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Abstract 

An entropy correction method for the 
unsteady full potential equation is presented. 
The unsteady potential equation is modified to 
account for entropy jumps across shock waves. 
The conservative form of the modified equation 
is solved in generalized coordinates using an 
imp 1 i ci t, approxi mate f actori zat i on method. A 
flux-biasing differencing method, which 
generates the proper amounts of artificial 
viscosity in supersonic regions, is used to 
discretize the flow equations in space. 
Comparisons between the present method and 
solutions of the Euler equations and between the 
present method and experimental data are 
presented. The comparisons show that the 
present method more accurately models solutions 
of the Euler equations and experiment than does 
the isentropic potential formulation. 
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Nomenclature 

speed of sound 
metrics of coordinate 
transformation, Equation (7) 
ai rfoil chord 
time step in computational 
space 
indices of grid points 
identity matrix 
Jacobian of coordinate 
transformation 
reduced frequency based on 
semi chord 
Mach number 
total speed 
distance from point of rotation 
to a point in the flow field 
gas constant 
entropy 
time 
contravariant velocities, 
Equation (6) 
cartesian coordinates 
angle of attack 
p2-Y/J 
ratio of specific heats 
jump in potential across the 
wake 

*Research Scientist, Unsteady Aerodynamics 
Branch, Loads and Aeroelasticity Division, 
Member AlAA. 
**Professor of Mechanical Engineering, 

Associate Fellow AIAA. 
***Professor of Mathematics, Member AIAA. 

e 
as 
p 

p 

'[ 

<j> 

< > 

Subscripts 
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Superscripts 

i­
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difference operator 
computational coordinate 
directions 
polar angle 
airfoil pitch angle 
density 
p/J 

biased density 
computational time 
velocity potential 
average of quantity across the 
wake 

isentropic 
normal to shock 
steady airfoil location 
pitch axis location 
points on airfoil 
minimum airfoil pitch angle 
maximum airfoil pitch angle 
free stream conditions 

lower side of wake 
iteration number 
upper side of wake 
sonic conditions 

Introduction 

Modern ai rcraft typi ca lly operate at hi gh 
speeds where aeroelastic instabilities are more 
likely to occur. To successfully predict and 
analyze such aeroelastic phenomena, the aircraft 
des i gner needs methods that accu rate ly predi ct 
the aerodynamic loads--steady and unsteady--that 
the vehicle experiences. Since many critical 
aeroelastic phenomena occur at transonic speeds, 
methods based on linear aerodynamic theory 
cannot accurately predict many aeroelastic 
responses. Thus, it is necessary to use an 
aerodynamic method that can predict time­
accurate solutions of nonlinear flows and that 
can accurately model shock waves and their 
unsteady motions. 

When shock waves appear in transonic flow 
fields, aerodynamic loads predicted using 
potential flow theory can be grossly inaccurate 
and even multi valued. Multiple solutions of the 
potent i a 1 equation were fi rst observed in two 
dimensions by Steinhoff and Jameson. 1 Salas 
and Gumbert2 showed that the phenomenon is not 



confined to a particular airfoll or flow 
condition. Williams et al. 3 calculated 
multiple solutions using two-dimensional (2-D) 
transonic small disturbance (TSIl) theory. 
Gibbons et al. 4 showed f1lIltiple solutions for 
three-dimensional (3-0) TSD calculations on 
high-aspect-ratio wings. For lower aspect 
ratios, multiple solutions were not observed, 
but calculated lift coefficients were highly 
inaccurate when shock waves were in the flow 
field. 

Since potential theory can yield inaccurate 
transonic aerodynamic loads, aeroelastic 
analysis performed using these loads has to be 
considered unreliable. The inaccuracy is 
primarily a result of potential theory not 
modeling the jump in entropy that a fluid 
particle experiences as it passes through a 
shock wave. Therefore, calculated shock waves 
can have the wrong strength and be in the wrong 
location. 

Currently, the most widely used methods for 
unsteady, nonlinear flow analysis are based on 
TSD theory.5-7 Fuglsang and Williams8 
modeled the effects of entropy jumps through 
shock waves in 2-D TSD theory; Gibbons et al.4 
extended that method to three dimensions. These 
efforts resulted in TSD methods that more 
closely model solutions of the Euler equations 
than does isentropic TSD theory. 

