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ABSTRACT

In this paper we consider the problem of modeling and
equalization of a ponlinear satellite channel. The channel is
assumed to be bandlimited and exhibits both amplitude and
phase nonlinearities. A discrete time satellite link is modeled
under both uplink and downlink white Gaussian poise. Under
conditions of practical interest, ¢ simple and compuationally
efficiens design technique for the minimum mean square error
linear equalizer is presepted. The bit error probability and some
numerica) results for a BPSK system demonstrate that the
proposed equalization technique outperforms standard linear
receiver structures.

I. INTRODUCTION

The problem of nonlinear channel modeling and equalization
is of analytical and practical interest. An important example of a
noalinear channel is a digital satellite communication link, which
uses a Traveling Wave Tube (TWT) amplifier operating in a
pear saturation region. The TWT exhibits nonlinear distortion
ip both amplitude (AM'AM copversion) and phase (AM/PM
conversion). In addition. at high transmission rates the channel’s
fipite bandwidth causes a2 form of distortion known as
Intersymbol Interference (ISI).

In this paper. we will examine the problem of modeling and
equalizing this rype of nonlinear satellite communication link.
The observed data are corrupted by addiuve white poise.
uncorrelated with the input data.

A pumber of other researchers have studied this problem.
Fredricsson {1]. considered 2 QPSK system and specified an
optimum linear receiver filter using a Mean Square Error (MSE)
criterion.  The channe! nonlineanty in [1] was handied wvia
successive pumbe: of lineanzations Mesiva et al. [2-3] analyzed
the BPSK system. In [2] a2 maximum likelihood receiver was
considered, while in [3] a simpler linear receiver, based on the
MSE criterion. was presented. In both [2] and [3]. the
ponlinearnity of the TWT is expressed in terms of Besse! function
integrals. The MSE criterion was also applied by Biglieri et al.
[4] in their denivation of an optimum linear receiver. In [1]. [3].
and [4). the autbors work in the frequency domain. and the
solution is given in terms of integral equations that usually have
to be solved using numerical techniques.

In [5). Ekanayake and Taylor presented a suboptimum
maximum-likelihood type dedision feedback receiver. However,
because of the analytical complexiry of their solution, they
approximate the TWT with a hard hmiter. A different modeling
approach was taken by Benedetto et al. (6]. First, they identify
the whole channe] using a Volterra Series expansion [7]. Then
they suggest a noalinear equalizer. based again on the MSE
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criterion. Although at the output of a nonlinear equalizer the
MSE is smaller than the MSE at the output of a linear equalizer,
it is not completely clear if there is a significant improvement in
the probability of error performance of the system to justify the
complexity of the ponlinear receiver.

In this paper, we present the design and performance analysis
of the optimum lincar MSE receiver for a nouolinear satellite
channel. While the methods considered bere are applicable to
various in-phase and quadri-phase modulation systems, for
simplicity and lack of space we will illustrate this approach by
using only BPSK examples. More generalized results will be
presented elsewhere. There are two major differences between
our design as compared to the above reviewed approaches.
First, we use a very simple model for the input-output
relationship of the TWT amplifier, proposed first by Saleh [8].
Second, by working in the discrete time domain we avoid tbe
complex integral equations of the other approaches. In addition,
a fast and simple iterative algorithm [9] permits the easy
computation of the autocorrelation coefficients of the output of
the nonlinear system. Thus, we are abie to obtain a new simple
and computationally efficient lincar equalization technique under
the MSE criterion. Based on the same modeling approach, a
zero forcing type of linear equalizer was also presented in [10].

In Section 2, a simplified mode! for a typical satellite link is
presented and the corresponding BPSK discrete model is
derived. The optimum MSE equalizer is presented in Section 3.
In Section 4, the probability of error performance of the receiver
is derived. Finally in Section § some pumerical examples. and
comparisons with standard linear receivers are presented.

