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ABSTRACT

B. Hapke (1984, Icarus 59, 11-59) has criticized the

multiple-scattering theory of K. Lumme and E. Bowell (1981, Astron. J.

86, 1691-1704) by stating, in particular, that energy is not

conserved. It is shown that Hapke's treatment is, in this respect,

inferior to that of Lumme and Bowell, and itself violates the

principal concepts of radiative transfer theory. Hapke's additional

claim that, in Lumme and Bowell's work, the reflectance tends to zero

at the limb is also refuted. Comment is made on the deduction of

surface physical properties by modelling photometric observations.

1. INTRODUCTION

There has been considerable work on modelling the scattering of

visible light in planetary regoliths. The most prominent feature in

the phase curve of an atmosphereless body is the non-linear surge in

brightness as the solar phase angle tends to zero. The first

quantitative explanation of this effect was published almost a century

ago by Seeliger (1887), whose "mutual shadowing" mechanism is still

held to be valid. However, when applied to photometric observations of

atmosphereless bodies, it has been realized that mutual shadowing

alone is insufficient to explain the entire observed backscattered

flux. To better match the observational data on the Moon, Hapke (1966)
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introduced the concept of surface roughness. Later, Lumrae and Bowell

(198la, 198lb; hereafter LB) devised a radiative transfer model in

which the effects of both mutual shadowing and surface roughness were

taken into account. In addition, their model allowed for multiple

scattering between regolith particles, which is particularly important

for high-albedo surfaces. The way in which all three of these

phenomena combine has been a matter of dispute for some time. Hapke

(1982, 1984) has strongly criticized LB, asserting that the singly and

multiply scattered components of the radiation field in a regolith

must be affected by surface roughness in the same way or else energy

will not be conserved. In a reply to Hapke's (1982) contention, Lumme

and Bowell (1982) pointed out that the contrary situation obtains:

namely, that the emergent flux would be underestimated if Hapke were

correct. We show below, in a quantitative way, that such is indeed the

case.

We also comment on a second criticism by Hapke (1984) of LB's

modelling of the effects of surface roughness: that, contrary to

observation, the reflectance tends to zero at the limb. Yet other

disagreements that Hapke has with us, which were stated in his 1982

abstract but not elaborated on in his 1984 paper, we assume were

answered by our short published reply (Lumme and Bowell, 1982) and by

subsequent private discussions; we do, however, discuss the question

of deducing the physical nature of a surface from light-scattering

models.
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2. CONSERVATION OF ENERGY

The calculation of radiation transport in a coherent scattering

medium is a problem of the greatest difficulty unless simplifying

assumptions are made. In the classical sense, radiative transfer

involves light scattering in an infinite, horizontally homogeneous,

plane-parallel medium in which the individual scatterers are in the

far field (e.g., Chandrasekhar, 1960). However, when planetary

regoliths are considered, two problems arise: first, the scattering

medium is no longer horizontally homogeneous because of surface

roughness; second, the individual scatterers (that is, particles) are

not in the far field but rather touch each other. Horizontal

inhomogeneity may be dealt with statistically, since, although locally

disturbed, the observed surface has much greater dimensions than the

roughness and is smooth on a large scale. Problems associated with the

contiguity of particles are probably not serious since individual

particles are thought, on average, to be much larger Q10 urn) than the

wavelength .of light.

At the limit of geometric optics, the radiation field I can be

divided into two components: one consisting of light scattered only

once, termed the singly scattered component II; the other comprising

light scattered twice or more, termed the multiply scattered component

IM- While Ij is certainly affected by horizontal inhomogeneity

(roughness) everywhere in the observed area, the effect on IM is not
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at all clear a priori. It is here that there is sharp disagreement

between the treatments of Hapke (1984) and LB. Hapke claims that both

It and IM are affected equally since multiple scattering can occur

only within a small surface element and not on the larger scale, as

for example between surface elements. In contrast, it is assumed by LB

that only II is affected by roughness and that IM is calculable using

classical radiative transfer theory. It is qualitatively evident that

Hapke's treatment underestimates the total emergent flux because a

compojient of IM is ignored. Thus, Hapke incompletely applies the

concept of multiply scattered light which, by definition, comprises

all light scattered more than once, regardless of the mechanism. In

other words, Hapke considers that IM "remembers" the direction of

incidence (as does Ij), while we believe that 1^ is subject to

random-walk behavior. Naturally, LB's assumption that IM may be

treated by classical means is itself an approximation, although it is

likely that deviations from the (unknown) correct directions of

emergence of multiply scattered rays are random rather than

systematic.

To verify quantitatively our statements regarding energy

conservation in the Hapke and LB models, we have computed the Bond

albedo A as a function of the rms surface slope 6" (in Hapke's

notation) for conservative scattering; that is, when the

single-scattering albedo w0 = 1.0. Obviously, A = 1 = pq, where p is
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the geometric albedo and q is the phase integral, which is related to

the phase function $ by the well-known relationship

ir
q = 2 $(a)sln a da,

0

where a is the phase angle. For convenience, we further assume that

the single-particle phase function is isotropic, that is, independent

of the phase angle, although that assumption is not required. All the

necessary equations are given by LB and Hapke (1984). From LB, we use

Eqs. (25), (46), (47), and (49) in Paper I, and Eqs. (23)-(26) in

Paper II, setting x = 0, D = 0.37, p = 1.17, .5J0 = 1 .0, and g = 0.