However, TSD theory has some s i gni fi cant 
limitations. Only flows past bodies of small 
thi cknesses at sma 11 angl es of i nci dence and 
undergoing small amplitude unsteady motions can 
be analyzed. In addition, the TSD equations are 
formul ated assumi ng that the free stream Mach 
number is near unity. Because of these 
limitations, the purpose of the present effort 
is to develop an improved method for predicting 
nonlinear, unsteady aerodynamic loads on 2-D 
bodies. A primary objective of this effort is 
to model the nonisentropic effects caused by 
shock waves. 

The present method is based on the unstead~ 
full potential equation. Hafez and Lovell 
presented a method for model i ng entropy jumps 
across shock waves in steady potential flows. 
They showed that by modi fyi ng the i sent ropi c 
density to include the effects of entropy jumps 
across shocks, steady potential solutions closer 
to Euler solutions are obtained. In the present 
effort, Hafez's and Lovell's method is extended 
to unsteady flows. 

A fl ux-bi as i ng differenci ng method10,ll 
is used to discretize the flow equations and to 
model shock discontinuities. To increase 
computational efficiency, grids for unsteady 
calculations are generated, at each time step, 
using linear interpolation between grids 
calculated at extreme airfoil positions. 

Problem Formulation 

Governing Equations 

The formulation used in the present effort 
is that presented by Bri dgeman et a 1.12 The 
flow f1eld is described by the tWO-dimensional, 
unsteady full potential equation in conservation 
form 

2 

where 4> is the velocity potential, and density 
p is determined from Bernoulli's equation 

The spatial coordinates, x and z, are normalized 
by airfoil chord c, and time t is normalized by 
a",/c, where a", is the. free stream speed of 
sound. Ilensity is normalized by the free stream 
density p"" and 4> is normalized by a..c. 

A transformation to 
coordinate system is given by 

a body-fitted 

~ ~(x,z,t) 

t t(x,z,t) (3) 

T = t 

where ~ and t are the computational coordinate 
di recti ons around and normal to the ai rfol1 , 
respectively, -and T is the computational time. 
Strong conservation form of (1) is maintained by 
writing the continuity equation in transformed 
coordinates as 

(.R) + (PU) + (pW) 0 
JT J ~ J t (4 ) 

Equation (2) transforms to 

1 

p = {I + Y21[M:-24>T-(U+~)4>~+(W+~)4>t]}Y-T(5) 

where the contravariant velocities in the ~ and 
t directions, U and W, respectively, are given 
by 

U = ~t + AI4>~ + A24>r; 

W = tt + A24>~ + A34>t 

The metric terms are 

~2 + ~2 
x z 

A - 2 + r2 
3 - tx "z 

(6) 

(7) 

and the Jacobian of the transformation J is 

(8) 

Approximate Factorization 

Equat ion (4) is solved us i ng fi rst order 
backward differencing in time and second order 
central differencing in space as in reference 
12. The time derivative of density is 
linearized about previous time levels such that 
conservation form is maintained. The resulting 
equation is approximately factored into the form 
L~LtA4> = F. This becomes 



h (- n - n-1) + - p - p 
en 

(9) 

where 

t.f = fn+1 _ fn 

and F represents the right side of (9). In (9), 
o~ and o~ represent central difference 
operators, the superscripts n, n-1, and n+1 
represent time levels, 

h = t.T 

P = -J 
2-y 

i! = _P_­
J 

The dens ity bi ased in the ~ di rect ion is gi ven 
by 'il, and F .. is a correction to the residual 
due to incomplete metric cancellation. 12 ,13 

Airfoil Boundary Conditions 

The flow is required to be tangent to the 
airfoil boundary. This condition is imposed by 
requiring 

(10) 

at the airfoil. Equation (10) is applied as 

A2 ~t 
(f~)i ,J = -(AJ f~)i,J - (AJ)i ,J (11) 

where the subscri pt J represents poi nts on the 
body. The tangency condition implies that 

(PW)i,J_l/2 = - (PW)i,J+l/2 (12) 
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USing (11) and (12), the flow tangency condition 
is imposed implicitly on both sides of (9) by 
changing the L~ and L~ operators to 

2 
n h2 _ n A2 n 

L~ = [I + hU o~ - ~~P (AI - A:""") o~] 
a 3 

2 
L = [I - ~o (-A )no J ~ en~P3 ~ 

and by representing the o~(PW) term on the 
right side as 2(PW)i ,J+l/2. 

