
STANFORD UNIVERSITY

Guidance and Control Laboratory

Final Report Grant No. NCA2-IR745-407

SPACE INFRARED TELESCOPE POINTING CONTROL SYSTEM

INFRARED TELESCOPE TRACKING IN THE PRESENCE OF TARGET MOTION

Submitted to
NASA AMES RESEARCH CENTER

Moffett Field, Calif. 94035

by
J. David Powell, Principle Investigator

Julie Benson Schneider, Research Assistant

Guidance and Control Laboratory
Department of Aeronautics and Astronautics

STANFORD UNIVERSITY
Stanford, California 94305

June 6,1986
(NASA-CBr177007) SPACE INfBlBIE TELESCOPE
POINTING CON1EOL SYSTEM. INfE«KED TELESCOPE
TBACKING IN TEE PRESENCE 01 TiEGfl MOTION
final Report (Starford Univ.) 112 p

N86-2S738

Unclas
C5CL 03A G3/89 43303

https://ntrs.nasa.gov/search.jsp?R=19860020266 2020-03-20T14:33:17+00:00Z



Final Report Grant No. NCA2-IR745-407

SPACE INFRARED TELESCOPE POINTING CONTROL SYSTEM

INFRARED TELESCOPE TRACKING IN THE PRESENCE OF TARGET MOTION

submitted to
NASA AMES RESEARCH CENTER

Moffett Field, Calif. 94035

by
J. David Powell, Principle Investigator

Julie Benson Schneider, Research Assistant

Guidance and Control Laboratory
Department of Aeronautics and Astronautics

STANFORD UNIVERSITY
Stanford, California 94305

June 1986



Jff

Abstract

The use of charge-coupled-devices, or CCD's, has been documented by a num-

ber of sources as an effective means of providing a measurement of spacecraft atti-

tude with respect to the stars. A method exists of defocussing and interpolation of

the resulting shape of a star image over a small subsection of a large CCD array.

This yields an increase in the accuracy of the device by better than an order of

magnitude over the case when the star image is focussed upon a single CCD pixel.

This research examines the effect that image motion has upon the overall precision

of this star sensor when applied to an orbiting infrared observatory. While CCD's

collect energy within the visible spectrum of light, the targets of scientific interest

may well have no appreciable visible emissions.

Image motion has the effect of 'smearing' the image of the star in the direc-

tion of motion during a particular sampling interval. As the interpolation process

effectively finds the centroid of the image read out from the CCD pixels, the fact

that the star was actually at the extreme end of the smeared image at the end of

the sampling period must be accounted for. In addition, errors grow rapidly if the

star moves off the edge of the integration area. This problem may be remedied

in part by the use of larger integration areas, but this has drawbacks as well. A

compromise may be selected by increasing the size of the readout array in the

direction of motion, as opposed to the normally square integration area used for a
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stationary star image. Shorter integration times also help to relieve the problem,

but are limited in their usefulness where dim stars are involved.

The major reason that increasing the size of the integration area does not

eliminate the problem of off-edge scanning is the increased noise content of the

interpolated signal that results. There are many different sources that contribute

to the overall noise level of the CCD measurement, but they may be broken into

two general categories; background noise and shot noise. The larger the array, the

more noise electrons will be present with a larger 'moment-arm' about the array

center, thus skewing the interpolation process. Image motion is shown to have a

slight, but unimportant effect upon the noise content of the signal.

For purposes of estimating gyro drift with a Kalman filter using star tracker

measurements, a noise analysis of a candidate dry-tuned gyro for the mission was

performed. Data for this analysis is drawn from manufacturer literature. A satis-

factory curve is fit to gyro Power Spectal Density data.

The presence of image motion is incorporated into a Kalman filter for the

system, and it is shown that the addition of a gyro command term is adequate

to compensate for the effect of image motion in the measurement. The updated

gyro model is included in this analysis, but has natural frequencies faster than the

projected star tracker sample rate for dim stars. The system state equations are

reduced by modelling gyro drift as a white noise process. There exists a tradeoff

in selected star tracker sample time between the CCD, which has improved noise

characteristics as sample time increases, and the gyro, which will potentially drift

further between long attitude updates. A sample time which mimimizes pointing

estimation error exists for the random drift gyro model as well as for a random

walk gyro model.
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Chapter 1

Introduction

Background Information The NASA Space Infrared Telesope Facility

(SIRTF) is being proposed to allow astronomers to examine interstellar targets

that have been previously inaccessible to uncontaminated study. This type of tar-

get might typically include interstellar gas clouds where new star systems may be

forming and distant galaxies which seem to radiate most of their energy in the

infrared spectrum as well as closer targets, such as comets and moons. The res-

olution of such studies has been previously limited in earth-based telescopes by

interference from atmospheric radiation. While telescopes launched by balloon or

installed in special aircraft have had some success, a space-based infrared obser-

vatory (IRAS) was launched in January, 1973. During its relatively short life, it

collected enough valuable information to justify the development of a larger, higher

resolution, serviceable telescope to be known as SIRTF.

SIRTF is being developed as a one meter class, free flying, cryogenically cooled

observatory. Initial design studies conceived SIRTF as a fixed package making ob-

servations from the payload cargo bay of the Space Shuttle, mounted upon a gim-

balled platform. Placement on the Space Shuttle, which uses mass expulsion de-



vices for attitude control and suffers from the disturbances of astronaut movement

within the cabin, places extra limitations upon telescope performance, however.

Demands from the scientific community for increased flight time and improved

accuracy has led to the current ongoing development of SIRTF as a free flying

spacecraft. The configuration of SIRTF is not yet finalized, but two proposed de-

signs are shown in Figure 1-1 (SAL-lj. In addition, Figure 1-2 shows the optical

configuration for this telescope. The differences between the two configurations

arise from whether the spacecraft was designed for a sun-synchronous polar orbit

with a 98 degree inclination or an equatorial orbit of 28 degree inclination. Both

are targeted for relatively low earth orbit (700 and 600 km, respectively) [SAL-1].

The spacecraft is currently projected for launch in the early 1990's.

The design of a very accurate pointing and tracking control system for SIRTF

is subject to several handicaps not found in most three-axis stabilized spacecraft

[SAL-1]. The majority of these satellites use some form of thrusters for basic

control or reaction wheel momentum dumping. However, inasmuch as the presence

of mass expulsion devices have helped make the shuttle an unacceptable platform,

so, too, would they contaminate the focal plane of a free-flyer. The large, liquid

helium-filled hollow structure of the telescope also provides a set of flexibility and

cryogen slosh challenges which must be included in control system design.

The pointing requirements for SIRTF are quite tight, as would be expected for

a space-based telescope. The control sensor strategy has previously been developed

around a combination of a Fine Guidance Sensor (FGS), which provides inertial

attitude information with respect to the stars and conventional attitude gyroscopes.

The FGS star sensor thus provides long term stability by updating satellite attitude

relative to fixed visible guide stars, but, due to its relatively slow data rate, must

be augmented by conventional gyros to provide short-term stability between star



tracker samples. Thus, in this pairing, the star sensor provides a basis for correction

of gyro error and drift. Table 1.1 contains a summary of the Fine Guidance Sensor

specifications for SIRTF.

Table 1-1
SIRTF FGS Specifications

Guidance Field of View
Offset Pointing Accuracy
Noise Equivalent Angle
Sensitivity, Afp

Required
Goal

Multiple Target Capability
Video Signal
Detector Operating Temperature
Data Rate

1800 arcseconds dia.
0.1 arcsecond

0.125 arcsecond

> 16

<150K
> 1 per second

The NASA-Lockheed Space Telecope is a recent project of similar scope and

purpose as SIRTF. However, as Space Telecope was scheduled to fly in late 1986,

it is based on slightly older technologies. An important difference,- in terms of its

effect on configuration and control system philosophy, between these two spacecraft

is the fact that nearly all of Space Telecope's experiments and observations will be

carried out in the spectrum of visible radiation. This allows for direct acquisition

and tracking of the target of interest (if it is of sufficient brightness). The attitude

sensor hardware selected for use on Space Telescope consists of a combination of

photomultiplier tubes for fine guidance, fixed head star trackers for coarse guidance,

and rate gyros [DOU-l]. As described previously for SIRTF, the photomultiplier



tubes and star trackers provide long-term attitude information, while the gyros

provide short-term rate and position data. The use of photomulitplier tubes in

Space Telescope is quite complex, however. Each of the four tubes has an effective

field of view of 3 arc-sec2, while the total required FGS field of view is about 60

arc-min2. In addition, the tubes are used in an interferometric mode during fine

pointing, which leads to a limited dynamic range. To accomplish this task, the

tubes are combined with rate control systems which contain rotating prisms to

manuever the limited field of view of the photomultiplier tube over the entire FGS

area. In effect, the star sensor itself is steered so that the target remains within

its field of view.

In contrast, the FGS star tracker being targeted for use on SIRTF is a flat^

plane charge-coupled-device, or CCD. It achieves a high level of accuracy without

either the field-of-view limitations or need for interferometry of the photomultiplier

tubes of Space Telescope ([EIS-1], [GOS-1], [HH-lJ, [MAR-1 and -2j, [S&G-lJ

and [S&H-l]). Some of the advantages of this instrument are high performance,

maintenance of precision in a very cold environment as provided by close proximity

to cryogenics, and low power consumption. The gyroscope hardware currently

being examined consists of Teledyne dry-tuned gyros, favored for their low noise

and drift characteristics.

Purpose Many targets of interest to the scientific community on this mis-

sion are not necessarily stationary with respect to the guide stars used to orient

the telescope. Targets of this sort include planets, planetary moons and comets.

Therefore SIRTF should also have the capability to track a moving target. It is also

worth noting that the moving scientific target may not have appreciable emissions

in the visible spectrum where the spacecraft star tracker is effective. The issues

discussed by this work include the effect that motion has upon the performance of



the fine guidance sensor and a discussion of a Kalman filter formulation designed

to estimate gyro drift based upon the star tracker measurement of attitude.

A brief summary of the contents of this report follows:

Chapter Two describes the operation of CCD's for star sensing applications

and gives a review of past work that studies the use of CCD's as star trackers.

Chapter Three introduces the problem of tracking targets in motion. A simu-

lation routine for the CCD is developed which is used to estimate of the accuracy

of this sensor for this application. Some limitations of CCD performance under

these conditions are presented.
&

Chapter Four reviews the noise levels that may be expected from the Fine

Guidance Sensor and also develops a noise model for the candidate gyro to be

flown on this mission, the NASA Standard DRIRU II.

Chapter Five investigates tracking motion with a the incorporation of a

Kalman Filter in the FGS system for estimation of gyro drift using the results

of Chapters Three and Four. Past work is reviewed, and modifications required

for the moving target and updated gyro model are presented.

The conclusions of this research are presented in Chapter Six.
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Figure 1-1 Proposed SIRTF configurations [SAL-1]
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Figure 1-2 Proposed SIRTF optical model [PSH-1]



Chapter 2

Review

The system currently being proposed for use as a fine guidance star sensor

for SIRTF is based upon the use of a CCD, or charge-coupled device. These

small semiconductor chips are divided into an array of radiation-sensitive pixels,

which may then be combined with optical elements to provide a signal based upon

star position. This chapter will summarize some of the basic characteristics and

limitations of CCD's when used for this application, as well as provide a review

of the work previously done for the case of a stationary star image. A presen-

tation of hardware characteristics and assumptions about the star image will be

made. Finally, the computer routine that was extensively used to simulate CCD

performance will be described.

