JOINT INSTITUTE FOR AERONAUTICS AND ACOUSTICS

NASA-CR-176929 19860020663

National Aeronautics and Space Administration
Ames Research Center

Stanford University

A 3-COMPONENT LASER-DOPPLER VELOCIMETER DATA ACQUISITION AND REDUCTION SYSTEM

BY

L. C. Rodman, J. H. Bell and R. D. Mehta

LIBRARY RADY
AUG 291985

LÏRRARY, NANA
YAMPTON: VIRCITS:A

JIAA TR - 63

A 3-COMPONENT LASER-DOPPLER VELOCIMETER DATA ACQUISITION AND REDUCTION SYSTEM

BY

L. C. Rodman, J. H. Bell and R. D. Mehta

The work here presented has been supported by NASA Grant NCC 2-294.

TABLE OF CONTENTS

page
ABSTRACT iii
LIST OF FIGURES iv
NOMENCLATURE v

1. INTRODUCTION 1
2. OPTICAL SYSTEM AND SIGNAL PROCESSING HARDWARE 3
2.1 Optics Table 4
2.2 Transmitting Optics 5
2.3 Receiving Optics 6
2.4 Signal Processing Hardware 6
2.5 Computer Interface 7
2.6 HP 9845A Desk-Top Computer 8
3. DATA ACQUISITION AND REDUCTION SOFTWARE 8
3.1 Data Acquisition Software 9
3.2 Data Reduction Software 10
4. OPERATING PROCEDURES 15
4.1 Alignment Procedures 15
4.2 .Signal Processing 17
5. INHERENT PROBLEMS 19
6. SAMPLE RESULTS 21
7. CONCLUDING REMARKS 22
APPENDIX -- SOFTWARE FOR THE HP 9845B COMPUTER 23
ACKNOWLEDGEMENTS 67
REFERENCES 68
TABLE 1 69
FIGURES 70

ABSTRACT

This report describes a Laser Doppler Velocimeter capable of measuring all three components of velocity simultaneously in low-speed flows. All the mean velocities, Reynolds stresses, and higher-order products can then be evaluated. The approach followed is to split one of the two colors used in a 2-D system, thus creating a third set of beams which is then focused in the flow from an off-axis direction. The third velocity component is computed from the known geometry of the system. In this report, the laser optical hardware and the data acquisition electronics are described in detail. In addition, full operating procedures and listings of the software (written in BASIC and ASSEMBLY languages) are also included. Some typical measurements obtained with this system in a vortex/mixing layer interaction are presented and compared directly to those obtained with a cross-wire system. A brief discription of the present system together with a review of existing 3-D Laser Doppler Velocimeters is given in Ref. 1.

LIST OF FIGURES

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Fig. 11

Fig. 12

Fig. 13

Schematic of the optics table layout.
Schematic of the transmitting optics.
Details of the probe volumes in the 3-D system.
Schematic of the receiving optics.
Evaluation of the effective probe length.
Schematic of the signal processing electronics.
Computer interface simplified block diagram.
Block diagram for data acquisition program.
Block diagram for data reduction program.
NASA LDV-A/D computer interface connections and settings.

Experimental rig.
(a) Overall schematic
(b) Details of boundary layer trips and coordinate system

Secondary velocity plots.
(a) Cross-wire measurements
(b) LDV measurements

Comparison of X-wire and LDV measurements in a vortex/mixing layer interaction.

NOMENCLATURE

a (i)	ith sample value
d_{f}	fringe spacing
f	frequiency
i	sample number
Ns	number of samples
R	range setting on Macrodyne processor
S<a (i)>	sum of $a(i)$ from $i=1$ to $i=N s$
Sa	average of quantity a, defined by equations (3)
$\bar{u}, \bar{v}, \bar{w}$	mean velocity components in x, y, z directions, respectively
u,v,w	instantaneous velocity components in x, y, z directions, respectively
Uo	$U_{1}-U_{2}$, velocity difference between the two streams in the mixing layer
x, y, z	Streamwise, normal, and spanwise coordinate directions, respectively
Subscripts:	
bragg	Bragg
mix	mixing
dopp	doppler
res	resultant
1	quantity measured in high-speed side of mixing layer
2	quantity measured in low-speed side of mixing layer
Superscripts:	
'	fluctuating quantity, e.g., $u=\bar{u}+u^{\prime}$
-	time average

1. INTRODUCTION

Our ability to understand and model turbulent flows still relies heavily on the availability of accurate measurements of mean and fluctuating quantities within the flow. Until recently, the hot wire was the only reliable tool available for the measurement of fluctuating velocities. In fact, almost all of our present knowledge about turbulent flows is based on measurements made with hot wires. In relatively simple flows (moderately twodimensional with small cross-flows), reliable and accurate hot wire measurements are now possible with fully automated data acquisition and reduction systems which minimize errors due to drifts in calibrations. An example of such a system is given in Ref. 2.

However, as we turn our attention towards more complex turbulent flows, a need for more sophisticated measurement techniques has become apparent. These complex flows include those with compressibility effects, strong three-dimensionality (with steep mean gradients), flow reversals, and time-dependent behavior. Since about the mid-sixties, the most popular alternative tool for measuring mean and fluctuating velocities in turbulent flows has been the Laser Doppler Velocimeter (LDV).

The most popular LDV arrangement used for wind tunnel measurements is the dual beam or fringe method. In this method, one of the laser lines is split into two lines of equal intensity which are then focused through a lens so that they cross over at the focal point. The flow is seeded with small particles (typically less than 3-4 $\mu \mathrm{m}$ in diameter) which follow the fluid motion. As these particles pass through interferometric fringes created by the crossed laser beams, light is scattered off them which is received by a photodetector. The frequency of this scattered light, along with a knowledge of the fringe pattern formed by the laser beams, provide the means to calculate the velocity of the particle. The fringe method, especially in
the forward scatter, off-axis mode, generally offers the best signal-to-noise ratios and spatial resolution.

Although LDV systems are somewhat complex and tiresome to set up, they have certain advantages over hot wires for turbulence measurements. The fact that Laser Doppler Velocimetry is nonintrusive is especially beneficial in the measurement of unstable flow phenomena which are very sensitive to the presence of measurement probes. In certain situations, LDV systems can also provide greater spatial resolution and better directional descrimination than hot wires. This makes it possible to use LDV systems for the measurement of separated flows. Since an LDV measures the velocity directly, independent of the thermodynamic properties of the flow, it is particularly attractive for velocity measurements in compressible flows. Furthermore, the calibration converting the frequency to velocity is linear and easy to implement in software. This feature also allows for uniform sensitivity in measuring both moderate and high turbulence intensities.

Two-color LDV systems capable of measuring two components of velocity simultaneously are now being widely used. However, the main interest in the present investigation was to study three-dimensional interactions where it is desirable to obtain measurements of all three velocities. Hence, the first objective was to develop a laser velocimeter system capable of measuring all three components of velocity simultaneously so that all six components of Reynolds stress may be computed. Another objective was to compare these LDV measurements directly with those obtained with hot wires in flow fields where both techniqes are expected to perform satisfactorily. The purpose of this is to evaluate the performance of the system quantitatively and objectively.

The approach followed in the present investigation was to convert an existing two-component LDV system into one capable of measuring all three components of velocity simultaneously. The system utilizes two wavelengths (488.0 and 514.5 nm) from a 4-watt Argon-Ion laser. The main four-beam matrix measures
u and v directly. The green line in the four-beam matrix is split (in half) using a dichroic filter and directed over the top of the traverse mechanism with mirrors, giving the third beam pair for the measurement of the w-component. This pair of beams (with rotated polarization) measures $w \sin 45^{\circ}+v \cos 45^{\circ}$. Scattered light is collected in the off-axis forward scatter mode using two collection lenses.
signal processing is accomplished with single-particle burst counters, and the validated data are multiplexed through a "home-built" interface to an HP 9845B desk-top computer. Some selected first and second order products are reduced on-line, and the raw data is dumped onto floppy disk. An off-line program reduces the data, giving up to third order quantities and also plots histograms of the raw data for each channel. The software includes the capability to filter out noise by examining the histograms.

The optical and signal processing hardware is described in section 2. The data acquisition and reduction software is described in section 3 and detailed operating procedures are given in Section 4. Some problems, inherent to 3-component LDV systems, are presented in Section 5. Sample results from an experiment measuring mean and turbulence quantities in a vortex/mixing layer interaction are compared directly to results obtained using crossed hot-wire anemometry in Section 6, and concluding remarks are presented in the final section. Complete software listings written in BASIC and ASSEMBLY languages to run on the HP 9845B desk-top computer are included in the appendix.
2. OPTICAL SYSTEM AND SIGNAL PROCESSING HARDWARE

The hardware for the 3-component LDV system can be divided into three categories: the optical system, the signal processing instrumentation, and the computer. The IDV optics consist of the optics table, where the laser beam is split into green and blue beam pairs, the transmitting optics, where the beams are
directed into the flow field, and the receiving optics, where the scattered light is picked up by photodetectors. The signal processing instrumentation consists of amplifiers, filters, burst counters and a computer interface. The sampling procedures are all computer controlled.

2.1 Optics Table

The optics table consists of the laser and all the optical elements needed to provide the necessary four-beam matrix. Fig. l shows a schematic of the arrangement with component numbers as referred to in this section. A 4-watt Argon-Ion laser (Lexel Model 95) is used to produce the main beam. The beam then passes through a collimator (l), which ensures that the beam waist occurs at the focal point of the transmitting lens.

The collimated beam is passed through a color separator box, which consists of a polarization rotator (2), an attenuator (3), and a pair of high dispersion Brewster angle prisms (4) which are used to separate the multi-line beam into two colors, blue (488 nm) and green (514.5 nm). These two beams are then reflected across the box by mirror (5), and out of the box by mirrors (6, 7).

Following the color separation, the green beam's polarity is rotated to horizontal (8), and the beam is split into two beams in the vertical plane (9). Most beam splitters prefer this type of perpendicular polarization for maximum efficiency. Using the beam displacer (10), the blue beam is then moved to the center of the optics, and its polarity is rotated to vertical (11). The blue beams are split in the horizontal plane (l2). At this point, the four beams are each displaced 25 mm from the optical axis.

Two Bragg cells $(13,14)$ are used to shift the frequency of one beam from each pair. The unshifted beam passes through an optical rod so that the path lengths are matched. The frequency is shifted by a fixed amount of 40 Mhz . This shift creates
a moving system of fringes at the beam intersection point, allowing for directional discrimination of the velocity. Frequency shifting also helps to reduce the percentage of frequency change in highly turbulent flow, to reduce fringe bias, and to optimize frequency, thus enabling easy removal of the pedestal by high pass filtering.

The four beams are then passed through a beam steering module (15). The module consists of a set of wedge prisms that can be independently rotated about the beam axis to steer the shifted beam in any direction. This allows a more precise alignment of the beams. The beams are finally passed through a beam displacer (16) to reduce the beam spacing to 13 mm and a rotating prism (17) before leaving the optics table. The rotating prism enables the four-beam matrix to be rotated independently so that the beams may be aligned relative to the tunnel axes.

2.2 Transmitting Optics

The transmitting optics (Fig. 2) are mounted on a traversing mechanism with three degrees of freedom. The traverses are driven by individual stepper motors. The four beams from the optics table are directed by a set of five mirrors through a dichroic filter before being focused by a 380 mm (15 inch) focal length lens. This main four-beam matrix measures u and v directly. The dichroic filter, set at an angle of about 30 degrees to the incoming beams, splits the green beams in half, which provides the third beam pair for the third velocity component, w. This third beam pair is directed over the top by mirrors, passed through a polarization rotator (giving it a different polarity than the main-axis green beam pair) and then focused at the focal point of the main beam set. Since this third beam pair intersects the main measuring volume at a 45° angle to the main axis, it measures v and w with equal sensitivity, with the measured component being $w_{V}=\left(v \cos 45^{\circ}+w \sin 45^{\circ}\right)$. Since v is measured directly, w can be evaluated using the equation:

$$
\begin{equation*}
\mathrm{W}=\frac{\mathrm{W}}{\mathrm{~V}-\mathrm{V} \cos 45^{\circ}} \frac{\sin 45^{\circ}}{} \tag{1}
\end{equation*}
$$

Typical probe volume dimensions for each beam pair in the present configuration are 10 mm in length and 0.2 mm in diameter (Fig. 3). However, the actual "viewed" dimensions are reduced considerably, as discussed below, in Section 2.3.

2.3 Receiving Optics

The detector system (Fig. 4) is in the off-axis forward scatter mode. The receiving optics are mounted on a traversing gear, also run by stepper motors, which moves synchronously with the transmitting optics. Scattered light is collected by two 380 mm (15 inch) focal length lenses. The collimated light is passed through filters to separate the colors and the off-axis line is additionally passed through a polarization filter to avoid collecting light scattered by the main axis green pair. The collected light is then focused by 250 mm (10 inch) focal length lenses onto pin-hole apertures mounted in front of the three photomultipler tubes. The collection angle and diameter can be adjusted to select the effective (viewed) probe length (Fig. 5). In the present set-up, a collection angle of 30 degrees and an aperture diameter of 0.5 mm were used to give an effective length of about 1.5 mm .

2.4 Signal Processing Hardware

The signals from the photomultiplier tubes are amplified and relayed to the signal processors via high-pass filters and mixers (Fig. 6). The amplifiers used are EIN model 403LA with a fixed gain of 37 dB and the filters are Allen Avionics F2440 with a fixed high-pass cutoff of 10 MHz . The filtered signals are mixed electronically with sine waves from three Tektronix SG503 Levelled Sine Wave Generators. The mixer is commercially available from Hewlett-Packard, model 10534A. The mixing procedure
is necessary for low-speed flows, where the actual Doppler frequencies are small compared to the Bragg frequency of 40 MHz . So in order to reduce the effective measured frequency and hence improve the counter resolution, the incoming signals are mixed with sine waves of known frequency.

