~2) (7) 

and, because of symmetry, only one half of the medium is considered. We 
note that for a=O and 1l1;!1l2 the term ).(t+r)-l becomes unbounded for r=O=t 
and the kernel is one of generalized Cauchy type. 

Integrating (5) by parts and using (4a) it may be seen that 
b 

71'
lf[ 1 A] _2) ( ) (t-r)Z + (t+r)Z w(t)dt - ~ q(r, a<r<b , (8) 

a 
where 

(9) 

The integrals in (5) and (8) are to be interpreted in Cauchy principal value 
and Hadamard sense, respectively [5]. The integral equation can also be 
obtained by using w(t) rather than 1jJ(t) as the unknown function and, for 
example, following the procedure outlined in [6]~ It may be noted that in 
terms of w'some of the stress components of physical interest may be expressed 
as 

(10) 

b 
III .J 1 A cr1ez(r,71') = 271' [{t-r)Z + {t+r)z]w(t)dt , (O<r<a, b<r<~) (12 ) 

a 
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Similarly, for the crack geometry shown in Fig. 1 under the following 
symmetric in-plane loading condition 

( 13) 

the integral equation may be obtained as (see, for example, [8] for the pro
cedure) 

where 

b b 

f (~!;~2 dt + f K(r,t)v(t}dt 
a a 

l+Kl = -'IT -2- p(r), (a<r<b) , 
111 

vet) = ule(t,'IT+O) - ule(t,'IT-O), (a<t<b) , 

cl 2~r 3c3r 2 

K(r,t) = (t+r)2 + (t+r)3 + (t+r)4 , 

_ 1 (l+Kl}m 3(1-m) 
cl - '2 [1 - m+K - 1 +mK ], 

2 1 

(14 ) 

( 15) 

(16 ) 

(l7a-d) 

In the above formulation 111 and 112 are the shear moduli, Ki=3-4vi for plane 
strain, Ki=(3-vi }/(1+vi ) for plane stress, (i=1,2), and vl and v2 are the 
Poisson's ratio of the two materials. Once the integral equation is solved, 
in this problem too all the desired field quantities may be expressed in 
terms of vet} and the corresponding kernels. For example, the cleavage 
stresses along the planes e=O, e='IT/2 and e='IT may be written as [8] 

b 
_ 112 f 3 1 1 1 1 4r 

0"2ee(r,0} --;- [(m+K -l+mK ) (t+r)2 + (l+mK - m+K ) (t+rpJv(t}dt, 
a 2 1 1 2 

(O<r<m) (18) 
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[(t_lrF + K(r,t)Jv(t)dt, (O<r<a, b<r<co) , (20) 

where K(r,t) is given by (16). 
In the problems given by the integral equations (8) and (14) for a crack 

embedded in a homogeneous phase, (i.e., for a>O), the dominant kernel con
sists of (t_r)-2, the fundamental function of the integral equations is 
(b-r)~(r-a)~, and the solutions may be obtained by using the technique 
described in [5]. On the other hand, if a=O clearly the kernels are of the 
generalized Cauchy type and before attempting to solve the problem the fun
damental function of the integral equation needs to be determined. This may 
easily be done by using certain properties Cauchy integrals [2J. 

3. The Fundamental Function 

For a=O we note that the general form of the integral equations (8) 

and (14) is 

b . K B /-2 

! f [(t_~)2 + k:2 k-2 k ]f(t)dt = p(x), (O<x<b) • 
o. (t+x) 

(21) 

To determine the behavior of f(t) near and at the end points, following [2J 
we define 

(Re(a,B»O, g(O)rO, g(b)rO, O<t<b), (22) 

where get) is bounded in the closed interval [O,b] and the function tBl(b_t)al 

constituting the leading term is generally known as the fundamental function 
of the integral equation (a=al,a2' ••• ' B=Bl ,B2, ••• , 0<Re(al)<Re(a2) •••• ' 
0<Re(Bl )<Re(B2),···)· 

Defining the sectionally holomorphic function 
b 

F(z) = 1. J f(t) dt , (z=x+iy) , (23) 
'IT t-z 

o 

it may be seen that 
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From (24) the asymptotic behavior of G(z) near the ends may be expressed as 

-1TiS 
G{z) = _g{O)ba 

137 zB-l + g(b)b B ,a (z_b)a-1 + G (z) (25) Sln1TS Sln1Ta 0' 

where Go(z) is bounded everywhere except possibly the end points near which 
it may have the following behavior 

(26) 

First we note that if z is not on the cut, then G(z) is ho10morphic and 
at a point z=zo=xeie , (O<x<b), we can write 

b 
1 J tlt)_ dt = G(z ) - a sei [(S-l)e-1TB] B-1 
1T ~ 0 - -g(O)b s;n1TB X + G1(zo) , 

o 

(27) 

where G1 is bounded everywhere and near zo=O has a behavior similar to that 
of Go. For example, if e=1T (i.e., if zo=-x), by differentiating from (27) 
it may easily be shown that near the end x=O we have 

b 
1 J f(t) dt = (_l)k S~B-l~rds-k+2) g(O)ba xB+1- k 
1T 0 ~ . k-l .Sln 1TB . 