The operation of a CCD for this application is based on the device's ability

to count the photoelectrons of incident light hitting a pixel element. Each pixel of

the array is connected to read-out registers which transfer the signal to processing

electronics. The charge developed on a given pixel is thus proportional to the

amount of photons incident to the pixel up to some saturation level. The time
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allowed for a charge to build, or integration time, is selectable and will in practice

vary with the brightness of the object being sensed. The read-out registers and

processing electronics have the ability to identify each pixel and its signal uniquely

for purposes of identification and tracking.

The resolution of the system is automatically limited to the size of a pixel

element if the star image is focussed on a single pixel. Typically, a CCD array

might have a total field of view of 30 arc-minutes which would limit the accuracy to

about 4.5 arc-seconds for an array 400 pixels square. Noise and other error sources

also contribute to the total resolution. Since the SIRTF baseline specifications are

far more stringent than this, the quality of the signal must somehow be enhanced.

The method for accomplishing this goal has been developed by Jet Propulsion

Laboratories ([S&G-1],[S&H-1], [GOS-1] and [MAR-1]). The accuracy of the

CCD when used as an image detector may be improved by better than an order of

magnitude by a process of defocussing and interpolation. The defocussing process

increases the number of pixels that a given star is imaged upon. In this way the size

of the image is increased from less than a pixel to a size that will fit on a subarray

that is three or four pixels square (Figure 2-1). The centroid of the image, based

upon the first moment of the row and column pixel signals about the subarray

center, is interpolated both horizontally and vertically to yield a calculation of

the position of the star. The interpolation routine uses the individual pixel signal

levels, or point spread, 5,-y (i =row, / =column), as follows:

The vertical line spread, or horizontal sums of the point spread, is given by
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where nf is the number of vertical pixels in the subarray.

The horizontal line spread is given by

m,
5/ = ZX' ; = l,mp (2.2)

*=i

where mp is the number of horizontal pixels in the subarray.

The first moment of each line spread about the center of the pixel subarray

may then be written as

*= £ ^-'m,+i-,--s,) (2.a)
i=t v * '

or, specifically, for a 4x4 array,

5~ = 1.5(54 - Si) + 0.5(53 - S2) (2.4)

or a 3x3 array,

— (Q. C. ^ /9 *»^— ^03 — Ojj l^*^/

Naturally, the same equation applies whether the estimated centroid of either the

horizontal or vertical line spread is to be found. In addition, the total signal is

given by

Up flip

£ZX (2-6)
,=1 j=l
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The star image position is then found by dividing the first moment of the line

spread calculated above by the total signal, or

(2.7)

where k is the estimated star position with respect to the center of the subarray.

The accuracy of this process is limited by several things. Perfect precision is

impossible due to the fact that the CCD is basically an integer device that develops

a charge related to the count of whole numbers (not fractions) of photoelectrons

that occur during a given integration period. Centroid errors of this sort decrease

with increasing integration time due to the fact that the total signal level is rel-

atively greater and the effects of this sort of 'quantization' error tend to become

less significant. This effect is demonstrated in Figure 2-2 by plotting error levels

compared to signal levels. The solid line on the error graph represents the error

that would exist if the CCD had no quantization effects. The dashed line demon-

strates how the actual error approaches this limiting value with increasing signal

level. If the signal levels are large, the device error becomes small when compared

to overall specifications, but must be considered to be a factor if high integration

rates and dim stars are to be combined in operation.

Another limitation can be the physical configuration of the device itself. Two

different instruments were analyzed during this course of the study. These were

the Fairchild 211 CCD and the RCA 501 CCD (Figure 2-3). Characteristics of

each of these are summmarized in Table 2-1. While the RCA or a similar device is

most likely to be selected as flight hardware, the Fairchild was initially considered
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during the early phases of this research. It will be presented here briefly as it has

a unique configuration that raises several interesting issues.

Table 2-1
CCD Specifications

Fairchild RCA

Array size

CCD element subtense,
SIRTF optics

Element dimensions

Saturation

244 rows
190 columns

6.136 arcsec horizontal
3.689 arcsec vertical

30/zm horizontal
18/un vertical

250,000e-

320 rows
512 columns

5.625 arcsec square

30/im square

390,000c~

The Fairchild CCD is an instrument designed with older technology and re-

quires the presence of opaque charge-transfer registers which collect no signal in-

terspersed between columns of charge-collecting pixels. In addition, the pixels

themselves are not square. The opaque registers result in a loss of usable signal for

the device, which is demonstrated by Figure 2-4 for a simple star image intensity

profile spread over a 4x4 pixel subarray. These factors can cause certain amounts

of position error when used in conjunction with the simple centroid Equation 2.7.

The errors were found to be regular with respect to the position of the star im-

age on the face of the device, both horizontally and vertically (Figure 2-5). The

vertical errors were linear with the actual star position, while the horizontal er-

rors were found to be quadratic, of magnitude up to 0.5 arcsecond. Curves were

be fit to these errors, however, which resulted in the following corrections to the
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interpolation: [P&P-l]

== *«35*rerl»e«l

= sgn(khorit(mtai) (-0.7024 + ^/0.4933+1.898|^t<mla/|)

The application of these equations reduces the overall error of the device to ac-

ceptable levels, as shown by Figure 2-6. The effect of star image shape upon the

constants in these equations was never assessed.

The RCA device, on the other hand, has square pixel elements and also con-

tains no opaque registers that result in signal loss (Figure 2-7). Thus, with the

inherent integer nature of the device as a basic limitation, the algorithm should

work accurately and have identical vertical and horizontal error curves. The typical

variation in error with star image position for a 4x4 subarray is shown in Figure

2-8. Note the magnitude of the error is less than 0.003 arcseconds and is largely

due to the effect of 'photon counting' described previously. These errors take on

a sinusoidal component and could obviously be fitted, if required, with a Fourier

series of two terms.

Other inaccuracies of the device are more dependent upon variations of each

individual CCD due to manufacturing irregularities as well as imperfections in the

imaging optics. These errors are significant and result in different corrections at

different locations on the 320x512 CCD array. Work in this area is being accom-

plished by Glavich and Goss [G&G-l], who have developed an adaptive tracking

algorithm which moves an image in steps across a pixel, measures the resulting

errors and then develops a polynomial correction of up to five terms. On-board

electronics would thus make the neccesary correction to the measurement depend-

ing on the location of the st^r on the entire CCD array. The contrast between
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the corrected and uncorrected errors for a sample device is shown in Figure 2-9.

Note that, after correction, the errors take on a similar sort of sinusoidal type of

characteristic as discussed previously.

Several topics merit a brief discussion in regard to the computer routine used

to generate the error characteristics shown in Figures 2-3 and 2-5—2-9. The

original algorithm (Appendix A-l) was developed by Parsons [PAR-1] utilizing

the physics of the Fairchild device combined with a baseline 4x4 pixel subarray.

It has since been modified extensively by this author to include different physical

characteristics, most notably those changes required to support the newer RCA

device, different subarray sizes-including nonsquare cases, and most especially, a

nonstationary image. While some of these topics will be addressed more completely

in subsequent chapters, a few important considerations will be addressed here.

The basic algorithm simulated the signal generated on a pixel element by

making use of the fact that the charge developed on a CCD by incident radiation

is dependent on the number of photons hitting the device. From Hill [HIL-1], a

CCD with no insensitive areas ideally collects a charge of

q = AiEiRoT photoelectrons (2.9)

where

T — integration time (seconds)

A\ — effective aperture area = *(%£•)* (m2)

E\ = overall optical transmissivity (%)

So = CCD photoresponse as a function of star magnitude (photoelectrons/sec-m2)

D\ — effective aperture (m)
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or, specifically for the Fairchild array using SIRTF parameters,

DI - 1 m

RQ - (1.54912 x 1010)10-°-4Wlf photoelectrons/sec-m2

so that

q = (7.3 x 109) * l O - ' ' * T photoelectrons (2.10)

When applied to the simple distribution shown in Figure 2-3, the maximum in-

tensity, to, is the 'height' of the image shown in Figure 2-3 and is determined for

simulation purposes by setting the total charge developed during time T equal to

the "volume" of the shape, and solving for »o, or, for this case,

(2'u)

where R\, #2> and »o are as shown in Figure 2-3.

As the purpose of this research was conceptual, rather than quantitative, and

based upon the assumption that the optical and radiative properties for SIRTF

will change several times before flight, these overall charge sensitivities were also

used in the computer simulation of signals for the RCA device. This is expected

to have no significant impact on the major findings of this analysis.

Previous studies ([G&G-l], [MAR-2]) have reported that the accuracy of the

interpolation/centroiding algorithm is quite sensitive to the actual distribution

of intensity of the star image. Preliminary SIRTF studies ([MAR-3J, [P&P-l])
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suggested that, given the optical parameters (Figure 2-10) selected at that time,

that a trapezoidal image profile was representative of a typical star when defocussed

throught the FGS optics. We have seen a contour plot of the intensity profile of an

actual star image (Figure 2-1) when defocussed through more recent optics. Figure

2-11 shows a cross-sectional 'slice' of that contour plot. With the exception of the

sharp intensity spike in the center of the figure, the trapezoidal approximation

can be seen to be a viable, yet computationally simple, model. Obviously a large

number of distributions exist which more accurately mimic the 'typical' star image

shape and work has been accomplished in this area [G&G-l]. Table 2-2 shows a

list of possible image distributions currently being explored by JPL. A combination

of actual empirical results from actual star images as well as a sensitivity analysis

of the algorithm to star image shape is important to accomplish before flight, but is

beyond the scope and purpose of this report, and will not affect the major findings

herein.



Table 2-2
Candidate Artificial Point Spread Functions [GOV-lJ

17

1. Intensity = A0 + E

2. Intensity = A0 + [£{

3. Intensity = AQ + A\ exp [-^2 (R

4. Intensity = AQ + exp [-X2 (X - A3f] exp [- ^4 (Y -.A&)2]

5. Intensity = A0 + Al

6. Intensity = A0 + ̂  [sine2 (2ir^2-y)] [sine2 (teAtf )]

7. Point by Point Sums or Products of Any of These
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Figure 2-1 Contour plot of actual star image [G&G-l]
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Figure 2-4 Simulated Star image and resulting point spread
for the Fairchild 211 CCD
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Chapter 3

Extension to a Moving Image

The goal of SIRTF is the scientific study of both stationary and moving targets.

Prior work ([P&P-l], [PAR-l], (LPP-1], [PPL-1]) has developed control laws and

established the accuracy that may be expected for the stationary case. The purpose

of this work is to examine the effect of a moving target on pointing accuracy.

Planets, moons and comets represent types of moving targets of additional interest

to space scientists. Consideration of this facet of star sensor performance required

the modification of the star signal simulation discussed in Chapter Two. This

chapter will describe the problems involved when tracking moving infrared objects,

outline the algorithm changes needed to achieve a sensor signal simulation for the

moving body and, finally, present the accuracy and limitations of the sensor and

interpolation algorithm when used for this application.

