
MAGNETIC BEARINGS FOR VIBRATION CONTROL 

G. Schweitzer 

Zurich, Switzerland 
S w i s s  Federal Institute of  Technology (ETH) 

The paper presents  a survey on t h e  research of t h e  I n s t i t u t e  of  Mechanics of t h e  
ETH i n  t h e  f i e l d  of v ibra t ion  cont ro l  w i t h  magnetic bearings.  It shows a method f o r  
modelling an e l a s t i c  r o t o r  so t h a t  it can be represented by a low order  model amen- 
ab le  t o  cont ro l  techniques,  it dea ls  with t h e  cont ro l  l a w  and spi l l -over  e f f e c t s ,  and 
it discusses  experimental r e s u l t s  f o r  an ac t ive  resonance damper. 

INTRODUCTION 

Magnetic bearings can exer t  forces on a body without any physical contact .  T h i s  
makes it a very usefu l  device t o  inf luence the  pos i t ion  and the  motion e spec ia l ly  of 
a spinning ro tor .  Magnetic bearings are qu i t e  capable of supporting even a heavy ro- 
t o r .  I ts  appl ica t ion  t o  turbomachinery, machine too ls ,  and i n  the  vacuum techniques 
i s  described f o r  example by Habermann ( r e f .  1). Such a bearing, o r  more prec ise ly  
such a bear ing system, can be designed i n  a systematic way (ref. 2 ) .  By su i t ab ly  de- 
s igning t h e  cont ro l  loop t h e  magnetic ac tua tor  can be adjusted t o  a va r i e ty  of appl i -  
cat ions and dynamic requirements. Primary design goals have been t o  support a r i g i d  
ro to r ,  because t h e  r i g i d i t y  of t h e  r o t o r  f a c i l i t a t e s  t h e  con t ro l  design e s sen t i a l ly .  
The magnetic forces  can be made t o  be a funct ion of t h e  r o t o r  motion i n  such a way 
t h a t  t h e  ac tua tor  usua l ly  has spr ing and damper cha rac t e r i s t i c s  which su i t ab ly  depend 
on t h e  exc i t a t ion  frequency. 

The freedom i n  assigning dynamic cha rac t e r i s t i c s  t o  t h e  ac tua tor  can be used not 
only f o r  supporting a rigid r o t o r  but f o r  v ibra t ion  con t ro l  as w e l l .  Some e f f o r t s  
have already been undertaken t o  cont ro l  various kinds of v ibra t ions .  Pietruszka and 
Wagner (ref.  3 )  show how an unbalanced r i g i d  r o t o r  can be made t o  r o t a t e  about i t s  
p r inc ipa l  axis of i n e r t i a ,  thus  avoiding v ib ra t iona l  unbalance forces  on t h e  magnetic 
bearings.  In  reference 4 magnetic bearings are used t o  s h i e l d  a measuring platform 
from res idua l  v ibra t ions  of i t s  base. Gondhalekar e t  al. (ref. 5 , 6 )  inves t iga te  vi-  
b ra t ion  cont ro l  problems of an e l a s t i c  ro to r .  Even t h e  ac t ive  damping of self-exci ted 
v ibra t ions  by i n t e r n a l  f r i c t i o n  and of parametric v ibra t ions  due t o  r o t o r  asymmetry 
have been looked in to .  It shows t h a t  pragmatic so lu t ions  f o r  ind iv idua l  problems can 
be found, general  methods and t h e  answers t o  some bas ic  questions,  however, a r e  not 
yet  avai lable .  

