NASA Contractor Report 3987

Transmission Line Design for a Power Distribution System at 20 kHz for Aircraft

Leon W. Zelby, John B. Mathes, and John W. Shawver

GRANT NAG3-508
JULY 1986

Transmission Line Design for a Power Distribution System at 20 kHz for Aircraft

Leon W. Zelby, John B. Mathes, and John W. Shawver
University of Oklaboma
Norman, Oklaboma

Prepared for
Lewis Research Center under Grant NAG3-508

N/SA

National Aeronautics
and Space Administration
Scientific and Technical
Information Branch
1986

TRANSMISSION LINE DESIGN FOR A POWER DISTRIBUTION SYSTEM AT 20 kHz FOR AIRCRAFT

Leon W. Zelby, John B. Mathes, and John W. Shawver University of OKlahoma Norman, Oklahoma 73019

1.0 INTRODUCTION

The purpose of this work is to design a transmission line for a power distribution system in aircraft. The line is to operate at 20 kHz , have very low inductance and, consequently, a low characteristic impedance; it must withstand 440 V at an altitude of $15 \mathrm{~km}(50000 \mathrm{ft}$) and 1 kV at 300 km (about 100000 ft), and must be capable of carrying 100 A . The connectors and supports must have a minimum creepage path of 0.635 cm ($1 / 4 \mathrm{in}$.).

Additional considerations of the line design include connectors for parallel loads, number of such connectors, mechanical strength and heat dissipation, dc resistance, and weight.

The fundamental problem in determining the inductance per unit length, and the characteristic impedance of the line is the calculation of inductance or capacitance because $L C v^{2}=1$, with L and C representing the inductance and capacitance per unit length, respectively; and v representing the velocity of wave propagation along the line (in the case of the fundamental mode, the TEM mode, the velocity is governed by the properties of the material between the wires). At a frequency of 20 kHz , the skin depth for copper (resistivity $1.7 \times 10^{-8} \Omega-\mathrm{m}$ conductivity $=5.88 \times 10^{7} \mathrm{mho} / \mathrm{m}$) is $0.46 \mathrm{~mm} \eta 0.5 \mathrm{~mm}$, and the wavelength in free space, is 15.0 km and about 9.0 km in many commercially used insulating materials (relative dielectric constant on the order of 3). Thus, the total length of the line is on the order of 0.02 to 0.033 wavelength which justifies the quasi-static approximations (refs. 1 to 5). The close spacing among the individual conductors strengthen the validity of the relation $L C v_{2}=1$ and of the "quasi-TEM" mode dominance. [Strictly speaking, the TEM mode in this case is not absolutely pure because of two factors: there are two dielectrics between the wires, the insulation and air; and the wires are lossy. As a consequence, there will be an axial component of the electric field, but it is so small that the assumption about TEM is more than satisfactory for practical purposes. Furthermore, with reasonable insulation the shunt conductance (between the wires) will be on order of $10^{-17} \mathrm{mho} / \mathrm{m}$ (ref. 6). As a consequence, the term RG / ω^{2} LC will be on the order of $10^{-14} \ll 1$, so that the propagation constant will very nearly be equal to $\omega \sqrt{L C}$, so that the relation LCv ${ }^{2}=1$ will be satisfied in any practical system.]

The SI system of units will be used throughout this report.

2.0 DETERMINATION OF PARAMETERS

2.1 Introduction

In order to design a suitable transmission line, several parameters need to be determined for different configurations. The parameters are L, the inductance per unit length; C, the capacitance per unit length; Z_{0}, the
characteristic impedance; and R, the resistance per unit length. (G, the shunt conductance per unit length is too small to be included.) L and C are related as indicated above through the relation $L C v^{2}=1$; also, for a lossless line, $Z_{0}=(L / C)^{1 / 2} \Omega$. At a frequency of 20 kHz , the skin depth in copper is 0.467 mm , with the current distributed in a circular cylindrical conductor as shown in figure 1. The distribution is governed by the relation (ref. 7)

$$
\begin{equation*}
\frac{I_{z}}{I_{0}}=\frac{\operatorname{Ber}\left(\frac{r \sqrt{2}}{\delta}\right)+j \operatorname{Bei}\left(\frac{r \sqrt{2}}{\delta}\right)}{\operatorname{Ber}\left(\frac{r_{0} \sqrt{2}}{\delta}\right)+j \operatorname{Bei}\left(\frac{r_{0} \sqrt{2}}{\delta}\right)} \tag{1}
\end{equation*}
$$

where $\operatorname{Ber}(x)+j \operatorname{Bei}(x)=J_{0}\left(j^{-1 / 2} x\right)$, with $J_{0}(x)$ the Bessel function of the first kind and zeroth order, and $j=(-1)^{1 / 2}$. The other symbols are: r, radial distance; r_{0}, the radius of the wire; and δ, the skin depth. In view of this distribution, calculations will be concerned mainly with wires whose diameter does not exceed 1 mm (number 18 AWG wire).

The main parameter is the inductance which should be as low as possible in order to minimize the effects of switching. Consequently, emphasis will be placed on the determination of L which will be calculated two different ways: one method will utilize the definition of inductance (flux linkage per unit current); the other method will utilize the calculation of capacitance from which the inductance will be evaluated from the relation $L=\left(C V^{2}\right)^{-1}=\mu \epsilon / C$ $=Z_{0} \sqrt{\mu \epsilon}$.

2.2 Inductance Calculations

In the following calculations, the permeability of all materials will be assumed to be that of free space $\left(\mu_{0}=4 \pi \times 10^{-7} \mathrm{H} / \mathrm{m}\right)$. The inductance per unit length of a bifilar lead of radius r_{a} (current in each direction is assumed uniformly distributed over the cross section of the wire, see fig. 1) separated from the return lead of radius r_{a}^{\prime} by a distance $D_{a a}{ }^{\prime}$ is (ref. 8)

$$
\begin{equation*}
L_{a a^{\prime}}=\frac{\mu_{0}}{2 \pi}\left[\frac{1}{2}+\ln \left(D_{a a^{\prime}}^{2} / r_{a} r_{a^{\prime}}\right)\right]=\frac{\mu_{0}}{4 \pi}\left[1+4 \ln \left(D_{a a^{\prime}} / r_{a}\right)\right] H / m \tag{2}
\end{equation*}
$$

when the return wire radius is the same as in the first wire (the case here under consideration). For an n wire system (n pairs) one can form an $n \times n$ matrix

where $L_{i j}=L_{j i}$, and calculate the equivalent inductance of the system (refs. 9 and 10)

$$
\begin{equation*}
L_{e q}=\left(\sum_{i=1}^{n} \sum_{j=1}^{n}\left(\frac{1}{L_{i j}}\right)\right)^{-1} H / m \tag{4}
\end{equation*}
$$

which can be determined to any given degree of accuracy (ref. 10).
The FORTRAN program for this calculation, CRIMPD.F, which is listed in appendix A, uses a series of menus to facilitate the entry of different twodimensional conductor geometries. The entries are the coordinates of the centers of the conductors and their respective radii, and they may be entered either in rectangular or polar coordinates, (see figs. 2 and 3 for the polar coordinates).

