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Incipient Transition Phenomena in Compressible Flows over a Flat Plate 

G. Erlebacher 
NASA Langley Research Center. Hampton, VA 

M.Y. Hussaini 
Institute for Computer Applications in Science and Engineering 

ABSTRACT 

The full three-dimensional time-dependent compressible Navier-Stokes equations are solved by a Fourier
Chebyshev method to study the stability of compressible flows over a flat plate. Mter the code is validated in 
the linear regime, it is applied to study the existence of the secondary instability mechanism in the supersonic 
regime. 

The second author's research was supported under the National Aeronautics and Space Administration 
under NASA Contract No. NASI-17070 and NASI-18107 while he was in residence at the Institute for Comput
er Applications in Science and Engineering (ICASE), NASA Langley Research Center, Hampton, VA 23665-
5225. 
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1. Introduction 

Although the predominant interest in the stability and transition to turbulence lies in compressible flows, 

research undertaken over the past 15 years has mainly focused on incompressible phenomena because of their 

comparative simplicity. As a result, a fairly extensive collection of theoretical [1,2], experimental [3,4] and 

numerical [5,6] data has been accumulated and cross-correlated for incompressible channel and Blasius 

boundary-layer flows. Detailed studies of several instability mechanisms has led to a fairly comprehensive pic-

ture of the incipient stages of transition in incompressible flows. One such mechanism involves the interaction 

of a two-dimensional primary unstable wave with two skewed waves. This secondary instability leads to what is 

commonly referred to as K-type breakdown whose signature is a peak-valley vortical structure [1]. These struc-

tures have been successfully simulated numerically for incompressible boundary-layer flows [5,6]. Moreover, 

results from these simulations agree very well with theoretical and experimental findings. 

As a step towards a better understanding of the instability mechanisms in compressible flows, the K-type 

breakdown of laminar flow at high Mach numbers is studied in this report To this end, a three-dimensional, 

fully-spectral compressible Navier-Stokes code capable of direct simulation of parallel boundary-layer flows over 

a flat plate has been developed. The code is first validated in the linear regime against the unstable eigenfunc-

tions of the compressible linear stability eigenvalue problem. Then the temporal evolution of a triad of waves 

superimposed on a parallel boundary-layer is followed up to the incipient breakdown. 

2. Equations 

The full unsteady, three-dimensional, compressible Navier-Stokes equations expressed in non-dimensional 

form are 

~ + V· (pv) ;:: 0, (1) 

(2) 

aD . 1 
~ + V· Vp ;:: -ypV· v+ V· (J.1.V1) + <l> + F at. P r R~ M~. p 

(3) 

and 

'Y M;'p;:: pRT (4) 
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where v is the velocity vector (u,v,w), p the density, T the temperature, p the pressure, '" the viscous stress-

tensor 

and <I> is the dissipation function 

The first and second viscosity coefficients Jl and A. are related by the assumption of zero bulk viscosity 

2 
A. + -Jl = O. 

3 

(5) 

(6) 

(7) 

Fpv>= (Fpu , Fpy , 0) and Fp are source terms that are described later. Variables have been non-dimensionalized 

as follows: distance with respect to boundary-layer displacement thickness f/, velocity, temperature and density 

with respect to their free-stream values ff..., T_, p_ and pressure with respect to the dynamic pressure pjl_ 2. 