This paper w i l l  give a survey on our research i n  t h e  f i e l d  of v ibra t ion  cont ro l .  
A t  first it presents  t h e  modelling of an e l a s t i c  ro to r  so t h a t  t h e  r e s u l t i n g  low 
order model i s  amenable t o  con t ro l  techniques. Another aspect concerns t h e  cont ro l  
l a w  and the  e f f ec t s  of sp i l l -over ,  and f i n a l l y  design requirements and experimental 
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resu  
of t h e  research group of t h e  I n s t i t u t e  of Mechanics at the  ETH, espec ia l ly  on t h e  
contr ibut ions of Bucher, Salm and Traxler .  

e";esonance damper a r e  discussed. The survey i s  based on t h e  work 

FUNCTIONAL PRINCIPLE 

I 

Fig. 1: Magnetic Suspension 

S en soy 

A t  f i rs t  t h e  func t iona l  p r inc ip l e  
of t h e  magnetic suspension w i l l  be ex- 
plained s h o r t l y  and demonstrated by 
examples. 

Figure 1 shows a hovering sha f t  S. 
Its pos i t ion  i s  measured by a sensor ,  
t h e  measured s igna l  i s  processed i n  a 
con t ro l l e r ,  t h e  con t ro l l e r  output con- 
t r o l s  via an ampl i f ie r  t h e  current  
through the c o i l s  of  t h e  magnet M i n  
such a way t h a t  t h e  magnetic force  
s t a b i l i z e s  and f i rmly keeps the  sha f t  
i n  its hovering state. This simple 
example shows t h a t  obviously t h e  s i z e  
o f t h e  magnetic force depends on the  
s i z e  o f t h e  air gap, and t h a t  t h e  dy- 
namics of t h e  suspension, i t s  s t i f f n e s s  
and damping, t o  a large exten t  i s  de- 
termined by t h e  design of t h e  control-  
ler .  

For suspending a f u l l  r o t o r  t h e  
simple loop w i l l  not be s u f f i c i e n t .  
Figure 2 shows t h e  radial suspension 
of a r i g i d  ro tor .  For each degree of 
freedom a magnetic ac tua tor  has t o  be 
cont ro l led  independently. I n  general  
each bear ing force  w i l l  depend on each 
sensor s igna l ,  l ead ing  t o  a t y p i c a l  
mult ivar iable  control .  

Fig. 2: Block-diagram f o r  t h e  r a d i a l  
suspension of a r o t o r  i n  one plarlo 
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Figure 3 shows the hardware setup 
for such a bearing system. The rotor 
has a length of about 1 m, a diameter 
of 12 cm and a mass of 12 kg. The air 
gap of 1 cm is extremely large for 
technical purposes. The device was 
used for an exposition. The signals 
of the optical CCD-sensors are pro- 
cessed by a microprocessor and fed to 
switched power amplifiers. 

Fig. 3: Magnetic bearing system, front 
view with control unit, power 
supply and drive 

MODELLING OF AI? ELASTIC ROTOR 

For most of the current applications the rotor is considered to be rigid. The 
derivation of its equations of motion under the action of magnetic control forces 
shouldn't cause any difficulties. For an elastic structure the modelling procedure 
is somewhat more complex, as will be outlined in the following. 

The modelofthe elasl3c rotor has to be such that it can be incorporated into 
the model of the closed control loop, and it has to be of low order so that the com- 
plexity of designing the control law will be reduced and a simulation of the closed 
loop becomes reasonable. 

For the derivation of such a model, following Bucher (ref. 71, let us start 
with a finite element model of the elastic rotor 

A i + A  i + A  392 -2 -1 - a 
where q is a n x 1 vector of generalized displacements, p is the vector of generalized 
forces; and the Ai are structural caefficient matrices, characterizing inertia and 
elasticity as well as gy-roscopic and nonconservative properties. Equation 1 may be 
transformed into the complex frequency domain and expressed by 

- 

The matrix in brackets is termed dynamical stiffness matrix and its inverse is the 
dynamical flexibility matrix 
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( 3 )  

The elements of E( s )  , the dynamical f l ex ib i l i t y  t ransfer  functions, are well-known in 
measurement and modal analysis techniques. A gener 
f i n i t e  element equations i s  t o  truncate the modal 
order t o  find that  representation we have t o  solve 
1. For the sake of simplicity - all the subsequent 
general system (equ. 1) as w e l l  ( re f .  7 )  - l e t  us a 

From the solution of the  eigenvalue problem we obtain a s 
and the corresponding r ea l  normalized eigenvectors I& with - u = (x,.. . ,a ,..., h). 