P +l-k 
+ O(x 1 ), (k>2, x>O, Pl>Re(B». 

Similarly, substituting e=1T/2 and e=-1T/2, (i.e., for zo=+ix) and using 

it can be shown that 
b 

f 
p -1 

1 ~ dt = 1 g(O)baXs-l+O(x 1 ) 
1T t +x 2 1TB ' o cos~ 

-7-

(28) 

(29) 

(30) 



b ! J f(t) dt = (_l)k-l (S~1)(S-3) ••• (S+3-2k) g(O)baxS+1-2k 
o (t2+X2) k (k-1)J4cos 1Tt 

Pl+1-2k 
+ O(x ) , (k>2, x>O, Pl>Re(s» , 

b ! J t f(t) - dt = (_1)k S(S-2) ••• (S+4-2k) g(O)baxS+2-2k 
o (t2+X2)k (k-l)!4sin 1Tt 

Pl+2-2k 
+ O(x ) , (k~2, x>O, Pl>Re(s» • 

Next, by using the Plemelj formula [2J 

b 

! f ii;) dt = } [F+(x) + F-(x)J , (O<x<b) 
o 

we find 
b b . 

1. f ~tltJ_ dt = 1. d f il!l dt = 1 [G+(x)+G- (x)J (O<x<b) • 1T Tt-XF"" 1T dx t-x 2" ' 
o 0 

Thus, for example, using properties of the form 

[zS-lJ+ = lim [x ei9JS-l = xS- l , 
9~O 

[zS-lJ- = lim [x ei9]S-1 = xS- l ei21TS , 
9-+21T-O 

from (34) and (25) it follows that 
b 

! f {ii;h dt = -g(O)bas cot( 1Ts)xS- l 

o _ g(b)bSacot(1Ta)(b-x)a-l 
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Substituting now from (36) and (28) into the integral equation (21) we 
obtain 

p -1 p -1 
-g(b)b<lacot(1TC1.)(b-x)<l-1+0(x 1 ,(b-x) 2 ) = p(x), (O<x<b). (37) 

Now, by observing that g(O)~O, g(b)~O, Pl>Re(s»O, P2>Re(<l»O and p(x) is 
bounded in O<x<b, from (37) multiplying both sides first by x1- S and letting 
x~ then by (b_x)l-<l and letting x~, for the leading terms O<Re(<l,s)<l we 
obtain the following characteristic equations: 

(38a,b) 
cot'IT<l = 0 • 

Note·that for the end x=b that is embedded in a homogeneous component of the 
medium (38b) gives the known result <l = 1/2. 

For the integral equation (8), if a=O by defining 

wet) = g(t)tS(b-t)<l , (O<t<b, Re(a,S»O) , (39) 

from (36) and (37) we find 

COS'ITS - A = 0 , cot'IT<l = 0 (40a,b) 

Similarly, for a=O in the in-plane elasticity problem given by (14) if we 
let 

from (14), (16), (21) and (38a,b) it may be shown that 

(42a,b) 
cot'IT<l = 0 • 
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We also note that after determining the unknown function get), the aysmptotic 
behavior of the stress components around the end points x=O and x=b may be 
obtained by substituting from the asymptotic relations such as (28)-(30) 
and (36) into the expressions of stresses (e.g., (9)-(11) and (18)-(20)). 