The motion—rate and trajectory—of the target is assumed to be a well-known

function. The motion of planets, moons and comets will be tabulated by as-

tronomers for the purposes of this project and are assumed to be available to star

tracker processing electronics in much the same way as a star ephemeris is avail-

able for primary pointing. If the target to be studied with the infrared scientific
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instruments also emits radiation in the visible spectrum, the problem of tracking

reduces to a fairly straightforward extension of existing control system philoso-

phies [P&P-l]. Acquisition of a target in motion may be a topic of some concern

in this case, but should not present major conceptual difficulties over and above

those that would exist for the stationary case. Problems may arise, however, when

the infrared target cannot be sensed by the visible CCD detectors. For this case,

visible guide stars in the vicinity of the target must be used for proper pointing.

The moving infrared object must be motionless with respect to the field of view

of the scientific instruments, so therefore the image of the guide stars must move

across the face of the star sensor in a prescribed fashion corresponding to the mo-

tion of the target. The result is that, during a given integration time, the image

of the guide stars on the sensor will have shifted with respect to the face of the

CCD, resulting in a 'smeared' image. This is demonstrated by the images in Figure

3-1 in which the stationary 'trapezoidal' image is compared to the same image in

motion. For a moderate scan rate, the resultant shape is more peaked than the

original image. The image resulting from very high scan rates is shown in Figure

3-2, where the contour is no longer peaked, but resembles an elongated 'camel

back' and has moved off the edge of the integration area as well. It is important to

note that the attitude control system tracks the target in an open loop mode since

the control system is actually following a prescribed time history of the moving

target. The means and necessity of using the scientific instruments in the control

loop to verify the presence of the infrared target in the telescope field of view and

to use them as a sensor to provide loop closure has not, as yet, been established.

The shape of the star intensity profile for simulation purposes is taken to be

the simple trapezoidal shape described in the previous chapter. However, when

smeared across the face of the device, the resulting image profile becomes more
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mathematically complex, especially when variations in target rate, intensity and

integration time are considered simultaneously. Rather than develop a family of

curves to describe the shape geometrically, an approximation was devised. The

trapezoidal image was moved across the face of the pixel in increments of 1/100 or

1/1000 of the actual integration time, and integrated at each position. The sum

of these intermediary integrations then becomes the total signal for the device.

Figure 3-3 shows the effect of the number of intermediate integrations on the

characteristics of the error curve for a simple sample case. The curves for 100 and

1000 time steps are negligibly different, but it is clear that the curve for 10 steps

is not completely converged.

The angular rate required to track Halley's comet, as specified by the Hub-

ble Space Telescope project [BRO-1], has been established at 0.21 arcseconds per

second. This number was used as a baseline for most of the analysis done in

this chapter. Additionally, SIRTF Fine Guidance Sensor (FGS) specifications call

for the capability to track a 14th magnitude star. Unless otherwise specified, all

simulated stars approximated such a dim object.

The graphs that are presented in this section are typical of sensor performance

that may be expected, but each is a specific test case, run for a single star magni-

tude, scan rate, and initial image position with respect to the center of the CCD

subarray. The general test scan angle was up and to the right at 30 degrees at

the maximum projected rate of 0.21 arcseconds/second. The initial location of the

star with respect to the center of the CCD subarray varies from plot to plot, but,

unless otherwise noted, is the same for the case of several curves shown on the

same graph. Results have been obtained for the case of 3x3, 4x4, and 6x6 pixel

subarray sizes. Results for larger arrays can be extrapolated from this data, but
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actual computer runs with these large subarrays was not accomplished due to the

amount of computer time required.

A fundamental characteristic of the behavior of the interpolation algorithm

becomes apparent at this point. The actual position of the star image is at one end

of the smeared image at the beginning of the sample period and at the opposite

end of the smeared image at the end of the integration period (Figure 3-1). The

algorithm, however, finds the centroid of the complete smeared image, which, for

a constant target rate, is exactly halfway between the two extremes. For this

case, then, the interpolation will yield the actual star position midway through

the integration period. The severity and nature of interpolation errors will now be

examined in detail using the computer simulation of the CCD performance.

Without some form of correction to the basic interpolation results for the

smeared image, the dominant centroid error for a constant rate, linear target mo-

tion is simply due to the timing error which is given by:

T •
crremt = -*Oe (3.1)

ft

where 9e is the target rate. This result is corroborated by the results of the simula-

tion. Figure 3-4 demonstrates the error that results from a typical image moving

at a specified constant rate as the integration time increases. Errors resulting from

different target rates are shown, as well as a comparison with the error magnitude

that may be expected for a stationary image. As can be seen, the increase in error

for a moving target is linear with increasing integration time (or increasing image

motion) as predicted after the region of low signal levels is exceeded. The amount

of motion that occurs during a sampling period is very small for short integration

times so that the magnitude of the error is very close to that calculated for the sta-

tionary image. As the distance moved by the target during the integration period
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increases beyond the quantization level, the true linear nature of the error becomes

apparent.

The SIRTF specification for offset pointing accuracy has been stated as 0.1

arcsecond. Based upon the errors shown in Figure 3-4 this requirement is clearly

not met at longer integration times, and only marginally met at lower ones. This

unfortunately does not allow a budget for error from other sources. However,

since its nature is well-known, this significant error contribution may be easily

compensated for. Figure 3-5 shows the result of simply adding the known factor

of j * 6e to the centroid estimate of the device based upon the formula given in

Chapter 2. This particular graph was generated by using a relatively large 6x6

pixel submatrix. The starting point of the star image with respect to the matrix

center was specifically placed in such a way as to ensure that no signal would be

lost due to the image straying off the edge of the interpolated area. The error for

the corrected image continues to decrease with increasing signal level, unlike the

error for a stationary image, which approaches a constant value. This is due to

the increased spread of the signal over a larger number of pixels, which makes the

centroid equation (2.7) more sensitive. The slight irregularities are due to the fact

that since these error levels are now quite small, quantization effects at even large

signal levels exist in sufficient magnitude to produce an noticeable irregularity.

If the truncation of the individual pixel element signals is removed, the curve

becomes smooth, but still decreases at slower integration rates. At any rate, this

simple addition brings the accuracy of the interpolation process to within the cited

specifications and is, before the consideration of noise effects, an improvement over

the error levels obtained for a stationary image.

There is another limitation to the accuracy of this method for the tracking of
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moving targets, however. Position errors increase dramatically when any signal is

lost due to the edge of the image leaving the selected pixel subarray. Figure 3-

6 demonstrates this effect by comparing the corrected signal to the uncorrected

signal for an image moving across a 4x4 subarray. At an integration time of about

one second or so, the corrected error curve increases in correspondence with this

loss of signal. The time step at which the image starts leaving the edge of the

array is quite naturally highly dependent upon the starting point of the image

with respect to the array center. The methods of avoiding this problem are simple:

either move to increasingly larger subarrays for moving target tracking, or develop

a very precise target acquisition scheme which ensures that the image will remain

on the subarray during the integration period.

A large subarray, however, takes longer for the processing electronics to read,

which in turn limits the data rate at which the device may be sampled. Larger

arrays also have a negative effect on noise levels, as will be seen in Chapter Four.

One compromise is to 'stretch' the dimension of the array in the predominate

direction of motion. In other words, if the projected image motion is up and to

the right at 30 degrees, then increasing the width of a 4x4 array to six pixels will

maintain more of the signal with less of the related problems listed above. A test

case for this premise is shown in Figure 3-7. In using a non-square array, the

integration time step at which the error increases due to signal loss is improved

from about one second to ten seconds. In this way most of the advantage gained

by going to the 6x6 array is available in the 4x6 array with only a 50% increase in

the number of pixels.

Obviously, the correction scheme as outlined breaks down if the a priori knowl-

edge of target motion is inaccurate. Motion has been very carefully assumed to be

linear for all results thus far, and errors are certainly introduced if the assumed



. 34

scan rate is incorrect, scan angle is off, or motion is nonlinear.

The errors due to uncertainty in scan rate alone are expected to be linear with

integration time, much as the original correction factor was linear. The issue of

importance is, naturally, the strength with which small errors in known motion

affect the centroid error. Figure 3-8 demonstrates these errors for a 6x6 array,

with the same specific starting point relative to the array center as in Figure 3-5

so that no signal loss occurs. Results are shown for varying levels of accuracy of the

known scan rate, such that the 1% curve corresponds to the error that would result

if there was 1% difference between the actual scan rate and the scan rate applied

as a correction factor. As expected, the increase in error for each has a linear

trend. An error of 1% in image rate does, however, maintain centroid error levels

below 0.01 arcsec in general and to a level of .001 arcsecond for a 1 second baseline

integration time. The effect of uncertainty in knowledge of the image motion angle

is shown in Figure 3-9. This curve was produced by specifying the scan angle in a

direction upward and to the right. This angle was set to 30 degrees for use in the

motion error correction terms, while the actual scan rate varied by 0.3 and 0.03

degrees from this nominal value. As with linear motion rate uncertainty, errors do

not become significant until long integration times are reached. The overall effect

of this uncertainty is less than the previous case, however.
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Chapter 4

Noise Analyses

The star sensor simulations accomplished in Chapters Two and Three have ne-

glected the contributing effects of sensor noise. Noise contributions include effects

from the CCD itself, as well as consideration of the satellite attitude determina-

tion system which includes the gyro package necessary for short term stabilization.

This chapter summarizes the important characteristics of each for the purpose of

later integration into a Kalman filter.

§4.1 Star Sensor Noise

Many different factors contribute to the noise inherent in the CCD output.

Effects due to manufacturing imperfections are not easily modelled for the general

case. These imperfections vary from device to device and, as such, need correction

factors based upon the discrepancies found in the individual instrument. These

corrections are therefore a function of star position on the complete 320x512 array.

This work, as mentioned in Chapter Two, is being accomplished by JPL, and is,

in essence, more of an error source than a noise source. Noise effects, as referred

to in this chapter, pertain to statistical uncertainties, which, for the CCD, include

photon, or shot noise, dark current and background noise.
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The analyses in previous chapters have assumed that the CCD signal was

deterministic for purposes of establishing performance limits. Input photon noise,

otherwise known as shot noise, arises from the fact that photon emission from a

generating source is actually a random process [B&L-lj. Thus, the number of

photons accumulated on a pixel during an integration period is a random variable.

The standard deviation of the number of photoelectrons collected in the potential

well is the photon noise. Photon emission from a source statistically follows a

Poisson process, which means that the standard deviation of the number of photons

is equal to the square root of the mean signal gathered, or

«.» = \fsTj (4.1)

for a single pixel. This effect is most significant for sources of low strength, ie, dim

stars.

Thermal radiation tends to generate white noise and therefore the produc-

tion of dark current effects. The basic process of charge accumulation on a pixel

entails electrons receiving energy from photons and making a transition from one

energy state to another. It is therefore apparent that electrons can make the same

jump by the absorption of thermal energy. Dark current is then a function of chip

temperature and can be effectively lessened by cooling the device. The amount

of cooling, however, is limited by the amount of supporting circuitry which sur-

rounds the device and naturally generates heat. Since the FGS sensor for SIRTF is

operated at very low temperatures (about 150K) due to the presence of telescope

cryogenics, the dark current contribution of 1 electron per minute per pixel is taken

to be negligible when compared to other noise sources [GGS-1].