The mixed signal is fed into single particle burst counters (Macrodyne model 2096-2 and 3003) via high-pass/low-pass filters and an amplifier (x10). The counters measure the zero crossings of the Doppler signal, which is related to the Doppler frequency by the range set on the Macrodyne. The range is set manually based on expected flow velocities, since it limits the frequencies that the processor can see for the given 10 bits of resolution.

The processors use two checks to validate a Doppler signal. The first check is the usual $5 / 8$ comparison, where the processor checks the frequency for 5 zero crossings against that for 8 crossings. The second check is the multi-sequence check. Positive and negative thresholds are set on the signal, and a validated output is permitted only if, for all eight fringe crossings, the signal passes through a positive threshold, a zero level, and a negative threshold in the proper sequence. The digital data (consisting of a 10 bit data word with 3 bits giving the range) and a sync pulse (produced every time the front end of a valid burst is detected) are passed to the computer interface.

2.5 Computer Interface

A NASA LDV-A/D computer interface (CI) is used to transfer data from the LDV signal processor to the computer (Fig. 7). The CI can interface either digital or mixed analog and digital data to an HP 9845B desk-top computer. The CI consists of an eight-channel multiplexer, a four-channel A/D converter, and an event synchronizer with time interval counter.

For use with the LDV, the inputs to the CI are all digital. Six of the eight words come from the processor, and two are time and status words from the synchronizer. The inputs are
multiplexed to a single digital data channel output.
The CI can accept data from the three processors in either random mode or sync mode. In random mode, the $C I$ will accept data inputs when an event occurs on any of the three channels. A dead time (between 5 and $50 \mu s$) is set in this mode, which controls the minimum time between samples to ensure that a given particle is sampled only once. In sync mode, the CI will accept data inputs when all three processors sample simultaneous events. In this mode, a coincidence time (between 5 and $50 \mu s$) has to be set, which determines the time window within which all three events must occur. A detailed description of the $C I$ can be found in Ref. 5.

2.6 HP 9845B Desk-top Computer

Multiplexed data are passed to the HP computer from the NASA LDV-A/D using the HP 98032A high-speed l6-bit parallel interface. Jumpers labeled "9,B,D" are connected inside the 98032A. for proper operation with the LDV-A/D. A select code of 10 (screw setting on the 98032A) is set for use with the software described in the appendix. A data buffer of 24 kbytes is provided in the memory of the HP 9845B desk-top computer for storage of up to 2000 samples obtained from one measurement location. Since three of the six data words passed for each sample are merely monitored and discarded as described above, 12 kbytes of raw data remain to be stored for each point. An HP 9895A floppy-disk drive is used for archival storage of raw data. The buffered data are written in real time to a sequentialaccess floppy-disk file. Enough header information is written to each file to identify the run, and to reproduce calibration tables.
3. DATA ACQUISITION AND REDUCTION SOFTWARE

Data aquisition and reduction on the $H P 9845 B$ is done via
two programs. The data acquisition program controls the processor sampling. The program accepts heading and initialization parameters provided by the operator, performs a fast I/O handshake to acquire the raw data from the LDV-A/D computer interface, and writes the raw data and initialization parameters onto floppy-disk. In addition, the data acquisition program has a limited capability for on-line data reduction so that key results may be monitored during a run. The off-line data reduction program converts the raw data into instantaneous velocities and computes all the statistical quantities. The off-line program also has options to plot histograms of the raw data, to plot profiles of the reduced data, and to filter out noise.

3.1 Data Acquisition Program

The data acquisition program structure can be divided into four areas: (1) initialization of variables, (2) data acquisition, (3) limited data reduction, and (4) raw data storage (see the block diagram in Fig. 8). During the initialization stage of the program, relevant test parameters are input to be saved along with the data. These parameters include the spatial coordinates, Bragg and mixing frequencies, and angle of the third beam pair. Fringe spacings and probe dimensions are also calculated at this time.

Data is acquired from the LDV computer interface by means of a fast I / O handshake. The operator requests that a certain number of data samples be taken and stored in the data buffer as described in section 2.6. The l6-bit data words are put into an integer array, three words wide, containing values for the three velocity components. The number acquired from the counter occupies only bits $0-9$ of the data word. Bits 10-13 specify the range, and bits 14 and 15 are unused. The data array, along with the initialization parameters given by the operator, are stored in a floppy-disk file. As an option, some of the data can be reduced on-line, before the raw data is written
to floppy-disk. This on-line reduction feature uses the same algorithms as the off-line data reduction program, but is faster since it computes fewer quantitites. Data acquisition times depend on many factors other than the software, but on-line data reduction takes about 30 seconds per point on the HP 9845B, and each file write to the floppy-disk requires about 20 seconds, assuming 2000 samples are taken per point.

3.2 Data Reduction Program

A separate off-line program is used to reduce the complete data. The data reduction program has four major sections: (1) data read from floppy-disk, (2) conversion of raw data to instantaneous velocities, (3) calculation of sums of instantaneous velocity components, and (4) calculation of moments from the sums (see the block diagram in Fig. 9). Since the HP 9845B is a relatively slow micro-computer, the bulk of the calculation routines are written in ASSEMBLY language to reduce computation time.

The program reads the initialization parameters and raw data which were written on floppy-disk by the data acquisition program. The raw data is used together with the mixing frequencies, Bragg shift frequency, third beam crossing angle, and fringe spacings to calculate the three velocity components for each sample. The velocities for each sample are calculated in turn, and a running sum is maintained. After the samples have been summed, the average values of the various moments are computed, and the mean velocities and turbulence quantities are calculated from them. Reading from the floppy-disk takes about 20 seconds, while the data reduction including histogram plots requires about 90 seconds per point on the HP 9845B.

The procedure for data reduction is fairly straightforward. The raw data is converted to frequencies using the range set on the processor. The measured frequency is given by the relation

$$
\begin{equation*}
f_{\text {res }}=3.2 * 10^{4} / 2^{R} * D \tag{2}
\end{equation*}
$$

where $D=$ raw data.
The velocities are then calculated from the resultant frequencies, by the relation:

$$
\begin{equation*}
\text { velocity }=d_{f} *\left(\left(f_{b r a g g}-f_{m i x}\right)-f_{\text {res }}\right) \tag{3}
\end{equation*}
$$

Once the velocities have been evaluated, average values of the various moments are computed as defined below:

$$
\begin{align*}
& \text { Su }=\mathrm{S}<\mathrm{u}(\mathrm{i})>/ \mathrm{Ns} \\
& \mathrm{~Sv}=\mathrm{S}\langle\mathrm{v}(\mathrm{i})\rangle / \mathrm{Ns} \\
& \text { Sw }=\mathrm{S}\langle\mathrm{w}(\mathrm{i})\rangle / \mathrm{Ns} \\
& \text { Suu }=S<u(i) u(i)>/ N s \\
& \text { Suv }=s<u(i) v(i)\rangle / N s \\
& \text { Suw }=s<u(i) w(i)\rangle / N s \\
& \text { Svv }=S\langle v(i) v(i)\rangle / N s \\
& \text { Svw }=S\langle v(i) w(i)\rangle / N s \tag{4}\\
& \text { Sww }=S\langle w(i) w(i)\rangle / N s \\
& \text { Suuv }=S\langle u(i) u(i) v(i)\rangle / N s \\
& \text { Suuw }=S<u(i) u(i) w(i)\rangle / N s \\
& \text { Suvv }=\mathrm{S}\langle u(\mathrm{i}) \mathrm{v}(\mathrm{i}) \mathrm{v}(\mathrm{i})\rangle / \mathrm{Ns} \\
& \text { Suww }=S<u(i) w(i) w(i)\rangle / N s \\
& \text { Suvw = S<u(i)v(i)w(i)>/Ns }
\end{align*}
$$

Using these definitions, the signal statistics are then calculated assuming nearly infinite sample size:

$$
\begin{align*}
\bar{u} & =S u \\
\bar{v} & =S v \\
\overline{\mathrm{w}} & =s w \tag{5}\\
\frac{u^{\prime}}{\frac{v^{\prime}}{\prime 2}} & =S u u-S u s u \\
& =S v v-S v S v
\end{align*}
$$

$$
\begin{aligned}
& \overline{w^{\prime}}=\text { Sww }-S w S w \\
& \overline{u^{\prime} v^{\prime}}=\text { Suv }- \text { SuSv } \\
& \overline{u^{\prime} w^{\prime}}=\text { Suw }- \text { SuSw } \\
& \overline{v^{\prime} w^{\prime}}=\text { Svw }- \text { SvSw } \\
& \frac{u^{\prime} 2}{} v^{\prime}=\text { Suuv }-2 S u S u v-\text { SvSuu }+2 S v S u S u \\
& \frac{u^{\prime} 2 w^{\prime}}{}=\text { Suuw }-2 S u S u w-\text { SwSuu }+2 S w S u S u \\
& \frac{u^{\prime} v^{\prime}}{}=\text { Suvv }-2 S v S u v-\text { SuSvv }+2 S u S v S v \\
& \frac{u^{\prime} w^{\prime}}{}=\text { Suww }-2 S w S u w-\text { SuSww }+2 S u S w S w \\
& \overline{u^{\prime} v^{\prime} w^{\prime}}=\text { Suvw }- \text { SuSvw }- \text { SvSuw }- \text { SwSuv }+2 S u S v S w
\end{aligned}
$$

The implementation of the data reduction software is somewhat more complex. In order to achieve reasonable running times, the ASSEMBLY code is optimized for speed rather than clarity of operation. Operations which do not change between samples are performed only once. Thus,

$$
\begin{equation*}
\text { velocity }=d_{f} *\left(\left(f_{\text {bragg }}-f_{\text {mix }}\right)-f_{\text {res }}\right) * 10^{6} \tag{6}
\end{equation*}
$$

becomes

$$
\begin{equation*}
f_{\text {int }}=f_{\text {bragg }}-f_{\text {mix }} ; d_{\text {int }}=d_{f} * 10^{6} \tag{7}
\end{equation*}
$$

hence, velocity $=d_{\text {int }}$ * ($f_{\text {int }}-f_{\text {res }}$)
Additional calculations are required to obtain the w component velocity. Since the third set of beams measures $\mathrm{w}_{\mathrm{V}}=\mathrm{w} \sin 45^{\circ}$ $+v \cos 45^{\circ}$, to find w, we must also perform the calculation:

$$
\begin{equation*}
w=\left(w_{V}-v \cos 45^{\circ}\right) / \sin 45^{\circ} \tag{9}
\end{equation*}
$$

The raw data output of the digitizer is in the form of a 10 bit data word, giving a range of possible values (counts) from 0 to 1023. Since 2000 samples are normally taken for each point, a given value may be encountered many times. Accordingly, each time a new value of the raw data is encountered, the corresponding velocity is calculated and stored in a look-up table. The next time that value is encountered by the program, the
proper velocity can be easily looked up, eliminating the need for another time-consuming real variable calculation. The exact running procedure of the data reduction program therefore, is as follows:

1. Reads header and all raw data for a particular point from floppy disk.
2. Strips bits 10-13 from three raw data words corresponding to the three different velocity components, and uses them to calculate the three ranges set on the A/D.
3. Calculates various intermediate values which remain the same throughout the point.
4. Reads a data word, strips off bits $0-9$, and uses this raw datum as an index to look up its corresponding velocity.
5. If it is a new value, the program calculates the velocity using the raw datum, and stores it in the appropriate place in the look-up table.
6. For the w velocity component, it finds the actual velocity from $w=\left(w_{V}-v \cos 45^{\circ}\right) / \sin 45^{\circ}$.
7. Performs steps 4, 5, and 6 three times--once for each velocity component of the sample.
8. Updates the running sums of the velocity components and products of the velocity components.
9. Performs steps 4 through 8 for all samples.
10. Uses the sums to obtain the average velocities, Reynolds stresses, and third order products, and then prints these quantities.
11. Plots histograms of the raw data for all three channels.
12. Performs steps 1 through 11 for each profile point.
13. Plots profiles of the reduced data.
14. Tabulates normalized data profiles.
15. Writes a summary file containing the reduced data to disk.

The data reduction program also has a routine to filter noise and spurious data. Each of the 2000 data samples has 3 counts corresponding to the 3 velocities associated with it. The filtering routine causes the data reduction program to ignore samples associated with counts which are excessively far from the mean.

The filtering routine first sorts the data into three frequency tables, one for each channel. In a table, each count, i, has associated with it a number, S_{i}, which is the number of samples with that particular count.

The filtering routine finds the average count for each channel by going through the frequency tables and using the formula

$$
\begin{equation*}
c_{j}=\sum_{i=1}^{1024} \frac{i \times s_{i j}}{N s} \tag{10}
\end{equation*}
$$

where $j=1,2,3=$ channel number
$C_{j}=$ average count
Ns = number of samples.
Next, the filtering routine finds the standard deviation by performing the summation

$$
\begin{equation*}
\sigma_{j}^{2}=\sum_{i=1}^{1024} s_{i j}{ }_{N}\left(i-c_{j}\right)^{2} \tag{11}
\end{equation*}
$$

where $\sigma_{j}=$ standard deviation.
An input variable called $S_{\text {dev }}$ is read by the filtering routine. All counts further than $S_{\text {dev }}$ standard deviations away from the mean will be filtered out. This is done by multiplying $S_{\text {dev }}$ by σ_{j} for each channel, and going through the frequency tables one more time. If the magnitude of ($i-c_{j}$) $>S_{d e v} * \sigma_{j}$, then $S_{i j}$ is set equal to zero.