Here, x is the contribution to the surface density by particles too

small to cast shadows; D and p are, respectively, the volume density

and surface roughness, with chosen values equal to averages derived

from a large variety of atraosphereless bodies; and g is the asymmetry

factor, the zero value being a consequence of the assumed equality of

forward- and backward scattering for single particles [this assumption

appears to be borne out by the results of modelling photometric data

on the zodiacal cloud (Lumme and Bowell, 1985)]. From Hapke (1984), we

use Eqs. (53) to (55)* and (65) to (67).

*We note that Eq. (54) may be compared to its original form, Eq. (8) of

Hapke (1963). The symbol g denotes the compaction parameter in the

earlier paper and phase angle in the later one. We also note a

misprint in the last term of Eq. (54).
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The result of this comparison is given in Table I. Bond albedos A

and geometric albedos p have been computed as a function of the rms

surface slope "5" (= tan"1 p) by means of a six-point Gaussian

integration scheme. It can be seen from Table I that in both cases

there are deviations from the nominal value A = 1.0, but that the

deviations resulting from Hapke's model are much larger.

3. SURFACE BRIGHTNESS AND THE ROUGHNESS CORRECTION

As the second example of a "serious error" by LB, Hapke (198*0

claims that the roughness correction "makes the reflectance approach

zero at the limb." The general expression for the surface brightness I

in our work is given by Eq. (39) of Paper I*. In refutation of Hapke's

claim, we note that, at the limb, where the geometric quantity E,

(defined by Eq. (10) Paper I) tends to infinity, the surface

brightness tends to 1-q, q being the fraction of the surface occupied

by holes. Thus, unless the surface is entirely saturated with

holes—presumably"a physically unrealistic situation—the intensity at

the limb is finite. The reduction by a factor 1-q affects the

well-known Lommel-Seeliger spike in the brightness near the limb and

*There is an obvious misprint in Eq. (39): the left member should be II

rather than I0.
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at least for the Moon, is not observed. Parenthetically, we note that

Eq. (40) of Paper I, an approximation of Eq. (39), is to be used only

for studies of the integrated brightness and not for the calculation

of surface brightness.

4. DERIVATION OF PHYSICAL PARAMETERS FROM PHOTOMETRY

Hapke (1984) has also asserted that "while it may be possible to

fit some astronomical data to [Lumme and Bowell's] theory, the

relations between the deduced photometric parameters and actual

surface properties of the body are unclear and are likely to be

seriously in error." Since Hapke was unspecific in his criticism, it

is difficult to know quite what he has in mind. However, we believe,

along with Hapke, that modelled optical properties may not necessarily

represent the physical nature of regoliths. It is obvious, for

example, that the modelled volume density may overestimate the true

volume density because of voids inside particles that play little or

no part in the scattering of light; that the whole-disk optical

properties may give no clue as to the heterogeneous nature of a

surface on a small scale; and that, if particles in a surface have

some preferential alignment, the physical nature of the surface could

be erroneously deduced even though the photometric data were

adequately modelled. However, we do believe that, in general,
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differences in the modelled optical properties are indicative of

differences in the physical natures of the surfaces involved. In this

regard, we think our inferences concerning Callisto (LB, Paper II) are

useful, as is one of our basic conclusions in LB, Paper II that,

except for albedo, the global optical properties of most

atmosphereless bodies differ by only modest amounts.

We also believe that the average numerical values for the

roughness (.p"-= 1.17) and volume density (D = 0.37) obtained by LB are

physically plausible; whereas values of the counterparts of these

parameters derived by Hapke are not. The surface roughness has been

discussed above in section II. For the volume density in regoliths,

Hapke derives values of his parameter h that imply 0.03 <• D < 0.1.

Direct, in situ measurements are, of course, lacking, though

laboratory measurements on lunar fines indicate D = 0.4 (from Birkebak

et al., 1971; and Greene et al., 1971),-and for two particulate

terrestrial samples D = 0.28 and 0.42 (Lumme et al., 1980). We find it

hard to understand how planetary regoliths can be almost as porous as

Saturn's rings, for which the modelled D. = 0.02 (Lumme et al., 1983).

\
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TABLE I.

Comparison between Lumme and Bowell's (1981 a) and

Hapke's (198*0 model for the case of conservative (u>0 = 1)

and isotropic (g = 0) scattering.

F

20°

30

MO

50

60

Lumme
A

0.97

0.94

0.93

0.92

0.90

and Bowell
P

0.81

0.81

0.81

0.81

0.81

Hapke
A P

0.88 0.66

0.78 0.61

0.67 0.57

0.56 0.52

0.45 0.48