1. CHANNEL MODELING

Consider the simplified model of a digital satellite
communication channel as shown in Figure 1. We will examine
each one of the different subsystems composing this model. This
study will enable us to derive an equivalent discrete model. By
working in discrete time we will avoid the analytical problems
arising with continuous signals. Our analysis is similar to that of

Ekanayake and Taylor {5}

The source output is a random sequence {U(n)} of equallv
probable uncorrelated symbols. Thus. in a BPSK system,
U(n)={1.-1} a1 n=0.T, 2T..... where P{U(n) = 1] = P{U(n) =
-1] = 0.5, E{U(n)U(n-k)}=0 for k = 0, and 7! is the signaling
rate.

Let p(t) denote a pulse shaping function. Often it can be a
rectangular function of unit amplitude over a time period of
length T. In anv case, the output of the modulator can be
expressed in the form
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()= .i‘U(n)p(l-nT)axw,t, Q)

where «, is the carrier frequency.

We shall assume that the transmission filter is the one which
determines the channel bandwidth. This filter is also responsible
for the creation of ISI. Let G(t) = 2g(t)cosw, ! be the impulse
response of this filter, where g(t) is the impulse .response of a
carrespoading low pass filter. Then the output of this filter can
be expressed as

oL .i‘u(n)h(r-nT)emu,t. )

where b(t)=g(1)*p(t). The purpose of our analysis is the design
of 8 receiver structure for the estimation of the transmitted
source symbol during the b th signaling interval aT S1s(n +1)T.
Thus during the n th signaling interval (2) can be rewritten as

8 (1) = U(n)h(1-nT doosw, ! +;U(i)h(t-ﬂ')cow,r, 3

AT s1s(n+1)T.

The first term in (3) represents the transmitted symbol we want
to estimate, and the second term represents the ISI due to the
filter.

On the uplink channel, s, (1) is corrupted by additive white
Gaussian noise.  Thus, using the parrow band mode] for the
poise, the input to the TWT can be expressed as

""(')"l(’)+n-'(')m"t""-(')5imr'- (4)
ne (1) and ng (1) represent the in-phase and quadrature

components of the uplink noise, each with zero mean and
variance o2. From (3) and (4)

5'a(1) = 1 (1 )cos(w 1+ A (1)) )
where

Ta (1) = [(r (1) nee (1) 4 nd (1)) (6)
r()=U(nh(t-nT)~ ';_U(i)h (¢-T). 0]
and

T @)

1)1: TWT is a nonlibear memoryless amplifier. It exhibits
nonlincar distortion in both the amplitude and the phase. Using
8 Quadrature model. the output s.(r) of the TWT can be
expressed ip the form

14(1) = Plry(1)]cos(w 1+ A(r))-Q{r, (1)]sn(w 1 +X(1)). ®
From Saleh (8] ap expression of P(r) and QXr) is given by

P(r)= a,W (10a)
Q(' %m (10b)

The coefficents of (10) are obiained by a least-square error
curve firting procedure of the specific TWT characteristics,
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Tigure 1: BSstellite Commmicstics Systes Model

which are originally specified by the manufacturer. In Figure 2
the P(r) and Q(r) functions of (10) arc ploned for
a,=20922 8, =1.2466, a,=5.529 and 8, =2.7088[8]. All
input and output voltages were normalized.

Because of the downlink additive white noise ng(r), the
received waveform s'4(1) can be expressed as

54 (1) = 54(2 )+ nae (1 )o0Swe 1 -ng, (¢ )siDwe 1 , 1y
nT=sis(n+1)T.

The signal s'¢(1) of (11) is now coberently demodulated by 2
carrier 2cosw 1. We assume that the bandwidth of the receiving
filters is wide epough so that no additional ISI distorts the signa!
The output y(t) of the demodulator is sampled every T seconds
to produce at the n th signaling interval the in-phase sample

y(n)=y(t0) = P[ra (10)Jcos\(r0)+ (12)
+Q{r. (10)}sIDA (10} + na (10).

1o is an appropriately chosen sampling instant within the interval.
nT<1=<(n+1)T.