The routine which calculates the statistical quantities takes each sample one at a time. The three counts associated with each sample are found and looked up in the frequency table. If for any count the table entry ($S_{i j}$) is zero, then the sample is discarded. Thus any sample which is excessively far from the mean in any one of its three counts is not used.

4. OPERATING PROCEDURE

4.1 Alignment Procedure

To achieve the best possible beam crossing and the most effective measuring volume, each module in the optics system must be carefully aligned. Detailed alignment instructions for individual optical components are given in Ref. 3. The overall alignment procedure is described in this report. Component numbers in this section refer to those shown in Fig. 1.

The first step is to check that the laser output beam is parallel to the optics table at the specified height, using the system alignment blocks. The collimator (1) should be positioned so that the laser beam goes through the center of the lens, and focused so that the beam waist occurs at the cross-over point. The aligned beam then passes through the polarization rotator (2) and into the color separator box. The attenuator (3) ensures that the beam has horizontal polarity at this point.

Each component of the color separator must be aligned separately. The dispersion prism (4) should be aligned so that the path length is the same in both prisms and is parallel to the
base of each prism. Several beams emerge from the prism, with the two brightest ones being green (514.5 nm) and blue (488 nm). The two beams are reflected out of the box using mirrors. The beams should be centered on mirrors (6) and (7). As the beams come out of the box, alignment blocks are used to check the beam positions. If both beams are off-axis in the same direction, mirror (5) is used to align them. If only one beam is off, the appropriate mirror, (6) or (7), is used for the adjustment. Beam splitter efficiency is maximized when the beam polarization is perpendicular to the plane of the split beams. This is achieved through components (8) and (11). The beam splitters (9) and (12) cannot split the beam intensity exactly in half, so one beam of each pair is always slightly brighter. Since the Bragg cells (13) and (14) normally attenuate the shifted beam, the brightest beam is frequency shifted so that the output beam pairs have nearly equal intensities. Detailed instructions for aligning the Bragg cells are given in Ref. 4. After passing through the Bragg cells, directional wedges are used to project the beams onto a distant surface ($\sim 3 \mathrm{~m}$). Any beam misalignments are more easily seen this way, and with the use of a marked mask, the beams can be adjusted to the correct orientation. Mirrors $(6,7)$ are used to adjust the unshifted beams, and the beam steering modules (15) are used for rotating the shifted beams along two circular arcs.

The next check is to ensure that the beams are parallel to each leg of the traverse mechanism on the transmitting optics table, so that beam alignment is maintained while traversing. The dichroic filter (Fig. 2) is adjusted so that the green beam pairs are split equally. Once the beams pass through the transmitting optics, the four beams must be arranged so that they all cross at the same position. A microscope objective is used to view the beam crossing. If the four beams are not symmetric about the optical axis, mirrors (6) or (7) can be adjusted to correct this. The beam steering modules (15) are used to ensure that the beams cross at the same point along the axis. The
third pair of beams are now aligned (by eye) so that they also cross at the same point as the main line beams.

To align the receiving optics, a piece of translucent tape is placed at the beam intersection point to scatter the laser light. By tracking the scattered light, the receiving optics are aligned to give a sharp image at the pin-hole aperature in front of the photomultiplier tubes.

4.2 Signal Processing

The sensitivity of the photomultiplier (PM) tubes used in the receiving optics can be varied by varying the applied voltage. Typically, a voltage of about 1000 volts is applied. This voltage can be increased to make the PM tubes more sensitive, as long as the threshold levels on the processors are increased accordingly, since the amount of noise picked up is also increased.

The measured signal is mixed electronically with the signal from a sine wave generator. The frequency of the sine wave (the mixing frequency) is chosen based on the expected flow velocities. The mixing frequency is chosen such that the difference between it and the Bragg shift is about twice the maximum expected Doppler frequency. This allows enough margin for fluctuations about the expected Doppler frequency and still have a remaining nonzero resultant frequency ($f_{\text {res }}=f_{\text {bragg }}-f_{m i x}-f_{\text {dopp }}$). If $f_{\text {mix }}$ is too high, a biasing results, similar to the fringe biasing caused by stationary fringes. The number of fringes crossed by a particle per second. (as seen by the processor) is proportional to $\Delta t\left(f_{\text {bragg }}-f_{\text {mix }}\right)$, where Δt is the time taken by a particle to cross one fringe. Noting that Δt is only determined by the fringe spacing and the flow speed, if $f_{m i x}$ is increased, the number of fringes crossed by a particle is effectively reduced. This means that signals from particles which cross the fringes at an angle may not have enough fringe crossings (8) to be validated, and hence a bias towards particles moving perpendicularly to
the fringes (higher velocity) results. This gives a higher mean velocity but a lower fluctuation level.

The amplitude of the sine wave must be chosen so that an adequate signal-to-noise ratio is maintained. Typically, a peak-to-peak amplitude of 1 volt is required.

The mixed signal is then fed into single particle burst (Macrodyne) processors. The high pass and low pass filter frequencies are set so that the processor frequency is centered between the two. Usually the high pass filter is set at 0.5 Mhz , which is the lowest non-zero setting, and the low pass filter is set anywhere from 2 to 16 Mhz , depending on the magnitude of the velocity component being measured. The filter bandwidth should be broad enough so that no parts of the fluctuating signal are attenuated.

The gain on the processor is normally set to lo. The output of the processors is displayed on an oscilloscope, and the Doppler signals should read about 1 volt peak-to-peak. The PM tube voltage can be adjusted so that the signal is at the desired level. Signal levels of more than about l volt end up being clipped and will therefore not be validated by the processor.

The comparator accuracy for the $5 / 8$ signal validation test can be set between 0 and 10 count variation. The 0 setting is the most accurate, and 11 is off. The processor manufacturer recommends that this level be usually set to 9.

The range on the processor sets the bandwidth of frequencies that the processor can see, according to Table l. For each range, a particular frequency corresponds to a count, from 0 to 1023. The processor frequency should be matched to a number in the central column in Table 1 , and the corresponding range should be set on the Macrodyne processor. An additional check can be made on the range setting by monitoring the analog output from the Macrodyne on a DC voltmeter. The output ranges from 0 to 10 volts, which corresponds to the counts from 0 to 1023. The correct range setting is that which gives about 5 volts on the voltmeter at the operating velocity.

The threshold is then set for the multi-sequence check. The threshold should be set so that the data rate is about half of the data rate at zero threshold. Another check is to block one beam in each color pair. The data rate on the corresponding channel should be zero when one beam is blocked.

To obtain good data rates in air, the flow must be seeded with uniformly sized particles. Smoke, obtained from burning mineral oil or incense, provides particles of approximately $2 \mu \mathrm{~m}$.

The computer interface should be set up as shown in Fig. 10. First choose the coincidence mode. If shear stresses are to be evaluated, coincidence on all 3 channels must be selected. The coincidence time (5 to $50 \mu \mathrm{~s}$) sets the window width during which coincidence is defined. This should be set at 5 . s. If only the individual velocities are desired, then the random mode can be selected. The dead time (5 to $50 \mu s$) should then be set so that data from one particle is not recorded twice. A setting of about $25 \mu \mathrm{~s}$ is recommended for low-speed flows.

The number of words that must be multiplexed can be calculated as follows: \#words = \#inputs + 2. This number should be rounded to the nearest even number. In the present case a setting of six is used. The event mode is set to LDV (digital data only). The LDV-A/D switch enables both digital and analog data to be interfaced simultaneously. The counter clock frequency is set to equal the approximate data rate, and the computer select is set to HP.

5. INHERENT PROBLEMS

Some design problems inherent to 3-component LDV systems are discussed in this section. One main problem with some of the earlier designs which called for splitting a color to create the third beam pair had to do with cross-talk. This is where signals from the two channels bearing the same color could not be adequately separated. In the original design of the present
set-up, the polarization of one of the green beam pairs was rotated relative to the other, so that the receiving optics could distinguish between the two signals. However, using a relatively large angle for the off-axis beams (45°) and two separate collection lenses, cross-talk between the two green channels has been almost eliminated, thus making the polarization rotation dispensable.

Some earlier designs of 3 -component IDV systems measured the $u+w$ velocity component with the off-axis third beam pair. It is shown in Ref. 1 that measuring the $v+w$ component instead, as done in the present system, reduces the uncertainty in the w component relative to the uncertainty in w from these earlier systems.

Another problem has to do with signal coincidence. Details of the probe volumes for the present system are shown in Fig. 3. It is clearly illustrated how the cross-over region between the three sets of beams forms a very small fraction of the overall probe volume. Thus, with heavy seeding (necessary for three-channel work), the electronics may validate data received from different particles which are not necessarily in the cross-over region but are within the coincidence time window set on the interface. This results in a lack of correlation between the measured velocities, and causes the evaluated shear stresses to be inaccurate. Two schemes have been used in an attempt to minimize this problem. First, the coincidence time was made so short that measurements from different particles may be considered instantaneous. The minimum setting of $5 \mu \mathrm{~s}$ available in the present hardware was used; this is equivalent to about half the flight time of a particle passing through the probe volume. The second procedure involved reducing the effective "viewed" probe length and thereby reducing the probability of this "apparent coincidence" (Fig. 5). A collection angle θ of 30° and an aperture diameter of 0.5 mm were used to give an effective length of about 1.5 mm .

As an initial check on the accuracy of the present system, some preliminary measurements have been made in a vortex/mixing layer interaction, previously investigated using the cross-wire technique (Ref. 6). Since the induced cross-flow angles in this interaction are only $5^{\circ}-10^{\circ}$, cross-wire measurements are expected to be accurate to within about 5\%. A schematic of the experimental set-up is shown in Figs. lla and b. LDV measurements of the secondary flow velocities at one streamwise station ($\mathrm{x}=229 \mathrm{~mm}$) are presented and compared to the cross-wire measurements in Figs. 12 a and b . LDV and cross-wire measurements of the turbulence quantities at one spanwise position ($z=13 \mathrm{~mm}$) are compared in Fig. 13.

The secondary flow velocities are qualitatively similar, although the LDV measurements indicate a somewhat higher $\overline{\mathrm{w}}$. The normal intensity $\overline{W^{2}}$ also seems slightly high. The higher \bar{W} measurements are more likely caused by a slight misalignment of the beams relative to the tunnel axis rather than by remnants of the apparent coincidence problem (discussed above in Section 5), since the latter would not affect the \bar{w} measurements. $\overline{v^{12}}$ seems to agree very well whereas $\overline{u^{\prime 2}}$ is a bit low, and since \bar{u} was a bit high, this was probably a result of fringe biasing caused by too high a mixing frequency (as discussed above in Section 4.2). (The mixing frequencies used for these measurements were 37.5 Mhz for the u channel, and 38 MHz for the v and w_{v} channels.) However, the normal stress measurements agree to within 10%, and the shear stresses are consequently affected. $u^{\prime} v^{\prime}$ is somewhat low (about 20\%) whereas $\overline{u^{\prime} w^{\prime}}$ is low by almost a factor of two. The measurement of $\overline{u^{\prime} w^{\prime}}$ with the present system seems to be very sensitive. This is due to the fact the $w_{v} * u$ is of the same order as $u * v \cos 45^{\circ}$, so any small error in the measurement of these velocities or the off-axis angle can result in large errors in $\overline{u^{\prime} w^{\prime}} . \overline{v^{\prime} w^{\prime}}$ in vortex affected flows is generally of the same order as $\overline{u^{\prime} w '}$ and this seems to be the case with
the present measurements. With a cross-wire, $\overline{v^{\prime} w^{\prime}}$ has to be evaluated from measurements made in four different planes about the probe axis, and hence was not measured here. The comparisons clearly demonstrate the potential of the system in measuring detailed mean flow and turbulence quantities in three-dimensional flows. Work is in progress on optimizing the problems discussed above so that the measurement accuracies may be improved.

6. CONCLUDING REMARRS

A 3-component LDV system, capable of measuring all three components of velocity simultaneously has been developed for use in low-speed three-dimensional flows. All the six components of Reynolds shear stress and higher order products of interest can hence be evaluated. The approach followed was to convert an existing 2-component system by splitting one of the colors to produce the third beam pair. The additional optical hardware required for this process is relatively minor.

For the first time, three-component measurements made with an LDV system have been compared directly with those obtained with the cross-wire technique, in a three-dimensional flow field where both techniques are expected to perform satisfactorily. The preliminary measurements are encouraging and work is in progress on improving the system accuracy.