Detector read noise, or background noise, makes a significant contribution

to the overall noise levels. The term 'read noise' is used widely in the JPL-
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based literature and is a combination of charge transfer noise and processing noise.

Though individual contributions to total background noise are not broken out

separately, the RCA CCD has a manufacturer-quoted 'read' noise of 80 electrons

[GGS-l], while a bread board test of the device demonstrated a noise level of

98 electrons [G&G-l]. This latter, more conservative value is to be used in all

simulations for this chapter.

Gharge transfer noise emanates from two basic mechanisms: charge transfer

inefficiency and fast interface states [B&L-l]. Noise from fast interface states

originates from small flucuations in the total number of photoelectrons trapped at

any given instant. Transfer noise due to imperfect efficiency results from random

fluctuations in the charge transferred from one potential well to another. For a

pixel carrying 5,-y photocarriers, e5,-y photocarriers will remain after the transfer

occurs, where e is some small number. Thus there is a shot noise of mean square

value eS,-y associated for each transfer from a particular pixel. In addition, this

noise will be introduced into each charge packet as it arrives and leaves a potential

well, so the mean square noise becomes 2c5,-y. If c is a constant, then the noise

contribution due to charge transfer inefficiency is

(4.2)

Typical values for e are in the neighborhood of 1 x 10~4 [B&L-l].

The other contribution to background noise, process noise, is not negligible.

It varies with the signal processing electronics and combines with charge transfer

noise to build the overall background noise level to its demonstrated level of 98

electrons.

Leaving the background noise as a constant, then the noise level in each pixel

carries an rms value of
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» (4.4)

where n& is the rms background noise level and n,» is the contribution due to shot

noise. Since nfn = \/Sij, then

The numerator and denominator of the interpolation formula (Equation 2-7) are

both affected by the pixel noise content, so the total noise in centroid position is

nonlinear with the individual pixel noises. A satisfactory linearization is given by

Parsons [PAR-1] which has been slightly expanded and clarified for presentation

here.

Linearization via a small-signal approximation of the nonlinear combinations

of noise contributions in the centroid equation is justified when the overall signal

to noise level is large. For a full well of 390,000 electrons, the shot noise component

of 625 electrons and the background noise component of 98 electrons combine to

yield a representative signal to noise ratio of « 616, which should certainly be

adequate for justification fot the use of small signal approximations. So, if kf is

the approximate position uncertainty due to the noise in the »th line spread, then

the uncertainty for small perturbations 5,- from the »th line spread near value 5,- is

_ Si (4.6)

and the line spread variances for uncorrelated individual pixel noise levels are given

by

* = > (4.7)
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The total rms centroid error is then

(4.8)

(4.9)

These equations may be manipulated to prove that centroid uncertainty decreases

with increasing signal levels. This can be done by consideration of the term

fdk f \ I [<-*£•} _S\
\dsj-\ s 52 /

in addition,

(4.10)

(4.11)

so, the uncertainty, or jitter, due to the tth line spread is

(4.12)

which implies that larger total signals, 5, reduce uncertainty. Therefore, the best

integration time for a given star would be that which brings pixel signal levels close

to the full well value.

These equations are easily implemented into a computer routine that augments

the simulation algorithm previously discussed. Modifications were made to the

original routine developed by Parsons to admit other CCD configurations and

subarray sizes, including those that are not square.

It useful to examine the jitter levels that exist for a stationary target and then

contrast them with those that arise for the moving target based upon this noise
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model. Figure 4-1 shows a plot for a stationary image and, most importantly,

contrasts the level of jitter present when using a 4x4 array versus a 6x6 array.

The jitter level increases with increasing star magnitude, which is a reflection, in

general, of signal to noise ratio. For a baseline integration time of one second,

the jitter level for a 14th magnitude star on a 6x6 subarray is greater than one

arcsecond, when specifications require an overall level of .125 arcsecond. The

corresponding centroid noise level for the 4x4 array is about 0.2 arcsecond. It is

clear that the smaller the subarray, the better the centroid jitter levels. A 3x3

subarray is required to bring the noise to within specified levels (Figure 4-2). The

hypothesis that jitter decreases with increasing signal level is also confirmed by the

negative slope of the graphs.

The overall jitter levels are somewhat higher than those presented by Parsons

([PAR-1)] but very close in magnitude to those presented by Goss, et al ([GGS-1]).

Two elements underlie this effect. The results presented by Parsons include only

the horizontal component of position jitter, whereas the plots presented here give

the results for the combination of vertical and horizontal jitter. In addition, the

previous studies used a fairly optimistic value of 50 electrons for the background

noise level.

Centroid jitter levels are relatively unaffected by the presence of image motion,

Figure 4-2 compares the centroid jitter resulting from a stationary object with that

of a target in motion on a 3x3 array and contrasts this with corresponding plots

of the inverse of total signal level. The small array was chosen here for maximum

effect. The noise levels for the two cases are indistinguishable at higher sampling

rates, but a noticeable spread begins to occur after a time period of about 1 second.

The slope of the curve corresponding to the moving target then begins to shallow.

This is another effect of the loss of signal that occurs when the image moves from
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the integrated area of the array. As the centroid jitter is proportional to signal

level, the loss of signal results in a decrease in negative slope of the curve. There

is a direct correspondence between the decrease in slope of the inverse of the total

signal level curve and the noise level curve. If no signal is lost, no more centroid

jitter is developed for a moving target than for a stationary one.

A comparison of the overall centroid noise levels for a moving target on 3x3,

4x4 and 6x6 arrays is shown in Figure 4-3. These are the noise levels that accom-

pany the interpolation errors depicted in Figure 3-8 and therefore all have some

signal loss at longer integration times. As can be seen, the effect of the loss in

signal is most noticeable for the 3x3 array, while the noise for the 6x6 array is

almost identical to that for the stationary case.

The special case of the 4x6 nonsquare subarray is compared for the moving

case in Figure 4-4. The 4x6 subarray is seen to be a compromise in noise level over

the 6x6 case just as a similar 3x4 array would be over the 4x4 case. This could

be implemented in the system software so that the optimum array size would be

selected based upon estimated image starting position and trajectory.

The desired NEA, or noise equivalent angle, for the system has been quoted as

.125 arcsecond. This is difficult to meet for the combination of low integration times

and dim stars. The data does suggest strongly that the smallest possible subarray

that can be used without significant data loss is preferable. It is important to

remember, however, that for the general case more than one star will be used

for pointing, and an estimation scheme based upon a combination of star tracker

measurements and known relative star positions should be able to bring the level

down.
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§4.2 Gyroscopic noise Analysis

Previous studies [PAR-1, P&P-l] have assumed that conventional floated gy-

roscopes were to be used for attitude determination. Models for these gyros were

combined with a model of the star tracker previously described for estimation of

telescope attitude with respect to the stars. Developments in gyroscope technology

have led to the proposal of the NASA DRIRU-H gyro assembly for use onboard

SIRTF. As this package is based upon the Teledyne SDG-5 dry-tuned gyro, as

opposed to more conventional floated designs, its noise characteristics need to be

evaluated.

The pathology of the dry-tuned gyro is well-described in the existing liter-

ature ([DON-1], [CRA-1], and others). There are many differences between the

dry-tuned gyro presented in Figure 4-5 and conventional floated gyros. The the-

ory of operation for this device is based on the premise that dynamic reaction

torques produced in the universal-joint suspension can be used to produce negli-

gible torsional coupling between the rotor and the gyro housing. The suspension

must therefore be precisely mechanically tuned for a resonant frequency equalling

the spin speed of 100 Hz. This type of suspension also provides a very high degree

of translational support. The manufacturer of this device cites higher reliability,

decreased sensitivity to temperature gradients and reduced power requirements

over standard gyros. In addition, due to the decoupling of the suspension system,

quality of the bearing support is not as critical as in floated gyros. The detailed

equations of motion are derived at length in [CRA-1].

The NASA DRIRU-II (Dry Rotor Inertial Reference Unit II) package uses

three SDG-5 gyros for a base instrument (Figure 4-6). Each individual gyro with

its accompanying electronics comprises a "gyro channel" which provides two axes

of information on angular rate independent from the other two channels, hence
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providing redundancy [I&R-l]. Table 4-1 lists the operating specifications for this

device.

Table 4-1

DRIRU-n Operating Specifications

PARAMETER

INPUT RATES (DEC/SEC)
A. SURVIVAL
B. TRANSITION
C. PER FORM ANCE
CROSS AXIS COOLING

INCREMENTAL ANGLE OUTPUT

SCALE FACTOR ISEC/PULSEI
SCALE FACTOR LINEARITY 1%)
SCALE FACTOR ASYMMETRY
RANGE (OEG/SECI
SCALE FACTOR STABILITY

BANDWIDTH (HZ)
AIDR (SECV5EC)

ASDR (SE"cVSEC/GI _
NOISE EQUIVALENT ANGLE (SEC)

ANALOG RATE

RANGE (OEG/SECI

SCALE FACTOR (V/DEG/SEC)
SCALE FACTOR LINEARITY
BANDWIDTH IHZI
AIDR IBIASI (STi/SECI

ASDRIGSENSITIVITYI
NOISE (SEC/SEC RMSI

LIFE

VALUE
LOW

MODE

X

106
X
X
aii
X

X
X

X
X

X

X
10%
X
X

X
X

HI OH
MODE

X

0.1

2.0

X
X

X

X

X
SAT.

X

X

X
X

ABSOLUTE

mat MINUTESI
2
i.e
IK (TO 1 HZI
2% (TO 7 HZI

0.5%
0.01
110.00006

THZMIN O.B<(<1.0
0.6

1.0
1.0/1 HR p.p

1 1.0 LINEAR
2.0 SAT.
12 « 0.6

7HZMIN O.S-.{<1.0
O.S
7.2

1.0
0.5(0 1 7 HZI

O.OB 1001 IHZI

6.0 1100 HZ GREATER) MULTIPLES
OF ROTOR FREQUENCY

2 YEAR (ORBIT! BOO HOUR IGNOI
000 1200 HOUR (FRE DELIVERY)

ITABUITV

• 0.008* n PAY LOW RATE ONLY

0,01%/MO.
0.1VWO.

aovnoAv
0.003/OHR
1.6/MO.
aot/MO.

01 MO.
1.6/MO.

0.04/MO.

Gyro noise characteristics are commonly measured using two methods—Power

Spectral Density (PSD) and/or Noise Equivalent Angle (NEA) tests. The NEA

measurement is conceptually quite simple. The instrument is operated in a sta-

tionary mode for a specified observation period (frequently one hour) and has the

gyro rate output sampled at some frequency (5 Hz for the current example). The

test is designed to evaluate the magnitude of the peak-to-peak excursions that

occur during the test period. Any bias drift rate is corrected during this process,

so analysis of the results of the test is performed in two stages [GOV-1]. The in-

dividual samples are summed to obtain the total drift angle, after which the linear
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trend due to bias drift is removed via linear regression. The peak-to-peak NEA

measurement of the remainder of the signal describes the angle noise. Sample drift

time histories for the DRIRU-II are shown in Figure 4-7. In an uncompensated

mode the value of the NEA was .63 arcseconds peak-to-peak, while with modi-

fied electronics the value decreased by better than an order of magnitude, to .048

arcseconds peak-to-peak. These results serve to further characterize the device as

having a low noise content.