4. The Numerical Technique 
¥ 

To solve the integral equation (21) having the generalized Cauchy kernel 
we express the unknown function as 

61 ~ 
f(t) = g(t)t (b-t) 2 , (43) 

where 61 is the smallest positive root of (38a) and get) is an unknown bounded 
function. By defining the following normalized quantities 

b b b t = 2 (1+.), X = 2 (l+p), f(t) = 2 ~(.), p(x) = Pl(P) , (44) 

from (21) we obtain 

1 

! f (45) 
-1 

(46) 

where h(.) is the new unknown function. As in [5J, the numerical solution 
of (45) may now be obtained by expanding h(.) into a series with known coor
dinate functions and unknown coefficients and by reducing the resulting func
tional equation to a system of algebraic equations through a suitable collo
cation technique. No particular system of coordinate functions seems to 
have a special advantage and a simple power series such as 

N n 
h(.); E an. ,(-1<.<1), 

n=O 

seems to be quite adequate. Also, expressing the finite-part integral as 
[5] 

-10-
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1 1 

f (!~~~2 d. = I [~(.)-~(p)-(._p)~I{p)] 
-1 -1 

- ~(p)(l~p + l!p) + ~'(p)109(~~~) (48) 

seems to give very satisfactory results{*). Higher accuracy is obtained in 
the numerical solution if the density of collocation points ;s increased near 
the ends by, for example, selectingpj,(j=O,l, ••• ,N) as the roots of Olebychevpolynomials. 

Numerically the technique described above would give fast converging 
resul ts provi ded 

(49) 

On the other hand if the characteristic equations contain roots for which 
ai-al<l or 6j -61<1, (i.j=2.3 ••• ), then the numerical technique would converge 
slowly and would have to be modified. To see this we note that for the prob
lem under consideration formulated in terms a potential-type quantity f(t) 
(see (21» the physically acceptable roots of the characteristic equations 

are al' a2' ••. and 61, 62, ••• with Re{ai,6j i>0, (i,j=1,2, ••• ) and the solu
tion may generally be expanded as 

f(t) = 
~ ~ a· 6· 
l: l: A •• (b-t) It J , (O<t<b) 

i=l j=l lJ 

al 61 If we now identify the fundamental function as (b-t) t and express 

f(t) = 9(t)(b_t)a't 6l , 

it is seen that 

~ ~ ai-al 6.-61 9 ( t) = L l: A .. (b- t ) t J 
i=l j=l 1J 

Since ai>al and ,B;j>61, (i ,j=2,3, •.• ) get) would be bounded at the ends t=O 

(*) Note that for .-+-p the integrand on the right hand side of (48) is 
~1\(p)/2. 
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and t =b. On the other hand if we consider the derivative of get) 

~ ~ ai-al- l Bj-Bl ai-al Bj-Bl-l 
g'(t) = r r AoJo[(ao-al)(b-t) t +(BJo-Sl)(b-t) t ], 

i=lj=l' , 
(53) 

it is seen that if there are characteristic roots for which 

(54) 

then at the corresponding end point g'(t) would become unbounded and conse
quently get) would be ill-defined. Since g(O) and g(b) invariably represent 
the magnitude of parameters of primary physical importance, it would then 
be necessary to modify the numerical procedure in order to compute these quan
tities more accurately. 

As will be shown by the examples given in the next section, the conver
gence of the calculations can be improved quite considerably by introducing 
the following simple m?dification. Let (54) be valid for ai' (i=2,3, ••• ,L) 
and Sj' (j=2,3,o •• ,M). The corresponding terms are then embedded into the 
definition of f(x) as 

f(t) = 91l(t)(b_t)al t Bl + ~ go,(t)(b_t)aitBl +~ g,o(tHb_t)altBj • (55) 
i=2 ' j=2 J 

The functions gij(t) are determined by again expanding them, for example, 
into power series with unknown coefficients and by using a suitable colloca
tion method. 

5. Examples 

First we consider the mixed boundary value problem in potential theory 
for the nonhomogeneous medium described in Fig. 1 and formulated by the 
integral equation (8). For a>O the fundamental function of the integral 

~ ~ equation is (b_t)2(t_a)2, the unknown function can be expressed as 

k ~ wet) = g(t)(b-t)2(t-a)2, (a<t<b) , (56) 

and the stress intensity factors or the parameters giving the strength of 
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of the flux singularity at the end points r=a and r=b may be defined and 
evaluated from 

k3(a) = lim 12(a-r) cr1ez(r,TI), (r<a) 
r~ 

= ~ lim wet) = ~2l g(a)/(b-a)/2 
2 t~ l2{t-a) 

= .:J. lim wet) = ~2l g(b)/(b-a)/2 • 
2 t~ 12(b-t) 

The problem is solved by introducing the normalized quantities 

(57} 

(58) 

t = b2a 1" + b~a , r = b2a P + b~a , wet) = b2a cj>(1"),cj>(1")=h(-r);r:-:rz,(59) 

and by letting 

( ) - N n _ ( 2j + 1 TI ) ( ) h 1" = r a 1" ,PJo - cos N+l -2 ' j =0, 1 , ••• , N 
n=O n 

(60) 

The integrals that arise in this solution are evaluated by using the 
following formulas [5]: 

fa , for n-k = odd 

c
k =<[ (n-k-l) 

k+l r 2 ,for n-k = even. 
21; r(n-~+2) 

(6la,b) 

For a material pair corresponding to aluminum and epoxy and for a uni
form shear stress q(r)=qo applied to the crack surface some results are 
given in Table 1, where the previous results calculated by using a 
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Gauss-Chebyshev quadrature technique [6J are also displayed. From the table 
it may be observed that the method seems to give rather good results even 
with a relatively small number of terms used for approximating the unknown 

Table 1. Stress intensity factors for a crack near an 
interface (anti-plane shear). 