Under the assumption of high available power at the earth
stations, the effects of the uplink noise can be considered
pegligible. Thus we can assume that A(r)=0. Then y(n) of (12
becomes

y(n)= Pr(io)}+ na (10). (13
From (7) and (13) ap equivalent discrete-time model for the

communication channe! of Figure 1 can be represented as in
Figure 3. Now. with U(n)={1.-1}, the basic relationships are

r(n)=A.§i”h.U(n-k) . (14)
P(n)=Plr(m)] = 255 . (s
y(n)=P(n)+w(n) ., (16)

where a and B are specified constants that depend on the
specific type of the TWT. wi(n) is white Gaussian noise of zero
mean and variance o2, and uncorrelated with the input data.
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The wvalues of N1 and N2 represent the memory of the
transmitting filter. The gain A depends on the specific operating
point of the TWT.

. THE MEAN-SQUARE ERROR EQUALIZER

Let the receiver output z(n) be expressed as the output of a
Tapped- Delay Line (TDL) filter in the form of

x(n)-‘_s:,qy(n-k) , a7

where from (16), y(n)= P(n)+w().
In the theory of the Mean-Squares criterion, the tap weight

coefficients {c,} of the equalizer are adjusted to minimize the
mean square error

e=ElU(n )-‘g’c.y(n K (18)

Minimization of (16) with respect 1o the {c,} coefficients, yields
the lincar system of M= M1+ M2+ 1 equations

‘X‘C.R,(j-k)=k,,(j). j=-M1...M2. 19)

where R, (k)= R,(-k) = E[yn)y(n-k)] and Ry, (k) =
E{U(n)v(n-k)] for all values of k.

From tbe uncorrelatedness of the input data and the noise.
Rey (k) = R (k). for all values of k. Also. since the output P(n)
of the nonlinearity, and the noise w(n) ase independent

Ry(k)=R,(k)+olbu . (20)

where o is the variance of the noise. Thus in order to solve
(19) it is pecessary to evaluaie first the necessary R, () and
R g(-) coefficients. While in the case of a linear channel the
calculation for the R, () coefficients is straightforward. in the
ponlincar case the evaluation may present some numerical
difficulties.

Compaaation of the Autocorrelation coefficients

'l'henequm{?(n))nﬂzwmdthcnonhnemtymbe
eomduedutheo\mdnﬁnmm machine.
Since the ponlinearity has no memory, from (14) the state
sequence can be given by

s()=[U(n+N1),....U(R)U(@®-1),. U(RN2)]. )

{U(n)} ;:;El]d sequence, thus {s(n)} is itself a stationary

Let us denote by 11 the transitiop probebility matrix of the
Markov chain {s(n)}. A brute force evaluation of R, (-) involves
multiplication of square matrices of dimension 1Nz [9-10},
which would be computational impractical unless special
consideration is given to the special propertics of I1. In (9) a
particularly effective and simple algorithm for the evaluation of
sutocorrelation coefficients of a nonlinear system was presented.
The algorithm, as applied to our specific problem is given below.

Algorithm for the computation of R, (k)

1. Let N=N1+N2+1, and store in vector Bo (of dimension
2¥) the values at the output of the noalinearity for each state s(j)
of (21), for j=1,2,...2¥.

2. Compute the vector ag ( of dimension 2¥), where the j th
compouoent is given by
«o(j) =B, GV2¥ , j=1.2,. . ¥ .

3. Fork=0,1,...,N-1, do the following computations

-+
9 RE=TalIBG).
b) Store in the first 2¥+-1 positions of a;, the vector a;+p,
computed by
n.q(j)= o..(j)+u,(j+2”“"), _]'51,2,”.,2N"'1 .

¢) Store in the first 2¥4-! positions of of the B, wvector, the
vector B, .1, where

Bi-1(j) = M):M Li=1,2. 284

4. R, (k)=0.forkzN.

The above algorithm is easy to implement and requires only two
vectors of size 2V as basic computation storage.

Compuration of Cross-correlations

Since for each state s(j) of (21) the value of P{s(j}]= Bo(J)
has already been computed for the evaluation of the R,(:)
coefficients, a brute force technique can be casily apphed for
the evaluation of the cross-correlation terms.  Thus from |10},

Rulk)= (2 S Pls(). NisksN2, (22)

where the summation in (22) is done over all those states where
Un-k) = 1.

