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The design and shop test r e s u l t s  are given f o r  a high speed e ight  s t age  centri- 
fuga l  compressor supported by active magnetic bearings. 
r o t o r  dynamics ana lys i s  is presented with spec i f i c  a t t e n t i o n  given t o  design consid- 
e ra t ions  f o r  optimum r o t o r  s t a b i l i t y .  
ings i n  ex is t ing  machinery are discussed with supporting ana lys i s  of a four  s t a g e  
cent r i fuga l  compressor. 
ments f o r  successful  machinery operat ion of e i t h e r  r e t r o f i t  o r  new design turbo- 
machinery. 

A br ie f  summary of t h e  

The concerns f o r  r e t r o f i t  of magnetic bear- 

Recommendations are given on design and ana lys i s  require-  

INTRODUCTION 

A decade ago new technology i n  t h e  form of dry gas  seals w a s  introduced i n t o  
t h e  f i e l d  of i n d u s t r i a l  turbomachinery design t o  minimize t h e  c a p i t a l ,  operat ing,  
and maintenance cos t s  associated with seal o i l  systems (1). 
seal ing system i s  gaining widespread recogni t ion because it has and is continuing t o  
demonstrate its superior  mechanical, performance, and economic f ea tu res  i n  c e r t a i n  
appl icat ions.  Now once again new technology i n  t h e  form of active magnetic bearings 
(AMB) is being introduced i n t o  the  marketplace f o r  u se  on individual  turbomachinery. 
The f ea tu res  of t h i s  technology when applied t o  turbocompressor design r e s u l t  i n  
several economic, performance, and v e r s a t i l i t y  improvements unavai lable  t o  t h e  in- 
dus t ry  at t h e  p r e s e n t  time. Active magnetic bearings used i n  conjunction with dry  
gas seals and dry couplings now enable both t h e  manufacturer and use r  t o  th ink  i n  
terms of o i l - f r ee  cen t r i fuga l  compressors, c e r t a i n l y  a dramatic change from only t e n  
years ago (2) .  

Today t h i s  type of 

Patent a c t i v i t y  on passive,  active, and combination magnetic bearing systems 
spans 150 years.  
n e t i c  systems because they were easy t o  fabr ica te .  It was later shown, however, 
that a passive magnetic suspension'for three axes of displacement i s  unstable;  a 
theory t h a t  is sti l l  v a l i d  today. 
a French research firm, began inves t iga t ing  t h e  characteristics of both passive and 
active magnetic suspension systems f o r  a satell i te flywheel appl icat ion.  
they developed a t o t a l l y  active magnetic suspension system f o r  t h e  COMSAT comunica- 
t i o n s  satellite. 
(S2M) t o  f u r t h e r  develop and commercially market active magnetic bearing (AMB) 
systems in t e rna t iona l ly  ( 3 , 4 ) .  

The bulk of t h e  i n i t i a l  inves t iga t ions  centered on permanent mag- 

I n  1969 Societe  EuropeaMe d e  Propulsion (SEP), 

In 1970 

I n  1976 SEP formed a new company Socie te  d e  Mecanique Magnetique 

DEVELOPMENT CENTRIFUGAL COMPRESSOR WITH AMB 

Figure 1 is a view of an e ight  s tage ,  hor izonta l ly-sp l i t ,  back-to-back cent r i -  
fugal  compressor equipped with magnetic r a d i a l  and t h r u s t  bearings and gas seals on 
test at t h e  authors '  company (1980). 
pressor,  o r ig ina l ly  designed t o  run a t  10,000 RPM (167 Hz) on hydrodynamic bearings,  

The eight  s t age  r o t o r  housed in s ide  t h e  com- 
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has s ince  operated successful ly  a t  speeds up t o  13,000 RPM (217 Hz) on magnetic 
bearings. 
purpose of operating t h e  r o t o r  i n  a pressurized environment over a wide range of 
pressures  and flows from choke t o  surge. 

The compressor is  shown at tached t o  two closed loops constructed f o r  t he  

One unique f e a t u r e  of t h i s  compressor w a s  t h e  i n s t a l l a t i o n  of t h e  t h r u s t  and 
journa l  bearings located on t h e  f r e e  end of t h e  ro to r  d i r e c t l y  i n t o  t h e  gas (n i t ro -  
gen) pressurized environment thereby eliminating t h e  need f o r  one s h a f t  seal. To 
i l l u s t r a t e  t h e  concept of a nonlubricated cen t r i fuga l  compressor a gas  seal w a s  
chosen as t h e  main s h a f t  seal on t h e  coupling end of t h e  ro to r .  
some of t h e  important design f ea tu res  of t h e  e ight  s t a g e  back-to-back ro to r  while  
Figure 2 i l l u s t r a t e s  the appearance of t h e  f u l l y  assembled test ro to r .  