APPENDIX

SOFTWARE FOR THE HP 9845B DESK-TOP COMPUTER

Complete listings of two programs written in BASIC and ASSEMBLY languages are included in this appendix: "LDV" for data acquisition, some on-line data reduction, and storage of data on floppy disks; and "STAT" for complete off-line data reduction from files written to disk.

```
REM PROLRAM LDY
! PROGRAM TO ACQUIRE DATA FROM THREE-EOMFOHEHT LIU SYSTEM
    ! The program a:sks for initialization data and calculates the
    ! calibration constants from them. It reads 3 chanmel三 of raw
    ! LV data from the LDV A/D CI and writes them to a disk file
    ! together with the calibration constants. The program can reduce
    ! the data and display real-time histograms of the raw LY data
    ! if desired.
    OPTION BRSE 1
    ICOM 16600
    IDELETE RLL
    IASSEMBLE Find_vel
    IRSSEMBLE Data_"rans
    IASSEMBLE Draw_hist
    COM INTEGER Data(3,2000), D1(2000,6),Ns,Nn ! D1 is data buffer
    COM REAL Df1,DfR,Df3
    COM REAL Theta,Nub,Numix1,Numi <2,Numi x 3
    COM REAL Su,Su,Sw,Suu,Suv,Sww,Suv,Suw, Suw
    DIM Date&[80],Filef[6],Names[4],Titl$[80]
    REAL Xpos,Ypos,ipos
    INTEGER A,B,Ranije1,Range?
    INTEGER Run,Dn,Nss,N
    REAL Ph1,D,F,Ph:2
    REAL Lam1,Lam2,Lam3,Db,Prwid1,Prlen1
    REAL Re,Ue
    REAL Prwid2,Prwid3,Prlen2,Prlen3
    REAL Nfr1,Nfr2,Nfr3
    REAL U,Y,W
    Ns=2000
    DEG
    PRINT
    PRINT " ** << PROGRAM LDV : 3-COMPONENT VELOCIT'' DATA >> ** "
    PRINT
    PRINT "PROGRAM STRUCTURE"
    PRINT " 1. INITIRLIZE URRIABLES AND CALCULATE FARAMETERS"
    PRINT " 2. RCQUIRE IRTA FROM A/D"
    PRINT " 3. WRITE TO FLOPPY DISC"
    PRINT
    !
    ** CHECK HISTIGGRAMS **
Ans末="N"
INPUT "DO YOU WISH TO LOOK AT HISTOGRAMS ? (Y/H, DEFAULT N`",AnEs
IF Ans$="Y" THEN GOSUB Hist
!
    ** INITIALIZE RUN **
PRINT " ** INITIALIZATION ** "
Run=1
PRINT " ENTER RIJN PARRMETERS:"
PRINT
INPUT "Enter da%e and time:",Dates
INPUT "Enter 1-Line Name For Profile:",Titl$
INPUT "Ho. of data samples per point (2000 maxm.) :",Ns
!
BEAM SPACING I IS FIXED
!
D=.013
!
    FOCAL LENGTH F IS FIXEI
```

```
6 1 0
620 F=.381
6 3 0 ~ ! ~
640 ! WRYELENGTHS OF 3 BEAMS RRE FIXED
650
!
Lam1=4.88E-7
Lam2=5.145E-7
Lam3=5.145E-7
!
REFERENCE VELICITY SET TO ZERO
700
70 !
720 Ue=0
730 !
74日 ! CRLCULATE HALF-ANGLES FROM BERM SPACINGS AND FOCAL LENGTH
750 !
760 Ph1=RTN(D/2/F)
770 Ph2=Ph1*2
780 !
790 ! CALCULRTE FRINGE SPACINGS FROM WRVELENGTHS AND HALF-RNGLES
800 !
810. Df1=Lam1/2/SIN(Ph1)
820 Df2=Lam2/2/SIN(Ph1)
830 Df3=Lam3/2/SIN(Ph1)
840
850
860 !
870 Db=1.20E-3
880 !
890 !
900 !
910 Prwidi=4*Lam1*F./PI/Db/Cos(Ph1)
920 Prlen1=4*Lam1*F.PI/Db/SIN(Ph1)
930 Prwid2=4*Lam2*F/PI/Db/COS(Ph1)
940 Prlen2=4*Lam2*F/PI/Db/SIN(Ph1)
950 Prwid3=Prwid2
960 Prlen3=Prlen2
970 Nfr1=Prwid1/Df1
980 Nfr2=Prwid2/Df2
990 Nfr3=Nfr2
1000 !
1010
    ! GET MORE RUN PARAMETERS
1020 !
1030 INPUT "Enter Bragg shift frequency (MHz) :",Nub
1040 Killww=3
1050 INPUT "Is this a two-channel or three-channel run (2/3, default. 3) ?",kill
_w
1960
1070 INPUT "Enter mi:<ing frequency (MHz, 2 nos.)",Numix1,Numix2
1080 Humix 3=0
1090 Theta=0
1100 GOTO 1130
1110 INPUT "Enter mising frequency (MHz; 3 nos.)",Numix1,Numix2,Humix3
1120 INPUT "Enter 3ri beam angle (degrs) :",Theta
1130 INPUT "Enter tunnel reference voltage (volts)",Vref
1140 PRINTER IS 0
1150 !
1160 ! PRINT HERDER
1170 !
1180 PRINT Tit.l$
1190 PRINT "TEST DATE RND TIME :",Date$
1200 PRINT "BERM SPALINGS (m) =",D
```

```
1400 REDIM Dats(3,Ns)
```

1410 Ans $\$=" \mathrm{~N} "$
1420
1430 IF Ans $\ddagger=" N "$ THEN GOTO 1490
1440 INPUT "Enter 4-idigit filename:", Namet
1450 PRINTER IS $\quad 0$
1460 PRINT "4-digit tilename for profile:",Names
1470 INPUT "Enter Disk Number : ", Dn
1480 PRINT "Disk Number $=$ ", Dn
1490 PRINTER IS 16
1500 INPUT "Enter X, Y, AND Z locations:", Xpos,Ypos,Zpos
1510 !
1520 ! TAKE DATA
1530 !
1540 PRINTER IS 0
1550 PRINT
1560 PRINT
1570 PRINT "POINT NUMBER IN PROFILE : ",Run
1580 PRINT "X,Y,Z = ",Xpos,Ypos,Zpos
1590 PRINTER IS 16
1600 GOSUB Atod
1610 !
1620 !
1630 !
1640 Ans $\$=$ "N"
1650 INPUT "DO YOU WISH TO OBTAIN ESTIMATES OF U RND Y ? (Y/N, DEFAULT N)", Ans夅
1660 IF Ans $=$ "N" THEN GOTO 1720
1670 RAD
1680 ICALL Find_vel
1690 GOTO 2420
1700 !
1710 : WRITE CRLIBRATION CONSTANTS AND DATA TO DISK
1720 !
1730 GOSUB Dfile
1740 Ans $\$=" Y "$
1750 INPUT "DO YOU WISH TO TAKE RNOTHER POINT ? (Y/N, DEFAULT Y)", Ans $\$$
1760 IF Ans $\$=" N "$ THEN GOTO 1820
1770 Run=Run+1
1780 Ans $\$=" N "$
1790 INPUT "DO YOU WISH TO CHANGE RNY PARAMETERS ? (Y/N, DEFAULT N)", Anst
1800 IF Anst="Y" THEN GOTO 540

```
1810
1820 END
1830
1840
1850
1860
1870
1880
1890
1900 DISP "Acquiring Data"
1910 RESET 10
1920 CONTROL MASK 10:1
1930 WRITE IO 10,5;0
1940 WRITE IO 10,5;1
1950 Nt=6*Ns
1960 FOR I=1 TO 5
1970 Dummy=READBIN(10)
1980 NEXT I
1990
2000
2010
2020
2030
2040
2050
2060
207
2080 ! !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
2090 Dfile: ! write data file to floppy disc
2100 PRINTER IS 16
2110 PRINT
2120 PRINT "** DRTA FILE WRITE TO FLOPPY DISK ***"
2130 PRINT
2140 PRINT "At this point be sure there is a floppy in drive 0 of"
2150 PRINT "the 9895A with space for a file of 101, 256-byte records."
2160 PRINT
2170 PRINT
2180 Ans$="Y"
2190 INPUT "DO YOU WISH TO WRITE THESE DATA TO DISK ? (Y/N, DEFAULT Y)",Ans毒
2200 IF Ans%="N" THEN GOTO 2380
2210 File$=Name$&YRL$(Run)
2220 DISP "File ";File&;" being written to disk"
2230 MASS STORAGE IS ":H8,0,0" ! set floppy drive (9895R drive 0) as defaul:
2240 CREATE Files,10l ! open file with 101 records 256 bytes each
2250 RSSIGN Files TO #1
2260 PRINT #1;Date=
2270 PRINT #1;Titl$
2280 PRINT #1;Name$
2290 PRINT #1;Dn
2300 PRINT #1;Nub,NuInix1,Numix2,Numi\times3,Theta,Run
2310 PRINT #1;Vref,Ule,Df1,Df2,Df3
2320 PRINT #1;Xpos,Ypos,Zpos,Ns
2330 MAT PRINT #1;Data
2340 PRINT "***** File write completed *****"
2350 ASSIGN * TO #1 ! elose data file
2360 MASS STORAGE IS ":H8,0,1" ! reset program disk as mass storage
2370 GOTO 2390
2380 Run=Run-1
2390 RETURN
2400 ! !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
```


3610	I SOURCE	Find_uel:	LDA $=\mathrm{Ns}$! Get number of samples.
3620	I SOURCE		LDB = Hs _par	
3630	I SOURCE		JSM Get_ualue	
3640	ISOURCE		LDA =Arrayd	! Get parameters of data array.
3650	I SOURCE		LDB = Data_par	
3660	I SOURCE		JSM Get_info	
3670	I SOURCE		LDA $=\mathrm{Df} \overline{1}$! Get input parameters.
3680	I SOURCE		LDB $=\mathrm{Df}$ 1_par	
3690	I SOURCE		JSM Get ualue	
3700	I SOURCE		LDA $=\mathrm{Df} \overline{2}$	
3710	I SOURCE		LDB =Df2_par	
3720	I SOURCE		JSM Get_value	
3730	I SOURCE		LDA $=\mathrm{Df} \mathrm{S}^{\text {a }}$	
3740	I SOURCE		LDB =Df3_par	
3750	I SOURCE		JSM Get_value	
3760	I SOURCE		LDA =Theta	
3770	I SOURCE		LDB =Thetapar	
3780	I SOURCE		JSM Get value	
3790	ISOURCE		LDA $=\mathrm{NuE}$	
3800	I SOURCE		LDB =Nub_par	
3810	I SOURCE		JSM Get_value	
3820	I SOURCE		LDR $=$ Numix	
3830	I SOURCE		LDB $=$ Nmi $\times 1$ _par	
3840	I SOURCE		JSM Get_value	
3850	ISOURCE		LDA $=$ Numi $\times 2$	
3860	I SOURCE		LDB $=$ Nmix2_par	
3870	ISOURCE		JSM Get_vaTue	
3880	I SOURCE		LDA $=$ Numi $\times 3$	
3890	I SOURCE		LDB $=\mathrm{Nmi} \times 3$ ppar	
3900	I SOURCE		JSM Get_value	
3910	I SOURCE	.		
3920	ISOURCE	$!$ The 1 sop	headed by Get_fr	req is repeated three times to get,
3930	I SOURCE	! the coun		的version factors <which depend on
3940	I SOURCE	! the riang	e) for U, V, and	W. Whenever a loop is controlled by
3950	I SOURCE	! the vari	able "Count", the	loop contains operations which are
3960	I SOURCE	! the same	for U, ψ, and W.	
3970	I SOURCE	+		
3980	I SOURCE		LDA $=0$	
3990	I SOURCE		STA Count	
4000	I SOURCE	Get_freq:	LDA Count	! Get the first word of the column of
4010	ISOURCE		LDB Ns	! the data array which contains the
4020	I SOURCE		MPY	! velocity component for which we want
4030	I SOURCE		STA Elementd	$!$ to get the range.
4040	I SOURCE		LDA $=1 n t$	
4050	I SOURCE		LDB =Arrayd	
4060	I SOURCE		JSM Get_element	
4070	I SOURCE		LDA Int	! Mask and rotate to get the four
4080	I SOURCE		$L D B=15360$! bits containing the range.
4090	I SOURCE		AND B	
4100	ISOURCE		SAR 10	
4110	I SOURCE		TCA	! Subtract from 15 to get the
4120	I SOURCE		LDB $=15$! actual range.
4130	I SOURCE		ADA B	
4140	I SOURCE		LDB $=1$	
4150	I SOURCE		SZA Loopend	
4160	I SOURCE	Loop:	SBL 1	! Use the range to find the power
4170	I SOURCE		DSZ A	! of two needed for the divisor.
4180	ISOURCE		JMP Loop	
4190	I SOURCE	Loopend:	STB Int	
4200	I SOURCE		$L D A=I n t$! Convert the power of two into a