Viscosity and conductivity are scaled with respect to their free-stream values JI- and K... With these definitions, 

the Reynolds number becomes 

In this report the Prandtl number 

Cp JI 
p =--r _ 

K 

(8) 

(9) 

is assumed constant and equal to 0.72. Cp is the specific heat at constant pressure. We assume a temperature 

dependent viscosity given by the non-dimensional form of Sutherland's law 

(1 + 196.8) 
T_ 

Jl(1)=--~
(T + 196.8) 

T_ 

(10) 

In incompressible boundary-layer flows, it has been observed that the evolution to transition of ribbon-

excited Tollrnien-Schlichting (TS) waves occupies a space of approximately ten wavelengths [3]. An adequate 

resolution of the boundary-layer in all three directions over a ten wavelength strearnwise distance would exceed 
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the present capability of today's most powerful computers. In incompressible simulations this difficulty has been 

circumvented by the assumption of spatial periodicity in the two directions parallel to the plate [5], allowing the 

set up of a properly posed initial-value problem. This assumption allows the computational domain to be res-

tricted to one TS wavelength in both the streamwise and spanwise directions. A similar periodicity assumption 

is made in the present work to make the compresssible simulations computationally tractable. In order that the 

mean parallel boundary-layer flow be a stationary solution to the Navier-Stokes equations, source terms must be 

added to equations (1)-(3). The forcing terms are given by 

1 a aVm 

Fpy = R~ az (JlTz) 

1 a aT m 1 au m2 
2 av m2 

2 

Fp = R~ PrM:" az(J.1Tz) + R~ [(---a;-) + (Tz) J 

(11) 

(12) 

(13) 

In obtaining these relations mean pressure is taken constant across the boundary-layer, the mean velocity has 

non-zero streamwise (Um{z» and spanwise (Vm{z» components, and the mean temperature is Tm{z). In what fol-

lows, V m is set to zero. 

3. Algorithm 

The system of equations (1-4) is solved in conservative form under the parallel flow assumption. Periodi-

city boundary-conditions in the streamwise and spanwise directions permit a Fourier representation of the primi-

tive variables u, v, w, p and p. For example, the double Fourier decomposition of u is 

Nz N, 
--1 ..... -1 
2 2 

u(x,y,z,t) = L L Ujj(z,t) ej 
(mru:+nj3y) 

Nz ~ 
""2"' ~ 2 

(14) 

where N" and Ny are the total number of nodes in x and y directions. The periods of the physical domain in the 

streamwise and spanwise directions (L" and Ly) are related to the wave numbers a. and f3 by Lx= ~ and Ly: 2; . 

The code has the option to evaluate normal spatial derivatives either by finite-difference approximation or by a 

Chebyshev collocation method, in which case Ujiz,t) has the series representation 
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N, 

Uij(Z,t) = L Uijl,(t) TA;(Z) 
k=1 

where TA;(Z) is the Chebyshev polynomial of order k. The number of nodes in the normal direction is Nz • In 

the absence of discontinuities in the solution, spectral collocation methods are far more accurate than typical 

finite-difference methods for a specified distribution of a fixed number of nodes. The physical domain (0, zmax) 

in the direction normal to the plate is mapped onto the computational domain with an algebraic mapping which 

takes the form 

Z1I2 ZmIJ% (1 + 11) 
Z=----..;....--..;....--

ZmIU - 11 (ZmIU - 2 z1I2) 

for the spectral representation in the normal direction and 

when finite-differences are used. In the latter case, the computational variables ~ ranges from 0 to 1. In terms 

of ~, the standard Chebyshev spectral node distribution is given by 

11 = - cos(1t~) , 

One half the normal nodes are located between z=0 and z=z1I2. 

In all the mean flow calculations considered thus far, the critical layer is always found to lie between o' 

and 1.50· from the wall and special care is excercised to resolve it. Setting z1I2=2 is found to be optimal for 

resolving the relevant ·flow structure in the chosen parameter range. 