Another, more useful, way of measuring gyro noise characteristics is the Power

Spectral Density test. The power spectrum may be described as the the magnitude

squared of the linear spectrum of a given signal, in this case, gyro output. As such,

it contains only magnitude information. A PSD plot for a conventional gyro when

compared to the SDG-5 dry tuned gyro is shown in Figure 4-8.

Many conventional gyros show a signature characteristic in the PSD known

as 'random walk.' Random walk is another term for integrated white noise. It

can also easily be shown that the PSD of white noise is flat. The PSD of random

walk, as inetegrated noise, would then exhibit a negative slope corresponding to

-20 db/decade. The PSD of the derivative of the variable of interest would then,

of course, be flat. Note that the conventional gyros of Figure 4-8 show a marked

increase with decreasing frequency corresponding to this random walk signature.

Figures 4-9 through 4-11 show the results of PSD tests run on the DRIRU-II

package. As the tests are run on different instruments at different facilities with

varying capabilities and disturbance properties, it is difficult to draw any detailed

conclusions for purposes of specifically modelling all the gyro idiosyncracies. Fig-

ure 4-9 [GRE-l] represents a test done at the manufacturer's facility. Note that

this frequency data is plotted linearly in frequency, as opposed to logarithmically,

which has the effect of spreading the details of the peaky areas. The information
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accompanying this data suggests that the 33.8 Hz spikes are due to excitation of

a 34 Hz test pad resonance by ambient conditions (rotating machinery, air move-

ments, etc.). The 6 Hz spike corresponds to a V/F converter wash frequency. The

29.6 Hz peak is also considered, in the opinion of the test operator, to be environ-

mental in nature. The peaks diminish when the device is reoriented on the test

pad, suggesting strongly that these peaks are caused by ambient conditions rather

than being a noise characteristic of the gyro itself.

A low frequency PSD for this device is shown in Figure 4-10 [GOV-1]. This

measurement was also taken at the Teledyne test facility. The plots are quite flat

within the narrow frequency range shown with no trace of a random walk signature.

The noise in this case may be described as white at low frequencies. Figure 4-11

[GOV-1], shows a PSD test performed at the Holloman AFB Central Inertial

Guidance Test Facility (CIGTF), a more sophisticated facility. The noise power

content is flat until about 2.5 Hz, increases by a couple of orders of magnitude

to about 25 Hz, then rolls off in random walk fashion. The shape of the curve is

similar for the x and y channels of the test gyro. Although this plot is peakier

than the others, the highest peaks are directly attributable to known factors. The

34 Hz spike is a bearing retainer frequency, 100 Hz is the rotor spin frequency, and

200 Hz is the second harmonic of the rotor spin frequency. Again, it is difficult to

further separate environmental factors from the gyro characteristics. The results

of these tests would have been improved by ensemble averaging but this was not

done due to the time length required for extended low frequency testing. However,

ensemble testing would no doubt smooth the details of the high frequency noise

content.

The motion of the gyroscope testing platform due to seismic and environmental

motions is not negligible when attempting to assess the accuracy of these extremely
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sensitive gyros. An extended test [B&W-l] was conducted in a study of the facility

at Holloman AFB. Sensitive sensors and geophones were used to measure table

PSD's. The results exhibit peaks in the response of about the same order of

magnitude as those found in the gyro PSD's previously presented. Most of the

higher frequency spikes were traceable to environmental pumps and fans interacting

with test table resonant frequencies.

The dominant characteristics of either curve of Figure 4-11 may be^fit by a

shaping filter of the form

(4.13)

For the case of a zero mean white noise input, a PSD for this response may be

written in the form ([B&P-l])

G,(u) = Hg(ju)H9(-ju)G,(u) (4.14)

where Gv = PSD of gyro output, Gx = PSD of the gyro input, in this case the

white noise driving the filter. This results in

(4.15)

Values for wi, u?, f and Kn for each of the curves shown in Figure 4-11 are

given in Table 4-2. These values are based on a visual assessment of the quality

of the curve fit. The PSD's that result from the values of the parameters listed in

Table 4-2 are compared with the original data in Figure 4-12.
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Table 4-2
Results of Gyro PSD Curve Fit

X Axis YAxis

W2

6.5 x 1(T8

4.398 rad/sec (0,7 Hz)
103.7 rad/sec (16.5 Hz)

0.7

2.5 x 10~8

6.283 rad/sec (1.0 Hz)
106.8 rad/sec (17 Hz)

0.5

To represent the system in a state-space format for later incorporation into a

system Kalman filter, consider that

where

D = gyro drift (degrees/hour)

Gx(s) = nw = white noise input to shaping filter
The use of these values, when placed in the observer state form, results in

where X is the necessary auxiliary state. These equations may then be incor-

porated into a Kalman filter with the star tracker.

Another approach to the problem is to simply describe the gyro noise content

as white, with a PSD of the white noise set at some value Q corresponding to Kn

of the 'fit' curve. Since the most recent control loop bandwidth specified for SIRTF

is about 3 Hz [PSH-1], and the signature of the gyro PSD is fairly flat to about 2.5

Hz, this may be a reasonable assumption to make. The eventual filter equations

are also simplified by use of this technique. These issues will be more completely

addressed in Chapter Five.
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Figure 4-5 Cross-section of SDG-5 dry tuned gyro [GOV-1]

Figure 4-6 Exploded view of DRIRU-II gyro package [I&R-l]
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Figure 4-7 NEA time histories for the DRIRU-H Assembly [GOV-1]



63

iov

a

10

Q '«en
P-

'•'
-5

O

VMODMIG. I'M'

• 1 M- \ \\ \ \ V"""

ir-^U\

K -WITH IMUIIKTRONICS
•• witM LAI

JDG-J-CIGIf

.-* .«-*10'" 10 ' IO"4 IO'J tO'1 10'' 10° I01 I07 I0

FREQUENCY (Hz)

Figure 4-8 Comparison of PSD's for various conventional gyros
with the PSD for the SDG-5 dry tuned gyro [DON-1]



64

-it'

-!•'

-IB

-It'

-IBi"

POUCH
ai

Y2 Channel
Y U p

a 128 2St

a

698 1034

-IB

-ii

-IB

rsca. Hir«OH-e TO s.eoeeee-ei
F6CO.

Y2 Channel

Y North
-IBB"

a 128 2S6 384 SJ2 640
CQEFrtflCNT

838 103-1

3. :3E>ai ̂ ^se-i-ai <.j3Etai s.cacta

Figure 4-9 Power Spectral Density test for the DRIRU-II [GRE-1]



65

0

-10

-20

-M

-I.JX 10~' ("Arl'/Hl

-A.

S
-w

-90

-100

X Axis Low Frequency PSD

0.001 0.002 0.003 3.004 0.005 0.006 0.007 0.001

FUEOUENCY (Mi'

0

-10

-JO

-1.1 X !0~V/W)VHi

-60

o
2 .70
i
8 -to

-90

-100

Y Axis Low Frequency PSD

_j i

0.001 0.002 0.003 0.004 0.003 0.006 0.007 0.008

FREQUENCY (Hi)

Figure 4-10 Low frequency PSD tests run at the Teledyne facility [GOV-1]



66

X Axis Analog Channel PSD

0.15 1.5

mo iik)

Y Axis Analog Channel PSD

Figure 4-11 General PSD tests run at Holloman AFB [GOV-1]



67

1

X Axis Analog Channel PSD

*.M

Y Axis Analog Channel PSD

Figure 4-12 Comparison of PSD curves generated by equation 4.15
with test data



Chapter 5

Kalman Filter Analysis

The overall goal is that the best possible system performance be attained

with the combination of the discrete star-tracker and the gyro package, utilizing

the unique features of each to the greatest advantage. A method of accomplishing

this task involves the use of optimal filtering and prediction, in which the accu-

rate attitude measurement of the star-tracker is used to update an estimate of the

gyro drift and therefore, pointing error. In this fashion, long-term stability against

gyro drift is provided by the relatively slow-sampling CCD, while short-term sta-

bility between CCD readings is provided by the gyros. This chapter will present

the additions to the original Kalman filter equations derived in [PAR-1] that are

neccesary to include the case of moving targets as well as discuss the inclusion of

the gyroscopic noise model.

As the concept for SIRTF has undergone a metamorphosis from a shuttle-

fixed payload to a free-flying spacecraft, and the need for the added stabilization

that a steerable secondary mirror would provide in question [PSH-1], the models

presented here must be considered as conceptual in nature rather than resulting

from finalized SIRTF control system design. Two studies relating to SIRTF control

architecture have been published ([PSH-1] and [SAL-1]) which differ in scope and



_ 69

configuration. Neither report, however, addresses the fine guidance sensor in detail.

The discussion here will therefore be limited to interaction between the star tracker

and the gyros, neglecting CMC's, flexible body dynamics and other sources of

disturbance which may have an effect upon overall pointing accuracy.

The structure of the state space equations for the system has been previ-

ously established [PAR-1], and will be repeated briefly here. The continuous state

equations take the familiar form for scalar inputs:

x = Px + Geu + Gnw
(5.1)

where x is an nxl state vector, F is an nxn matrix, Gn and Ge are each have

dimension nxl, while H is Ixn.

These equations may be equivalently expressed as a set of discretized equations

x(r» + 1) = *x(n) + rcu(n) + TBu;(n)
(5.2)

y(n) = Hx(n) + v(n)

where * and T are computed using the matrix exponential e*7 in its series form

and the integration time, T, ([F&P-l]) and v(n) has been added to reflect the

discrete star sensor measurement noise.

The Kalman filter equations take the familiar form ([BRY-1]):

Measurement update:

x(n + 1) = x(n + 1) + K(n) [y(n + 1) - £Tx(n + 1)]

P(n + 1) = M(n) - M(n)HT(HM(n)HT + 5)~1HM(n) (5.3)

K(n) = P(n)HTR~l

Time update:
S(n + l) = «x(n)+reu(n)

(5.4)1
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with P(0) and X(O) given. Q is the covariance of process noise and R is the

covariance of the measurement noise. In addition,

x, = predicted estimate of x, prior to a star measurement

x, = current estimate of x, following a star measurement

P = [£{(*,• -x,-)(x,--x,-)r}]'

The SIRTF attitude gyro has been modelled as a random-walk device in pre-

vious studies [PAR-1]. This requires that

D = w (5.5)

where D is the gyro drift (units of angular rate) and w is a white noise process

with zero mean and variance Q.