2.3 Check on Calculations

To check the results obtained from calculations performed according to the above discussion, two additional calculations were performed for several geometries. One check used the extension of equation (2) to multiple parallel conductors

$$
\begin{equation*}
L_{a}=\frac{\mu_{0}}{2 \pi}\left(\frac{1}{2}+2 \ln \frac{D_{a a^{\prime}} \cdot D_{a b^{\prime}} \cdot \cdots \cdot D_{a n^{\prime}}}{r_{a} \cdot D_{a b} \cdot D_{a c} \cdot \cdot \cdot D_{a n}}\right) H / m \tag{5}
\end{equation*}
$$

with the parameters defined in figure 4. The equivalent inductance per unit length was calculated using

$$
\begin{equation*}
L_{e q}=\left(\sum_{i=1}^{n} \frac{1}{L_{i}}\right)^{-1}+\left(\sum_{i=1}^{n} \frac{1}{L_{i}}\right)^{-1} \quad H / m \tag{6}
\end{equation*}
$$

Calculations for 4-, 8-, and 16-conductor arrangements agreed exactly with the other calculations.

The other check utilized the expression for capacitance between two infinitely long conductors of circular cross section (ref. 11) (radius r, distance between centers D)

$$
\begin{equation*}
\left.C=\frac{\pi \epsilon}{\cosh ^{-1}\left(\frac{D}{2 r}\right)}=\frac{\pi \epsilon}{\ln \left(\frac{D}{2 r}+\sqrt{\left(\frac{D}{2 r}\right)}\right.}{ }^{2}-1\right) \quad \mathrm{F} / \mathrm{m} \tag{7}
\end{equation*}
$$

so that the external self-inductance of one conductor is

$$
\begin{equation*}
L=\frac{\mu}{2 \pi} \ln \left(\frac{D}{2 r}+\sqrt{\left(\frac{D}{2 r}\right)^{2}+1}\right) \quad H / m \tag{8}
\end{equation*}
$$

because $L C=\mu \epsilon$. Calculations were performed using the above argument of the logarithmic function instead of using the $D_{i j}$'s. The results, for the ratio of the distance between conductor centers to conductor radius equal to four, are about 7 percent lower than the other calculations. This was to be expected because the internal inductance, $\mu / 8 \pi$, does not appear in equation (8), but its contribution is negligible for the distance-to-radius ratio of four or more, and the 7 percent discrepancy is well within bounds (ref. 10). Note that the dimensional relations of this report meet this criterion: the ratio of the distance between centers to conductor radius never is less than four. Consequently, the error-if any-should not exceed 7 percent, a value usually acceptable in practice.

3.0 CONFIGURATION DATA

3.1 Circular Cylindrical Arrangements

Calculations were performed for wire arrangements of the type shown in figures 2 and 3 . For the single "ring" of wires, as in figure 2, it was found that the best arrangements (i.e., the lowest values of inductance and characteristic impedance) were for alternating current directions in adjacent wires. The values of inductance decrease with increasing number of wires. This circular configuration was not suitable, however, because of the large number of wires needed to reduce the characteristic impedance to acceptable values (on the order of an ohm). Furthermore, with an increasing number of wires, the radius of the "ring" R is increasing, and this leads to inefficient use of space.

A better configuration was of the multiring variety. Tables I and II list values of L per unit length, and of Z_{0} for different number of wires (N represents the total number of wires in the line, with $N / 2$ in the inner and $N / 2$ in the outer ring). The angle θ is defined in figure 3 and represents the shift of the first wire in the outer ring relative to the first wire in the inner ring. As in the case of the single ring, the lowest values were obtained for alternating polarities.

One of the problems with the coaxial arrangement is that the inductances of the wires in the inner ring are lower so that more current is concentrated there relative to the outer ring. This can be compensated by reducing the radii of the wires in the inner loop.

For comparison of the different wire radii, calculations for the arrangement shown in figure 5 were made. The values for the five ring arrangement for the same wire radii (Line 1), and for different radia (Line 2), are listed in Table III. These show that in the latter case, the overall inductance is increased which means that an increase in the number of wires would be required. Clearly, this again suggests not only an inefficient use of space, but also higher L and Z_{0} values than comparable rectangular arrangement (see items 1 and 2 of Table IV).

3.2 Rectangular Arrangement

To carry $100 \mathrm{~A}, \# 4$ AWG wire is recommended (ref. 12) whose cross section is $21.15 \times 10^{-6} \mathrm{~m}^{2}$. Inasmuch as the skin depth at 20 kHz is approximately 0.5 mm , the largest reasonable wire would be \#18 AWG (radius, 0.512 mm ; crosssectional area, $0.8231 \mathrm{~mm}^{2}$). The minimum number of \#18 AWG wires would therefore be 26. In subsequent calculations, a larger number of wires will be used. (Note: the 26 wires do not include the return path which calls for additional 26 wires. The minimum for the line would then be 52 wires \#18 AWG.)

Figures 6 to 8 show the results of 80 -wire 4 by 20 rectangular arrangement which appears to have the best parameters: $\mathrm{L}=10.4 \mathrm{nH} / \mathrm{m} ; \mathrm{C}=2.5 \mathrm{nF} / \mathrm{m}$; $Z_{0}=2.1 \Omega$ (the computer printed values were, respectively, $10.4196,2.5264$, 2.0611). As the method to compute these values was the "inductance" method, the numbers represent the upper bound. The wires in calculation were \#18 AWG, total cross-sectional area in one direction is $32.68 \mathrm{~mm}^{2}$.

A calculation for 256 wires \#24 AWG in an 8 by 32 arrangement, as shown in figure 9, was also made. As expected, the inductance and characteristic impedance values are lower than for the 80 -wire configuration: $\mathrm{L}=3.2 \mathrm{nH} / \mathrm{m}$, $\mathrm{C}=7.9 \mathrm{nF} / \mathrm{m}, \mathrm{Z}_{\mathrm{o}}=0.6 \Omega$ (printout values, respectively, 3.2193, 7.9382, 0.6368); cross-sectional area, $25.1 \mathrm{~mm}^{2}$. Note that the variations of the self-inductance of the individual wires are greater than for the 80 -wire arrangement.

Given the same size wires and the same distances among them, inductances of different size bundies are proportional to the inverse ratio of the number of conductors in the bundle. This was used to arrive at the values listed in Table V for the minimum number of wires required to pass 100-A currents. (if the self-inductances of each of the wires were the same, this relation would hold for any number of wires. Inasmuch as this is not the case (see figs. 7 to 9), the number of wires should be greater than about 20 for the approximation to be acceptable.)

Table V lists several parameters for lines composed of a minimum number of conductors that can carry the rated ($100-\mathrm{A}$) current. The line lengths are 150 m each, so that the dc resistances were calculated for $300-\mathrm{m}$ length to take into account the return path. The total number of wires in each line is twice that listed in the table. The corrections for the ac values were taken from
standard tables (ref. 13), and those for proximity effects from Smith (ref. 14). The proximity effects account for about additional 40 percent of resistance (see Table I and fig. 5 of ref. 14) for a distance-to-radius ratio of four (two in ref. 14 because the distance between the centers in this reference is "2c").