Then the modal expansion of q - 
( 5 )  

leads t o  the modal representation of equation 4 

( 6 )  -- M i ' + R = = g p  T 

with 

k = 1, ..., n 

This modal representation i s  a t h e  domain representation of the p a r t i a l  fraction ex- 
pansion of the  corresponding f l ex ib i l i t y  matrix E( s) . Translating equations 5 and 6 
into the s-domain, yields 

m 

For the  design of  the controller,  a model of  the f lexible  structure,  t ha t  re la tes  
the displacements and velocit ies at the  location of the sensors t o  the excitation for- 
ces of the actuators, i s  required. By analyzing the closed loop system with respect t o  
the actuator and sensor coupling points, it can be checked whether the design objec- 
t ives  have been reached, i.e., whether the  system is  stable and shows up with good 
damping performance. Also, test measurements f o r  the closed loop system are  easi ly  
carried out by exciting the  structure with the  available actuators. Hence, for  both 
control design and closed loop analysis, we  may confine the  selection of coordinates 
t o  the coupling points of t he  actuators and sensors with the  structure. A modal re- 
presentation of the  dynamical f l ex ib i l i t y  matrix o f t h e  e l a s t i c  structure,  with re- 
spect t o  the c i ted  coordinates, provides the desired description, as w i l l  be shown 
subsequently. 

The nA actuator forces form the  vector I?, the  % measured displacements are given 
and the nv measured velocit ies by xv. These vectors are  re la ted by appropriate 

matrices t o  the nodal forces and displacements by 
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The elements of  the  incidence matrices a r e  zero or one, when d iscre te  actuators  and 
sensors a re  located at  nodal points. $?e assume tha t  we can t runcate  the  number of 
modes retaining only m essen t i a l  modes, so t h a t  instead of equation 5 w e  now have 

( 9 )  q = Z u .  z .  = U  z , i = l ,  ... ,m, m < n  
- i  1 1  -In 

with the  t r i c a t e d  n x m modal matrix U and t h e  truncated modal vector z This leads 
t o  the  truncated se t  of modal equation? m' 

T M i' + K  z = U  p 
-m-m -am -m- (10) 

With the  subset of re ta ined coordinates 
matrix representation 

(equ. 8 )  we have i n  t h e  s-domain a t r ans fe r  

T U (s2 M + 

-A 

-D-m 

s T U (s 2 + &)-' UT T 
Y - m  

Here the  t r ans fe r  matrix & is a generalized dynamical f l e x i b i l i t y  matrix, since it 
re l a t e s  a force exci ta t ion (actuator  forces)  t o  nodal displacements and ve loc i t i e s  
(sensor s ignals  1. 

By introducing the  state vector 

an equivalent s t a t e  space representation is obtained 

(12) 

r 1 r 1 

A l l  of t he  representations (equ. 10,11,12) Will be suitable f o r  t h e  control  design. 
The method can be extended t o  include other  s t ruc tu ra l  elements as well ,  i . e .  found- 
a t ion  dynamics, by applying the  building block approach. Problems l e f t  over and t o  be 
discussed i n  the  next sect ion a re  t h a t  of truncation and t h e  control  design. 

CONTROL OF AM ELASTIC ROTOR 

When the  control  design is  based on a reduced-order model of t he  ro to r  (equ. 1 0 )  
the  question a r i s e s  whether t he  r e a l  ro tor  w i l l  indeed be control led cor rec t ly  by 
such a simplified control ler .  Actually there  may be detrimental e f f ec t s ,  and we can 
explain and c l a s s i fy  them i n  the  following way ( r e f .  6 ) .  
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Let us par t i t ion the high-dimensional modal coordinate vector 2 into t w o  parts. 
The important part w i t h  the l o w  dimension nm w i l l  be the one t o  be controlled, the 
other residual pa r t  o f  dimension nr is  t h e  one t o  be neglected. Then equation 6 and 
the measurement equations 8 can be arranged in  the following form 