Dynamic Grids 

To apply the flow tangency condition at the 
instantaneous surface position of moving 
ai rfoils requi res a new grid at each time step. 
Since the resources needed to compute these 
grids using an elliptic method 14 can be more 
than those necessary to do the aerodynamic 
calculations, an efficient interpolation method 
is used to generate the requi red gri ds. To 
simulate harmonic motions, the elliptic 
method14 is used to calculate grids at the 
extremes of the motion. Grids for all other 
airfoil positions are then generated using 
interpolation. Interior grid points are 
redistributed at each time step, while pOints on 
the outer boundary remain fixed. 

The method is illustrated in figure 1 for 
an airfoil pitching about a point xp. A polar 
coordinate system centered at xp is used. 
Using the subscripts 1 and 2 to denote the 
minimum and maximum pitch angles, the position 
of a grid point at any time T is given by 

9(T)-9 l 9 (T) = 91 + 9 s _ 9 S (92 - 91) 
s2 sl 

(14 ) 

where 9s (T) is the instantaneous airfoil pitch 
angle, 

1 

r1 (x~ + z~i2 

1 

r2 = 2 22 (x 2 + z2) 

Z 
9 = tan- l (....!) 

1 xl 

Z 
92 = tan- l (-1.) x2 

Interpolated grid pOints are then gi ven by 

X(T) = r(T)cos9(T) 

Z(T) = r(T)sin9(T) 



Points on the body. Xs and zs. are defined 
at each instant by 

XS(T) = xp + (xo- Xp)COS6s(T) + zosin6s(T) 

where the subscri pt 0 represents steady state 
locations. The time-dependent metric terms 

are then computed using first order differences 
for xT and zT" 

To demonstrate the interpolation method. 
figure 2 shows grids for an airfoil pitching 
about its quarter chord and the angle of attack 
aCT) given by aCT) = 22.5°(1 + sin(b)). The 
calculated grids for aCT) = 0° and 45° are shown 
in figures 2a and 2d. respectively; they were 
generated with the GRAPE programl'l which uses 
an elliptic method. The interpolated grids for 
aCT) = 15° and 30° are shown in figures 2b and 
2c. Even for such large angles. the 
interpolation works successfully. The details 
of the near-field grids cannot be seen. but the 
grids remain near orthogonal; the metric A2. 
which is a measure of the skewness of the grids 
is much smaller than Al and A3 over the 
entire grid. If A2 = 0 everywhere. the grid 
would be perfectly orthogonal. Grid lines 
intent i ona 11y were not plotted across the wakes 
to make those regions easy to identify. 

Unsteady Wake Condition 

For lifting flows. the shed vorticity is 
represented as a jump in potential across a wake 
line. The following wake boundary condition 12 
is used in the present effort 

r + <w>r = 0 
T 1; 

(15) 

where r is the jump in potential across the 
wake. 4>u - 4>i. and <W> is the average of W 
above and below the wake. 1/2(WU + Wi). The 
unsteady transport condition for the jump in 
potential. (15). is obtained by assuming that 
the isentropic density and normal velocity are 
cont i nuous across the wake. It does not model 
the jump in entropy across the wake that can 
result when shocks of different strengths are on 
the upper and lower surfaces. However. Hafez 
and Lovel1 9 have demonstrated that assuming 
the isentropic density to be continuous across 
the wake is a good approximation for the full 
potential formulation with entropy corrections. 

Far-Field Conditions 

In the far field. the flow is set to free 
stream conditions 

p = 1 

where Mm is the free stream Mach number. 
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Flux Biasing 

The residual terms on the right side of (9) 
are centrally differenced about the node point 
(i .j) to give 

'U 

1i~(JPU). . 
.. 1.J 

'U 'U 

(jU)i+l/2.j - (jU)i_l/2.j 

The computational cell is shown in figure 3. In 
supersonic regions. artificial viscosity. 
necessary to -capture shocks. is introduced by 
biasing the density in' the upwind direction. 
Although it is generally necessary to upwind the 
density in both computational directions. in 
this work. upwinding only in the ~ direction has 
been fo~nd to be satisfactory. The biased 
density p is defined as (for U > 0) 

"6i +1/ 2•J' q 1 [pq - t.~(pq)~]i+l/2.j 
i +1/2.j 

+ (pq)1-1/2.j] (16) 

where 

(pq)- pq - p*q* 

o 

q > q* 

q < q* 

(17) 

q is the flow speed (q2 = 4>; + 4>;). and q* and 

p* are the sonic speed and density. 
respectively. given by 

(19) 

For steady flows. p* and q* are constants that 
are computed once. but for unsteady flows. p* 
and q* must be computed at each gri d poi nt at 
every time step. 