To adjust the value of inductance per unit length and characteristic impedance of the 52 -wire \#18 AWG line listed in Table V, it is only necessary to multiply by $80 / 52=1.5$, which would make $9.7<\mathrm{L}<16 \mathrm{nH} / \mathrm{m}$, and $1.9<\mathrm{Z}_{0}$ $<3.2 \Omega$. Similar adjustments can be made for the other lines.

3.3 Miscellaneous Considerations

At the rated current, about 6.5 W will be dissipated per meter of line, which would mean an increase (ref. 15) between 0.08 to 0.13 K , depending upon the type of insulation. Such temperature rise is not sufficiency large to cause concern.

The coefficient of expansion for copper is on the order of $10^{-6} \mathrm{~m} / \mathrm{K}$ from 25 to 1200 K (ref. 16). At 300 K , the expansion is $16.8 \times 10^{-6} \mathrm{~m}$, which would mean a total of 2.5 mm for the entire $150-\mathrm{m}$ line. This, too, is not considered significant.

For the recommended types of aircraft wire (ref. 17), Mil-W-16878, the dielectric strengths substantially exceed the specification of standing off 1 kV , which - for the recommended configuration - would be on the order $1 \mathrm{kV} / \mathrm{mm}=1 \mathrm{MV} / \mathrm{m}=25 \mathrm{~V} / \mathrm{mil}$. The breakdown strength of polyethylene exceeds $20 \mathrm{kV} / \mathrm{mm}$ at 20 kHz , as does that of polystyrene, Teflon, and polypropylene (ref. 18).

The conductance per unit length between the individual conductors can be calculated from the relation

$$
\begin{equation*}
C / G=\epsilon / \sigma \tag{9}
\end{equation*}
$$

which, for the materials under consideration, will be on the order of $10^{-15} \mathrm{mho} / \mathrm{m}$ (R of the order of $10^{15} \Omega / \mathrm{m}$), using $10^{17} \Omega-\mathrm{m}$ for resistivity (ref. 6). Clearly the losses due to transverse currents can be neglected.

3.4 Connectors and Junction Boxes

A conventional, circular, multipin connector is shown in figure 10 as an example. Junction boxes with connecting wires, with conventional connectors of circular or rectangular shape will fulfill the specifications. The junction box shown in figures 11 (a) and (b) would be more suitable, however, because the interconnecting plates substituted for wires would reduce the inductance locally. Connectors could be of the conventional, multipin variety, with soldered or brazed connections internally. Alternatively, internally the pins could be connected to blades for contact with the conductors. The specific configuration is not very critical, but it would be recommended that the connecting surfaces be gold-plated. The reason for this is to prevent increases of contact resistances as a result of fretting (ref. 19).

3.5 Miscellaneous

In addition to the configurations described above, parallel-plate arrangements of the type shown in figures 12 and 13 were analyzed. That of figure 12, in spite of the very low characteristic impedance (0.14Ω), is thought to be less suitable than the configurations recommended in the next section of the report because the thin plates will very likely buckle. Should the plates be made thicker, the line would be too heavy and too unwieldy. Also, connectors with suitable characteristics would be difficult to design.

The program for the determination of line parameters for the configuration shown in figure 13, for different values of θ, thickness, and spacing, is listed in appendix B. The values of inductances per unit length, and characteristic impedances are at least four times larger than those of the configuration shown in figure 6.

4.0 RECOMMENDATIONS

The line recommendations are made on the basis of the assumption that off-the-shelf availability, or ease for assembly-line production, are secondary to the other attributes such as low impedance, reliability, and the like. As a result, the best choices for the line are listed in Table IV. The total number of wires per $150-\mathrm{m}$ line is listed, with one-half representing the return path. The direction of current alternates between neighboring lines. (The difference between Table IV and Table V is that in the latter one-half of the wires was used in a $300-\mathrm{m}$ long loop for the determination of the total resistance, whereas the number of wires in the former represent two parallel sets each 150 m long.) The alternating current directions have at least two advantages: lowering the inductance of the comparable wire arrangement with adjacent currents in the same direction by at least a factor of four, and by reducing the external magnetic fields which reduces electromagnetic interference. Numbers 1 and 6 in Table IV represent the configurations of figures 6 and 9; the remainder represents the minimum number of wires required for 100-A currents.

Multipin connectors of the type generally available from manufacturers such as Litton, Amphenol, or others, would be satisfactory for the junction boxes shown in figure 11, with gold-plated contacts to prevent increases of resistance due to fretting (platinum plating would also be acceptable).

A general recommendation for any type of line used in an aircraft power distribution system is that instead of one line 150 m long there should be several $5-$, $10-$, or $15-\mathrm{m}$ sections connected in series via junction boxes. The advantage of this would be that in case of failure of a section, it could be easily replaced-even in flight. Also, the several junction boxes at given intervals would facilitate connections to the respective loads.

*
Q1='SELECTION IS OUT OF BOUNDS. TRY AGAIN....'

Q1 CONTINUE DON ONT

	DOUSLEPRECISION A,E,C DOUBLEPRECISION SA, SD,PI, SLOPEANG INTEGER M,K,UUU, JE, ALTPOL CNTEGER UROM, NORP (1:1024) PARAMETER (PI = 3.141592654)
*	
100	Q1=:SELECTION IS OUT OF BOUNDS. TRY AGAIN..."
	DO $140 \mathrm{C}=1.64$
	PRINT**
	$0(1)=0$.
	$x(I)=0$. $Y(I)=0$.
	$\mathrm{L}(\mathrm{I})=0$.
	LO(I) $=0$.
	$\begin{gathered}\text { L } \\ 0\end{gathered}(1)=0$.
	$T(I)=0$.
	$\mathrm{R}(\mathrm{I})=0$.
140	CONTINUE
200	N=1 ${ }_{\text {PRTM }}$
	PRINT* Main Menu"
	PRINT* : 1. Polar coordinate input ${ }^{\text {a }}$
	PRINT*, 2 R Rectangular coordinate ingut*
	PRINT*, S S Run capacitance calculation, (Cheng method) ${ }^{\text {P }}$
	PRINT*', ${ }^{\prime}$ PRINT: Enter new configuration (reset index counter)'
*	PRINT*, "Choose from 1 thru 8..."
	READ**U. 7) Goto 7000
	IF (U.EQ: 6) 60106000
	IF (U.EQ. 5)GOTO 250
	IF
	IFCU EEQ 2) GOTO 2000
	IFCU EQ. 1) GOTO 1000
	PRINT*EGT 8)GOT0 100
	GOTO 200 O
250	PRINT*, RROUTINE NOT OPERATIVE,CHOOSE ANOTHER MODE.m." GOTO 200
*	
* 1000	Polar coordinate input
	PRINT*, Polar coordinate input'
	PRINT*: ${ }^{\text {P }}$ (Automatic ring program'
	PRINT* PRINT (${ }^{\text {a }}$: Individual input',
	PRINT*, 3. Exit to main menu
*	PRINT*'*Choose one.e.'
	IF (U.E日. 3) GOTO 200
	IFU -EQ. 25 GOTO 1500
	IF (U, EQ, 1) Goro 1100
	PRINTAKAD GOTO 1000
${ }^{\star}{ }_{1100}$	Auto polar ring
	PRINT*, Input number of conductors in this ring....' READ*, M
	SA $=2.0 * P I / R E A L C M)$ $S D=S A * 180.0 / P I$