= T  U z + T  U z & = T  U i + T  U i LD -Dmm 3 - r - r '  - v m m  YT'T  

For design purposes it Will be assumed that the  controller i s  based on the re- 
duced-order model only,being a subset of equations 13 

T T M 'i + K  z = U  p = U  2 2  -mm -mm m -  - m A  (14) 

The relat ion between the control vector 2 and the measurement follows from the chosen 
control law, which preferably w i l l  be a linear one and can be determined i n  the usual 
ways. Such a control design W i l l  resul t  i n  the  desired and "good" control f o r  the 
reduced-order model (equ.14) , but when it i s  applied t o  the  rea l  full-order-system 

Rctuator Rotov Scnao.r 

3 3  C o n t v o l  
w . -  'cs 

Fig. 4: Reduced order control applied t o  
the real full-order system, de- 
monstrating the observation sp i l l -  
over ( O S )  and the control sp i l l -  
over (cS) 

._ 

(equ. 13) the system qual i t ies  can 
d t e r  essentially ( f ig .  4 ) .  I n  r ea l i t y  
the  measurements L do not only consist 
of the  modelled part but they also 
depend on the  residual vector z 
causing the  socalled "observat& 
spillover". 

Furthermore the control vector 
does not only act  on the  modelled p a r t  
but on the  r ea l  full-order system it- 
self  which obviously contains the un- 
modelled part as w e l l .  This influence 
is  called "control spillover". These 
spil lover terms can change and deteri-  
orate the behadour of the  r ea l  system 
and even destabil ize it. 

The objective of the  control de- 
sign now i s  t o  derive the  control on 
the  basis of the  reduced-order system 
without exact knowledge about the  re- 
sidual,  m o d e l l e d  par t ,  and t o  pro- 
duce a design tha t  provides suspension 
and damping for  the mechanical system 
and that  i s  easy t o  implement as well. 
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A d i rec t  output feedback i s  known t o  have these propert ies  and t o  show robust- 
ness qua l i t i e s  with respect t o  parameter e r ro r s  and t runcat ion e f f ec t s  ( r e f .  8 ) .  Then 
the  control  forces depend l i n e a r l y  on the  displacement and ve loc i ty  measurements 

( 1 5 )  

w i t h  t he  yet  unknowngainmatrices G.. Introducing t h i s  cont ro l  l a w  and the  measure- 
ment equations 8 in to  the  f u l l - o r d z  system equations 6 leads t o  the  full-order 
closed-loop system ( FOCL) 

In  order t o  avoid t h e  sp i l l ove r  e f f e c t s  t h e  solut ions of equation 16 should be s t ab le .  
Then t h e  FOCL i s  s t ab le  despi te  t h e  f ac t  t h a t  i t s  gain matrices Will be based on t h e  
reduced-order model 
of t he  coef f ic ien t  matrices (ref.  61, are ce r t a in ly  f u l l f i l l e d ,  

- if t h e  sensors and actuators  are arranged i n  collocated pa i r s ,  i . e .  i f  rT = T 

The s t a b i l i t y  conditions , derived from defini teness  propert ies  

= T . -D -v And when t h e  actuators  have t o  support t h e  ro to r  addi t iona l ly  t o  con t ro lhng  i t s  
vibrat ions t h e  number of reasonably placed sensors and actuators  has t o  be at l e a s t  
equal t o  the  number of not s t ab le  r i g i d  body modes. 

- i f  t h e  gain matrices G. are symmetric and pos i t i ve  def in i te .  