Currently, the code is fully explicit. A third order low-storage Runge-Kutta method [8] is used for time 

discretization. For the equation 

such a scheme leads to 

U,=F, 

1 
UI = Uo+ - HI 

3 
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5 
H2 = ot FI - '9 HI 

15 
U2 = U1 + 16 H2 

which only requires two storage arrays per variable. Theoretically the scheme is unconditionally stable for a 

CFL below 0.55; however it is empirically found that above a CFL of 0.2 that the algorithm is unstable. The 

time step is thus limited by 

. tu I1v I1z 
At < 0.2 mm [- + ~ + 1t -] • 

grid U V W 

4. Initial Conditions 

The initial conditions consist of a triad of waves superimposed on a mean flow. Mean flow profiles are 

generated from the solution to the similar compressible boundary-layer equations with zero pressure gradient 

and zero heat transfer at the wall. In non-dimensional form, these are [9] 

with boundary conditions 

if" + (Jl. pi") , = 0, 

~ (Jl. P T,) , + IT' + (y-l) M:' Jl. p Tt/,,2 = 0 , 
r 

P T= 1, 

/(0) = /,(0) = 0 , 

/,(00) = 1 , 

T(oo) = 1 , 

T '(0) = 0 . 

A prime denotes differentiation with respect to the similarity variable 

z u .. o·(x) p .. 
T'I = c(M .. ,T .. ) ..J2 Jl... 

z 
= ..J2 R,(x) (15) 
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where Z is related to the normal coordinate z by the transformation 

The coefficient c in (15) is a function of free-stream temperature and Mach number. 

The stability of flows is studied at a prescribed supercritical Reynolds number Re(xo). After freezing the 

streamwise dependence of the mean flow profiles at X=Xo> they are extended over the entire plate. Thus, the dis

placement thickness is constant, and the mean flow is a function only of the coordinate normal to the plate. The 

normal velocity component is set to zero, and Um = f' (11). 

In the simulation which is to be des~ribed, the mean flow is initially perturbed by a 2-D Tollmien

Schlichting wave and two 3-D waves. For example, when perturbed by a single wave, the initial streamwise 

velocity is the real part of 

for real streamwise and spanwise wavenumbers a. and ~. Similar relations hold for the remaining variables. The 

complex growth rate co is calculated by an eigenvalue code [10]. From the real part of co, the period of the wave 

can be determined. Growth or decay of the wave depends on the sign of co; , the imaginary part of co. A stable 

wave corresponds to co; negative, while a positive co; indicates a growing mode. 

5. Boundary conditions 

Under the assumption of parallel flow, all the variables are periodic in the streamwise and spanwise direc

tions. No slip conditions are applied to the velocities at the wall which is adiabatic. In the far-field, all the 

variables are frozen at their initial values. 

6. Results 

The coordinate system and nomenclature used for the flat plate geometry is illustrated in figure 1. Com

plex eigenfunctions and eigenvectors are obtained by numerically solving the eigenvalue problem associated 

with the linear stability of compressible parallel flows [10]. Table I summarizes the input parameters. Mean 

streamwise velocity and mean temperature profiles at Mach 0.5 and 4.5 are compared with each other in figures 
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2-3. As seen from figure 2, at Mach 4.5 the mean temperature across the boundary-layer varies by more than a 

factor of 4. This is in sharp contrast with the flat temperature profiles at Mach 0.5 (fig. 3). The complex eigen

functions are normalized to insure a maximum streamwise perturbation velocity of unity. Streamwise velocity 

profiles are illustrated in figures 4-5. With the normalization imposed on the eigenfunctions, it is immediately 

apparent from figure 6 that the extrema of the temperature variation are much more severe at the higher Mach 

number. 

Added to the mean flow, the computed three-dimensional eigenfunctions serve as initial flow-field data 

for the full Navier-Stokes code. For example, the initial streamwise velocity distribution is 

U(z) = Um + Ew cos(8(z)+cxx+Py) 

where 8(z) is the phase of the streamwise velocity eigenfunction. Similar relations are satisfied by the remaining 

velocity components, pressure and density. A value of .001 for E2D is sufficient to insure the absence of non

linear interactions of the fundamental mode with its higher harmonics. Figures 7-8 summarize the results of the 

linear test. Plotted in these figures is [og(EK) versus time, where EK is the perturbed kinetic energy 

EK = ~ J Pm [(u-Um)2 + v2 + w2] dx dy dz . 