DO 2150 I $I=N, N+K$
PRINT
PRINT*
PRIM
RE

2140
2150
CONTINUE
N=N+K
SOTO 200
* AUTO LINE

${ }_{2210}^{2210}$

```
NNT**'Input number of conductors on this line..."
```

AD **M, In out distance between centers of cons on this line (SPACING)...."
PRADA SPACING distance between centers of cons on this line (SP ACI
SPACING SPACING/1000.
RINT* InPut S lode angle of the line (positive x-axis=0 degrees)
SLOPEANG SLOPEANG*PI/180.0

$1=R(1)=R T(X) \star \star 2+Y(I) * * 2)$
$I)=A \operatorname{COS}(X(I) / S(I)) * 180.0 / P$
(A) "Choose polarity of hires..."
1: Alternating a the 1 st
2: Alternersame as the 1 s
3: Individual ${ }^{\text {I }}$ selected
4: Return to

C
IF (PO LeN), EQ. PPI) THEN
ALTPOL=9
LEIF
ALTPOL
$=-1$
ENDIF

ELSEIF $\operatorname{POL}(1)=$ P' $^{\circ}$.EQ. -1)THEN
ALTPOL=-AL.TPOL

```
\begin{tabular}{|c|c|}
\hline \multirow[t]{2}{*}{} & E \\
\hline & GOTO 200 \\
\hline
\end{tabular}
    *2380 CONTINUE 
        CONTINU
* GOTO 200
            ONTINUE 240 I=N+1,N+M-1
```



```
            READ*fPOL(I)
            CON+M
*
3000 continu
    4000 ll
        PRRAD&,E Input value of dielectric constant....
    MEADA,E
        IF(POL{I)-N-1. I-')GOTO 4220
            IF(POL(I) EQ: '-')GOTO
            lol
            GOTO=4180
            CONTINUE
            * COTO 4
            4220 D(0)=1.0
            F(J=1;N-1
            *)
                        (EG):
                        4240
                            COL(I)=(0.5+2.0*LOG(D(N-1)/R(I)))*100.0
            LO(0)=0.0
            LO(I)=L1(I)+L1(I-1)
            4440 CONTINUE
            M(0) =0 0-0
            *)
            CONTINUSE
            CONTINEE
```

```
goto 4490
```



```
M,
    * Print'(l/)
    PRTNT'(2X,A,T10,A,T20,A,T30,A,T37,A,TSO,A,T60,A/T72,A)','cond','x(mm)','y(mm)','r(mm)",'theta(deg)','polarity','radius','L'
    00(4640 1=1,N-1)GOTO 4600
```



```
    GOTD 4640
    *4600
    4640
    *
    5000
    *
    6000
    8200
N
    continue(
    CONTINUE
M\mp@code{PRINT**}
    PRINT*,' Input Check individuat conductors',
    MRINY*'ilnput number of last conductor to be checked.-."
```



```
    CONTINUECheck another conductor? (1=yes,0=no)..."
    ME{
```



```
    *
    7500
    PRINT*;"Are yousure you want to exit program?'
    M, 2=NO'
    M,
```



```
    *specificrogram laplac
        INTEGER NNIN,NMAX,MMIN,MMAX
        INTEGER P(0:64,0:64)/L
        INTEGER N,M,N1,N2,NS,N4-N1,M2,NS,MS
        INTEGER LMAX-LS,OUX IN,ID,JD,LT
        INTEGER I,J,K,KO,KQ,KT,KMAX,JSL,MM2,MMZ,M2SL,RPN1,RPM1
        RNALGER I'ERLIM-ACAP,DCAP,RPA,RPG-RPC
    REAL ERMAX LAMBDA
    REAL F(0:64,0:64),C(0:18,1:5) ,H,RP1,RP2
    CHAPACTER PS(0.18)*
    CHARACIER PSN:18)*
    RMBA,ERMAX,I,J
    Inity COMMON/CONTOR/NHIN.NMAX,MMIN,MHAX
    *initializations NMIN,NMAX MMTN,MMAX132,64,0,20,0,48
            DATA N_M-NMIN-NMAX,MMINOMMA
```



```
            DATA ERL,N2,N3,N4,M1,N2,NS,MS/4,12,16,4,16,32,6,181
```



```
            DATA LABBDA,LMAX,H/1.4,4,0.125/
            DATA RP1,RPZ,RPN1,RPM1,KD,KTI1,1,16,32,0,01
    * function st atements-m----ENE
    *data ingutS= (A), OUTPUT TYPE (O=ALL, 1=FINAL, 2=DATA FILEM
    PRINT" (A)*, OUTPUT TYPE (O=ALL, 1=FINAL, 2=DATA FILE)?"
    READ* OUT, INPUT TYPE (0=INTERNAL, 1=EXTERNAL, 2=DATA FILE
    PRINT'(A)' 'INPUT TYPE (0=INTERNAL,1=EXTERNAL,2=DATA FILE)
    READ*/IN
    IF(IN EQ= 2)THEN
            READ (3I3-2F6.3)*NMM,LHHSL
            READ ( JO=0,M
                READD(2IS,E15.7,I3):I,N,F(ID,ND),P(ID,JD)
                CONTINUE
            NTINUE
            CALL CNTOUR
        NOTF }99
    ENDIF
        F(IN ILT, })THEN
            PRINTT(A), INPUT SLOPE( 0,0.5,1,2,3=NO FLAP):"
                READ*,SL
    ENDIF
    PRINT (/T2,A-F6.3,A/1,10A5,2AB)',
```



```
    IFEIN LTM 1)GOTO 4
    READ*,N,M,N1,N2-N3-N4,M1,N2,NS,MS,SL,LAM日DA
    PRINT (10IS,2F8.3/1)',N,M,N1/N2/NS,N4,M1,M2/NS/MS,SL/LAMBDA
    PRINT (T3,A/, 4A6):
```



```
    IFEIN =LT: 1)GOTO 5
    READ*,NMIN,NMAX,MMIN,MMAX
    PRINT:(4IGF),NMIN,NMAX,NMIN,MMAX
```



```
    IF\RPI GT. O)THEN
        KD=0
        RP2=RP1
    ELSE
        RP2=ABS(RP1)
        RP1=1.0
        KD=0
        PRINT"(A)'*DIELECTRIC CONFIGURAIION(1=INSIDE,2=OUTSIDE)*
        READ*KKD EF(KD EQ. 1)THEN
            KT=0
            PRINT'(A)','DISTANCE FROM CENTER=?"
            READ*,KT
            RPM1=M1+KT
            RPN1=N
            ELSE
            PRINT"(A)",OUTSIDE LAYER THICKNESS=?"
