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MAGNETIC BEARINGS FOR VIBRATION CONTROL
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The paper presents a survey on the research of the Institute of Mechanics of the
ETH in the field of vibration control with magnetic bearings. It shows a method for
modelling an elastic rotor so that it can be represented by a low order model amen-—
able to control techniques, it deals with the control law and spill-over effects, and
it discusses experimental results for an active resonance damper.

INTRODUCTION

Magnetic bearings can exert forces on a body without any physical contact. This
makes it a very useful device to influence the position and the motion especially of
a spinning rotor. Magnetic bearings are quite capable of supporting even a heavy ro-—
tor. Its application to turbomachinery, machine tools, and in the vacuum techniques
is described for example by Habermann (ref. 1). Such a bearing, or more precisely
such a bearing system, can be designed in a systematic way (ref. 2). By suitably de-
signing the control loop the magnetic actuator can be adjusted to a variety of appli-
cations and dynamic requirements. Primary design goals have been to support a rigid
rotor, because the rigidity of the rotor facilitates the control design essentially.
The magnetic forces can be made to be a function of the rotor motion in such a way
that the actuator usually has spring and damper characteristics which suitably depend
on the excitation frequency.

The freedom in assigning dynamic characteristics to the actuator can be used not
only for supporting a rigid rotor but for vibration control as well. Some efforts
have already been undertaken to control various kinds of vibrations. Pietruszka and
Wagner (ref. 3) show how an unbalanced rigid rotor can be made to rotate about its
prineipal axis of inertia, thus avoiding vibrational unbalance forces on the magnetic
bearings. In reference 4t magnetic bearings are used to shield a measuring platform
from residual vibrations of its base. Gondhalekar et al. (ref. 5,6) investigate vi-
bration control problems of an elastic rotor. Even the active damping of self-excited
vibrations by internal friction and of parametric vibrations due t¢ rotor asymmetry
have been looked into. It shows that pragmatic solutions for individual problems can
be found, general methods and the answers to some basic questions, however, are not
yet available.

This paper will give a survey on our research in the field of vibration control.
At first it presents the modelling of an elastic rotor so that the resulting low
order model is amenable to control techniques. Another aspect concerns the control
law and the effects of spill-over, and finally design requirements and experimental
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results for an active ‘resonance danper are discussed. The survey is based on the work
of the research group of the Institute of Mechanics at the ETH, especially on the

contributions of Bucher, Salm and Traxler.

Sensovy ‘ !

Fig. 1: Magnetic Suspension
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FPig. 2: Block-diagram for the radial
suspension of a rotor in one plane

FUNCTIONAL PRINCIPLE

At first the functional principle
of the magnetic suspension will be ex-
plained shortly and demonstrated by
examples.

Figure 1 shows a hovering shaft S.
Its position is measured by a sensor,
the measured signal is processed in a
controller, the controller output con-
trols via an amplifier the current
through the coils of the magnet M in
such a way that the magnetic force
stabilizes and firmly keeps the shaft
in its hovering state. This simple
example shows that obviously the size
of the magnetic force depends on the
size of the air gap, and that the dy-
namics of the suspension, its stiffness
and damping, to a large extent is de~
termined by the design of the control-
ler.

Por suspending a full rotor the
simple loop will not be sufficient.
Figure 2 shows the radial suspension
of a rigid rotor. For each degree of
freedom a magnetic actuator has to be
controlled independently. In general
each bearing force will depend on each
sensor signal, leading to a typical
multivariable control.
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OF POOR QUALITY Figure 3 shows the hardware setup
for such a bearing system. The rotor
has a length of about 1 m, a diameter
of 12 cm and a mass of 12 kg. The air
gap of 1 cm is extremely large for
technical purposes. The device was
used for an exposition. The signals
of the optical CCD~sensors are pro-
cessed by a microprocessor and fed to
switched power amplifiers.

i

Fig. 3: Magnetic bearing system, front
view with control unit, power
supply and drive

MODELLING OF AN ELASTIC ROTOR

For most of the current applications the rotor is considered to be rigid. The
derivation of its equations of motion under the action of magnetic control forces
shouldn't cause any difficulties. For an elastic structure the modelling procedure
is somewhat more complex, as will be outlined in the following.

The model of the elastic rotor has to be such that it can be incorporated into
the model of the closed control loop, and it has to be of low order so that the com-
plexity of designing the control law will be reduced and a simulation of the closed
loop becomes reasonable.

