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The evaluation of the dynamic behavior of a rotating system is possible by means

of modal parameters (E1genva1ues and Eigenvectors). A mixed analytical and experi-
mental approach is used to identify the modal parameters of a specially-designed
test rig. The modal identification is done both for nonrotating as well as rotating
systems. These modal parameters are used to validate a developed Finite Element
Model.

INTRODUCTION

In the design of a rotating turbomachine, there is a great deal of concern about

the stability and the level of vibration. Unstable vibration may occur caused by
different effects, like internal damping, oil film forces, etc. There is also a big
discussion about the number of bearings used to guarantee a safe level of vibration
during operation.

There are several difficulties to identify the dynamic characteristic of large
turbomachinery. The problem is very complex. Normally there are few points at the
rotor where it is possible to excite the system; also the positions of the point

to measure the response of the system are not arbitrary. In operating conditions,
it is not always easy to identify the system. Turn on and off procedures may be

very fast, and in steady state, it is frequently difficult to estimate the disturb-
ing forces.

As an attempt to understand and to analyze specific problems related to vertical
shaft Francis Hydrogenerators, a special test rig was designed and constructed,
which is described by Eiber (Ref. 1). The test rig is designed in a way that
facilitates changing the parameters of the rotor (stiffness, damping, mass distrib-
ution). The study of the dynamic behavior of the rig gives important information on
how to proceed measuring the real machine.

The stability of a linear rotor-system is given by the real part of the complex
eigenvalues which correspond to the damping constants. Natural frequencies are
obtained from the imaginary part. Together with the natural modes (Eigenvectors),
they allow the evaluation of the dynamic behavior in free as well, as in forced,

vibration. Eigenvalues and natural modes are called the "modal parameters" of a
system.
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The classical "modal analysis," a combined experimental and analytical method which
was developed some years ago, is used to identify modal parameters of nonrotating
systems. The method makes assumption of symmetric matrices for the analytical
model. Although the method is not admissible in the case of rotating systems
(nonsymmetrical matrices), it is a very useful tool to identify the modal parameters
while the system is on rest.

It is the aim of this paper to identify the modal parameters of the rig in several
stages of its mounting on the test stand. In this case, the modal parameters
provide us the necessary information to adjust gradually the mathematical model.

It has been shown in Reference 2 that a generalized modal analysis, in connection
with an expansion in series of the right eigenvectors and the left eigenvectors,
allows the identification of modal parameters of a system. This method will be
applied to the rotor test rig. Some experimental data are presented.

ROTOR TEST RIG

The rotor system is shown schematically in Figure 1. The vertical shaft represents
a body with a rigid upper and an elastic lower part. On the rigid section, there
is axially clamped the rotor of an asynchronous motor with 4 kw power. The stator
itself is hinged with Teaf springs on swinging platforms. These leaf springs are
adjustable and, therefore, allow us to vary the stiffness in a very wide range.

The total suspension of the stator is-carried out by eight platforms.

Because of noncontact transducers, an inductive displacement measuring system allows
the recording of vibration of the rotating shaft. This system is used in one
horizontal plane to measure the state variables of the lower disc.

MODAL ANALYSIS OF THE UNDAMPED NONROTATING SYSTEM

There are different possibilities in the description of the mentioned rotor with
continuous mass and stiffness distribution. The exact formulation is described by

partial differential equations together with appropriate boundary conditions, as
described by Wauer (Ref. 3).

For practical calculations, however, a Finite Element Model is employed with finite
number of coordinates. Basically, the bending vibration of the rotor shaft is the
focus of interest. Making use of scalar energy quantities in a variational form,’
the Hamilton's Principle leads us directly to the equations of motion. The unknown
deflection functions are substituted by deflection shapes formed by third-order
polynomials with free parameters. In this model, the free parameters are the
deflection and the angle at the boundary of the beam elements.

The Finite Element model for the rig is shown in Figure 2. The model has 6 nodes.
It consists of 5 beam elements, 4 spring elements, and 6 inertia elements. All

the elements which are related to the stator and its spring leafs, and also the
upper discs, are condensed at the node number 1. For making the model more flexible
for parameter variation, the rotating part of the stator (rotor) and the rotating
parts of the intermediate bearing are considered as separate inertia elements. The
system is allowed to vibrate in the XY plane and also in the XZ plane. The rotation
of the system about X axis, and also its translation in the same direction, is
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suppressed. As a result, the system has 24 degrees number of freedom. Havjng the
system matrices [M], [K], the solution of the ordinary eigenvalue problem gives the
natural frequencies and the corresponding modes.

The modal analysis of the rig is done in three steps. In the first step, the
"vertical shaft," a body with rigid upper and an e]ast1c lower part, is considered
as a free-free body in space.

In the second step, the rotor is modeled as a free-free body in space. The rotor
consists of the vertical shaft, the upper disc, the lower disc, and the intermediate
bearing.

Finally, the model considers the rotor mounted on the rigid test stand by leaf
springs.

IDENTIFICATION OF MODAL PARAMETERS OF THE NONROTATING SYSTEM

Usually a combined experimental and analytical method identifying modal parameters
of nonrotating elastic systems has been applied in various fields. The aim of the
method is to analyze a structure in its elementary modes and to determine its
characteristics.