            READ*,KT
            RPN1=N3+KT
            RPM1=M2+KT
        ENDIF
    ENDI
    RPA=2*RP1
    RPB=2*RP2
    RPC=RP1+RP2
*point type
*homogeneous interior point----------------------------
    dO 7 J=1,5
    7 CONTINUE
    CON & J=1.
        C(6,J)=RPB
B CONTINUE
&ielctric in two adjacent quadrants -m-m-m-m
    C(7,1)=RPC
    C(7-2)=RPC
    C(7,3)=RPA
    C(7,4)=RPPA
    C(7,5)=RPCC*
    C(8,1)=RPA
    C(8,2)=RPQ
    C(8,3)=RPC
    C(8,4)=RPCC
    C(8,5)=RPC*
    C(9,1)=RPC
    C(9,2)=RPC
    C(9,3)=RPB
    C(9,5)=RPA
    C(10,1)=2*RP
        C(10, 2)=RPA
        C(10,3)=RPC
```

```
    *dielctric c(10,5)=2*RPC
        ( (11,1)=RPA
        (11,2)=RPC
        (1,1,3)}=R=RP
```



```
        11,5)=RPC+RPA
        12,1, =RPA
        12,\frac{2}{3}=R=RPC
        12,3)=RPC
        (12,4)}=\textrm{RPPA
        (12,5)}=~RPA+RP
        13,1)=RPA
        13,2)}=2RP
        l
        l
        (14,1)=RPC
        (14,2)}=RPP
        C(14,3)=RPA
        C(14,5)}
```



```
        C(15.1)=RPC
        C(15,2)=RPCB
        15,
        (15,4)=RPB
1 5
        (15,5)=RPC+RPB
        (16,1)=RPC
        (16,2)=RPB
        (16,3)=RP8
        C(16,5)=RPC+RPB
        (17,1)=RPC
        C(17,2)=RPB
    c(17,3)=RPC
    C(17,5)=RPC+RPB
        C(18,1)=RP8
    C(18, 2)=RPC
    C(18, 2)=RPC
    C(18,3)=RPC
    C(18,5)=RPPC+RPG
    *initial point typen
        DO 9 J=0,M
        F(I,J)=0.0
        DC(I-J)=RP1
    9 CONTINUES)=5
*defined boundaries,----1
    600 LS=2,0,-1
        KQ=KMAX/REAL(L)
*upper boundary (x,y=%)*--------------
    DO 15 M=O,N-L
```

```
    15 cONTINUE
    *right boundary ( }x=n,y\mathrm{ )*---------------
        DO 20 J=0,M%L
        P(N,J)=2
    20 CONTINUE
    *lower diglectric boundary ( }x=Y=0)*-
        DO 30 I= (N1+L),(N2-L),L
            p(1,0)=
            DO IS I= (N3+L),N/L
    35 P(I,0)=3
    * left di CONTINUE
        DO 40 j=(M1+L),M/L
        P(0,j)=
    4O CONTINUE
    *defined conductors--------------------------------------
    * center conduct or (x,y)*--------------
    GOnductor (x % Y 
            DO 50 J=0,M1,L
                F(I,j)=1.0
    50 continuej
    *Outer conductor (x,y)*----------------
            0065 T=N2NN3,L
                DO 60 J=0,M2́L
                            conriNUED)=2
    60 CONPINUE
\sigma}\mathrm{ *outer conductor edge(x,y)*---------
    IF(SL GT 2)GOTO 80
    MM2=M2-LMAX 
    D0 75 J=MM2,MM3,L
        SSL=NINT(SL*(N2-I)/L)*L
                M2SL=M2+3SL*(NL-I)/L)*L
                If(((M2SL-(N3-N2+L)) LTMJ,AND=J -LE. M2SL) -OR.
    :
    70 ENDIF
* 80cond
    CONONMUE
    diNIINUE
    80
    IFKKDDGTc fill-
            OO (40Jj=1, (REN1-1)
                IF(P(I,j)=6-GT. 4) THEN
                    ENDIF
                CONTINUE
                IF(KDNEEQ,j) 2)THEN
                ENDIF
    CONTINUE
```

```
            OO 220 J=0_MrL
                cONTINUE
            CONTINUE
                continue
                k=0
        CONTINUE, OR OUT =LT- 1)THEN
        CALL CAPCT(NS,MS/ACAPDDCAP)
            ENDIF
*output
    Ifalysis EO. 2)GOTO 500
        IF(L GT. 1 AND. OUT -GT. 0)GOTO 600
```



```
        ELSE
            SRINT'(TZ-A,Y4,AO,')'A
        : ENDIF
    320 ENDIF,(T2,A-F9-6%1)',
    :MITH.A MAXIMUNM ABSOLUTE ERROR OF:,ERMAX
```



```
    PRINT:(T2,AFFID*6,A/):"CORNER CAPACITANCE (AIR)= *ACAP,*OF/m"
```



```
* solutiongarray printoutme
                            PRINTF(T2,A,), SOLUTION AT n*m POINTS, (x=horiz, y=vert):"
                            PRINNT (T2,33(I4)), (IRND(F(I,3)),I=0,N,L)
                            CONTINUE
```



```
            CALL CNTOUR
            ENDIF
            GOTO 600
*data file output----m
    P(LINEQ(3I3,2FG.3)*,N,M,L,H,SL
            DO 520 J=0,M
                PRINT:(2I3,E15,7,I3)",I,J,F(I,J),P(I,J)
                CONIINUE
510
                CONTINUE
            CRINT:(I3):,-1
            GOTO 999
                ENDIF
*termination-c-E
    PRINT'(//A/,A/I/I')"'CHANGE PARAMETERS? (-1 TO END, 1=FLAP SLOPE,',
    : 2=LAMADA, 3=BOUNDARY CONDITIONS)'
            READ'(I3)',I
            IF(I *LT:0)G010,999
```

```
                READ*;SL
            GOTO 3
            READ* LAMBDA
            GOTO 3
            IN=1
            GOTO 3
            END
            SUBROUTINE PTCALC
    *specifications=- PICAL
        INTEGER I,J,PK
        INTEGER P(O:64,0:64),L