The gyro drift over time produces a pointing error , i.e., the difference between

the position of the star as maintained by the gyros and the actual position of the

star, which may be expressed as

0,(t) = - /" D(r)dr . (5.6)
Jo

or

9j = -D (5.7)

where 9j is the position of the star image on the CCD array. No other disturbances

that would cause an error in the estimated position are included, such as bending

between the point of attachment for the secondary mirror and the focal plane where

the star sensor is mounted. The relations for the discrete star tracker measurement
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may be given approximately as the average of the position of the star image over

the time period, or

8i(r)dT + v(n) (5.8)

where Om is the measured image position from the star sensor. Alternately, defining

0 as the integral of image position, Equation 5.8 may be rewritten as

1
: (5.9)

where T is the star tracker integration time, and v(n) is the discrete star tracker

measurement noise with variance R(T). Using this definition of 0, then naturally

0 = 0/. (5.10)

The state-space equations that result from a stationary image with a discrete

star tracker measurement and random walk gyro model are then given by

"0"
Qj

b
—

'01 0 "
0 0 - 1
0 0 0

•0-
9j
D

+
"o"
0
1

w(t) (5.11)

The addition of a moving target would add a commanded rate to the gyros

provided by onboard electronics. If the gyros receive a scanning command 6C, then

the angle relation (Equation 5.6) above becomes

= -/" D(r)dr - f 9e(r)di
Jo Jo

(5.12)

which adds to the state equations as

"0"

'I
D

~
'01 0 "
0 0 - 1
0 0 0

•0'
Oi
D

+
"o"
0
1

w(t) +
' 0 "
-1
0

**(*) (5.13)
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This equation is readily discretized using a simple summation of the series

form of the matrix exponential, leading to

(5.14)

Note that the discrete star-tracker measurement as given by Equation 5.12 involves

a delayed state of 0. This requires augmentation of the state vector by the state

0'(n), which is simply 0(n) delayed by one sample period, that is

"0"
B!
D —

(«+i)

'l T =£-'
0 1 -T
. 0 0 1

"0"
6j
D

+
M

' ~ < T ~
_2l

. T .
w(n) +

'-%'
-T
0

= 0(n)

The discretized equations then become

(5.15)

re'i0
Oi

.D.

=

(n + l)

•o i o o •
0 1 T -^
0 0 1 -T

. 0 0 0 1 .

r0'i
0

'*/
.D.

+

(-)

r 0.1r*-T«,
2

. T .

to(n) +

r o i
r2

2
-T

. 0 .

9e(n) (5.16)

with

y(n) = [- 0 0]
0

ID]

v(n) (5.17)

This system is not strictly observable, in that the observability matrix com-

posed of
H 1

J5T*2

.H93.

(5.18)

has rank less than four, the order of the system. This is due in part to the method

in which the measurement equation was constructed, i.e. the delayed state 0' was

added to the discrete equations solely for the purpose of modelling the measurement

equation. Further observability analysis shows that only 0/, D and the combination
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of 6 and 6' may be estimated accurately. This is a function of the mathematical

model chosen for the star tracker measurement. This result makes intuitive sense,

as the measurement of star position from the CCD is, in reality and as modelled,

an average of its actual position during that sample period. One may not expect

to be able to estimate the limits of motion, represented here by 0 and 6', from

the average of the two. From a physical viewpoint, it is impossible to estimate

these limits. For all practical purposes, however, accurate estimates of D and 8j

are possible, with no need for estimation of the other two states individually, only

their combination.

It is interesting to note that no "velocity correction" term of y0e is explicitly

added to the state equations as discussed in Chapter Three. The addition of the

Bc command term is sufficient for estimation (assuming of course that the quality

of the measurement from the CCD itself is good and is subject to no signal loss).

This result will now be demonstrated.

The Kalman filter term

y' = [y(n+l) - t fx(n+l) ] (5.19)

contained in the relation

x(n + 1) = x(n + 1) 4- K(n) [y(n + 1) - Hx(n + I)]

of Equations 5.3 should ideally go to zero for a perfect estimate in the absence of

noise. This can be proven for the case of a moving target by manipulation of the

Kalman filter equations. By substitution of £Tx from the state equation (Equation

5.16) into Equation 5.18
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Substitute for the n + 1 terms from the state equations 5.16:

!/ = y(n + 1) - 0/(n) + |/>(n) + |0e(n)

If this equation is now set equal to zero, the desired steady state error, and then

solved for 0/, the angle estimate error, then

«(arfradl:erme<u«remenf . . . . ... . .corrccttonforanft correction f or icanrate

In reality, there will naturally be some error, since estimates are not perfect due to

the presence of process and measurement noise and even this model assumes linear

target motion during the sample period. Even though the overall target motion is

not expected to be linear, this may not be a bad assumption, as a piecewise linear

approximation to the curve will most likely be acceptable. However, it is evident

that the correction for motion rate as presented in Chapter Three is present within

the structure of the equations.

The addition of the dry-tuned gyro noise model presented in Chapter Four

results in the following continuous state equations:

D
X

ro i o 01
0 0 - 1 0
0 0 -2fu>2 1

.0 0 - o.

•e-

D
.X.

+
• o -
0
1

.Wl-

w(t) +

• o •
-1
0

. 0 .

(5.21)

This system is more challenging to discretize, however. The powers of the

matrix P in this case do not conveniently go to zero when calculating the matrix

exponential as before and the resulting expressions for 9 and F are complicated,

even for the first two or three terms of the series expansion. In addition, this

series tends to diverge within the first few terms for larger values of T (greater

than .01 seconds) when attempting numerical computation, which makes a simple

series truncation of the matrix exponential unacceptable and inaccurate. This
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type of phenomena is a common shortfall of using direct series summation for

the evaluation of 9 and F and is generally caused by finite computer accuracy

[M&L-l].

There are several other methods of calculating the matrix exponential, how-

ever. One method is to rewrite the summation for the matrix exponential in the

form

*«! +

This method, known as "scaling and squaring," is summarized in [F&P-l] and

is implemented in several of the 'standard' controls-system analysis packages. It is

quite effective during most applications and gives adequate results for this case if

sufficient computer precision is used. Extra precision is required, however, if there

are large differences between the magnitudes of the elements of the F matrix and

the sampling times are long, as are present in this problem.

Example *, FB and Te matrices that result for several sample rates are shown

in Table 5-1 for the gyro shaping filter constants listed in Table 4-1 for the Y

axis gyro PSD. The state vector has been augmented by the delay state 6' as

described in Equation 5.15. This increases the order of the discrete equations over

the continuous system by one. The discrete measurement equation is unchanged

from Equation 5.17 with the exception of the addition of the unmeasured state X:

y(n) = [- 0 0 0 ]

re'i
e

v(n) (5.22)

It is noted that, as expected, the 9's for very high sample rates approach the

identity matrix plus a term for the noise dynamics.
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Table 6-1
Discretized State Equations at Varying Sample Times

e i, D x\T

T = 0.0001 sec
0 1 0 0
0 1 0.0001 -5.0 x 10~»

• =00 1 -9.9 x 10-*
0 0 0 . 9 9
.00 0 -1.135

T = 0.001 see

0
0

-5.0 x 10-'
-9.9 x 10-*

1.0-

• =

ro i o o o
0 1 0.001 -4.8 x 10~T 0
00 1 -9.5 x 10~* -4.8 x 10-T

00 0 0.89 -9.5 x 10~4

LO 0 0 -10.8 0.99

T = 0.01 see

• =

ro i o o o
0 1 0.01 -3.3x10-* -1.2xlO-T

00 1 -5.1 x 10-* -3.3 x 10-*
0 0 0 0.083 5 . 1 x 10-*

LO 0 0 -57.7 0.62

T *= 0.0001 sec

r.=
-1.7x10-"
-5.0 x 10-»
1.0 x 10-*
5.7 x 10-'

T = 0.001 sec

F.
-1.6 x 10-18

-4.8 x 10~T

9.5 x 10-4

7.7 x 10-4

T = 0.01 sec

r.
-1.3xlO-T

-3.3 x 10-*
5.3 x 10-*

0.32

T = 0.0001 sec

r.

r«

-5.0-x 10-*
-1.0 x 10~4

'0
0

0.001 sec

-5.0 x 10~T

-l.Ox 10-*
0
0

T - 0.01 sec

re =
-5.0 x 10-*

-0.1
0
0

Table 5-1 presents results only for sample times less than 0.01 second. This

is a relatively high rate in CCD terms, as poor accuracy and high noise levels

accompany a CCD sampling quickly with a dim star. For slower sampling rates,

the speed of the dynamics of the gyro noise shaping filter must be considered. The

natural frequency of the filter is very fast (about 17 Hz) when compared to the

projected sampling rates of 1-0.1 Hz for dim stars. If the rule of thumb of sampling

no slower than twice the system natural frequency is observed, then the slowest

sample time at which the colored noise characteristics could be estimated is around
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0.1 second. Some reduction of the state equations will then occur if the sample

rates are very slow.

The nature of this state reduction is suggested by the gyro PSD shown in

Figure 4-12. It is apparent that the gyro noise characteristics may not be modelled

accurately by a random walk model. In fact, the Power Spectral Density of the

noise is flat for low frequencies, suggesting that the gyro drift rate in these regimes

may be modelled as white, or

D = w ' (5.23)

Since the continous model defined the drift angle, 0/, as

= -D

then, for this reduced case,

(5.24)

The gyro drift rate is white, therefore the gyro drift angle is a random walk

process.

The resulting reduced order continuous system is very simple:

Discretizing is also simple, and, after the augmentation of the state vector by the

delay state 6', the discrete equations are

(5.26)

•0''
e

.*/.
=

(n-H)

"0 1 0'

0 1 T
0 0 1

"e'"
e

.*/.

y(n) = [-i/r i/r o]

+
(»)
•0''
0

• • •o a

T
-T

u;(n) +
o a '
T

-T

+ »(»)

The pointing errors that result from the combination of a random walk gyro

drift rate and the discrete star tracker have been examined in detail ([PAR-1],
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[PfcP-1] and [PPL-1]). An example of the variation of pointing error with CCD

sample time is shown in Figure 5-1. This data was created by iteration of the

matrix Riccati equations until convergence in the covariance matrices M and P

was observed. The pointing estimate error just preceding a measurement is then

given by
n»/2

while the estimate error just after a measurement is given by

11/2

where P07 and M$; are the current and predicted elements of the covariance ma-

trices corresponding to the state 0/. The major result from this previous work

describes the effect of a tradeoff between gyro drift and CCD integration time. At

short integration times, very little gyro drift may occur, but the measurement noise

from the star tracker is large. At longer integration times, the CCD noise is less,

but the gyro can drift further within that period. An optimum sample time of 15.8

seconds for the example in Figure 5-1 gives the best pre-measurement prediction

using the Fairchild CCD described in Chapter Two. The best post-measurement

prediction is found at a sample period of 63 seconds. The Ferranti 125 gyro em-

ployed for these results had a PSD value for the strength of the random walk drift

rate of 4.1667 x 1(T10 arcsec2/second3 [PAR-l].

Similar results arise for the reduced-order system of Equation 5.25, even

though the gyro drift angle is modelled as a random walk instead of the drift

rate. The current and predicted estimate error curves for this system are shown in

Figure 5-2. The CCD noise levels were implemented based upon the RCA CCD, a

14th magnitude star, and a 4x4 integration subarray as shown in Figure 4-1. The

noise spectral density for the gyro drift is taken from the Y-axis gyro described in
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Table 4-2 as 2.5 x 10~8 arcsec2/second2, or the power of the flat part of the curve

of Figure 4-12.