In this case, the first nine measurement points along the X axis of the rotor in

the XY plane are chosen. The rotor is excited by applying an impulse on the
measurement points, and the response is measured in a specific point. After trans-
formation (FFT) of the input and the output signals into frequency domain, different
frequency response functions are determined. Analytical functions are fitted to the
measured functions by variation of the modal parameters. The results of this
iterative fitting procedure are the modal parameters.

The same as theoretical analysis, identification of modal parameters is done in the
three steps as already was explained. The same method was also applied for iden-
tifying the modal parameters of the rotor in the XZ plane.

COMPARISON OF THE RESULTS

The results obtained by the F.E.M. and the identification of modal parameters are
presented as corresponds to different stages. Table 1 shows the natural frequencies
of the free-free "vertical shaft." The natural modes for the first three frequen-
cies are shown in Figure 3. '

Table 2 shows the natural frequencies of the free-free rotor. The corresponding
modes are shown in Figure 4.

Figure 5 shows the natural modes of the mounted rotor on XY plane. The correspond-
ing natural frequencies are shown in Table 3. Also the natural frequencies of the
mounted rotor on XZ plane are shown in Figure 5. As the natural modes in XZ plane
are almost the same as in XY plane, the modes are not presented.

The results obtained for natural frequencies of different stages by Finite Element

Model are very close to experimental ones. This g1ves us a model to be used in
predicting the frequencies while the rotor is running.
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MODAL ANALYSIS OF ROTATING SYSTEM
Due to gyroscopic effect and asymmetry in damping and stiffness matrices, the
classical method for modal analysis fails to decouple the equations of motion of the
rotor while running. The modal parameters are also speed dependent in this case.

However, working with eigenvectors and natural modes of the nonconservative system
leads to the desired decoupling as shown by Nordmann in Reference 2.
MODAL PARAMETERS OF ROTORS

The first step in modal analysis is always the determination of eigenvalues and
eigenvectors. These parameters can be calculated by the homogenous equation:

[MI{%} + [D1{x} + [KI{x} =0 (D

where [M1, [D], [K] are respectively mass, damping, stiffness matrices with order
NxN. The solution of equation (1) is of the form:

{x} = {o}e* (2)
Substitution yields the quadratic eigenvalue problem
(A2[M] + A[D] + [KD{e} =0 3)

with 2N eigenvalues Aj and corresponding modes {¢}j. The eigenvalue, as well as
the eigenvectors, mainly occur in conjugate complex pairs (real eigenvalues and
eigenvectors are not considered).

Eigenvalues Aj = ajriw] ; A= aj-iwj (4)

sj-it (5)

Eigenvectors  ¢j = sj+it] ; ¢j

The part of the solution which belongs to such a conjugate complex pair can be
written as:

xj(t) = Bje®I® {sj sin (wjt+dj)+tj cos (wjt+dj)} (6)
where wj is the circular frequency and aj the damping constant. The damping con-

stant aj (real part of >j) determines whether the solution xj(t) is stable (aj<0)
or unstable (aj>0).

The constants Bj and the phase angle 3j depend on the initial conditions. Normally
all of the conjugate complex pairs contribute to the solution of the natural vibra-

tions. To explain the natural modes is not so easy as in the case of conservative
systems. '

The expression in parentheses in Equation (6) can be defined as natural modes
representing a time dependent curve in space.
IDENTIFICATION OF MODAL PARAMETERS OF THE RUNNING ROTOR

The natural frequencies of the rotor are identified by the same method as Reference
2. Some experimental data are shown in Fig. 6. The figure shows the variation
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of the first three eigenvalues (only the imaginary part), due to rotational speed

of the rotor. It is clearly shown that the natural frequencies are speed dependent.
It is worth mentioning that the identification process becomes more difficult as the
running speed increases. It is necessary to develop special hammers which could
excite the rotor at higher speeds.
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The Natural Frecuerncies of The Free—Free

Vertical Shaft

Table i

Fi Hz

i

Finite Element Model 36.4

Iderntificatiorn OFf 36 1
Modal Parameters

12}

The Natural Frequencies of The Free-Free

Rotor

Table &

Finite Element Mcdel 14.74

Identification Of 14. 65
Madal Parameters

The Natural Frequencies of The
on XY Plane

Mounted Rotor

Table 3
F1 Hz F& Hz F3 Hz
Finite Element Model 8.224 ;4.11 E7.4Em
Iderntificaticon OF 8.38@ 13.21 &2

‘Modal Parameters
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The Natural Frequencies of The
on XZ FPlane

Table 4

Mounted Rotor

F1i H=z

Finite Element Model 8.1399

Identification OFf 8.528
Modal Parameters
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Figure 1. - Test rig (scale 1:20).
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Figure 2. - Finite element model for rig.
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Figure 3. - Natural modes for free-free vertical shaft.
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Figure 4. - Natural modes for free-free rotor.
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Figure 5. - Natural modes for mounted rotor in XY plane.
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Figure 6. - Variation of eigenvalues of mounted rotor with rotor running speed.
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