        REAL F1,F2,F3,F4,F5-F6,F7,F8
        REAL C1,C2,C3,C4;C5
        REAL PAST,TEMP,ER,FINT,FNORM,FDIEL
        REAL ERMAX,LAMBOA
        REAL F(0:64:0:64),C(0:18,1:5),H,RP1,RP2
        COMMON FOP,C,L,H,RP1,RP2
        CONMON/RELAX́LÁMBDA.ERMAX,I,J
    *function statements--------------------------------------------------------
        FINT(F1,F2,F3,F4,F5,F6,F7,F8)=(4* (F1+F2+F3+F4)+(F5+F6+F7+F8))*0.05
        FNORM(F1-F2)=(4*F2-F1)/3
        FDIEL(F1,F2,F3,F4,C1,C2,C3,C4,C5)=(C1*F1+C2*F2+C3*F3+C4*F4)/(2*C5)
    *relaxation-M(I,J)
        GOTO (195,195,120,140,180,180,160,160,160,160),PK
        120 TEMP=FNORM(F(I)(2*L))OF(INL)
        G0T0 190
        140 TEMP=FNORM(F((2*L),J),F(L,J))
        G0T0 190 (FM(F(2\starL),J),F(L,J))
        TEMP=FDIEL(F((I+L),J),F((I-L),J),F(I,(J+L)),F(I, (J-L)),
        : C(PK-1);C(PK,2),C(PK,3),C(PK,4),C(PK,5))
    180 TEMP=FINT(F(ITL,J)OF(I-L,J),F(I;J+L),F(IoJ-L),
    : F(I+L,j+L),F(I+L;J-L),F(I-L;J+L',F(I-L,j-L))
        PAST=F(I_J)
        F(I,J)=PAST+LAMBDA*(TEMP-PAST)
        ER=ABSS(PAST-F(I,J))
        ERMAX=MAX(ERMAX,ER)
        RETURN
        END
        *********************************************)
    *specifi SUBROUTINE CAPCT(NS,MS:ACAP&DCAP)
    CATiOnS-NSMMS
    INTEGER P(0:64,0:64),L
    REAL ENORM,PERMFS,ACAP,DCAP
    REAL F(0:64,0:64),C(0:18,1:5),H,RP1,RP2
    COMMON F,P,C,L,H,RP1,RP2
    PARAMETER (PERMFS=8.85419)
    integration
        ENORM=0.0
        ENORM=(F(NS+L,O)-F(N2-L,O)+F(NS+L,MS)-F(NS-L,MS))*0.5
        ENORM=ENORM+(F(O,MS+L)=F(0,MS-L) +F(NS,MS+L)=F(NS,MS-L))*0.5
    DO 10 j=L (MS-L);M
    ENORM=ENORM+F(NS+L,J)-F(NS-L,J)
    CONTINUE
```

```
DO 20 I=L (NS-L)-L
    0-NONORM+F(I,MS+L)-F(I,MS-L)
    conTINUE
        ACAP=ABS ((5E-4*PERMFS*(NS+MS)*ENORM)/H)
        DCAPP=RP2#ACAP
        RETURN
    END
    SUGROUTTINE CNTOUR
    *specifications INE-ICNNCOL,MROW,MARKX,MARKY
    INTEGER I,J,NO,MO,DN,DM,PD
    INTEGER NMIN,NMAX,MMIN,MMAX
    NTEGER P(0:64,0:04),L
    REAL F(0:64,0:64),C(0:18,1:5),H,RP1,RP2
    CHARACTER DARY(0:132,O:260)*1;CS(0:16)*1
    COMMON F,P,C,L,H:RP1,ROP?
    COHMONI CONTORINMIN,NMAX OMMIN,MMAX
    COMMON/CHRSET/DARY.CS
    *initi COMMON/INTSET/I_J_NO,MO_DN_DM,PD
        DATA NCOL,MROU, MARKX,MARKY/128,256,5,41
            DATA DN,DM/5.4%
```



```
    *character array clear":'-**',
            DO 20 IK=O=MROW
            DO 10 IC=0,NCOL
            DARY(IC,IR)=CS(15)
    10 CONTINUNUE
    * character array fill----
            DO MO (JJMMIN,MMAX
                NO SOIINNMINONMAX
            NO=(I-NMIN)*DN
            IF(P(I,J) - LT: 3)THEN
                    PD=(-P(I,J))
                    ELSE
                    If(1,GT. NMIN)THEN
                    IF(P(IT-L,J) -LT. 3)THEN
                    PD=1
                    CALL CHRFIL
                    ENDIF
                    ENDIF GT MMIN)THEN
                    IF(J (P(IT,j-MMIN)THEN -LT. 3)THEN
                    cALL chrfil
                    ENDIF
                ENDIF
                PD=0
                CALL CHRFIL
    3 0
        cONTINUE
```

```
    contINUE
```



```
        PRINT:(132A1)",(DARY(IC.IR)
        (DARY(IC,IR),IC=0,((NMAX-NMIN)*DN))
        conTINUE
        RET
    *****************************************************************
    SUBROUTINE CHRFIL
    *specificatjons-m-m---I.j
    INTEGER CF,HIMLJ
    INHEGER T
    INTEGER I,J,NO,MO,DN,DM,PD
    INTEGER P(0:84,0:04),L
    REAL FS,RRMIN - RMIN-RMAX,NX,NY,MPN
    REAL F(0:64;0:64);C(0:18,1:5),H,RP1,RP2
    CHARACTER DARY(D:132.0:260)*1,CS(0:16)*1
    COMMON FPP,C,L,H,RP1,RP2
    CONMON/CHRSET/DARY,CS
        COMMON/INTSET/I_J,NO,MO,DN,DM,PD
    * initializations_ISET/Ir, NNORMO,DN_DM,PD
    DATA RRMIN/RMIN,RMAX/0.01;0.05,0.951
```



```
        LT=L
    IF(PD LT D)THEN
        CF=(10-PD)
        DARY(NO,MO)=CS(CF)
        GOTO 99
    ELSE
        IF(PD_EQ. 1)THEN
        ELSE
            IF(PD -EQ. 2)THEN
            LJ=-L
            ENDI
        ENDNDI
    ENDIF
    DO 30 M=0,(DM-1)
        DO 20 N=0,R(DN-1)
            IF(PD GE O THEN IMEN
            ELSE
                    NX=N/REAL (DN)
                    MY =M/REAL (DM)
                    MPN=NX*MY
                        FS=F(I,J)*(1.O+MPN-NX-MY)+F(I+LIMS)*(NX-MPN)+
                    ENDIF
                    IF(FSS_LT. RRMIN)THEN
                    ELSE
                    IF(FSSILT. RMIN .OR.FS GT. RMAX)THEN
                    ELSE
```