For the derivation of such a model, following Bucher (ref. T), let us start
‘with a finite element model of the elastic rotor
(1) A,g+A G+A a=p
where g is a n x 1 vector of generalized displacements, P is the vector of generalized
forces, and the Aj; are structural caoefficient matrices, character1z1ng inertia and

elasticity as well as gyroscopic and nonconservative properties. Equation 1 may be
transformed into the complex frequency domain and expressed by

(2) [s°a, +sa +a])a) =2s)

The matrix in brackets is termed dynamical stiffness matrix and its inverse is the
dynamical flexibility matrix

319



(3) H(s) = [SZAQ + sA, + go]_l

The elements of H(s), the dynamical flexibility transfer functions, are well-known in
measurement and modal analysis techniques. A general way of reducing the large set of
finite element equations is to truncate the modal representation of equation 1. In
order to find that representation we have to solve the eigenvalue problem of equation
1. For the sake of simplicity = all the subsequent derivations can be extended to'the
general system (equ. 1) as well (ref. T) - let us assume a simple elastic structure

) misae

From the solution of the eigenvalue problem we obtain a set of eigenvalues wj,...un
and the corresponding real normalized eigenvectors u, with the modal matrix

U = (Wlseeeslgsesssln).
Then the modal expansion of g

(5) a=Iyw z =0z, k=1l,...,n
-k

leads to the modal representation of equation b

(6) ME+Kz=Up

. T . T . 2 _

with M=U M U= disg(m), K=U K U= disg(k), w =k/n

This modal representation is a time domain representation of the partial fraction ex-
pansion of the corresponding flexibility matrix H(s). Translating equations 5 and 6
into the s—domain, yields

T
n
(7 Hs)=uMs+x) Ul = I -—E“;’L“—Q
: k=1 mk(s +wk)

For the design of the controller, a model of the flexible structure, that relates
the displacements and velocities at the location of the sensors to the excitation for-
ces of the actuators, is required. By analyzing the closed loop system with respect to
the actuator and sensor coupling points, it can be checked whether the design objec-
tives have been reached, i.e., whether the system is stable and shows up with good
damping performance. Also, test measurements for the closed loop system are easily
carried out by exciting the structure with the available actuators. Hence, for both
control design and closed loop analysis, we may confine the selection of coordinates
to the coupling points of the actuators and sensors with the structure. A modal re-
presentation of the dynamical flexibility matrix of the elastic structure, with re-
spect to the cited coordinates, provides the desired description, as will be shown
subsequently.

The n, actuator forces form the vector w, the measured displacements are given

by y., and the n, measured velocities by yy. These vectors are related by appropriate
incidence matrices to the nodal forces and displacements by
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T ; . T_,.T T
(8) v=Tp ¥yy=Ia" =L & ¥ =I(g )
The elements of the incidence matrices are zero or one, when discrete actuators and
sensors are located at nodal points. We assume that we can truncate the number of
modes retaining only m essential modes, so that instead of equation 5 we now have
(9) E”?gizi=gmgm, i=1,...,m, m‘<n
with the truncated n x m modal matrix U and the truncated modal vector Z. This leads
to the truncated set of modal equations

(10) M'z‘+Kz=UTp
- -m —m -m o

With the subset of retained coordinates (equ. 8) we have in the s~domain a transfer
matrix representation
-1 .7T

2
TG BT T,
(11) ¥(s) = H, W(s). H, =
-G G s T U(s2M +K)1UTT
-y -m -m -m A

Here the transfer matrix Hg is a generalized dynamical flexibility matrix, since it
relates a force excitation (actuator forces) to nodal displacements and velocities
(sensor signals).

By introducing the state vector

xT = (zT éT)
= “m > “m

an equivalent state space representation is obtained

x=Ax+3B¥
(12) r=Cx
e E o LY O
é:. -1 E: T _g: )
-M ~ K 0 U T 0 T U
-m - - -m A — -m

A1l of the representations (equ. 10,11,12) will be suitable for the control design.
The method can be extended to include other structural elements as well, i.e. found-
ation dynamics, by applying the building block approach. Problems left over and to be
discussed in the next section are that of truncation and the control design.