Flux biasing is an improvement upon density 
biasing since it (a) accurately tracks sonic 
condit ions and requi res no empi ri ca 1 constants 
to specify the amount of artificial viscosity. 
(b) produces no velocity overshoots at shock 
waves. thus allowing for larger time 
steps--increasing computational efficiency--for 
unsteady calculations. (c) produces well 
defi ned. monotone shock profil es wi th a maxi mum 
two point transition between the upstream and 
downstream states. and (d) dissipates expansion 
shocks. ruling out solutions with such 
nonphysical characteristics. Shankar15 •16 has 
previously used flux biasing in unsteady full 
potential calculations. 

'-



Entropy Correction Method 

When a fluid particle passes through a 
shock wave, it experiences a jump in entropy. 
The entropy jump 65 is a function of the normal 
Mach number upstream of the shock Mn 

(y+l)M2 
As = _1_pn(kM2 _ y-l) _ yln[ n]} 
R y-l y+l n Y+f (y_l)M2 + 2 

n 

(20) 

For unsteady flows, the shock speed 'must be 
monitored to obtain the speed of the flow 
relative to the shock. Here, the entire shock 
is assumed to move at the same speed as the base 
of the shock. To account for the entropy jump, 
the density is modified to 

-AS 

P = Pie 
R (21) 

where the isentropic density, Pi, is given by 
(5). Expandi ng the continuity equation, (1), 
yields 

-AS 

e R[Pi + (Pi~x)x + (Pi~z)z] -
t 

o 
(22) 

where u = <i>x, and w = ~z. The last part of 
(22) vanishes since ~~ = 0 in the isentropic 
flow regions. The remaining part of (22) is the 
classical potential equation except across shock 
waves and wakes where there is a jump in 
entropy. Hafez and Love 11 9 showed that 
assuming the isentropic pressure to be 
continuous across the wake 1S a good 
approximation except near the trailing edge. 
Thus, that assumption is made here, and the wake 
condition in (15) is used for all nonisentropic 
calculations. 

To implement the entropy corrections, the 
difference operator at shock points is 
modified. Equation (4) is discretized as 

- n+l - n '" n+l 
Pi,j -Pi,j+(PU) 

h J i+l/2,j 

'" n+l 
(PU) 

J i-l/2,j 

(- )n+l (- )n+l 
+ pW i,j+1/2 - pW i,j-1/2 = 0 (23) 

5 

At shock pOints, (23) is modified to 

-65 -AS 
[(- R)n+1 (- R)n l.!. 

Pi e i,j - Pi e i ,j Jh 

'" n+1 '" n+l 
+ (~U)i+l/2,j - (~U)i_l/2,j 

-AS -65 

+ (pe R W)i,j+l/2 - (pe R W)i,j_l/2 = 0 
(24) 

where As is a function of Mni _3/ 2,j' and 

-65 
R 

(Pie )i+l/2,j + 

_--=-l_(Poq _ p*q*) 
qi+l/2,j 1 i-l/2,j (25) 

The computational cell at shock points is shown 
in fi gu re 4. In the approxi mate factori zat i on 
scheme, this is, implemented by representing 

2 '" 
the ~(p n _ p n-l) and ~[6 (PU) Ii (-W)] r," en E;J+1;P 

terms in (9) as 

-AS -65 
h R If"" 
-nl(P1oe )~ 0 - (poe )~-~] and e 1,J 1 l,J 

- 65 - 65 

+ (Pie R W)i,j+l/2 - (Pie R W)i,j_l/2]' 

'" respectively, where Pi+l/2 j is given by (25). 
The effect of the entropy correction is to 
introduce a source distribution along the 
shock. The source strength is dependent upon 
As. 