The procedure how t o  construct such gain matrices w i l l  be explained short ly .  The re- 
duced-order model, including t h e  rigid-body modes, and a l l  other  v ibra t ion  modes t h a t  
should be control led,  i s  given by equation 14. Introducing t h e  cont ro l  equation 

1 

w = - G  - -D D m - % %  

in to  equation 1 4  leads t o  t h e  closed-loop equation 

(17) M 2 + D + (%+ m-  

of t h e  reduced-order model 

= o  

T s = u r c , x u  T D = U T G T U  
-m - m - A - v - v - m ’  m 3 A D D - m  

The terms D , E& are t h e  addi t ional  modal damping and s t i f f n e s s  introduced by t h e  con- 
t r o l  f e e d b a .  The required symmetry and def ini teness  propert ies  of  t h e  ye t  unknown 
gains w i l l  be guaranteed by a design approach of Salm (ref .  6 ) .  F i r s t  we assign 
desired addi t ional  modal damping and s t i f f n e s s  values and thereby choose t h e  diagonal 
matrices & and &, and then we solve equations 18 f o r  t h e  unknown gains. However, 
as most of ten  t h e  number of nA, nD of ac tua tors  and sensors w i l l  be s m a l l e r  than t h e  
number m of modelled modes, it i s  not possible  t o  solve equation 18 uniquely. An 
approximation f o r  t he  gains Gi ,  i n  t h e  senseof minimized quadratic differences using 
Pseudo-Inverses, i s  f eas ib l e  and leads t o  t h e  following design rules: 

The reduced-order control  of l a rge ,  and even i n f i n i t e  dimensional vibrat ion 
systems Will result i n  a robust and ce r t a in ly  s t ab le  FOCL, i f  
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- t he  vibration system i s  not unstable ( r i g i d  body modes a re  allowed), 
- t he  reduced-order model contains a t  l e a s t  a l l  rigid-body modes , 
- the  sensors and actuators a re  collocated and t h e i r  number i s  a t  l e a s t  equal t o  the  

number of rigid-body modes. 

This control approach includes the  technically most i n t e re s t ing  case where a r e a l  
f l ex ib l e  ro tor  i s  suspended by actuators which at  t he  same time have t o  control i t s  
e l a s t i c  vibrations. An example and experimental results w i l l  be shown i n  
sect ion. 

EXAMPLES AND EXPERIMENTAL RXSULTS 

( r e f .  6) 
verse vibrations of a f lex ib le  beam, supported and controlled by actuators on both 
ends, a re  described by the  modal equation 6. The mode shapes (equ. 5)  used i n  t h i s  
case a re  t h e  free-free modes, t he  r i g i d  body modes are included i n  the  modal trans- 
formation matrix E. 

A s  a design goal t he  two actuators w i l l  have t o  control t he  two rigid-body modes, 
and additionally two e l a s t i c  modes should be strongly damped, too. Therefore t h e  re- 

duced-order model i s  chosen t o  con- 
sist of t he  two rigid-body modes and 
the  f i r s t  two e l a s t i c  modes. D i s -  
placement and velocity signals a r e  
coming from sensors a t  t he  actuator 
locations. The gain matrices 3 f o r  
t he  direct-output control are derived 
from equation 18, where i n  our  case 
the  assigned modal s t i f f n e s s  and 
damping, t h a t  we want t o  obtain, i s  
characterized by 

D = Diag ( 2 D  umi) 

The s t i f f n e s s  of t he  suspension w a s  
assigned by prescribing u1, w2. The 
damping value D was varied between 
0 and 1. Several general and an t i -  
cipated r e s u l t s  could be corroborated 

2 s =DiZtgu -m mi -m 

-60 numerically: 

Fig. 5 :  Typical eigenvalue-curves of t he  
controlled full-order system with 
increasing damping values D 
assigned t o  the  modes 

the next 

The trans- 

- For"1ow" bearing s t i f f n e s s  (Fig. sa) 
t h e  eigenvalues of t h e  controlled 
system have a typ ica l  behaviour 
when we increase the  assigned damp- 
ing value D. For very high damping . . .  t n e  m o u  rrequencies OS a rixea-nxea beam are approxmazea. 

near the  first e l a s t i c  frequency of t he  beam, t h e  behaviour i s  similar, but some 
eigenvalues now go upwards t o  higher eigenfrequencies of t he  fixed-fixed beam. The 

- For a "stiff" bearing design (Fig. 5b), where we want t h e  bearing s t i f f n e s s  t o  be 
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ORIG1NAL PAGE4 I 
OF POOR QUALITY 

poor control labi l i ty  of these modes comes from the fac t  t h a t  high control forces 
tend t o  "clamp" the beam, and t o  s h i f t  modal nodes into the actuator location it- 
self .  