4210	ISOURCE		STA	Oper_1		real number.
4220	ISOURCE		LDA	=Yuar		
4230	I SOURCE		STA	Result		
4240	I SOURCE		JSM	Int_to_rel		
4250	ISOURCE		LDA	$=3.2 \mathrm{E} \overline{4}$!	Divide 3.2E4 by the appropriate
4260	ISOURCE		LDB	=xuar	!	power of two, using BCD math.
4270	I SOURCE		XFR	4		
4280	ISOURCE		STB	Oper_1		
4290	ISOURCE		LDA	=Yuar		
4300	ISOURCE		STA	Oper_2		
4310	ISOURCE		LDA	Count	!	Decide whether to put the result
4320	I SOURCE		LDB	$=4$	$!$	in R1, R2, or R3, depending on
4330	ISOURCE		MPY		!	Count.
4340	ISOURCE		ADA	=R1		
4350	ISOURCE		STA	Result		
4360	ISOURCE		LDA	=2		
4370	I SOURCE		LDB	$=147155 \mathrm{~B}$	$!$	Now, finally, call the utility to
4380	ISOURCE		JSM	Rel_math	$!$	perform the division.
4390	I SOURCE		ISZ	Couñt		
4400	I SOURCE		LDA	= 3	$!$	Increment and check Count so as
4410	ISOURCE		CPA	Count	!	to follow the loop three times.
4420	ISOURCE		JMP	*+2		
4430	I SOURCE		JMP	Get_freq		
4440	ISOURCE	$!$				
4450	I SOURCE		LDA	=Array 1	$!$	Zero out the entire count-to-
4460	I SOURCE		LDB	= 768	!	velocity conversion table so that
4470	I SOURCE	Continue:	CLR	16	!	it must be recalculated for each
4480	ISOURCE		ADf	$=16$	1	point. (This must be done if the
4490	ISOURCE		DS2	B	!	mixing frequencies or ranges are
4590	ISOURCE		JMP	Continue	1	changed between counts.)
4510	ISOURCE	$!$				
4520	I SOURCE		LDA	=Su	$!$	Set initial ualues of Su, Su,
4530	ISOURCE		LDB	=9	!	Sw, Suu, etc. to zero.
4540	ISOURCE	Clear:	CLR	4		
4550	ISOURCE		ADA	$=4$		
4560	ISOURCE		DSZ	B		
4570	ISOURCE		JMP	Clear		
4580	ISOURCE	$!$				
4590	I SOURCE		LDA	=Theta	$!$	Convert Theta from degrees to
4600	I SOURCE		STA	Oper_1	$!$	radians using the Rel_math
4610	ISOURCE		LDA	=Rad	!	utility.
4620	ISOURCE		STA	Oper_2		
4630	I SOURCE		LDA	=xuar		
4640	ISOURCE		STA	Result		
4650	ISOURCE		LDA	$=2$		
4660	ISOURCE		LDB	$=147155 \mathrm{~B}$		
4670	I SOURCE		JSM	Rel_math		
4680	I SOURCE	$!$				
4690	ISOURCE		LDA	= Xuar	$!$	Find the sine and cosine of
4700	ISOURCE		STA	Oper_1	!	Theta, and store them in the
4710	ISOURCE		LDA	=Sin	1	locations Sin and Cos, respectively.
4720	ISOURCE		STA	Result		
4730	ISOURCE		LDA	$=1$		
4740	ISOURCE		LDB	=34213B		
4750	ISOURCE		JSM	Rel_math		
4760	I SOURCE		LDA	$=\cos$		
4770	I SOURCE		STA	Result		
4780	I SOURCE		LDA	$=1$		
4790	I SOURCE		LDB	$=34224 \mathrm{~B}$		
4800	ISOURCE	1	JSM	Rel_math		

5410	I SOURCE		STA	Elementd		
5420	I SOURCE		LDA	$=I n t$!	Get a raw datum from the data array.
5430	I SOURCE		LDB	=Arrayd		
5440	I SOURCE		JSM	Get_element		
5450	I SOURCE		LDA	Int		
5460	I SOURCE		LDB	$=1023$!	Strip off the first six
5470	I SOURCE		AND	B	$!$	bits of the raw data word.
5480	I SOURCE		LDB	Count	!	See if Count = Check.
5490	I SOURCE		TCB			
5500	ISOURCE		ADB	Check		
5510	I SOURCE		S2B	Straight	!	If true, use the stripped data
5520	I SOURCE		TCR		!	word as an index. If not, use
5530	I SOURCE		ADA	$=1024$!	1024 minus the data word.
5540	I SOURCE	Straight:	STA	Int	!	Store the count we have gotten.
5550	I SOURCE		LDA	Count	!	Now, use Count to find out.
5560	I SOURCE		LDB	$=4096$	$!$	which lookup table array
5570	I SOURCE		MPY		!	we want to use, and use the
5580	I SOURCE		LDB	Int	!	count we got from the data array
5590	I SOURCE		ADB	$=-1$!	to find exactly where in the table
5600	I SOURCE		SBL	2	!	we want to go.
5610	I SOURCE		ADA	B		
5620	I SOURCE		RDA	$=1$		
5630	I SOURCE		ADA	=Arrayl		
5640	I SOURCE		STA	Address		
5650	I SOURCE		LDA	Address, I	$!$	If that table entry is zero,
5660	I SOURCE		SZA	Calculate	!	calculate a velocity for it.
5670	ISOURCE		JMP	Over		
5680	I SOURCE	Calcula:e:	LDR	= Int		
5690	I SOURCE		STA	Oper_1	$!$	Convert the count to a real number.
5700	I SOURCE		LDA	=Yuar		
5710	I SOURCE		STA	Result		
5720	I SOURCE		JSM	Int_to_rel		
5730	I SOURCE		STB	Oper_2		
5740	I SOURCE		LDA	=R1	!	Divide the range we found
5750	I SOURCE		ADA	Offset	$!$	earlier by the count to get a
5760	I SOURCE		STA	Oper_1	!	frequency.
5770	I SOURCE		LDA	=xuar		
5780	I SOURCE		STA	Result		
5790	I SOURCE		LDA	$=2$		
5800	I SOURCE		LDB	$=147155 \mathrm{~B}$		
5810	I SOURCE		JSM	Rel_math		
5829	I SOURCE	$!$				
5830	I SOURCE		LDA	=Numix 1	!	Find (Nub-Humi $\times \mathrm{N}$)-Frequency C .
5840	I SOURCE		ADA	Offset		
5850	I SOURCE		STA	Oper_1		
5860	I SOURCE		LDA	=Xuar		
5870	I SOURCE		STA	Oper_2		
5880	I SOURCE		LDA	=Yuar		
5890	I SOURCE		STA	Result		
5900	I SOURCE		LDA	$=2$		
5910	I SOURCE		LDB	$=146717 \mathrm{~B}$		
5920	I SOURCE		JSM	Rel_math		
5930	I SOURCE	$!$				
5940	I SOURCE		LDB	Count	$!$	If we are calculating U, reverse
5950	I SOURCE		ADB	$=-1$	$!$	the sign of ((Nub-NumixN)-Frequency ${ }^{\text {a }}$)
5960	I SOURCE		SBM	* +2	$!$	so as to reverse the sign of U.
5970	I SOURCE		JMP	Samesign	$!$	Leave Y and W alone.
5980	ISOURCE		LDA	=Zero		
5990	I SOURCE		STA	Oper_1		
6000	ISOURCE		LDA	Result		


```
9010 !
9020 INPUT "No. of dita samples per point (2000 maxm.) :",Ns
9030 !
9040 REDIM Data(3,Ns)
9050 REDIM D1(Ns,6)
9060 DISP "Press CONT to initiate data acquisition, press K0 to return to main
program."
9070 PRUSE
9 0 8 0 ~ G C L E A R ~
9090 GRAPHICS
9100 !
9110 RESET 10
9120 CONTROL MASK 10:1
9130 WRITE IO 10,5;0
9140 WRITE IO 10,5;1 ! start handshake by setting CTL0
9150 Nt=6*Ns
9160 FOR I=1 TO 5
9170 Dummy=RERDBIN:10)
9180 NEXT I
9190 !
9200
9210
9220
9230 ICALL Drawhist
9240 IF Ns=2000 THEN GOTO 9270
9250 Nn=1
9260 GOTO 9110
9270 IF Ns=2000 THEN DUMP GRAPHICS
9280 WRITE IO 10,5;0
9290 Ns=Ns_temp
9300 REDIM Data(3,Ns)
9310 REDIM D1(Ns,6)
9320 EXIT GRAPHICS
9330 RETURN
9340 !
9350 ISOURCE NRM Draw_hist
9360 ISOURCE !
9370 ISOURCE ! The subroutine works by first going to the samples-per-count
9380 ISOURCE ! table:s and using them to draw the old histograms in black
9390 ISOURCE ! (Bit=1) to erase them. Then it calculates new samples-per-
9400 ISOURCE ! count tables from the data acquired from the LDV, and uses
9410 ISOURCE ! the niew tables to draw histograms in white <Bit=1). Then the
9420 ISOURCE ! subroutine returns to the main program. The very first time
9430 ISOURCE ! (determined by Ntimes(=Nn)) the subroutine is called it, doesn't.
9440 ISOURCE ! erase the old histograms because there aren't any.
9450 ISOURCE !
9460 ISOURCE
9470 ISOURCE
9480 ISOURCE
9490 ISOURCE !
9500 ISOURCE
9510
9520 ISOURCE D1 par: 
9530 ISOURCE Ns_par: INT
9540 ISOURCE Ntime_p.ar: INT
9550 ISOURCE !
9560 ISOURCE Arrayd: BSS 39
9570 ISOURCE Elementd!
9580 ISOURCE Array1: BSS 1024
9590 ISOURCE.Array2: BSS 1024
9600 ISOURCE Array3: BSS 1024
```

9610	I SOURCE	Ns :	BSS	Count and I are general purpose index vari-		
9620	I SOURCE	Count:	BSS			
9630	I SOURCE	I:	BSS	1 ! able	,	Count is usually 0,1 , or 2, to denote
9640	ISOURCE	Check:	BSS	1 ! whet		U,V, or W is being calculated.
9650	I SOURCE	Int:	BSS	1 ! Int,	R	dress, and offset are all general
9660	ISOURCE	Address:	BSS	1 ! purp		storage areas.
9670	ISOURCE	X_coord:	BSS	1		
9680	ISOURCE	Y_coord:	BSS	1		
9690	ISOURCE	Bit :	BSS	1		
9700	I SOURCE	Ntimes:	BSS	1		
9710	I SOURCE	!				
9720	I SOURCE		LIT	30		
9730	I SOURCE	$!$				
9740	I SOURCE		SUB			
9750	I SOURCE	Draw_hist:	LDA	$=\mathrm{Ns}$		Get number of samples.
9760	I SOURCE		LDB	=Ns_par		
9770	I SOURCE		JSM	Get_value		
9780	I SOURCE		LDA	=Arrayd	$!$	Get parameters of data array.
9790	I SOURCE		LDB	=Data_par		
9800	I SOURCE		JSM	Get_info		
9810	I SOURCE		LDA	= Nt itmes	!	Get Ntimes, which tells if this is
9820	I SOURCE		LDB	=Ntime_par	!	the first time Draw_hist is being
9839	I SOURCE		JSM	Get_ualue		called.
9840	I SOURCE	!				
9850	I SOURCE		LDA	$=0$	$!$	If this is the first time Draw_hist
9860	I SOURCE		STA	Bit	$!$	is being called, then jump to the
9870	I SOURCE		LDA	Ntimes		data asquisition section. If not then
9880	I SOURCE		RZA	* +2	!	write over the old histogram with
9890	ISOURCE		JMP	Acquire	!	black to erase it
9900	I SOURCE	,				
9910	I SOURCE	Do_graph:	LDA	$=0$!	Produce histograms for all three
9920	I SOURCE		STA	Count		channels.
9930	ISOURCE	Make_hist:	LDA	Count	$!$	Go to the end of the appropriate
9940	ISOURCE		ADA	= 1		samples-per-count table.
9950	ISOURCE		LDB	$=1024$		
9960	I SOURCE		STB	I		
9970	I SOURCE		MPY			
9980	I SOURCE		ADA	=Array 1		
9990	I SOURCE		ADA	$=-1$		
10000	I SOURCE		STA	Address		
10010	I SOURCE	Make_rod:	LDB	Address, I	$!$	Add together each adjacent pair of
10020	I SOURCE		DSZ	Address		entries in the table.
10030	I SOURCE		ADB	Address, I		
10040	I SOURCE		DS2	Address		
10050	I SOURCE		DS2	1		
10060	ISOURCE		R2B	* +2		If the result is zero, go to the next
10070	I SOURCE		JMP	Skip_bits	$!$	pair of entries. If not, make sume
10080	ISOURCE		STB	Int	!	the sum is <15日 and then draw a
10090	I SOURCE		ADB	$=-150$		column with height equal to the sum.
10100	I SOURCE		SBM	* +3		
10110	I SOURCE		LDB	$=150$		
10120	I SOURCE		STB	Int		
10130	ISOURCE	!				
10140	I SOURCE		LDA	1	$!$	Calculate the X-coordinate of the
10150	ISOURCE		SAR	1	!	column.
10160	ISOURCE		ADA	$=20$		
10170	I SOURCE		STA	X_coord		
10180	I SOURCE	,				
10190	I SOURCE	Make_bi::	LDA	$=150$	$!$	Calculate the Y-coordinate of the
10200	I SOURCE		LDB	Count.	!	top of the column.