IF(FS GE. 0.999)THEN
ELSE (FS*10)
$C F=N T N T(F S * 10)$
ENDIF
ENDIF
DARY(NO+N*LI, MOH+M*LJ)=CS(CF) CONTINU
CONTTNUE
RETUR
$*===========$

```
ZELBY
E-2721 J.0.
CR
```


REFERENCES

1. Krage, M.; and Haddad, G.I.: Characteristics of Coupled Microstrip Transmission Lines - I: Coupled-Mode Formulation of Inhomogeneous Lines. IEEE Trans. Microwave Theory Tech., vol. MTT-18, no. 4, Apr. 1970, pp. 217-222.
2. Slater, J.C.; and Frank, N.H.: Electromagnetism. McGraw-Hill, 1947, pp. 80-83. Smythe, W.R.: Static and Dynamic Electricity. 2nd ed., McGraw-Hill, 1950, p. 458.
3. Carey, V.L.; Scott, T.R.; and Weeks, W.T.: Characterization of Multiple Parallel Transmission Lines Using Time Domain Reflectometry. IEEE Trans. Instrum. Meas., vol. IM-18, no. 3, Sept. 1969, pp. 1606-171.
4. Marx, K.D.: Propagation Modes, Equivalent Circuits, and Characteristic Terminations for Multiconductor Transmission Lines With Inhomogeneous Dielectrics. IEEE Trans. Microwave Theory Tech., vol. MTT-21, no. 7, July 1973, pp. 450-457.
5. Agrawal, A.K.; Fowles, H.M.; and Scott, L.D.: Experimental Characterization of Multiconductor Transmission Lines in Inhomogeneous Media Using Time-Domain Techniques. IEEE Trans. Electromagn. Compat., vol. EMC-21, no. 1, Feb. 1979, pp. 28-32.
6. Miner, D.F.; and Seastone, J.B.: Handbook of Engineering Materials, Wiley, 1955.
7. Ramo, S., et al.: Fields and Waves in Communication Electronics. Wiley, 1965, pp. 291, ff.
8. Smythe, W.R.: Static and Dynamic Electricity. 2nd ed., McGraw-Hill, 1950, pp. 318-320.
9. Clements, J.C.; Paul, C.R.; and Adams, A.T.: Computation of the Capacitance Matrix for Systems of Dielectric-Coated Cylindrical Conductors. IEEE Trans., Electromagn. Compat., vol. EMC=17, no. 4, Nov. 1975, pp. 238-248.
10. Paul, C.R.; and Feather, A.E.: Computation of the Transmission Line Inductance and Capacitance Matrices From the Generalized Capacitance Matrix. IEEE Trans. Electromagn. Compat., vol. EMC-18, no. 4, Nov. 1976, pp. 175-183.
11. Smythe, W.R.: Static and Dynamic Electricity, 2nd ed., McGraw-Hill, 1950, p. 78.
12. Gray, D.E., ed.: American Institute of Physics Handbook. 2nd ed., McGraw-Hil1, 1963, pp. 5-158, 5-162.
13. Gray, D.E., ed.: American Institute of Physics Handbook. 2nd ed., McGraw-Hil1, 1963, pp. 5-158, 5-161.
14. Smith, G.S.: Proximity Effect in Systems of Parallel Conductors, J. Appl. Phys., vol. 43 , no. 5, May 1982, pp. 2196-2203.
15. Gray, D.E., ed.: American Institute of Physics Handbook. 2nd ed., McGraw-Hill, 1963, pp. 4-67, 4-77.
16. Gray, D.E., ed.: American Institute of Physics Handbook. 2nd ed., McGraw-Hil1, 1963, pp. 4-66, 4-67.
17. Thurston, D.B.: Design for Flying. McGraw-Hill, 1978.
18. Chapman, J.J.; and Frisoc, L.J.: A Practical Interpretation of Dielectric Measurements Up to 100 Mc . Johns Hopkins University, Baltimore, MD.
19. Antler, M.: Fretting of Electrical Contacts. Materials Evaluation Under Fretting Conditions, ASTM-STP-780, ASTM, pp. 68-85.

TABLE I. - CHARACTERISTIC IMPEDANCE AND INDUCTANCE OF DOUBLE LAYER MULTICONDUCTOR LINES ("INDUCTANCE" METHOD)

Number of wires	R_{1}, mm	R_{2}, mm	R_{1}, mm	R_{2}, mm	θ, deg	Z, Ω	$\mathrm{L}, \mathrm{nH} / \mathrm{m}$
8	25	50	0.5	0.5	0	78.5	396.8
8	25	50	.5	.5	45	88.7	448.2
16	25	50	0.5	0.5	0	36.2	182.9
16	25	50	.5	.5	25.5	37.4	189.2
32	25	50	0.5	0.5	0	15.2	76.9
64	25	50	.5	.5	0	5.9	29.7
8	10	25	0.5	0.5	0	65.6	331.9
16	10	25	.5	.5	0	28.6	144.4
16	25	50	0.5	1.0	0	33.1	167.2
32	25	50	.5	2.0	0	11.7	59.3
32	25	50	1.0	2.0	0	10.3	51.9
64	25	50	.5	2.0	0	4.1	20.8
16	10	25	0.5	4.0	0	17.2	87.2
32	10	25	1.0	4.0	0	4.3	21.8

TABLE II. $-Z_{0}$ AND L OF DOUBLE RING MULTICONDUCTOR LINES ("CAPACITANCE" METHOD)

$R_{7},$ mm	R_{2} mm	$\begin{array}{r} \theta \\ \mathrm{deg} \end{array}$	r, mm	Total number of wires in line, N	$\begin{gathered} \text { Zo, } \\ \Omega \end{gathered}$	$\begin{gathered} \mathrm{L}, \\ \mathrm{nH} / \mathrm{m} \end{gathered}$
25	50	0	0.5	8	73.5	371.5
25		45		8	83.7	423.0
25		0		16	33.7	170.0
25	\dagger	22.5	\downarrow	16	34.9	176.5
25	50	0	0.5	32	13.9	70.5
25			1	32	10.4	52.6
25			2	32	6.6	33.3
25	\dagger	\dagger	4	32	0.22	1.09
25	50	0	7	64	3.3	16.8
25	50		2	64	. 17	. 88
10	25		1	16	18.7	94.4
10	25	\dagger	. 5	32	9.6	48.6
10	25	0	1	32	5.4	27.6
10	25	0	. 5	64	3.0	15.1

TABLE III. - 64-WIRE, 5-RING TRANSMISSION LINES

Ring	Number in ring	r, mm	Coordinates (1st)		Polarity (1st)	$\begin{aligned} & \text { Ring } \\ & \text { polarity } \end{aligned}$
			$R,$ mm	$\begin{array}{r} r \\ \text { deg } \end{array}$		

Line 1 (all radij the same \#18 AWG)

1	8	0.51	2.6393	0	$+$	Alt.
2	8		4.6593	1	-	,
3	16		6.6793		+	
4	16		8.6993	,	-	
5	16	\dagger	10.7193	\downarrow	+	\dagger

Line 2 (five different wire sizes)

1	8	0.3	2.6393	0	+	Alt.
2	8	.51	4.6593	0	-	Alt.
3a	4	.27	6.6793	0	+	Same
3b	8	.45		22.5	-	Same
3 c	4	.51		45	+	Same
4 a	4	.45	8.6993	0	-	Same
4 b	8	.35		22.5	+	Same
4 c	4	.3		45	-	Same
5	16	.51	10.7193	0	+	Alt.

DATA OUTPUT		
	Line 1	Line 2
$\mathrm{L}, \mathrm{nH} / \mathrm{m}$	15.33	18.70
$\mathrm{C}, \mathrm{nF} / \mathrm{m}$	1.67	1.37
Z, Ω	3.03	3.70
$\mathrm{~A}, \mathrm{~mm}$	26.15	18.95

TABLE IV. - RECOMMENDED WIRE ARRANGEMENTS FOR POWER LINE

Number	Wire size (\#AWG)	Total number of wires	Ranges of values inductance, nH/m	Characteristic impedance, Ω	Resist- ance, Ω	Weight of copper, kg,		
		High	Low	High	Low			
7	18	80	6.3	10.4	1.2	2.1	0.227	87.8
2	18	52	9.7	16.0	1.8	3.2	.349	57.1
3	21	104	4.8	8.0	0.9	1.6	.342	57.0
4	22	132	3.8	6.3	0.7	1.3	.348	56.8
5	24	208	2.4	4.0	0.5	0.8	.341	56.8
6	24	256	2.0	3.2	0.4	0.7	.277	69.9

TABLE V. - DC AND AC RESISTANCE AND WEIGHT
FOR MINIMUM NUMBER OF WIRES PER LINE
[Line Length, 150 m (total length for resistance
calculation is 300 m), i.e., wires/direction.]