Limiting values for  the attainable s t i f fness  a re  given by the lowest frequencies of 
an equivalent beam with fixed ends. 

The control design always produces a s table  system. It provides s t a b i l i t y  and dam- 
ping f o r  the modelled and the unmodelled modes. 

9 

= 
Y ..... ..... ..... ..... L ..... 

Fig. 6: Rotor model, demonstrating the 
parameter deviations E,E and 
61 from a reference position 

Vibration damping and spill-over effects .  
A simple rotor  model (Fig. 6 )  demonstrates 
the active damping of resonance vibrations 
(ref .  6 ) .  The experimental setup ( f i g .  7 )  
consists of a conventionally supported, 
f lexible  rotor  shaft  with a disc i n  the  
"middle" of the shaft .  The "exact" model for  
the rotor  of f igure 6 considers the imper- 
fection parameters E,E,61. Now the control 
design i s  based on a reduced-order model, 
taking only the  displacements uy, uz into 
account. The motion of the "exact" rotor ,  
however, w i l l  be affected by the coupling 
between t ranslat ion and inclination of the 
disc . I t  i s  the  imperfection parameter E tha t  
causes observation spil lover,  and E 
vides control spil lover.  The eigenvalue 
s h i f t s  caused by these spil lover e f fec ts  a r e  
demonstrated i n  figure 8. The unmodelled 
modes can even become unstable. When actua- 
t o r  and sensor a re  collocated (E = 5 )  then 
the "exact" model is  s table  even with the 
"simple" control. The calculations have 
been confirmed by experiments. Near the 
s t a b i l i t y  boundary however the above model- 
l i n g  w a s  not suff ic ient :  the small imper- 
fections due t o  the  phase/frequency response 
of the sensor had t o  be taken into account 
(ref. 7).  

pro- 

When the e l a s t i c  rotor  and the  control 
are modelled according t o  the  above ru les ,  
the active damper can reach good performance. 
Measurement resu l t s  ( f ig .  9 )  demonstrate . 
the considerable reduction of the resonance 
amplitudes f o r  the experimental setup. 

Fig. 7: Experimental setup 
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CONCLUSION 

In order t o  control  vibrat ions in  flex- 
i b l e  mechanical systems and t o  solve spec ia l  
suspension tasks  it can be advantageous t o  
use magnetic actuators .  For t h e  design of the  
multivariable control  loop a su i tab le  model 
of t he  mechanical system i s  derived. S t a r t ing  
from a FE-model of high order t he  reduced 
order model f i n a l l y  only r e t a ins  the  actua- 
t o r  and sensor coordinates and the  modes 
considered t o  be important. I n  t h e  control  
design the  sp i l lover  aspects a r e  discussed. 
A method for determining a control  based on 
t h e  reduced-order model and robust with re- 
spect t o  the  number of unmodelled modes i s  
demonstrated. Examples show t h e  ac t ive  sus- 
pension of a f l ex ib l e  beam, sp i l lover  e f f e c t s ,  
and measured resonance curves f o r  an active- 
l y  damped ro to r  running through i t s  c r i t i c a l  
speed. 

f Re 

Fig. 8: Eigenvalue s h i f t  o f t h e  un- 
modelled modes depending on t h e  
parameters 8 and 5. Without 
control  the  eigenvalue i s  at A. 

1. 

2. 

3. 

4. 

5. 

6. 

7. 

8. 

Fmaumr HZ 
Fig. 9: Measured amplitude/frequency 

response , ( a )  uncontrolled $ 

(b ) control led 
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