Although the drift rate is random, the drift angle is a random walk and will

meander in time. This accounts for the similarities in the curve shapes between

the two figures, specifically, the rise in estimate error at long integration times due

to the larger potential for the presence of a drift angle. The sample time at which

optimum performance is observed has changed little, with the T at which the cur-

rent estimate error is minimized (0.003 arcseconds) occurring at about 39 seconds,

while the minimum predicted estimate error (0.0038 arcseconds) is found at about

10 seconds. The overall magnitude of the pointing estimate error is decreased from

about 0.025 arcseconds for the system in Figure 5-1 to 0.0055 arcseconds for the

system in Figure 5-2 at a CCD integration time of 1 second. This decrease is due

to the different gyro error characteristics of the NASA DRIRU-II when compared

to the Ferranti 125. While the CCD contribution to measurement noise is now

greater than predicted by Parsons ([PAR-1]) for the reasons described in Section

4.1, the improvement of the gyro process noise characteristics more than compen-

sates for this increase. Therefore, the use of CCD subarrays of larger dimension

than 3x3 during image motion still results in acceptable pointing estimation error

levels. This supports the obvious conclusion that a gyroscope with better drift

characteristics will provide much improved pointing stability. The decision to im-

plement this type of gyro on this mission appears to be well-founded, based upon

the published test data.

These pointing errors have been based on gyro errors and CCD random errors

only. Chapter Three discusses the sizeable errors that can result from uncompen-

sated target motion. Errors of greater than 1 arcsecond are possible if the necessary

corrections for image motion are not made.
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Chapter 6

Conclusions

This thesis has presented a basic overview of the application of charge-coupled

devices, or CCD's, to the problem of attitude determination in a space-based in-

frared telescope. The operation of this device has been described and the results

of several previous studies on the subject have been summarized. The method is

based upon the concept that star images may be defocussed over several pixels of

the sensor, with the resulting centroid of the matrix of signal levels on those pixels

corresponding to star position. The use of this method, developed by JPL, results

in an increase in accuracy of better than an order of magnitude over the case in

which the image is focussed on a single pixel. A computer simulation routine for

this process has been previously developed and the absolute accuracy estimates

that resulted have been presented. The results of previous work have been ex-

tended, however, to include a newer device with a different pixel configuration.

The main purpose of this study, however, was to assess the performance levels

that may be expected when the CCD is used for purposes of tracking a target in

motion. The nature of the motion for any given infrared target is assumed to be

scientifically well-tabulated, but, since the particular application pertains to an

infrared telescope, the possibility arises that the desired target will have visible
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light emissions below the operating threshold of the sensor. The system would

then be required to operate in an open loop mode, with a command generated to

the spacecraft gyros such that the visible guide stars move across the face of the

CCD in a manner corresponding to the charted motion of the infrared target.

A computer simulation of the CCD signals that a moving image would generate

was derived for the purpose of performance assessment. Effectively, the CCD

averages the position of the star upon its face over a given integration time. While

this has acceptable accuracy for a stationary target, the presence of motion means

that the calculated position of the star will be somewhere between its position at

the beginning and the position at the end of the integration period. If the target

motion is linear, a simple correction term based upon projected motion may be

added to produce absolute error levels which approach those that are obtainable

for a stationary image.

Errors naturally increase when the image strays off the edge of the small in-

tegration subarray of pixels. This limits the amount of motion that any particular

target may experience during an integration period which in turn limits the possi-

ble combination of subarray sizes, allowable image motion, and integration time. It

could, in fact, effectively limit the guide star selection, in that a set of very bright

stars may need to be selected in order to allow a decrease in sample time which in

turn, insures that the image stays within the area of integration..

The increase in dimension of the pixel integration subarray decreases the prob-

ability that the image will stray from the area but this is done at some expense.

By increasing the pixel subarray size, the resultant centroid noise, or jitter, is in-

creased. This results largely from the increased 'moment-arm' that background

noise signals from the pixel elements have upon the calculation of star position. A

possible compromise between reduced absolute accuracy and increased jitter levels
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is to increase the dimension of the CCD integration area in the direction of the

known motion.

The star tracker and the spacecraft gyroscopes are to work in tandem, with

the presence of the star tracker providing necessary gyroscopic drift correction.

Previous studies discussed a random walk gyro model incorporated into a Kalman

filter for the purpose of estimating gyro drift from star-tracker measurements. The

random walk model is applicable to most conventional floated gyros. The gyro

currently slated for use on the telescope in question is, however, a gyroscope of a

different technology which posesses noise characteristics not adequately described

by the simple random walk. The characteristics of this dry-tuned gyro have been

modelled to create a noise shaping filter based upon published Power Spectral

Density tests. It should be noted, however, that the dynamics of the shaping

filter are most interesting at frequencies above the probable telescope pointing

bandwidth. Within the system bandwidth, the gyro PSD's are largely flat, meaning

that the drift rate is essentially random.

An earlier Kalman filter formulation has been modified to include both the

contribution of image motion and the more advanced gyro noise model. The modi-

fication to add image motion simply includes the addition of a gyro command term

corresponding to the projected image motion.

The addition of the gyro noise shaping filter should readily provide improved

drift estimates at high sampling rates. As the sample rates decrease, however, the

observability of drift decreases as well, to the point where the shaping filter should

be omitted. This is due to the fact that the gyro shaping filter natural frequencies

are far faster than the slow integration times that are required to track a dim star.

The order of the estimator state equations may then be reduced by modelling gyro

drift rate as random noise. The gyro drift angle is then a random walk process.
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The error characteristics of the NASA DRIRU-II gyro package lead to lower

overall estimate errors and improved pointing accuracy when compared to sim-

ilar results for the Ferranti 125 gyro model. The documented tradeoff between

increased gyro drift angle at longer integration times and increased star tracker

noise at short integration times is still evident, resulting in the presence of an

optimum sampling rate for a given star magnitude.

Further work needs to be completed before flight, however. This analysis

did not include the sizable contribution that star image shape may have upon

absolute accuracy or investigate in any depth the effect of nonlinear motion upon

performance. If the uncertainty of image motion turns out to be enough to lose

track of the target in the infrared field of view, then other methods will have

to be devised to close the loop around the infrared target to achieve acceptable

performance. The use of scientific instruments within the control scheme may serve

this purpose.
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Appendix

1. Computer Listing—Original Star Simulation [PAR-1] A-l

2. Computer Listing—Star Simulation With Moving Image
RCA 501 CCD



PAdE 58 A_i
Of POOR QUALITY

C
C STAR TRACKER SIMULATION
C
C

REAL*4 10,M
DIMENSION HLS{4),VLS(4),HS(4).VS(4),PXY(11),
1 PYF(11),PY(11),P(11)
INTEGER*4 SIC(4,4),SUM
M=11.0
XC=0.3
YC=O.5O
XCM=XC*3O.
YCM=YC*18.
FOV=9OO.
AMPNSE=50.

C
C INTEGRATION PARAMETERS

ISTEP=10
ISTEP1=1STEP+1
P1O=10.**.2

C
DO 1O30 JC=1,2O
T=O.O1*(P1O**(JC-1))
IELAG=0

C
C PEAK SURFACE-CHARGE INTENSITY

IO=T*(7.3E+9*(10.**(-.4*M)))/2829.4478
S=O.O

C
C INTEGRATE SURFACE-CHARGE DENSITY OVER PIXEL AREAS
C
C I=PIXEL COLUMN

DO 10O2 1=1,4
VLS(I)=0.

C
C J=PIXEL ROW

DO lOOO J=l,4
XL=3O.*(J-1)-52.O
YL=18.-(I-1)*18.
DO 1O2 KY=1/ISTEP1
.Y=YL+ (KY-1) * 18. /ISTEP
DO 10O KX=1,ISTEP1
X=XL+(KX-1)*14./ISTEP

C
C SURFACE-CHARGE DENSITY

R=SQRT((X-XCM)**2+(Y-YCM)**2)
IF (R.GT.43.25) PXY(KX)=O.
IF ((R.LE.43.25).AND.(R.GE.14.41667)) PXY(KX)=
1 10*(l.-(R-14.41667)/28.83333)

100 IF (R.LT.14.41667)PXY(KX)=IO
C

H=14./ISTEP
CALL QTFE(H,PXY,PYF,ISTEP1)

102 PY(KY)=PYF(ISTEP1)
H=18.O/ISTEP
CALL QTFE(H.PY.P.ISTEPl)
SIG(I,J)=P(ISTEP1)

L*

C CHECK FOR PIXEL SATURATION
IF (SIG(I,J).GE.250OOO)SIC(I,J)=250000
IF (SIG(I,J).EQ.250000)IFLAG=1

C
C VERTICAL LINE SPREAD
100O VLS(I)=VLS(I)+SIG(I/J)

\—
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C TOTAL SIGNAL
1002 S=S+VLS(I)
C
C WRITE SIC TO DATA FILE
C DO 1OO3 1=1,4
C 1003 WRITEJ31.5)(SIC(I,J).J=l,4)
C 5 FORMAT(' '.4I1O)

C HORIZONTAL LINE SPREAD
DO 1OO4 J=l,4
HLS(J)=O.
DO 10O4 1=1,4

1004 HLS(J)=HLS(J)+SIG(I,J)
C
C
C

C
C
C

C
C

C
C
C

C
C

C
C
C

62
C
C
C

C
C

C
C
C

ERROR IN INTERPOLATED HORIZONTAL POSTION

SH=1.5*(HLS(4)-HLS(1))+.5*(HLS(3)-HLS(2))
HREG=SQRT(.4933333+1.90476*SH/S)
XT=-.702381+HREG
XT=SH/S

(PIXELS)
XE=-XC+XT

(ARCSEC)
FOVH=1.29545*FOV/190.
XEA=XE*FOVH

ERROR IN INTERPOLATED VERTICAL POSITION

SV=1.5*(VLS(4)-VLS(1))+.5*(VLS(3)-VLS(2))

(PIXELS)
YE=-YC-SV*1.31926/S

YE=-YC-SV/S

(ARCSEC)
FOW=FOV/244.0
YEA=YE*FOW
IF (IFLAG.NE.l) WRITE(31,62)T.XE.YE
FORMAT(' ',3F15.8)

SENSITIVITY OF INTERPOLATED POSTION TO LINE-SPREAD NOISE

GO TO 1030
HORIZONTAL SENSITIVITY
S2=S**2
HS
HS
HS
HS

=(-1.5/S-SH/S2)**2
=(-.5/S-SH/S2)**2
=(.5/S-SH/S2)**2
=(1.5/S-SH/S2)**2

VERTICAL SENSITIVITY
vs
vs
vs
vs

-1.5/S-SV/S2)**2
-O.5/S-SV/S2)**2
0.5/S-SV/S2)**2
1.5/S-SV/S2)**2

NOISE IN INTERPOLATED VERTICAL POSTION

VE=O.
VTRE=O. /
DO 1014 1=1.4
SUM=O
DO 1016 J=l,4
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C VERTICAL LINE-SPREAD NOISE (SHOT+BKCRND)
1016 SUM=SUM+SIG(I,J)+AMPNSE**2-

1O14 VTRE=VTRE+VS(I)*SUM

C (PIXELS)
VTRE=SQRT(VTRE)*1.31926

C (ARCSEC)
VTREA=VTRE*FOW
VETA=SQRT (VSTA* * 2 +VTREA* * 2)