Results and Discussion 

Steady pressures on an NACA 0012 ai rfoi 1 
have been calculated using the isentropic and 
nonisentropic formulations. Euler 
calculations 17 at the same flow conditions 
were also made. Unsteady pressures on the NACA 
0012 oscillating in pitch about its quarter 
chord were computed using the isentropic and the 
nonisentropic methods. Comparisons of those 
ca 1 cu 1 ated pressu res wi th TSD ca i cul at ions and 
with experimental data were made. The above 
unsteady calculations were made using grid 
interpolation to simulate the airfoil unsteady 
motion. In addition, unsteady calculations were 
made using grid rotation to simulate the airfoil 
motion. Comparisons of the unsteady results 



obtained by the two methods were made. Steady 
pressures on the NLR 7301 airfoil were computed 
using the isentropic and the nonisentropic 
methods. Comparisons between the isentropic 
method, TSO, and experiment and between both 
full potential methods, Euler calculations, and 
experiment were made. All calculations were 
made using O-type grids with 101 points around 
the airfoil and 31 points outward from the 
ai rfoil. 

NACA 0012 

In this section, the calculations made for 
the NACA 0012 airfoil are presented. These 
results demonstrate the accuracy of the present 
isentropic potential method and the improvements 
that result when the effects of entropy are 
modeled. 

Figure 5 shows the steady pressures that 
are calculated uSing the potential methods and 
an Euler method 17 for M~ = 0.84, a = 0°. 
For this airfoil, the flow conditions are in the 
region where multiple solutions are known to 
occur. The isentropic result in figure 5 shows 
an asymmetric solution with negative lift. The 
other possible solutions are an asymmetric 
solution with positive lift (the opposite of the 
solution in figure 5), and a symmetric solution 
with zero lift. The Euler solution for this 
case is symmetric with zero lift. When 
entropy corrections are used, the potential 
method yields a symmetric, nonlifting solution. 
The calculated pressure distribution agrees very 
well with that obtained by solving the Euler 
equat ions.17 By model i ng the shock-generated 
entropy, the nonphysical asymmetric solution is 
eliminated, and a symmetric pressure 
distribution is obtained. 

Calculated unsteady pressures on an 
NACA 0012 oscillating in pitch about its quarter 
chord, aCt) 0.016° + 2.51°sin(kt), at 
M~ = 0.755 and k = 0.0814 are shown in fi gures 
6a-6f. Included in the figures are isentropic 
full potential (FP) calculations, TSO 
calculations made using the code of reference 6, 
and experimental data. 18 The instantaneous 
pressure distributions show that the present 
method agrees very well with experiment over the 
ent ire range of unsteady mot ion. These 
calculations show the increased accuracy that is 
obtained by going from TSO theory to full 
potential and applying the flow tangency 
condition on the actual airfoil boundary. The 
most notable improvement is the accuracy of the 
computed pressures on the forward portion of the 
ai rfoi 1. The present method does a much better 
job of calculating the flow over this portion of 
the ai rfoi 1 than does the TSO method. The FP 
shock positions and strengths show good 
agreement with the experimental data, although 
the shock waves generally are further aft and 
stronger than the measured shocks. This is the 
expected result for an isentropic potential flow 
method. 

For improved accuracy of the FP method, the 
effects of shock-generated entropy are included 
in the ca 1 cu 1 at ions. The correspondi ng resu 1 ts 
for the case of figure 6 are shown in in figures 
7a-7f. Those figures show the isentropic and 
nonisentropic pressures and experimental data. 
Generally, at each instant 'in the cycle of 

6 

motion, the effects of the entropy corrections 
are to weaken the shock and move it forward such 
that the noni sentropi c pressures agree better 
with the measured data than do the isentropic 
pressure distributions. In figure 7d, the 
position and strength of the isentropic shock on 
the lower surface are in excellent agreement 
with the measured data, and the effects of 
entropy cause vi rtually no change. Includi ng 
the effects of entropy generally does not result 
in more accurate modeling of the flow 
immediately downstream of shock waves. This is 
because the thickening of the boundary layer 
that occurs downstream of embedded shocks is not 
modeled in the inviscid formulation. At points 
in the cycle where the shocks become strong, the 
measured pressures immediately behind the shocks 
show the effects of boundary layer thickening. 