10210	I SOURCE		ADB	$=1$		
10220	I SOURCE		MPY			
10230	I SOURCE		LDB	Int.		
10240	I SOURCE		TCB			
10250	I SOURCE		ADA	B		
10260	I SOURCE		STA	Y_coord		
10270	ISOURCE	$!$				
10280	I SOURCE		LDA	$=13$	$!$	Prepare the graphics screen for
10290	I SOURCE		STA	Pa	!	input.
10300	I SOURCE		LDA	$=51 \mathrm{~B}$		
10310	I SOURCE		SFC	*		
10320	I SOURCE		STA	R5		
10330	I SOURCE		LDA	Y_coord	!	Calculate word location.
10340	ISOURCE		LDB	$=\overline{3} 6$		
10350	I SOURCE		MPY			
10360	I SOURCE		LDB	X_coord		
10370	I SOURCE		SBR	4		
10380	I SOURCE		ADA	B		
10390	I SOURCE		CMA			
10400	I SOURCE		SFC	*		
10410	I SOURCE		STA	R4	$!$	Input word location.
10420	I SOURCE		STA	R7		
10430	I SOURCE	$!$				
10440	I SOURCE		LDA	X_coord	$!$	Calculate bit location.
10450	I SOURCE		AND	$=\overline{1} 7 \mathrm{~B}$		
10460	ISOURCE		LDB	Bit		
10470	I SOURCE		SBL	15		
10480	I SOURCE		IOR	B		
10490	I SOURCE		SFC	*		
10500	I SOURCE		STA	R4	$!$	Input bit location.
10510	I SOURCE		STA	R7		
10520.	I SOURCE		DSZ	Int.		
10530	ISOURCE		JMP	Make_bit		
10540	ISOURCE	!				
10550	ISOURCE	Skip_bivs:	DSZ	I		
10560	I SOURCE		JMP	Make_rod		
10570	I SOURCE	!				
10580	I SOURCE		ISZ	Count	!	Nake histograms for all three
10590	I SOURCE		LDA	=-3	$!$	channels.
10600	I SOURCE		ADA	Count		
10610	ISOURCE		SZA	* +2		
10620	I SOURCE		JMP	Make_hist		
10630	ISOURCE	$!$				
10640	I SOURCE	Acquire:	LDA	Bit	$!$	If Bit=1 then the new histograms
10650	I SOURCE		S2A	*+2	$!$	have been drawn. Go back to the
10660	I SOURCE		JMP	Stop	!	main program. If not, continue.
10670	I SOURCE	$!$				
10680	I SOURCE		LDf	=Array 1	$!$	Zero out the tables which hold the
10690	I SOURCE		LDB	$=192$	$!$	number of samples per count.
10700	I SOURCE	Clear:	CLR	16		
10710	ISOURCE		ADA	$=16$		
10720	I SOURCE		DSZ	B		
10730	I SOURCE		JMP	Clear		
10740	I SOURCE	$!$				
10750	I SOURCE		LDA	$=0$	$!$	Prepare to write new samples-per-
10760	I SOURCE		STA	Count	!	count tables.
10770	I SOURCE		LDA	= 5		
10780	I SOURCE		STA	Check		
10790	I SOURCE		LDA	Ns		
10800	I SOURCE		STA	I		

10810	I SOURCE	!				
10820	ISOURCE	Begin:	LDA	Count		
10839	I SOURCE		LDB	Ns	$!$	Figure out which element of the
10840	ISOURCE		MPY		$!$	data array we want to pick up.
10850	ISOURCE		RDA	I		
10860	ISOURCE		RDA	$=-1$		
10870	I SOURCE		STR	Elementd		
10880	I SOURCE		LDA	= Int	$!$	Get a raw datum from the data array.
10890	ISOURCE		LDB	=Arrayd		
10900	I SOURCE		JSM	Get_element		
10910	ISOURCE		LDA	Int		
10920	ISOURCE		LDB	$=1023$	$!$	Strip off the first six
10930	ISOURCE		AND	B	$!$	bits of the raw data word.
10940	ISOURCE		LDB	Count	$!$	See if Count = Check.
10950	I SOURCE		TCB			
10960	ISOURCE		ADB	Check		
10970	I SOURCE		SZB	Straight	!	If true, use the modified data
10980	I SOURCE		TCA		!	word as an index. If not, use
10990	ISOURCE		RDA	$=1024$	$!$	1024 minus the data word.
11000	ISOURCE	Straigh:	STA	Int	$!$	Store the count we have gotten.
11010	ISOURCE		LDA	$=1024$	$!$	Increment the appropriate place
11020	I SOURCE		LDB	Count.	$!$	in the samples-per-count table
11030	I SOURCE		MPY		!	by one.
11040	ISOURCE		ADA	=Arrayl		
11050	ISOURCE		ADA	Int		
11060	I SOURCE		ISZ	A, I		
11070	ISOURCE	$!$				
11080	I SOURCE		ISZ	Count		
11090	I SOURCE		LDA	=-3	!	Have U, V, and W all been done?
11100	I SOURCE		ADA	Count		
11110	I SOURCE		SLA	* +2	$!$	If not; go back again.
11120	I SOURCE		JMP	Begin		
11130	ISOURCE		STA	Count	$!$	If so, set Count=0.
11140	I SOURCE	!				
11150	I SOURCE		DS2	1	$!$	Continue to fill samples-per-count
11160	I SOURCE		JMP	Begin	1	tables until out of samples.
11170	I SOURCE	$!$				
11180	I SOURCE		ISZ	Bit	$!$	How set Bit=1 and go back and draw
11190	I SOURCE		JMP	Do_graph	$!$	the new histograms in white.
11200	ISOURCE	Stop:	RET	1		
11210	I SOURCE	!				
11220	I SOURCE		END	Draw_hist		

```
REM PROGRAM STAT
    PROGRAM TO REDUCE RAW DATA FROM THREE-COMPONENT LDV SYSTEM
    Input is 3 channels of raw L\psi data and calibration constants
    Output is the three components of mean velocity, all the
    components of Reynolds stress and some selected third-order
    products. Can filter out counts which are excessively far
    from the mean. Cam display histograms of raw and
    filtered datia for all 3 channels. Plots data at end and displays
    reduced data for entire run. Can write a summary file containing
    all reduced data and calibration constants.
    OPTION BASE 1
    ICOM 18000
    IDELETE RLL
    IASSEMBLE Find_vel
    COM INTEGER Datia(3,2000),Ns,Ngs,Countbin(3,1024)
    COM INTEGER Ranige1, Range2, Range3
    COM REAL Sdev,Dr'1,Df2,Df3
    COM REAL Theta,Nub,Numix1,Numix2,Numix3
    COM REAL Su,Sv,Sw,Suw,Suv,Sww,Suv,Suw, Suw
    COM RERL Suuv,Suvv,Suuw, Suww, Suvw
    !
    DIM L1(3),R1(3):L11(3),U11(3), Scale(3)
    DIM Date車[80],File卉[6],Name手[4],Tit1卉[80]
    !
    RERL Xpos,Ypos,:Ipos
    RERL Point(20,15)
    RERL Re,Ue
    !
    INTEGER Filmo,A,Run
    !
    DATA 0,0,0,0
    RERD Max_y;Min_!,Filter,Sdew
    DRTA 75.\overline{64,45.6.4,15.64,99.,69.,39.}
    MRT READ LII,UII
    DRTA 5,46,87,41,82,123
    MAT READ LI,R1
    DATA -.8,2.4,0.,.035, -.0025,.01
    READ Llim(1),Ulim(1),Llim(2),Ulim(2), LI im(3), Ulim(3)
    DATA .4, .005,.13025
    MRT READ Scale
    !
    PRINT
    PRINT " *** << PROGRAM STAT : 3-COMPONENT VELOCITY DATA >> ** "
    PRINT
    PRINT "PROGRAM STRUCTURE"
    PRINT "1. Read raw data from floppy disc"
    PRINT "2. Convert to velocity"
    PRINT "3. Calculate statistics"
    PRINT "4. Print, results"
    PRINT "S. Writts to dise file"
    PRINT
    ! ** Read raw data from floppy disc **
    INPUT "Enter parent filename (or E to exit program) : ",Names
    IF Name&="E" THEN GOTO 1780
    INPUT "Enter no. of first and last data files ",Filel,Nf
    Kill_w=3
    INPUT
    Histक="Y"
```

610 INPUT "Do you wish to see histograms of the data points $\langle Y / N, D e f a u l t y$? ", Hist
620 Filter\$="N"
630 INPUT "Do you wish to filter the output (Y/H, Default N) ?", Filtert
640 IF Filters="H" THEN GOTO 660
INPUT "Enter standard deviation to throw out", Sdev
650
660
670
680
690
700
710 DISP "READING RAW DATA FROM DISK"
MASS STORAGE IS ": H8,0,0"
PRINTER IS 0
Filno=Filel
IF Filno>Nf THEN GOTO 1740
Files=Name\$\&UAL\&
fssign filé TO \#l
!
READ \#1;Date
READ \#1; Titif
RERD \#1; Name
READ \#1; Dn
RERD \# 1 ; Nub, Numix1, Numi $\times 2$, Numi $\times 3$, Theta, Run
READ \#1; Uref, Ue, Df1,Df2, Df3
RERD \#1; Xpos, Ypos,Zpos,Ns
MAT READ \#1; Data
!
PRINT Titl\$
PRINT "DRTE AND TIME OF TEST: ", Date \ddagger
PRINT "FILE NRME ON DISK : ", Hame
PRINT "DISK NUMBER:", DN
PRINT "RUN NO. :POINT NO. IN PROFILE) :",Run
PRINT "X,Y,Z = ", Xpos,Ypos,Zpos
!
! Calculate velocities
DISP "CALCULATING VELOCITIES AND TAKING RUNNING SUMS"
!
ICRLL Find_vel
$!$
! CALCULATE STATISTICS
DISP "CALCULATING STATISTICS"
!
IF Kill $w=3$ THEN GOTO 1030
DATA $0, \overline{0}, 0,0,0,0,0$
RESTORE 990
RERD Sw, Sww, Suw, Suw, Suuw, Suww, Suvw
!
Ubar=Su/Ngs
Vbar $=$ Su/Ngs
Wbar=Sw/Ngs
Upri2=Suu/Ngs-Ubar*Ubar
Vpri2=SuU/Hgs-Vbar*Vbar
Wpri2=Sww/Ngs-Wbar*Wbar
Uubar=Suv/Ngs-Ubar*Vbar
Uwbar=Suw/Ngs-Ubar*Wbar
Vwbar $=$ Suw $/$ Ngs -Vbar*Wbar
Uuvbar=Sumu/Ngs-2*Ubar*Suv/Ngs-Vbar*Suu/Ngs+2*Vbar*Ubar*Ubar
Uuvbar=Suvu/Ngs-2*Vbar*Suu/Ngs-Ubar*Suv/Ngs+2*Ubar*Vbar*Vbar
Uuwbar=Suuw/Ngs-2*Ubar*Suw/Ngs-Wbar*Suu/Ngs+2*Wbar*Ubar*llbar
Uwwbar=Suww/Ngs-2*Wbar*Suw/Ngs-Ubar*Sww/Ngs+2*Ubar*Wbar*Wbar
Uuwbar=Suvw/Hgs-Wbar*Suv/Ngs-Ubar*Suw/Ngs-Vbar*Suw/Hgs+2*Ubar*Vbar*Wbar
!
1170 !
1180 ! STORE RESULTS IN ARRAY FOR PLOTTING
1190 !
1200 Fl=Filno-Filel+l


```
1810
!
1820
1830 !
1840 Plot: PRINTER IS 16
1850 PRINT "Estimate of normalizing velocity is :";Ue
1860 INPUT "Enter correct normalizing velocity if different.",UE
1870 Graph$="Y"
1880 INPUT "Do you wish to graph the turbulence quantities (Y/N, Default Y) ?",
Graph$
1890 PRINTER IS 0
1900 PRINT "Normalizing velocity is :";Ue
1910 !
1920 FOR I=1 TO 4
1930 DATR 1,2,2,3
1940 RERD Exp
1950 Kn=3
1960 IF I=4 THEN Kn=5
1970 FOR J=1 TO Nf-Nfile+1
1980 FOR K=1 TO Kn
1990 Index=(I-1)*3+K+1
2000 Point(J,Index)=Point(J,Index)/Ue^Exp
2010 IF Index>10 THEN Point(J,Index)=Point(J,Index)*1000
2020 NEXT K
2030 NEXT J
2040 NEXT I
2050 IF Graph$="N" THEN GOTO 2860
2060 !
2070 PLOTTER IS 13,"GRAPHICS"
2080 GRAPHICS
2 0 9 0 ~ D E G ~
2100 !
2110 Ymax=Point(1,1)
2120 Ymin=Ymax
2130 FOR J=1 TO Nf-Filel+1
2140 IF Point(J,1)>Ymax THEN Ymax=Point(J,1)
2150 IF Point(J,1)<Ymin THEN Ymin=Point(J,1)
2160 NEXT J
2170 !
2180 FOR I=1 TO 3
2190 LIMIT 0,184.47,10,149.8
2200 LOCATE Ll(I),R1<I),39,99
2210 CLIP LI(I),RI(I),39,99
2220 !
2230 Xmax=Point(1,(I-1)*3+2)
2240 Xmin=Xmax
2250 FOR J=1 TO Nf-Filei+1
2260 FOR K=1 TO 3
2270 IF Point(J,(I-1)*3+K+1)>Xmax THEN Xmax=Point(J,(I-1)*3+K+1)
2280 IF Point(J,(I-1)*3+K+1)<Xmin THEN Xmin=Point(J,(I-1)*3+K+1)
2290 NEXT K
2 3 0 0 ~ N E K T ~ J ~
2310 !
2320 SCRLE LIim(I),Ulim(I),Ymin,Ymax
2330 FRAME
2340 AXES Scale<I`,.1,0,0
2350 UNCLIP
2360 !
2370 LORG 8
2380 CSIZE 2.5
2390 Ypos=Ymin
2400 MOVE Llim(I)+Sc.ile(I)/5,Ypos
```

```
2410 DRAW Llim(I),Ypos
2420 SETGU
2430 RPLOT 2,0,-2
2440 SETUU
2450 LABEL DROUND(Ypus,2)
2460 Ypos=Ypos+.1
2470 IF Ypos<=Ymax THEN GOTO 2400
2480 !
2490 LORG 6
2500 Xpos=Llim(I)
2510 MOVE Xpos,Ymin-.04
2520 LABEL DROUND(Xpiss,2)
2530 MOVE Xpos,Ymin
2540 DRAW Xpos,Ymin+.05
2550 Xpos=Xpos+Scale:I)
2560 IF Xpos<Ulim<I> THEN GOTO 2510
2570 !
2580 FOR J=1 TO Nf-Filel+1
2590 Ypos=Point(J,1)
2600 FOR K=1 TO 3
2610 MOVE Point(J,(I-1)*3+K+1),Ypos
2620 SETGU
2630 ON K GOTO 2640,2700,2760
2640 FOR Arc=0 TO 361 STEP 20
2650 PDIR Are
2660 RPLOT . 5,0
2670 NEXT ArE
2680 PDIR 0
2690 GOTO 2810
2700 RPLOT .5,.5,-2
2710 RPLOT .5,-.5,-1
2720 RPLOT -. 5,-.5,-1
2730 RPLOT -.5,.5,-1
2740 RPLOT .5,.5,-1
2750 GOTO 2810
2760 RPLOT 0,.5,-2
2770 RPLOT 0,-.5,-1
2780 RPLOT . 5,0,-2
2790 RPLOT -.5,0,-1
2800 GOTO 2810
2810 SETUU
2 8 2 0 ~ N E X T ~ K
2830 NEXT J
2840 NEXT I
2850 DUMP GRAPHICS
```



```
,"v\omegaノUo2",/
2870 PRINT USING 2861
2880 FOR I=1 TO Nf-Filel+1
2890 IMRGE MDD.DD,6X,MD.DDDD,2K,MD.DDDD,2X,MD.DDDD,4K,MD.DDDD,2K,MD.DDDD,2K,MD.
DDDD
2900 PRINT USING 2891;Point(I,1),Point(I,5),Point(I,6),Point(I,7),Point(I,8),Po
int(I,9),Point(I,10)
2910 NEXT I
```



```
uw/Uo3",'
2930 PRINT USING 2921
2940 FOR I=1 TO Nf-File+1
2950 IMRGE MDD.DD,6X,MD.5D,2X,MD.5D,4X,MD.5D,2X,MD.5D,4X,MD.5D
2960 PRINT USING 2951;Point(I,1),Point(I,11),Point(I,12),Point(I,13),Point(I,14
),Point(I,15)
```

```
2970
2980
2990
3000 !
3010 Sum$="N"
3020 INPUT "Do you wish to write a Summary Data File (Y/N Default N) ?",Sumb
3030 IF Sums="N" THEN GOTO 3210.
3040 File本=Name*
3050 DISP "File ";File$;" being written to disk"
3060 MASS STORAGE IS ":H8,0,0"
3070 CRERTE File$,40
3080 ASSIGN File# TO #1
3090 PRINT #1;Date$
3100 PRINT #1;Tit1$
3110 PRINT #1;Hames
3120 PRINT #1;Dn
3130 PRINT #1;Nub,Numix1,Numix2,Numi\times3,Theta,Run
3140 PRINT #1;Vref,UegDf1,Df2,Df3
3150 PRINT #1;Ns,File1,Nf
3160 FOR I=1 TO Nf-Nfile+1
3170 FOR J=1 TO 15
3180 PRINT #1;Point(I,J)
3190 NEXT J
3 2 0 0 ~ N E X T ~ I ~
3 2 1 0 ~ R E T U R N
3220 !
```



```
3240 !
3250 Histogram: PLOTTER IS 13,"GRAPHICS"
3260 GRAPHICS
3270 K=1
3280 FOR I=1 TO 3
3290 Cmax=0
3300 FOR J=1 T0 1023 STEP 2
3310 Countbin(I,J)=Countbin(I,J)+Countbin(I,J+1)
3320 IF Countbin(I,J)>Cmax THEN Cmax=Countbin(I,J)
3 3 3 0 ~ N E X T ~ J ~
3340 IF (Cmax=0) OR (Cmax=2000) THEN GOTO 3660
3350 LIMIT 0,184.47,0,149.8
3360 LOCATE 7.05,119.63,L11(K),U11(K)
3370 CLIP 7.05,119.63,Ll1(K),U11(K)
3380 K=K+1
3390 SCALE 1,1024,0,Cmax
3400 FRAME
3410 UNCLIP
3420 LINE TYPE 1
3430 CSILE 2.8
3440 LORG }
3450 FOR Y=1 TO 4
3460 Ypos=Y*Cmax/4
3470 PLOT 10,Ypos,-2
3480 PLOT -9,Ypos,-1
3 4 9 0 ~ M O V E ~ 3 , Y p O S
3500 LRBEL PROUND(Ypos,0)
3510 NEXT Y
3520 LORG }
3530 Ypos=Cmax/20
3540 FOR X=1 TO 8
3550 Xpos=X*128
3560 PLOT Xpos,Ypos,-2
```