112 b+a N+l 
k3(a) k3(b) 

111 b-a N ~ qo -2- qoT 

23.077 2 4 0.958968 0.976071 

Ref. [6] 0.95897 0.97607 

6 0.712470 0.924184 

l.l 10 0.712075 0.924190 

Ref. [6J 0.71208 0.92419 

0.04333 1.1 6 1.440085 1.109604 

Ref. [6J 1.44009 1.10958 

function h, the convergence improves as the crack moves away from the inter
face, and at the crack tip near the interface the convergence for 112>111 
appears to be" slower than the case for which 111>112. Analytically, the dif
ference in these two cases is only in the sign of A in (8) and, for a>O, is 
difficult to relate it to the convergence. However, as mentioned in the pre
vi ous secti on, for a=O there is a good reason for s 1 011 convergen"ce and phy
sically the two processes are clearly related. 

Consider now the case of a=O for which the characteristic equations 
are given by (40). For various material combinations the first two roots 
of (40a) are shown in Table 20 In this problem 

1 81 
wet) = g(t)(b-t)Yzt , 

-14-
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and the stress intensity factors are defined by 

Table 2. The roots of the characteristic equation 
cOS1T8-;\=0 

112/111 A 81 82=2-81 

0.04333 0.91694 0.13065 1.86935 
0.1 ·,0.81818 I O. 1949~ 1.80502 
0.25 0.60000 0.29517 1.70483 
0.5 0.33333 0.39183 1.60817' 
1. 0.00000 0.50000 1.50000 
2. -0.33333 I 0.60817 1.39183 
4. -0.60000 0.70483 1.29517 
10. -0.81818 0.80502 1. 19498 
23.077 -0.91694 . 0.86935 1.13065 
40. -0.95122 0.90017 1.09983 

Substituting now from (12) and (36) into (63) and from (10) and (28) into 
(64) and observing that sin1T81=2/111112/(1l1~2) we find 

111 b 81 
k3(b) = T .j'[ g(b) , (65) 

For q(r) = qo a closed form solution of the integral equation (5) is 
given in [7] and [9] which, in terms of the normalized quantities 

~ = t/b, ~1(~) = ~(t) , (O<t<b, 0<~<1) 

may be expressed as [10] 

-15-
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q y y 
$ (~) = 0 [( ~ ) ( y + 1) + ( ~ ) - ( y - 1) J, y= 1-8

1 
• 

1 ~1 sin ~y 1 +1j":'"fZ" ~ 1 +1j":'"fZ" ~ 
(68) 

By observing that $(t)=dw/dt, from (68) the exact expressions of the stress 
intensity factors may be obtained as 

(69) 

(70) 

The numerical results given in Tables 3-5 have been normalized as follows: 

(7la,b) 

Tables 3 and 4 show the calculated results obtained by assuming the 
solution of (8) in the form 

(72) 

and by fol1qwing the procedu're described in Section 4 above with the collo
cation: points given in (60). The'tables also show the exact values of the 
stress intensity factors calculated from (69) and (70). It is seen that 
for ~2<~1 excellent agreement is obtained by using only six terms in (72). 
However, for ~2>~1 table 2 shows that 82-81-1<0 and as indicated in the 
previous section one would expect the convergence to be slow. This may 
indeed be seen from Tables 3 and 4. 
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Table 3. Normalized stress intensity factors for a crack terminating 
at the interface (anti-plane shear) (N+l=6 terms are used 
in the expansion (72)). 