Comparisons of the growth rates predicted by the Navier-Stokes code against linear results are made using both 

Chebyshev collocation and finite-differences in the direction normal to the wall. At Mach 0.5, the growth 

curves of perturbed kinetic energy for a 33 collocation point normal distribution and a distribution with 129 

finite-difference nodes are almost indistinguishable from each other and from the growth predicted by the linear 

eigenvalue code. However, 65 Chebyshev collocation nodes are required to match the predicted linear growth 

curves at Mach 4.5. In this case, 129 finite-difference nodes are not sufficient to resolve the structure of the 

eigenfunctions near the wall. The need for extra resolution at the higher Mach number is explained by the more 

complicated structure of the eigenfunctions presented in figures 5 and 6b. At Mach 4.5, the displacement thick

ness is almost an order of magnitude greater than at Mach 0.5, but in units of 0·, the distance of the critical 

layer from the wall always lies between 1 and 1.5. 

For the non-linear simulation, the parameters are: M_=4.5, Re=10000, L=110.85°R, 0.=.6 and P=1.03923. 

The spanwise wavenumber is chosen to maximize the growth rate of the 3-D mode in order to accelerate the 
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onset of the instability. The initial wave angle of the three-dimensional wave is 600 
• 

The amplitudes of the 2-D and 3-D waves are respectively Ew and EJD. Initially, the flow variables are 

set to 

U(x,y,z) = Um + Ew(Z) cos(9"w(z) + ax + ~y) + 

V(x,y,z) = Ew(z) Vw cos(9v2D(z) + ax + ~y) + 

W(x,y,z) = Ew ww(z) cos(9w2D(z) + ax' + ~y) + 

p(x,y,z) = Pm + Ew Pw(z) cos(9p2D(z) + ax + ~y) + 

p(x,y,Z) = Pm + Ew Pw(z) cOS(8P
2
D(Z) + ax + ~y) + 

Starting amplitudes are Ew=.054 and EJn=.012. The 2-D growth rate predicted by linear theory is 

ffi2LF.5011+.00203i with a period of T=12.54. The 3-D growth rate, ffiJLF.09765+.0l098i, is substantially larger 

than its 2-D counterpart, a property typical of compressible flows as the Mach number increases. Above Mach 

3, the phase angle that produces maximum growth is between 550 and 650 [2]. As stated earlier, the primitive 

variables are expanded in Fourier series in the x and y directions. The (i,j) mode of u is defined by the 

coefficient uiJ in (14). Figure 9 shows the evolution of the kinetic energy of selected modes as a function of 

time. The energy content of mode (ij) is defined by 

2 2 2 

f
Uji + vij + wij 

Eij = 10glO ( E dz). 
m 

The energy content of the (1,0) mode remains fairly constant. The spanwise modes (0,1) and (0,2) continuously 
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grow until their strength is apparently sufficient to trigger the growth of the (1,1) mode, which is largely respon

sible for the presence or absence of the secondary instability. Prior to the rapid growth of the (1,1) mode, it 

goes through a stable interval starting at about 3 periods. Once the (0,1) mode is within 0.5 decades of the fun

damental 2-D mode, the (1,1) mode suddenly becomes unstable again. At this stage, non-linear interactions 

between the 2-D and the 3-D mode begin to dominate the evolution of the flow. 

Span wise vorticity contours are illustrated in figure 10 in successive spanwise planes (normal to the span

wise direction) in the peak and adjacent planes. The initial formation of the high-shear layer after 5.5 periods 

(computed on a 36x16x65 grid) is apparent in this figure. The downward curving of the shear layer near its 

maximum is similar to the structure found in incompressible flow in the early stages of transition [5,6]. Stream

wise and spanwise vorticity contours in streamwise planes (the normal to the plane is in the streamwise direc

tion) are shown in figures 11-12 after 5.5 periods in planes at 0.0, 0.25, 0.5 and 0.75 wavelengths along the 

streamwise direc~on. Saddle poin~ in the spanwise vorticity correspond to maximum streamwise vorticity. If 

these maxima are followed in figures 12a-d, the uplifting of the vortex tube becomes apparent, although it. is 

rather flat. 