In calculating the pressures of figures 6 
and 7, the airfoil motion was simulated by 
interpolating the grids between the extreme 
airfoil positions. An attempt was made to 
simplify the calculations by rotating the entire 
grid to model the airfoil motion. The metrics 
were recomputed at each time step, and the 
airfoil boundary condition was applied at the 
instantaneous surface position. Examples of the 
unsteady pressures calculated using this 
procedure are shown in figures 8a and 8b. The 
calculations correspond to those in figures 6a 
and 6e, respectively. Included in the figures 
are experimental data and the isentropic 
pressures calculated by interpolating grids to 
simulate airfoil motion. It is seen that 
rotating the entire grid causes large 
differences in the calculated pressures and very 
poor agreement with the measured data. Thus for 
the current formulation, grid rotation sh~uld 
not be used. It should be noted that Malone and 
Sankar19 successfully used grid rotation and 
translation for unsteady full potential 
calculations. That method uses a different 
linearization and different far-field boundary 
conditions than those used here. 

NLR 7301 

Steady pressures on the NLR 7301 airfoil at 
its design condition, M~ = 0.721 and 
a = -0.19°, are shown in figure 9. Included are 
isentropic FP calculations, TSO calculations, 
and measured pressures. 20 Again, the improved 
accuracy that is obtained with the full 
potential formulation is evident. Although the 
level of pressures on the upper surface is 
higher than the experimental values and the 
shock is too strong and aft of its experimental 
location, the present method correctly predicts 
the trend of the pressure distributions. The 
TSO method predicts two shocks on the upper 
surface-- one on the forward portion of the 
airfoil and another near the measured shock 
location. 

Entropy corrections were applied to the 
case of figure 9; the results are shown in 
figure 10. That figure shows a comparison of 
the isentropic and nonisentropic FP pressures" 
Euler17 pressures, and experimental data. 2u 
The effects of modeling the shock-generated 
entropy are to weaken the shock and move it 
forward. The level of pressures upstream of the 
FP shock remain higher than those of the Euler 
pressures and the experimental data. 



Concluding Remarks 

A method for modeling the effects of 
shock-generated entropy has been developed for 
the unsteady full potential equation. This was 
accomplished by modifying the isentropic density 
immediately downstream of shock waves to account 
for the local jump in entropy. The entropy 
correction method was implemented in a 
two-dimensional full potential code that used a 
flux biasing differencing method to discretize 
the flow equations. The resulting method was 
tested for steady and unsteady flow past an 
NACA 0012 ai rfoi 1 and for steady flow past an 
NLR 7301 airfoil. Comparisons of the isentropic 
and nonisentropic calculations were made with 
transonic small disturbance and Euler 
calculations and with experimental data. 

For the NACA 0012 airfoil, modeling the entropy 
effects alleviated the phenomenon of multiple 
solutions in a st.eady flow case. In that case, 
a unique solution that showed good agreement 
with an Euler solution was obtained. For 
unsteady flow, the primary effects were to 
weaken the shock and to cause slight changes in 
its location. In comparisons of the unsteady 
calculations with experimental data, the 
nonisentropic shock always moved toward the 
measured shock location. 

Calculations for the NLR 7301 airfoil at 
its design condition also showed the effects of 
the entropy corrections to be a slight weakening 
and forward shift of the shock from its 
isentropic location. The calculated pressures 
show the correct trends, but the pressure levels 
are too hi gh. 

To summarize, the entropy correction method 
alleviated the phenomenon of multiple solutions 
in a case where it was observed. The primary 
effects of mode ling shock-generated entropy are 
to weaken and cause a slight shift of the shock 
position. 
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Grid interpolation method:--i-
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a) Calculated grid. a = 0 b) Interpolated grid. a = 15 

c) Interpolated grid. a = 30
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d) Calculated grid. a = 450 

Figure 2. Example of grid interpolation. 

8 



,hOCk Wave 

\ 
I·J+1 r----- ~-----, . 

I 
I 

-- I.J+ l 
r--- ------, 

I 
I 

I I 
I I 
I 

l-i·J I.J LI+1·J 
.!, 

I 

I-~.J I.J I 1 .t 1+ 2 ·J 
I 
I 

I 
I 

I I 

I I 
I 

I I 
I I L ______ ; _______ ..J 

I·J-1 
------ .~ ~ ------.! 

1 I·J- 2 

Figure 3. Computational cell in interior of 
flow fi el d. 

Figure 4. Computational cell at shock points. 
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