CONTROL OF AN ELASTIC ROTOR

When the control design is based on a reduced-order model of the rotor (equ. 10)
the question arises whether the real rotor will indeed be controlled correctly by
such a simplified controller. Actually there may be detrimental effects, and we can
explain and classify them in the following way (ref. 6).
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Let us partition the high-dimensional modal coordinate vector z into two parts.
The important part with the low dimension np will be the one to be controlled, the
other residual part of dimension n, is the one to be neglected. Then equation 6 and

the measurement equations 8 can be arranged in the following form

g o |l (& oflw]_|%
(13) e =| |2
o M ||z o ||z v |~
- -r -Tr - -r - T
= + = A 3 Z
L= hGzthlz, =L %4+ 0

For design purposes it will be assumed that the controller is based on the re-
duced-order model only,being a subset of equations 13

(14)

M

xDm="'I|"D1;'I'm—n.1

+K 3z =UT
*n-m “m-m -mx

Z

= UT
-

T U 2

T, ¥

Y'vm v "m T

The relation between the control vector w and the measurement follows from the chosen
control law, which preferably will be a linear one and can be determined in the usual
ways. Such a control design will result in the desired and "good" control for the
reduced-order model (equ.ll), but when it is applied to the real full-order-system

(equ. 13) the system gqualities can
alter essentially (fig. 4). In reality
the measurements y do not only consist

Sensor
Actuator Rotor of the modelled part 2z, but they also
o depend on the residual vector 2z
T r- P frosy 2
U Ta [ M 2 + K2 T la causing the socalled "observation
spillover".
S I B R Furthermore the control vector w
. does not only act on the modelled part
TT- . TR but on the real full-order system it-
- U., A My 2y + Ke2y [ To Uy self which obviously contains the un-~
Cs 0s modelled part as well. This influence
is called "control spillover". These
L @—— (Contvol - spillover terms can change and deteri-
wW : b orate the behaviour of the real system

Fig. 4: Reduced order control applied to
the real full-order system, de-
monstrating the observation spill-
over (0S) and the control spill-
over (CS)
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and even destabilize it.

The objective of the control de-
sign now is to derive the control on
the basis of the reduced-order system
without exact knowledge about the re-
sidual, unmodelled part, and to pro-
duce a design that provides suspension
and damping for the mechanical system
and that is easy to implement as well.



A direct output feedback is known to have these properties and to show robust-
ness qualities with respect to parameter errors and truncation effects (ref. 8). Then
the control forces depend linearly on the displacement and velocity measurements

(15) =G-8

with the yet unknown.gainxmatrices‘gi. Introducing this control law and the measure-
ment equations 8 into the full-order system equations 6 leads to the full-order
closed-loop system (FOCL)

T

(16) Mz+U T,6 T Uz+(K+0 T,6 T U)z=0

In order to avoid the spillover effects the solutions of equation 16 should be stable.
Then the FOCL is stable despite the fact that its gain matrices will be based on the
reduced-order model. The stability conditions, derived from definiteness properties
of the coefficient matrices (ref. 6), are certainly fullfilled,

-~ if the sensors and actuators are arranged in collocated pairs, i.e. if _? = ID = gv.
And when the actuators have to support the rotor additionally to controlﬁing its
vibrations the number of reasonably placed sensors and actuators has to be at least
equal to the number of not stable rigid body modes.

- if the gain matrices gi are symmetric and positive definite.
The procedure how to construct such gain matrices will be explained shortly. The re-

duced-order model, including the rigid-body modes, and all other vibration modes that
should be controlled, is given by equation 1L. Introducing the control equation

Y= 8y Iy " & Ly

into equation 1i4 leads to the closed-loop equation of the reduced-order model

(17) Mz+D 2+ (K+8J)z=0
= ¥ _ .1
(18) 5 558 Y, 5 LL&GLU

The terms D , S, are the additional modal damping and stiffness introduced by the con-
trol feedback. The required symmetry and definiteness properties of the yet unknown
gains G will be guaranteed by a design approach of Salm (ref. 6). First we assign
desired additional modal damping and stiffness values and thereby choose the diagonal
matrices Dy and S;, and then we solve equations 18 for the unknown gains. However,

as most often the number of n,, np of actuators and sensors will be smaller than the
number m of modelled modes, it is not possible to solve equation 18 uniquely. An
approximation for the gains G;, in the senseof minimized quadratic differences using
Pseudo-Inverses, is feasible and leads to the following design rules:

The reduced-order control of large, and even infinite dimensional vibration
systems will result in a robust and certainly stable FOCL, if
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- the vibration system is not unstable (rigid body modes are allowed),

- the reduced-order model contains at least all rigid-body wmodes,

-~ the sensors and actuators are collocated and their number is at least equal to the
number of rigid-body modes.