112 k3(0) k3(b) 

III (Exact) (Exact) 

0.04333 0.0656 0.0656 1.2558 1.2558 
0.1 0.1396 0.1396 1.1940 1.1940 
0.25 0.3101 0.3100 1.1144 1 .1144 
0.5 0.5576 0.5575 1.0958 1.0958 
l. 1.0000 1.0000 1.0000 1.0000 
2. 1.8036 1.8134 0.9598 0.9598 
4. 3.2694 .-,' 3.3558 0.9334 0.9334 
10. 7.0560 7.8231 0.9146 0.9146 
23.077 13.6113 17.3673 0.9067 0.9067 
40. 20.3490 29.6029 0.9040 0.9040 

Table 4. Stress intensity factor at the interface, ~ = 23.077. 
111 

N+l k3(0} 

6 13.61 
10 14.49 
12 14.76 
16 15.14 
20 15.36 
25 15.59 

Ref. [6] 13.13 
Ref. [11] 14.0 

Exact 17.37 
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Referring to Section 4, for 112>1l1 we now define the unknown function 
w in (8) as follows: 

N N 
~ 81 b ~ 81 1 n. ~ 82 2 n 

w(t)=g(t)(b-t)2t =2" [(l-T)2(l+T) raT +(1-T)2(1+T) r bnT J, 
n=O n n=O 

(O<t<b, -l<T<l) , (73) 

The collocation points are again selected as the roots of Chebyshev polyno
mials, namely 

_ (2j + 1 7T ) ( ( ) ) Pj - cos N +N +2 2 ' j=O,l, ••• , Nl +N2+l 
1 2 

(74) 

For two values of 112/11l the results obtained by using the expansion given in 
(73) are shown in Table 5. It is seen that without the second terms in (73) 
the convergence is very slow, whereas with the second tenn included very accur
ate results can be obtained even with a few tenns in each series. 

As a second example we consider the plane elasticity problem described 
by Fig. 1 and equations (12)-(17). In this case the characteristic equations 
are given by (42a,b). Examination of (42b) and the results given in 
[8J show that in all material combinations considered 81 is real and 82-81>1. 
No convergence difficulty is therefore expected. The stress intensity fac
tors at the crack tips are defined by 

(75) 

(76) 

By using (18), (20), (41), (28) and (36), from (75) and (76) we obtain 

81 3 1 
kl(O) = 112 . S g(O)I2D[(-m+ -l+m ) s, n7T 1 K2 Kl 

1 1 
+ 2(1-81)(l+mKl - m+K2)J , (77) 
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Table 5. Normalized stress intensity factors for a crack terminating 
at the interface (improved results) 

N1+1 N2+1 K3(0) 

6 0 3.2694 
I 

112 
10 0 3.3086 

-= 4 2 1 3.3149 
111 

3 1 3.3420 
( 81 = 0.70483 3 3 3.3550 

82 = 1.29517) 5 2 3.3553 
10 1 3.3553 
10 ,2 3.3558 

EXACT 3.3558 

N1+1 N2+1 K'3(0) 

6 0 13.61 
10 0 14.49 

112 = 23.077 
25 0 15.59 

111 1 1 14.89 
2 1 16.62 

(81 = 0.86935 2 2 17.11 
5 1 17.26 

82 = 1.13065) 3 3 17.35 
4 4 17.35 
5 10 17.36 

EXACT 17.37 
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8 
2111 b 1 

k (b) = - - g(b) 
1 l+Kl 12 (78) 

For a uniform crack surface pressure per) = Po and for one material pair 
the plane strain and plane stress results are given in Table 6. The normal
ized stress intensity factors shown in the table are defined by 

kl (0) 
Kl (0) = ---=--....... '--8-

po(b/2) 1 

kl(b) 
= --=---

Table 6. Normalized stress intensity factors for a crack ter
minating at the interface (normal loading). 

kl(O) 

Pl ane strain 
Epoxy-Al uminum 2.7997 

81 = 0.6619 

112 = 23.077 Plane stress 
111 4.2321 

81 = 0.7110 

Plane strain 
Aluminum-Epoxy 

; 
0.0981 

: 81 = 0.1752 

Plane stress 
112 = 0.0433 00 0955 
111 81 = 0.1758 

(79a,b) 

Kl(b) 

0.8826 

0.8787 

1.3421 

1.3398 

The results shown in Table 6 are obtained by using ten terms in the series 
I ' . 

given in (7~) and no· convergence difficulties were encountered in the calcu-
lations. 

In conclusion one may note that the technique would be readily appli
cable to more complicated problems involving, for example, finite dimensions, 
multiple cuts and general nonsymmetric loadjng conditions. In this case 
the coupled system of singular integral equations would have Fredholm as well 
as generalized Cauchy kernels and the fundamental functions may again be 
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obtained by using the complex function technique described in this paper. 
Also, one should again emphasize the importance of examining the second (and 
subsequent) roots of the characteristic equations and, if necessary, taking 
them into consideration from the viewpoint of the convergence of the calcula
tions and the accuracy of the results, 
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