In summary, the design procedure for the optimum linear
MSE equalizer is given as follows. First, compute the 2%
possibie values of P(n) at the output of the nonlineanty. Then
use the algorithm to compute the R,(-) coefficients and (22) to
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compute the R () coefficients. Finally, solve the lincar system
in (19). The solution of (19) yields the tap-weight coefficients of
the MSE receiver.

IV. EVALUATION OF BIT-PROBABILITY OF ERROR

Unfortunately, there is po simple relationship between the
residual mean square error of the MSE receiver and the bit error
probability {11). For moderate channe! and equalizer memorics,
a brute force method that yields an exact result could be applied.
Denote by D; ooe of the 2 *¥-2 possible realizations at the input
of the receiver, with U(n)=1, and by ¢ the M x 1 vector of the
filter cocfficents. Then from (16) and (17), the receiver output
Que to » specific input {U(n)) sequence is given by

L=pPic+We , (23)

where W is a M=M1+M2+1 row vector of noise samples.
Let {w(n)} be a white poise sequence of zero mean and
variance 02. Let n=Wc. Then E[n]=0 and o= 03.2‘&.

Then with U(n)=1 and for a threshold of zero, the conditional
efTor probability

P.(i)= PriDic +n<O{U}] , (24)
is fixed, and

P.(i)= Q(Dicloy). (25)
where

Qi) = V‘ZLJ' Ta (26)

Then the average error probability P, is given by

P, = (UL )';P,(f). Le2M-¥N2 @7

1o our numerical example the SNR is defined as

SAR = 10i0g 1o(P&/202) , (28)

where Po, = (UL)glP(r«)(O)] .

If the exact ertor probability of (27) proves 100 cumbersome
and 100 time consuming to evajuate because of the large number
of terms. one can resort to a number of different approximate
methods that vield tight upper and lower bounds of P, [11].

V. NUMERICAL EXAMPLE

The purpose of this section is to illustrate the application of
our results in the design of a lincar optimal receiver. and to
compare its performance with other receivers for a digital
satellite hink.

In our model of the linear part of the satellite link. we
assume that the 1S is introduced by a 3-pole Bunierworth filter.
The rwo sided bandwidih B of the filter is the same as the
minimum Nyguist rate (i.e.. BT=1). The number of samples
considered for the 1S] is determined by those 1SI samples whose
magnitude are at least greater than 0.01 times the main sample.
In our example. a channel memory (N1+N2) of 3 ISI 1erms was
considered adequate.

The characteristics of the TWT for this study are the same as

those ip Figure 2. Thus in the evaluation of P{r(n)} in (15). the
parameters of the TWT are a=2.0922 and 8= 1.2466. As

mentioned before, those values were taken from Saleh ([8],
Figure 5) and represent a specific satellite TWT. The gain factor
A, of (14) was determined 3o that with po 1SI the TWT would
operate at the 2 dB input backoff point. Because of the low ISI
introduced by the transmission filter, a 4-tap (M1+M2+1=4)
;I'Dli(“hn‘;usr:wvummduedmbendeqm Thus,

Now we compare our optimum lincarly equalized MSE
receiver with the conventional linear receivers. Using the brute
force technique described in Section 4, the bit efror probability
for the various receivers was evalusted and plotted in Figures 4
and S, for values of SNR as defined in (28).

Figure 4 exhibits the P, performance of the designed MSE
filter, and the P, performance of two 3-pole Butterworth
receiving filiers. One receiving filter (with BT=1) is identical 10
the transmitting filter, while the other one has BT=0.75. In
Figure 5, the performance of the M.S receiver is compared with
that of two 4pole Butterworth receiving filters. One has
BT=0.75 and the other one has BT=1. A numerical search
procedure for Butterworth filters with different BT products,
ghowed that an increase in BT does pot necessarily correspond to
an improved P, performance. In fact, filters with BT=2 are
only marginally better than filters with BT=1.
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For P, = 10E-6, the optimum MSE receiver is at least 0.8
dB better than the 3-pole Butterworth filters and 1.2 dB bente:
thap the 4-pole Bunterworth filters. The P, performance of a
channel with no ISI. but with the identical TWT, carrier power
and noise variance was evaluated. The numerical results showed
that for these examples the bit error rate of the MSE equalizer is
very close to that of the no 151 case {10].
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VI. SUMMARY AND CONCLUSIONS