Number AWG	Minimum number of wires/line	R_{dc}, Ω	R_{ac}, Ω	R_{p}, Ω^{*}	Weight, kg**
18	26	0.242	0.249	0.349	57.1
21	52	.242	.244	.342	57.0
22	65	.244	.245	.343	56.4
33	833	.244	.244	.342	56.4
36	1670	.244	.244	.342	56.4

*Rp includes proximity effects.
**Weight (copper alone).

Figure 1. - Current distribution in a circular cylindrical wire of radius r_{0} at 20 kHz .

Figure 2. - Polar coordinates for CRIMPD.F, single-ring arrangement.

Figure 3. - Polar coordinates for CRIMPD.F, double-ring arrangement.

Figure 4. - Parameter definition for equation (5). The direction of currents in the primed conductors is opposite to that in the unprimed.

Figure 5. - 64 -Wire, 5 -ring line 2 (inductance values in nH / m).

Figure 6. -80 -Wire (4×20) configuration. (All dimensions in inches.) For $\varepsilon_{\mathrm{r}}=2.3, \mathrm{~L}=10.42 \mathrm{nH} / \mathrm{m}, \mathrm{C}=2450 \mathrm{pF} / \mathrm{m}$, and $\mathrm{Z}=2.06 \Omega$. Scale: 0.2 inch $=1 \mathrm{~mm}$.

Conditions	Line	$\begin{aligned} & \mathrm{x}_{1}, \\ & \mathrm{~mm} \end{aligned}$	$\begin{aligned} & \mathrm{y}_{1}, \\ & \mathrm{~mm} \end{aligned}$	Polarity	Number of conditions	Spacing, mm	Line polarity
1 to 20	1	0	0	+	20	2	Alt.
21 to 40	2		2	-			
41 to 60	3		4	+			
61 to 80	4	\downarrow	6	-		\downarrow	

Figure 7. - 80-Wire (4×20) configuration with listing of individual self inductances in nH / m ('Inductance" method). $\mathrm{L}=10.4196 \mathrm{nH} / \mathrm{m} ; C=2.4526 \mathrm{nF} / \mathrm{m} ; Z=2.0611 \Omega ; A=32.6851 \mathrm{~mm}^{2} ; r=0.51 \mathrm{~mm}(\# 18$ AWG).

239	93	163	122	148	131	142	135	139	137	\ldots	163	93	239		
61															
113	131	107	122	112	118	114	117	116	116	\ldots	\ldots	107	131		113
:---															
41															

[^0]| Condition | x_{1},
 mm | y_{l},
 mm | Spacing,
 mm | Polarity | Line
 polarity | Radii,
 mm |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 to 32 | 0 | 0 | 1.0 | + | Alt. | 0.25 |
| 33 to 64 | | 1.0 | | - | | 0. |
| 65 to 96 | | 2.0 | | + | | |
| 97 to 128 | | 3.0 | | - | | |
| 129 to 160 | | 4.0 | | - | | |
| 161 to 192 | | 5.0 | | - | | |
| 193 to 224 | | 6.0 | | - | | |
| 225 to 256 | \downarrow | 7.0 | | - | | |

Figure 9. - 256-wire (8×32) arrangement with individual self inductances in $\mathrm{nH} / \mathrm{m} . \quad \mathrm{L}=3.2193 \mathrm{nH} / \mathrm{m} ; \mathrm{C}=7.9382 \mathrm{nF} / \mathrm{m} ; \mathrm{Z}=0.6368 \Omega ; A=25.1327 \mathrm{~mm}$; $r=0.25 \mathrm{~mm} ; \varepsilon_{r}=2.3$.

Figure 10. - Male-female junction boxes with conventional outlets.

30° isometric view
(a) High frequency power distribution buss. Top cover not shown; material: chassis $0.063 \mathrm{Al}-\mathrm{Alloy} 3053$; scale, $1 / 2$.

Section $A-A^{\text {a }}$
(b) Junction-box detail. (All dimensions in inches.)

Figure 1l. - Junction box.

1. Report No. NASA CR-3987	2. Government Accession No.	3. Recipient's Catalog No.
4. Title and Subtitle Transmission Line Design for a Power Distribution System at 20 kHz for Aircraft		5. Report Date July 1986
		6. Performing Organization Code
7. Author(s) Leon W. Zelby, John B. Mathes, and John W. Shawver		8. Performing Organization Report No. None
		10. Work Unit No.
9. Performing Organization Name and Address University of Oklahoma Electrical Engineering Dept. Norman, Ok lahoma, 73019		11. Contract or Grant No. NAG3-508
		13. Type of Report and Period Covered
12. Sponsoring Agency Name and Address National Aeronautics and Space Administration Washington, D.C. 20546		14. Sponsoring Agency Code $505-45-72 \quad(E-2721)$
15. Supplementary Notes Final report. Project Manager, Irving Hansen, Power Systems Engineering Division, NASA Lewis Research Center, Cleveland, Ohio 44135.		
16. Abstract A low inductance, low characteristic impedance transmission line was designed for a 20 kHz power distribution system. Several different conductor configurations were considered: strip lines, interdigitated metal ribbons, and standard insulated wires in multiwire configurations (circular and rectangular cylindrical arrangements). The final design was a rectangular arrangement of multiple wires of the same gauge with alternating polarities from wire to wire. This offered the lowest inductance per unit length (on the order of several nanohenries/meter) and the lowest characteristics impedance (on the order of one ohm). Standard multipin connectors with gold-plated elements were recommended with this transmission line; the junction boxes to be internally connected with flat metal ribbons for low inductance; and the line to be constructed in sections of suitable length. Computer programs for the calculation of inductance of multiwire lines and of capacitances of strip lines were developed.		
17. Key Words (Suggested by Author(s)) 18. Distribution Statement High frequency aircraft power Unclassified - unlimited distribution; Space power STAR Category 07		
19. Security Classif. (of this report) Unclassified	. Security Classif. (of this page) Unclassified	21. No. of pages 22. Price* 37 AO 3

*For sale by the National Technical Information Service, Springfield, Virginia 22161

[^0]: Figure 8. - 80-wire line ("Capacitance method") individual inductances. $L=6.3115 \mathrm{nH} / \mathrm{m} ; \mathrm{C}=4.0490 \mathrm{nF} / \mathrm{m}$; $Z_{0}=1.2485 \Omega ; A=32.68 \mathrm{~mm}^{2} ; r=0.51 \mathrm{~mm}(\# 18$ AWG).