5370	ISOURCE	! the var	ble	"Count", th		loop contains operations which are
5380	I SOURCE	! the sim		U, V, and W.		
5390	ISOURCE	$!$				
5400	I SOURCE	!				
5410	ISOURCE		LDA	$=0$		
5420	ISOURCE		STA	Count		
5430	ISOURCE	Get_freq:	LDA	Count	!	Get the first word of the column of
5440	ISOURCE		LDB	Ns	!	the data array which contains the
5450	I SOURCE		MPY		$!$	velocity component for which we want
5460	ISOURCE		STA	Elementd	!	to get the range.
5470	IsOURCE		LDA	=Int		
5480	I SOURCE		LDB	=Arrayd		
5490	I SOURCE		JSM	Get_element		
5500	ISOURCE		LDA	Int-	!	Mask and rotate to get the four
5510	I SOURCE		LDB	$=15360$!	bits containing the range.
5520	ISOURCE		AND	B		
5530	I SOURCE		SAR	10		
5540	I SOURCE		TCA		!	Subtract from 15 to get the
5550	I SOURCE		LDB	$=15$	$!$	actual range.
5560	ISOURCE		ADA	B		
5570	I SOURCE		LDB	=Range 1	!	Store the actual range in Ranget
5580	I SOURCE		ADB	Count	$!$	so that we can transfer it to the
5590	ISOURCE		STA	B, I	!	main program
5600	I SOURCE		LDB	$=1$		
5610	I SOURCE		SZA	Loopend		
5620	ISOURCE	Loop:	SBL	1	!	Use the range to find the power
5630	I SOURCE		DS2	A	!	of two needed for the divisor.
5640	I SOURCE		JMP	Loop		
5650	I SOURCE	Loopend:	STB	Int		
5660	I SOURCE		LDA	$=\mathrm{Int}$!	Convert the power of two into a
5670	I SOURCE		STA	Oper_1	!	real number.
5680	I SOURCE		LDA	=Yuar		
5690	I SOURCE		STA	Result		
5700	I SOURCE		JSM	Int_to_rel		
5710	I SOURCE		LDA	$==3.2 E \overline{4}$!	Divide 3.2E4 by the appropriate
5720	I SOURCE		LDB	=Xuar	!	power of two, using BCD math.
5730	I SOURCE		XFR	4		
5740	I SOURCE		STB	Oper_1		
5750	I SOURCE		LDA	=Yuar		
5760	ISOURCE		STA	Oper_2		
5770	ISOURCE		LDA	Count	!	Decide whether to put the result
5780	I SOURCE		SAL	2	!	in R1, R2, or R3, depending on Count.
5790	I SOURCE		ADA	=R1		
5800	I SOURCE		STA	Result		
5810	ISOURCE		LDA	=2		
5820	I SOURCE		LDB	$=147155 \mathrm{~B}$!	How, finally, call the utility to
5830	ISOURCE		JSM	Rel_math	!	perform the division.
5840	I SOURCE		ISL	Count		
5850	I SOURCE		LDA	= 3	!	Increment and check Count so as
5860	I SOURCE		CPA	Count.		to follow the loop three times.
5870	I SOURCE		JMP	* +2		
5880	I SOURCE		JMP	Get_freq		
5890	I SOURCE	$!$				
5900	I SOURCE		LDA	=Arrayl	!	Zero out the entire count-to-
5910	I SOURCE		LDB	$=768$!	velocity conversion table so that
5920	ISOURCE	Continue:	CLR	16	!	it must be recalculated for each
5930	I SOURCE		ADA	$=16$!	point. (This must be done if the
5940	I SOURCE		DSZ	B	!	mixing frequency or ranges are
5950	ISOURCE		JMP	Continue	$!$	changed between counts.)
5960	ISOURCE	!				

7770	ISOURCE	$!$				
7780	ISOURCE		LDA	= Ns	!	Convert the number of samples to
7790	ISOURCE		STA	Oper_1	$!$	a real number.
7800	ISOURCE		LDA	=xuar		
7810	ISOURCE		STA	Result		
7820	ISOURCE		JSM	Int_to_rel		
7830	ISOURCE	!				
7840	IsOURCE		LDB	Count	$!$	Divide the sum stored in Rug_u by
7850	I SOURCE		SBL	2	!	the number of samples to get the
7860	I SOURCE		ADB	=Avg_u	$!$	average value of the counts.
7870	ISOURCE		STB	Oper_1		
7880	I SOURCE		STB	Result		
7890	I SOURCE		LDB	=xuar		
7900	I SOURCE		STB	Oper_2		
7910	ISOURCE		LDA	=2		
7920	I SOURCE		LDB	= 147155 B		
7930	I SOURCE		JSM	Rel_math		
7940	I SOURCE	!				
7950	I SOURCE		LDA	Count		,
7960	ISOURCE		ADA	$=1$		
7970	ISOURCE		STA	Count		
7980	I SOURCE		ADA	$=-3$		
7990	ISOURCE		SZA	*+2		
8000	I SOURCE		JMP	Get_avg		
8010	I SOURCE	+				
8020	I SOURCE		LDA	$=0$	$!$	Get the standard deviation of each
8030	I SOURCE		STA	Count	$!$	set of counts using the auerage and
8040	I SOURCE	Get_sdev:	LDA	= Zero	$!$	the information in the Bin_u arrays.
8050	ISOURCE		LDB	Count	!	First, set the standard deviation = $\mathrm{a}^{\text {a }}$
8060	I SOURCE		SBL	2		
8070	I SOURCE		STB	Offset		
8080	I SOURCE		ADB	=Dev_u		
8090	I SOURCE		XFR	4		
8100	I SOURCE		LDA	Offset		
8110	I SOURCE		ADA	=Rug_u		
8120	I SOURCE		STA	Int		
8130	I SOURCE		LDA	Count		
8140	I SOURCE		ADA	$=1$		
8150	I SOURCE		LDB	$=1024$		
8160	ISOURCE		MPY			
8170	ISOURCE		ADA	= Bin_u		
8180	I SOURCE		STA	Address		
8190	I SOURCE		LDA	$=1023$		
8200	ISOURCE		STA	I		
8210	I SOURCE	$!$				
8220	ISOURCE	Dev_count:	LDA	= I	$!$	Get a count and convert it to a
8230	ISOURCE		STA	Oper_1	$!$	real number.
8240	I SOURCE		LDA	=Xuar		
8250	ISOURCE		STA	Result		
8260	ISOURCE		JSM	Int_to_rel		
8270	ISOURCE	$!$				
8280	I SOURCE		LDA	=xuar	$!$	Subtract the average count from the
8290	ISOURCE		STA	Oper_1	!	count we just got.
8300	I SOURCE		LDA	Int		
8310	I SOURCE		STA	Oper_2		
8320	I SOURCE		LDA	=Yvar		
8330	I SOURCE		STA	Result		
8340	I SOURCE		LDA			
8350	I SOURCE		LDB	$=146717 \mathrm{~B}$		
8360	I SOURCE		JSM	Rel_math		

8970	ISOURCE		LDB	$=31450 \mathrm{~B}$	
8980	ISOURCE		JSM	Rel_math	
8990	I SOURCE	$!$			
9000	ISOURCE		LID	Count	
9010	I SOURCE		ADA	$=1$	
9020	ISOURCE		STA	Count	
9030	ISOURCE		ADA	=-3	
9040	ISOURCE		SZA	*+2	
9050	ISOURCE		JMP	Get_sdeu	
9060	ISOURCE	!			
9070	ISOURCE		LDA	$=0$! Now use the standard deviation to
9080	ISOURCE		STA	Count	! filter out all the counts whose
9090	ISOURCE	Dev_fil*r:	LDA	Count	! value is more than Sdeu standard
9100	ISOURCE		ADA	= 1	! deviations away from the mean.
9110	I SOURCE		LDB	$=1024$	
9120	ISOURCE		MPY		
9130	I SOURCE		ADA	= $\mathrm{Bin}^{\text {c }}$	
9140	ISOURCE		STA	Address	
9150	ISOURCE		LDA	$=1023$	
9160	I SOURCE		STA	I	
9170	ISOURCE	$!$			
9180	ISOURCE		LDA	Count	
9190	ISOURCE		SAL	2	
9200	I SOURCE		ADA	= Deu_u	
9210	ISOURCE		STA	Oper_1	
9220	I SOURCE	.	LDA	=sdev	
9230	ISOURCE		STA	Oper_2	
9240	I SOURCE		LDA	=xuar	
9250	ISOURCE		STA	Result	
9260	ISOURCE		LDA	$=2$	
9270	I SOURCE		LDB	$=147037 \mathrm{~B}$	
9280	I SOURCE		JSM	Rel_math	
9290	ISOURCE	$!$			
9300	I SOURCE		LDA	=xuar	
9310	ISOURCE		STA	Oper_1	
9320	I SOURCE		LDA	= Int	
9330	I SOURCE		STA	Result	
9340	I SOURCE		JSM	Rel_to_int	
9350	I SOURCE	$!$			
9360	I SOURCE		LDA	Count	
9370	ISOURCE		SRL	2	
9380	I SOURCE		ADA	=Avg_u	
9390	I SOURCE		STA	Oper_1	
9400	ISOURCE		LDA	=0ffset	
9410	ISOURCE		STA	Result	
9420	ISOURCE		JSM	Rel_to_int	
9430	I SOURCE	!			
9440	ISOURCE		LDB	Offset	
9450	I SOURCE		TCB		
9460	ISOURCE	Filtr_dev:	LDA	I	
9470	ISOURCE		ADA	B	
9480	ISOURCE		SAM	$*+2$	
9490	ISOURCE		TCA		
9500	ISOURCE		RDA	Int	
9510	I SOURCE		SAP	* +3	
9520	ISOURCE		LDA	Rddress	
9530	I SOURCE		CLR	1	
9540	I SOURCE		DS2	fddress	
9550	ISOURCE		DSZ	I	
9560	I SOURCE		JMP	Filtr_deu	