In this paper we considered the problem of modeling and
equalizatioo of a digital satellite ponlinear and bendlimited
channe]. Starting from a typical satellite link, we developed the
comesponding BPSK  discrete-time model, and solved for the
optimum linear MSE receiver. A simple and computationally
efficient algorithm was derived for the evaluation of the
equalizer coefficients, based oo the memoryless ponlinearity of
the system. Numerical examples for a typical satellite link
demoustrated that the optimum linear MSE receiver outperforms
the conventional linear type receiving filters. In general, our
modeling and equalizatiop techniques provide s simple and
computationally efficient alternative to existing .

REFERENCES

1. S.A Fredricsson, Oprimum Receiver Filiers in Digital
Quadrature Phase-Shifi- Keyed Systems with a Nonlinear Repeater,
IEEE Trans. on Comm., Vol. OOM-23, No.12, pp.1389-1399,
Dec. 1975.

2. M.F.Mesiya, P.J. MclLane and L.1. Campbell, Maximum
Likelihood Sequence Esrimarion of Binary Sequences Transmited
Over Bandlimited Nonlinear Channels, TIEEE Trans. on Comm.,
Vol. COM-25, No. 7,pp. 633-643, July 1977.

3. MF.Mesiya, P.J. Mclane and L. L Campbell, Optimal
Receiver Filiers for BPSK Transmission over a Bandlimited
Nonlinear Channe!, IEEE Trans. on Comm., Vol. COM-26,
pp.12-22, Jan. 1978.

4. EBigliei, M.Elia and L. L .Presti, Oprimal Linear Receiver
Fibier for Digital Transmission over Nonlinear Channels. Proc.
1983 Intern. Tirrenia Workshop on Dig. Commun., pp. F.3.1-
F.3.13, Sept. 1983

S. E.Ekanavake and D.P. Tavlor, A Decision Feedback
Receiver Structure for Bandiimited Nonlinear Channels, TEEE
Trans. on Comm.. Vol. COM-29, No. 5, pp.539-546. May 1981.

6. S.Benedernic and E Biglieri. Nonlinear Equalization of Digital
Satellire Channels, IEEE Joumal on Select. Areas in Comm..
Vol. SAC-1. No.1, pp.57-62. Jan. 1983.

7. S.Benedetto. E. Biglien. R. Daffara. Modeling and

Performance Evaluation of Nonlinear Satellite Links- A Volierra
Series Approach. IEEE Trans. on Aerospace and Elec. Systems.
Vol. AES-15, No.4, pp.494-506. July 1979,

8. A.AM. Saleh. Frequency -Independen: and Frequenc-
Dependen: Nonlinear Models of TWT Amplifiers. IEEE Trans on
Comm.. Vol. COM-29, No il. pp 1715-1720., Nov. 198i.

9. R.Padovani and G.L.Pierobon. Specrra! Analvsis of Digital
Messages Through Finue-Memor Trarsformanons, IEEE Trans.
oo Comm.. Vol. COM-32, No. 11. pp. 1214-1218, Nov. 1984.

10. K.Konstantinides, Channel Modeling and Eguali:ation
Algorithms Based on Least Squares Technigues. Ph.D
Dissentation, Un. of Calif., Los Angeles, 198S.

11. ).G. Proakis, Digital Communications, Mc. Graw-Hill.
1983.

ORIGINAL PAGE: I8
OF POOR QUALITY

[\
Y

AL A lllll'.

[ G W | llLllf‘ T U lllll“

o]

Pigure 5

51.1.5

1626

I —

B P. performmmce of R.S.[ and 4-pole Buttarwverth

recsiviag filtars.