C NOISE IN INTERPOLATED HORIZONTAL POSITION
C

HTRE=0
DO 1O18 J=1.4
SUM=0
DO 102O 1=1.4

C
C HORIZONTAL LINE-SPREAD NOISE
1O2O SUM=SUM+SIG(I,J)+AMPNSE**2
C
1018 HTRE=HTRE+HS(J)*SUM

HTRE=O.95238*HTRE/HREG

C (PIXELS)
HTRE=SQRT(HTRE)

C
C (ARCSEC)

HTREA=HTRE*FOVH
C
C NOISE COVARIANCE FOR INTERPOLATED HORIZONTAL POSITION

R=HTREA**2
C
C IF (IFLAG.EQ.l) WRITE(22,42)
42 FORMAT(' SATURATION')

103O CONTINUE
C 103O WRITE(23,4)T,HTREA

4 FORMAT(2(1PE14.6))
STOP
END

C
C
C
C TRAPEZOIDAL INTEGRATION ROUTINE
C

SUBROUTINE QTFE(H,Y,Z,NDIM)
DIMENSION Y(l),Z(1)
SUM2=O.
IF (NDIM-1) 4,3,1

1 HH=O.5*H
DO 2 I=2,NDIM
SUM1=SUM2 -
SUM2=SUM2+HH*

2 Z(I-1)=SUM1
3 Z(NDIM)=SUM2
4 RETURN
END
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C CV4RCA.FOR
C
C
C
C STAR TRACKER SIMULATION-SMEARED IMAGE.
C NO MODIFICATION TO ALGORITHM
C 4X4 PIXEL SUBARRAY
C --- - 7-
C Data for RCA 501 CCD, 512colX32Orows.
C Each pixel 30x3O microns
C This version includes correction for
C estimated tracking velocity

C
C

REAL'S IO,M,HLS(4).VLS(4).HS(4).VS(4).PXY(31),
1 PYF(31) ,PY(31) ,P(31) ,SIG(4,4) ,TSIG(4,4)
INTEGER*4 SUM.ISIG(4,4)

C*
C Input star magnitude, initial star location in
C pixels, field background noise level, pixel
C horizontal and vertical field of
C view (arcsec). Convert from pixels to microns.

M=14.0
XC=O.6
YC=O.3
XCM=XC*30.
YCM=YC*30.
AMPNSE=98.O
P1O=10.**O.2

C
C Pixel field of view based on 18 arcmin dia.
C --512colx320rows
C

FOW=5.625
FOVH=5.625

C
C Pixel Integration parameters
C

ISTEP=30
ISTEP1=ISTEP+1

C
C Input scan rate (microns/sec) and angle (rad)

SCAN=1.12
C SCAN=.8

ANGLE=3.14159/6.O
L*.

C Assume a limited accuracy in known target motion

SCANACC=O1.O
SCANA=SCANACC*SCAN

C
C - -
C
C Start loop A--vary pixel integration time
C

DO 1030 JC=1,20
IFLAG=O
T=0.01*(P10**(JC-1))
CT=100.0
TI=T/(CT+1.0)

C
C Peak surface charge intensity for a given
C magnitude and integration time
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IO=TI*(7.3E+9*(lO.**(-.4*M)))/2829.4478
w

C Initialize signal levels
C

S=O.O
DO 3 1=1.4
DO 3 J=l,4

3 TSIC(I,J)=Q.O
C
C Start loop B--move star image across pixel
C during a given integration
C

DO 112 IT=1,CT+1
XCMM= (IT-1) *COS (ANGLE) *SCAN*T/CT-OCCM
YCMM=(IT-1)*SIN(ANGLE)*SCAN*T/CT+YCM

C
C Integrate surface-charge density over pixel areas
C
C I=Pixel Column
C

DO 1002 1=1,4
VLS(I)=0.

C
C J=Pixel Row
C

DO lOOO J=l,4
XL=30.*(J-1)-60.0
YL=3O.-(I-1)*3O.
DO 102 KY=1,ISTEP1
Y=YL-»-(KY-1) * 30./ISTEP
DO 1OO KX=1,ISTEP1
X=XL+(KX-1)*30./ISTEP

C
C Surface charge density (trapezoidal image)
C

R=SQRT((X-XCMM)**2+(Y-YCMM)**2)
IF (R.GT.43.25) PXY(KX)=0.
IF ((R.LE.43.25).AND.(R.GE.14.41667)) PXY(KX)=
1 10*(l.-(R-14.41667)/28.83333)

100 IF (R.LT.14.41667)PXY(KX)=IO

C Integrate surface charge density over pixel area
C

H=30./ISTEP
CALL QTFE(H.PXY.PYF.ISTEPl)

102 PY(KY)=PYF(ISTEP1)
H=30.0/ISTEP
CALL QTFE(H,PY,P,ISTEP1)
SIG(I,J)=P(ISTEP1)

C
TSIG (I. J) =SIG (I. J) +TSIG (I. J)

C
C Check for pixel saturation
C
C IF (TSIG(I,J).GE.39OOOO.)TSIG(I,J)=39OOOO.
C IF (TSIG(I,J).EQ.39000O.)IFLAG=1
C
lOOO CONTINUE
1O02 CONTINUE
112 CONTINUE

C
C-- - ---
C
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C Convert pixel signal to integer value
C

TS=0.0
DO 111 IR=1,4
DO 111 JR=1,4
TS=TS+TSIG(IR.JR)

111 ISIG(IR.JR)=TSIG(IR.JR)
C
C Calculate horizontal line spread
C

DO 1O04 J=l,4
HLS(J)=O.
DO 1OO4 1=1,4

1004 HLS(J)=HLS(J)+ISIG(I.J)
L»
C Calculate vertical line spread

DO 1OO6 1=1.4
VLS(I)=0.
DO 1O05 J=l,4

1005 VLS(I)=VLS(I)+ISIG(I,J)
1006 S=S+VLS(I)
C
C Error in interpolated horizontal position
C with no geometrical correction factors

SH=1.5*(HLS(4)-HLS(1))+.5*(HLS(3)-HLS(2))
XT=SH/S

C
C Correct postion estimate based on known
C target velocity. Positions calculated for
C uncertain target velocities as well.

XTCV=XT+T*SCANA*COS(ANGLE)/(2.0*30.0)
XTCV9=XT+T*0.9*SCAN*COS(ANGLE)/(2.0*30.O)
XTCV99=XT+T*0.99*SCAN*COS(ANGLE)/(2.0*3O.O)
XTC999=XT+T*0.999*SCAN*COS(ANGLE)/ (2.O*3O.0)

C
C Error in pixels
C

XE=-XCMM/3O.0+XTCV
XEU=-XCMM/30.0+XT
XE9=-XCMM/30.0+XTCV9
XE99=-XCMM/30.0+XTCV99
XE999=-XCMM/30.O+XTC999

C
C Convert to arcsec
C

XEA=XE*FOVH
XEUA=XEU*FOVH
XE9A=XE9*FOVH
XE99A=XE99*FOVH
XE999A=XE999*FOVH

C
C Error in interpolated vertical position
C with no geometrical correction factors
C

SV=1.5*(VLS(4)-VLS(1))+.5*(VLS(3)-VLS(2))
YT=-SV/S

C
C Correct vertical postion estimate based on
C known target velocity. Also calculate the
C effect of motion uncertainty.

YTCV=YT+T*SCANA*SIN(ANGLE)/(2.0*30.0)
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C
C
C

C
C
C

YTCV9=YT+T* . 9*SCAN*SIN(ANGLE) /(2.0*30.0)
YTCV99=YT+T* . 99*SCAN*SIN (ANGLE) / (2 .0* 30.0)
YTC999=YT+T*.999*SCAN*SIN(ANGLE)/(2.0*30.0)

Calculate error in pixels

YE=-YCMM/30.0+YTCV
YEU=-YCMM/30.0+YT
YE9=-YCMM/3O.O+YTCV9
YE99=-YCMM/3O.0+YTCV99
YE999=-YCMM/3O.0+YTC999

Convert to arcsec

YEA=YE*FOW
YEUA=YEU*FOW
YE9A=YE9*FOW
YE99A=YE99*FOW
YE999A=YE999*FOW

ERR=SORT(XEA* * 2 +YEA* * 2)
ERRU=SQRT(XEUA* * 2+YEUA* * 2)
ERR9=SQRT(XE9A**2+YE9A**2)
ERR99=SQRT(XE99A* * 2+YE99A* *2)
ERR999=SORT(XE999A**2+YE999A**2)

C
C
C

Print results

WRITE(34,62)T,ERR.ERRU,ERR9. ERR99.ERR999
62 FORMAT(' ',6E12.5)

IF (IFLAG.EQ.l) WRITE(34.63)

C
C-
C
C
C
C
C
C

C
C
C

63 FORMAT(' SATURATION1)

SENSITIVITY OF INTERPOLATED POSTION TO
LINE-SPREAD NOISE

Calculate horizontal uncertainty terms

S2=S**2
HS
HS
HS
HS

-1.5/S-SH/S2)**2
-.5/S-SH/S2)**2
.5/S-SH/S2)**2
1.5/S-SH/S2)**2

Calculate vertical uncertainty terms

C
C
C

VS
VS
VS
VS

-1.5/S-SV/S2)**2
-0.5/S-SV/S2)**2
0.5/S-SV/S2)**2
1.5/S-SV/S2)**2

Calculate noise in interpolated vertical position

VE=O.
VTRE=0.
DO 1014 1=1,4
SUM=O
DO 1016 J=l,4

Calculate the vertical line spread noise as a sum of
Shot noise and background noise

"1016 SUM=SUM+ISIG(I,J)+AMPNSE**2

C
C
C
C
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1014 VTRE=VTREWS (I) *SUM
C
C Vertical position Jitter in pixels
C

VTRE=SQRT(VTRE)

C Convert vertical position jitter to arcsec
C

VTREA=VTRE *FOW
C
C Calculate noise in interpolated horizontal position
C

HTRE=O
DO 1018 J=l,4
SUM=O
DO 1020 1=1,4

C
C
C
C

Calculate the horizontal line spread noise as a sum of
Shot noise and background noise

1020 SUM=SUM+ISIG(I,J)+AMPNSE**2
C
1018 HTRE=HTRE-t-HS(J)*SUM

C Horizontal position jitter in pixels
C

HTRE=SQRT(HTRE)

C Convert horizontal position jitter to arcsec
C

HTREA=HTRE*FOVH
C
C R= noise covariance for interpolated position jitter
C

R=HTREA* * 2WTREA** 2
C
C Output

1O3O WRITE(35,4)T,SQRT(HTREA**2+VTREA**2) ,R
4 FORMAT(3(1PE14.6))
STOP
END

C
C
C

Trapezoidal integration routine

SUBROUTINE QTFE(H,Y,Z,NDIM)
REAL*8 Y(l) ,Z(1)
SUM2=O.
IF (NDIM-1) 4,3,1

1 HH=0.5*H
DO 2 I=2.NDIM
SUM1=SUM2
SUM2=SUM2+HH*

2 Z(I-1)=SUM1
3 Z(NDIM)=SUM2
4 RETURN
END