10170	I SOURCE	Goode ount:	LDA	Count		Now, use Count to find out.
10180	I SOURCE		LDB	$=4096$		which lookup table array
10190	I SOURCE		MPY			we want to use, and use the
10200	I SOURCE		LDB	Int	$!$	count we got from the data array
10210	ISOURCE		ADB	$=-1$!	to find exactly where in the
10220	I SOURCE		SBL	2		table we want to go.
10230	I SOURCE		ADA	B		
10240	ISOURCE		ADA	$=1$		
10250	ISOURCE		ADA	=Arrayl		
10260	IsOURCE		STA	Address		
10270	ISOURCE		LDB	$=\mathrm{Int} 2$		
10280	ISOURCE		XFR	1		!
10290	ISOURCE		LDA	Int2	!	If that table entry is zero,
19300	IsOURCE		S2A	Calculate	!	calculate a velocity for it.
10310	I SOURCE		JMP	Over		
10320	ISOURCE	Calculate:	LDA	= Int		
10330	ISOURCE		STA	Oper_1	$!$	Convert the count into
10340	I SOURCE		LDA	=Yuar	!	a real number.
10350	IsOURCE		STA	Result		
10360	I SOURCE		JSM	Int_to_rel		
10370	ISOURCE		STB	Oper_2		
10380	ISOURCE		LDA	=R1	$!$	Divide the range we found
10390	ISOURCE		ADA	Offset	!	earlier by the count to get a
10400	ISOURCE		STA	Oper_1	!	frequency.
10410	ISOURCE		LDA	=Xuar		
10420	ISOURCE		STA	Result		
10430	ISOURCE		LDA	=2		
10440	ISOURCE		LDB	$=147155 \mathrm{~B}$		
10450	ISOURCE		JSM	Rel_math		
10460	ISOURCE	$!$				
10470	ISOURCE		LDA	=Numi $\times 1$!	Find (Nub-Numi $\times N$)-Frequency .
10480	ISOURCE		ADA	Offiset		
10490	I SOURCE		STA	Oper_1		
10500	ISOURCE		LDA	=xuar		
10510	ISOURCE		STA	Oper_2		
10520	ISOURCE		LDA	=Yuar		
10530	ISOURCE		STA	Result		
10540	ISOURCE		LDA	=2		
10550	ISOURCE		LDB	$=146717 \mathrm{~B}$		
10560	ISOURCE		JSM	Rel_math		
10570	I SOURCE	!				
10580	ISOURCE		LDB	Count	!	If we are calculating U, reverse
10590	ISOURCE		ADB	$=-1$		the sign of ((Nub-Numix ${ }^{\text {c }}$)-Frequency N)
10600	ISOURCE		SBM	*+2	!	so as to reverse the sign of U.
10610	ISOURCE		JMP	Samesign		Leave V and Wu alone.
10620	I SOURCE		LDA	=Zero		
10630	ISOURCE		STA	Oper_1		
10640	I SOURCE		LDA	Result		
10650	ISOURCE		STA	Oper_2		
10660	ISOURCE		LDA	=xuar		. -
10670°	ISOURCE		STA	Result		
10680	ISOURCE		LDA	= 2		
10690	I SOURCE		LDB	$=146717 \mathrm{~B}$		
10700	I SOURCE		JSM	Rel_math		
10710	ISOURCE	Samesign:	HOP			
10720	ISOURCE	$!$				
10730	I SOURCE		LDA	Result	$!$	
10740	I SOURCE		STA	Oper_1	!	-Frequenc \quad N) $^{*}(M i l 1 * D f N)$
10750	ISOURCE		LDA	= Df 1^{-1}	!	and store in a place in the
10760	I SOURCE		ADA	Off f -	!	lookup table corresponding to

11370	I SOURCE		LDA	$=\mathrm{Su}$!	Find	$\mathrm{Su}=\mathrm{Su} u+u$
11380	IsOURCE		LDB			.	
11390	ISOURCE		JSM	Add			
11400	ISOURCE	$!$					
11410	I SOURCE		LDA	Oper_2	!	Find	U*U
11420	I SOURCE		STA	Oper_1			
11430	ISOURCE		LDA	= Uu			
11440	ISOURCE		STA	Result			
11450	I SOURCE		LDA				
11460	ISOURCE		LDB	$=147037 \mathrm{~B}$			
11470	ISOURCE		JSM	Rel_math			
11480	ISOURCE	$!$					
11490	ISOURCE		LDA	=Sum	!	Find	Suu=Sun+ (U*U)
11500	ISOURCE		LDB	Result			
11510	ISOURCE		JSM	Rdd			
11520	I SOURCE	$!$					
11530	I SOURCE		LDA	= 4	!	Find	U U* V
11540	ISOURCE		STA	Oper_1			
11550	ISOURCE		LDA	= Xuar			
11560	ISOURCE		STA	Result			
11570	I SOURCE		LDA	=2			
11580	ISOURCE		LDB	$=147037 \mathrm{~B}$			
11590	ISOURCE		JSM	Rel_math			
11600	I SOURCE	!					
11610	I SOURCE		LDA	=Sumu	!	Find	
11620	I SOURCE		LDB	Result			
11630	I SOURCE		JSM	Add			
11640	I SOURCE	$!$					
11650	I SOURCE		LDA	= Ju	!	Find	U*U*W
11660	I SOURCE		STA	Oper_1			
11670	I SOURCE		LDA	=W			
11680	I SOURCE		STA	Oper_2			
11690	I SOURCE		LDA	=Xuar			
11700	I SOURCE		STA	Result			
11710	I SOURCE		LDA	$=2$			
11720	I SOURCE		LDB	$=147037 \mathrm{~B}$			
11730	I SOURCE		JSM	Rel_math			
11740	I SOURCE	!					
11750	I SOURCE		LDA	=Suuw	$!$	Find	Sumw $=$ Suuw $+(U * V * W\rangle$
11760	I SOURCE		LDB	Result			
11770	I SOURCE		JSM	Add			
11780	I SOURCE	$!$					
11790	ISOURCE		LDA	= 50	!	Find	$\mathrm{Su}=\mathrm{Su}+\mathrm{V}$
11800	I SOURCE		LDB	$=\mathrm{V}$			
11810	I SOURCE		JSM	Add			
11820	ISOURCE	$!$					
11830	I SOURCE		LDA	= J	!	Find	U*V
11840	ISOURCE		STA	Oper_1			
11850	I SOURCE		LDA	=Uu			
11860	I SOURCE		STA	Result			
11870	I SOURCE		LDA	$=2$			
11880	I SOURCE		LDB	=147037 ${ }^{\text {B }}$			
11890	ISOURCE		JSM	Rel_math			
11900	I SOURCE	$!$					
11910	I SOURCE		LDA	=Suv	!	Find	
11920	I SOURCE		LDB	Result			
11930	I SOURCE		JSM	Fdd			
11940	ISOURCE	!					
11950	ISOURCE		LDA		!	Find	$\mathrm{U} * \mathrm{~V} * \mathrm{~V}$
11960	ISOURCE		STA	Oper_1			

11970	ISOURCE		LDA	= Xuar			
11980	I SOURCE		STA	Result			
11990	ISOURCE		LDA	$=2$			
12000	ISOURCE		LDB	$=147037 \mathrm{~B}$			
12010	ISOURCE		JSM	Rel_math			
12020	ISOURCE	!					
12030	ISOURCE		LDA	=Suve	!	Find	Suvv=Suvu+(U*V*V)
12040	ISOURCE		LDB	Result			
12050	ISOURCE		JSM	fdd			
12060	ISOURCE	!					
12070	I SOURCE		LDA	= Uu	$!$	Find	$U * V * W$
12080	ISOURCE		STA	Oper_1			
12090	I SOURCE		LDA	= W			
12100	I SOURCE		STA	Oper_2			
12110	I SOURCE		LDA	=xuar			
12120	ISOURCE		STA	Result			
12130	ISOURCE		LDA	$=2$			
12140	ISOURCE		LDB	$=147037 \mathrm{~B}$			
12150	ISOURCE		JSM	Rel_math			
12160	I SOURCE	!					
12170	I SOURCE		LDA	=Suvw	!	Find	Suvw=Suvw+ $\langle U * V * W\rangle$
12180	ISOURCE		LDB	Result			
12190	ISOURCE		JSM	Add			
12200	ISOURCE	!					
12210	ISOURCE		LDA	$=\mathrm{V}$!	Find	$V * V$
12220	I SOURCE		STA	Oper_1			
12230	I SOURCE		STA	Oper_2			
12240	ISOURCE		LDA	=xuar			
12250	ISOURCE		STA	Result			
12260	ISOURCE		LDA	$=2$			
12270	ISOURCE		LDB	$=147037 \mathrm{~B}$			
12280	I SOURCE		JSM	Rel_math			
12290	I SOURCE	$!$					
12300	I SOURCE		LDA	=Suv	!	Find	Suv=Suv+(V*V)
12318	I SOURCE		LDB	Result			
12320	I SOURCE		JSM	Add			
12330	I SOURCE	$!$					
12340	I SOURCE		LDA	$=S w$!	Find	$S w=S w+w$
12350	ISOURCE		LDB	= W			
12360	ISOURCE		JSM	Fdd			
12370	ISOURCE	!					
12380	I SOURCE		LDA	$=\mathrm{J}$	$!$	Find	U *W
12390	I SOURCE		STA	Oper_1			
12400	I SOURCE		LDA	=xuar			
12418	I SOURCE		STA	Result			
12420	I SOURCE		LDA	=2			
12430	I SOURCE		LDB	$=147037 \mathrm{~B}$			
12440	ISOURCE		JSM	Rel_math			
12450	ISOURCE	!					
12460	I SOURCE		LDA	=Suw	$!$	Find	
12470	ISOURCE		LDB	Result			
12480	I SOURCE		JSM	Rdd			
12490	ISOURCE	$!$					
12500	ISOURCE		LDA	$=W$!	Find	$V * W$
12510	ISOURCE		STA	Oper_1			
12520	ISOURCE		LDA	= V			
12530	ISOURCE		STA	Oper_2			
12540	I SOURCE		LDA	=Xuar			
12550	ISOURCE		STA	Result			
12560	ISOURCE		LDA	$=2$			

13770 ISOURCE ! 13780 ISOURCE

EHD Find_wel

ACKNOWLEDGEMENTS

We are grateful to Dr. Oktay Ozcan for help in the initial design of the system and to Dr. Dennis Johnson for many helpful comments. This work was supported by the Fluid Dynamics Research Branch, NASA Ames Research Center under Grant NCC-2-294.

REFERENCES

1. Bell, J. H., Rodman, L. C., and Mehta, R. D., "Aspects of Design and Performance of a 3-Component LDV System", Paper presented at the llth ICIASF Meeting on Instrumentation, Stanford University, Aug. 26-28, 1985.
2. Westphal, R. V., and Mehta, R. D., "Crossed Hot-Wire Data Acquisition and Reduction System", NASA TM-85871, 1984.
3. IASER DOPPLER VELOCIMETER INSTRUCTION MANUAL, SYStem 9100-7, TSI Incorp., St. Paul, MN, August 1980.
4. FREOUENCY SHIFT SYSTEM INSTRUCTION MANUAL, MOdel 9180 , Revision B, TSI Incorp., St. Paul, MN, August 1979.
5. OPERATOR'S MANUAL FOR NASA 3D-LDV COMPUTER INTERFACE, NASA Ames Research Center, Writing Assoc., Sunnyvale, CA, July $1,1982$.
6. Mehta, R. D., "An Experimental study of a Vortex/Mixing Layer Interaction", AIAA Paper 84-1543, 1984.

TABLE 1

MACRODYNE RANGE SETTINGS

MANTISA
 1
 500
 1024

RANGE

0	32 GHz	64 MHz	31.28 MHz
1.	16 "'	32 "	15.64 "
2	$8 \quad{ }^{\prime}$	16 "	7.20
3	$4 \quad$ "	8 "	3.91
4	2 "	4 "	1.95
5	1 "	2 "	977 kHz
6	500 MHz	1 "	488
7	250 "	500 kHz	244
8	125 "	250 "	122
9	62.5 "	125 "	61
10	31.25 "	62.5 "	30
11	15.62 "	31.25 "	15
12	$7.81{ }^{\prime \prime}$	$15.62{ }^{\prime \prime}$	7.6
13	3.90 "	$7.81{ }^{\prime \prime}$	3.8
14	1.95 "	$3.90{ }^{\prime \prime}$	1.9 '

Fig. 1 Schematic of the optics table layout.

MAIN AND OFF-AXIS ELLIPSOIDS HAVE SAME DIMENSIONS

Fig. 3 Details of the probe volumes in the 3-D system.

Fig. 4 Schematic of the receiving optics.

Fig. 5 Evaluation of the effective probe length.

Fig. $6 \quad$ Schematic of the signal processing electronics.

Fig. 7

Fig. 8 Block diagram for data acquisition program.

Fig. 9 Block diagram for data reduction program.

(a) Overall schematic

(b) Details of boundary layer trips and coordinate system

Fig. 11 Experimental rig.

(a) Cross-wire measurements

(b) IDV measurements

Fig. 12 Secondary velocity plots.

Fig. 13
Comparison of X-wire and LDV measurements in a vortex/mixing layer interaction.

End of Document