This control approach includes the technically most interesting case where a real
flexible rotor is suspended by actuators which at the same time have to control its
elastic vibrations. An example and experimental results will be shown in the next
section. ' ’

EXAMPLES AND EXPERIMENTAL RESULTS

Active suspension and vibration control of a flexible beam (ref. 6). The trans-
verse vibrations of a flexible beam, supported and controlled by actuators on both
ends, are described by the modal equation 6. The mode shapes (equ. 5) used in this
case are the free-free modes, the rigid body modes are included in the modal trans-
formation matrix U.

As a design goal the two actuators will have to control the two rigid-body modes,
and additionally two elastic modes should be strongly damped, too. Therefore the re-
duced-order model is chosen to con-
gist of the two rigid-body modes and
the first two elastic modes. Dis-
placement and velocity signals are
coming from sensors at the actuator
locations. The gain matrices Gj for
100 ; 100 the direct-output control are derived

- from equation 18, where in our case
the assigned modal stiffness and

(a) (b) demping, that we want to obtain, is
characterized by

iM iM

(/ao 80 5, = Diag wii _]gm = Diag (2D wmi)
. g The stiffness of the suspension was
//‘,LJ assigned by prescribing wj, wp. The
. damping value D was varied between
<" : ) 0 and 1. Several general and anti-
?:RE “RE cipated results could be corroborated
%0 numerically:

~ For"low" bearing stiffness (Fig.5a)
the eigenvalues of the controlled
system have a typical behaviour
when we increase the assigned damp-
ing value D. For very high damping
the modal frequencies of a fixed-fixed beam are approximated.

Fig. 5: Typical eigenvalue-curves of the
controlled full-order system with
increasing damping values D
assigned to the modes '

~ For a "stiff" bearing design (Fig. 5b), where we want the bearing stiffness to be
near the first elastic frequency of the beam, the behaviour is similar, but some
eigenvalues now go upwards to higher eigenfrequencies of the fixed-fixed beam. The
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poor controllability of these modes comes from the fact that high control forces
tend to "clamp" the beam, and to shift modal nodes into the actuator location it-
self,

- Limiting values for the attainable stiffness are given by the lowest frequencies of
an equivalent beam with fixed ends.

- The control design always produces a stable system. It provides stability and dam-—
ping for the modelled and the unmodelled modes.

Vibration damping and spill-over effects.
a — ¢ A simple rotor model (Fig. 6) demonstrates
the active damping of resonance vibrations

w
o (ref. 6). The experimental setup (fig. T)
ﬂ consists of a conventionally supported,

]

|

|

J

| o

I

flexible rotor shaft with a disc in the
"middle" of the shaft. The "exact" model for
the rotor of figure 6 considers the imper-
=========§§§§9¥ fection parameters £,£,61. Now the control
%> design is based on a reduced-order model,
taking only the displacements uy, uz into
account. The motion of the "exact'" rotor,
however, will be affected by the coupling
between translation and inelination of the
disc.It is the imperfection parameter £ that
causes observation spillover, and £ pro-
vides control spillover. The eigenvalue
shifts caused by these spillover effects are
demonstrated in figure 8. The unmodelled
modes can even become unstable. When actua-
tor and sensor are collocated (€ = £) then
the "exact" model is stable even with the
"simple™ control. The calculations have
been confirmed by experiments. Near the
stability boundary however the above model-
ling was not sufficient: the small imper-
fections due to the phase/frequency response
of the sensor had to be taken into account
(ref. 7).

Fig. 6: Rotor model, demonstrating the
parameter deviations €,€ and
81 from a reference position

When the elastic rotor and the control
are modelled according to the above rules,
the active damper can reach good performance.
Measurement results (fig. 9) demonstrate
the considerable reduction of the resonance
amplitudes for the experimental setup.

Fig. T: Experimental setup
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Fig. 8: Eigenvalue shift of the un-

T.
8.

modelled modes depending on the
parameters € and §. Without
control the eigenvalue is at A.

Amplitude

1 b

] 40
Frequenz HZ

CONCLUSION

In order to control vibrations in flex-—
ible mechanical systems and to solve special
suspension tasks it can be advantageous to
use magnetic actuators. For the design of the
multivariable control loop a suitable model
of the mechanical system is derived. Starting
from a FE-model of high order the reduced
order model finally only retains the actua-
tor and sensor coordinates and the modes
considered to be important. In the control
design the spillover aspects are discussed.

A method for determining a control based on
the reduced-order model and robust with re-
spect to the number of unmodelled modes is
demonstrated. Examples show the active sus-
pension of a flexible beam, spillover effects,
and measured resonance curves for an active—
1y damped rotor running through its critical
speed.

Fig. 9: Measured amplitude/frequency
response, (a) uncontrolled,
(b) controlled
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