7. Conclusions 

A fully spectral, 3-D, compressible Navier-Stokes code specialized to parallel flow over a flat plate has 

been presented. It has been demonstrated that in the linear regime an initial eigenfunction grows at the same rate 

as predicted by a linear eigenvalue code in both subsonic and supersonic flow. As a test of the non-linear 

behaviour of the code at high Mach numbers, initial conditions are set up to numerically generate, for the first 

time, a high Mach number peak-valley vortical structure similar to that observed and computed for incompressi

ble flows. 
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9. Table 

Case Mach nb. a ~ Re Too (oR) 

I 0.5 .24933 .20944 1200 520.00 
II 4.5 .4652 .8057 10000 110.85 

Table I: parameters input to the linear eigenvalue code 
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11. Figure Captions 

Figure 1: 

Figure 2: 

Figure 3: 

Figure 4: 

Figure 5: 

Figure 6: 

Figure 7: 

Figure 8: 

Figure 9: 

Figure 10: 

Parallel mean flow over a flat plate. The coordinate axes are labelled according to accepted 

nomenclature. 

Mean profiles Um (solid line) and Tm (dashed line) at Mach 0.5 (see table I) along the direction 

normal to the plate. 

Mean profiles Um (solid line) and Tm (dashed line) at Mach 0.5 (see table I) along the direction 

normal to the plate. 

Mach 0.5 complex eigenfunctions of the linearized compressible Navier-Stokes equations at 

R,.=l100 along the direction normal to the plate: U2D (4a), U3D (4b), T2D (4c) and T3D (4d). 

Mach 4.5 complex eigenfunctions of the linearized compressible Navier-Stokes equations at 

Re=10000 along the direction normal to the plate: U2D (5a), U3D (5b), T2D (5c) and T3D (5d). 

Comparison of temperature eigenfunction profiles at Mach 0.5 (6a) and Mach 4.5 (6b). 

Growth curves of perturbed kinetic energy at Mach 0.5 (case I) for 112 period with 33 collocation 

nodes (x), 33 (+), 65 (*) and 129 (x) finite-difference nodes. The 129 finite-difference, 33 collo

cation and the theoretical curve are indistinguishable from each other. 

Growth curves of perturbed kinetic energy at Mach 4.5 (case II) for 1 period with 129 finite

difference nodes (*), and 33 (x) and 65 (0) collocation nodes. The theoretical curve is indistin

guishable from the 65 spectral node curve. 

Evolution of the kinetic energy of selected Fourier modes. The energy is plotted on a logarithmic 

scale. 

Spanwise vorticity in successive spanwise planes after 5.5 periods (M .. =4.5.R,.=10000.0). The 

planes are located at x=O (lOa), Lj4 (lOb), and Lj2 (10e) where L" is the streamwise period. 
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Figure IDe is the peak plane. The planar cuts extend to z=2 in the normal direction. 

Figure U: Spanwise vorticity in successive streamwise planes after 5.5 TS periods (M .. =45.Re=UOOO.O). 

The planes are located at y=O (ila), L/4 (Ub), L/2 (Uc), and 344 (Ud) where Ly is the span

wise period. The planar cuts extend to z=2 in the normal direction. 

Figure 12: Streamwise vorticity in successive streamwise planes after 55 TS periods (M .. =45,Re=10000.0). 

The planes are located at y=O (12a), L/4 (12b), L/2 (12c), and 3L/4 (12d) where Ly is the span

wise period. The planar cuts extend to z=2 in the normal direction, 
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