Table 1 summarizes 

Before power is appl ied t o  t h e  bear ings t h e  r o t o r  is supported on two aux i l i a ry  
cage, dry lubr ica ted  b a l l  bearings located i n  c lose  proximity t o  t h e  AMB. 
ance between t h e  ro to r  and t h e  inner  race of t h e  b a l l  bearing is se lec ted  t o  prevent 
r o t o r  contact with t h e  AMB pole  pieces  o r  t h e  i n t e r n a l  seals of t h e  compressor while 
t h e  ro to r  is a t  rest o r  during an emergency shutdown. 
the  AMB, i n t e r n a l  seals, and aux i l i a ry  bearing area are 0.012 in .  ( . 3  mm), 0.010 in .  
(.254 mm) , and 0.006 in .  (.15 mm) , respect ively.  When power is  applied t o  t h e  elec- 
t r o n i c  cont ro ls  t h e  electromagnets levitate t h e  ro to r  i n  t h e  magnetic f i e l d  and ro- 
t a t i o n  of the dr iving source such as a motor or  tu rb ine  can be  s t a r t ed .  The sensors  
and cont ro l  system regu la t e  the s t r eng th  and d i r e c t i o n  of t h e  magnetic f i e l d s  t o  
maintain exact r o t o r  pos i t i on  by cont inua l ly  ad jus t ing  t o  t h e  changing forces  on t h e  
ro to r .  
t h e  aux i l i a ry  bearings and r o t o r  system are designed t o  permit s a f e  decelerat ion.  

The clear- 

Typical r a d i a l  c learances i n  

Should both t h e  main and redundant f ea tu res  of t h e  AMI3 f a i l  simultaneously, 

The undamped critical speed map shown i n  Figure 3 compares t h e  standard f l u i d  
f i lm  bear ing/o i l  seal design t o  t h e  magnetic bearing/gas seal design f o r  t h e  8 s t a g e  
development compressor. The magnetic bearing design increased t h e  f i r s t  r i g i d  bear- 
ing mode by reducing t h e  bearing span but decreased t h e  second, t h i r d ,  and fou r th  
modes due t o  t h e  add i t iona l  weight of t h e  ferromagnetic j ou rna l  sleeves and t h e  
l a rge r  diameter t h r u s t  co l l a r .  
ness  and damping p rope r t i e s  of t h e  electromagnetic bear ings as a func t ion  of r o t o r  
speed. 
have t o  p a s s  through t h r e e  critical speeds and opera te  approximately 20% above t h e  
t h i r d  critical and 40% below t h e  f o u r t h  critical. 
and second criticals are r i g i d  body modes only a s i g n i f i c a n t  response at approximate- 
l y  8000 RPM (133 Hz) would be expected as t h e  r o t o r  passed through its t h i r d  (free- 
free mode) critical. Subsequent unbalance f orced response ca l cu la t ions  v e r i f i e d  
these  expectations with acceptable  operat ion of t h e  compressor t o  14,000 R P M  (233 Hz) 
(see Figures 4 and 5). 

Superimposed on t h i s  map are t h e  as measured s t i f f -  

For a design speed of 10,000 RPM (167 Hz), Figure 3 ind ica t e s  t h e  r o t o r  would 

Furthermore, since both t h e  f i r s t  

The damping required f o r  optimum s t a b i l i t y  may be a r r ived  at by construct ion of 

(22.8 N/pm), Figure 6 shows t h e  movement of the 
Increased damping levels cause t h e  f i r s t  

The t h i r d  mode increases  i n  s t a b i l i t y  
(87.7 N-sec/pm) but  then decreases as damping i s  in- 

a Lund s t a b i l i t y  map (5) from t h e  ca lcu la ted  damped c r i t i ca l  speeds (5,6,7). 
1st mode s t i f f n e s s  of 130,000 l b / i n  
eigenvalues as t h e  bearing damping varies. 
and second modes t o  become c r i t i c a l l y  damped. 
up t o  a point  of 501 lb-sec/in 
creased fu r the r .  
study w a s  undertaken t o  determine i f  t h e  t h i r d  mode would go uns tab le  a t  i ts  corre- 
sponding s t i f f n e s s  of 229,000 l b / i n  (40.1 N/llm). The r e s u l t s  of that ana lys i s  are 
presented i n  Figure 7 which ind ica t e  t h e  t h i r d  mode becomes c r i t i c a l l y  damped as 
t h e  damping is increased while t h e  1st mode damping would be a t  an optimum f o r  645 

For t h e  

Since t h e  f i r s t  and second modes become c r i t i c a l l y  damped, a second 
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lb-sec/in (112.9 N-sec/mm). 
t he  increase i n  bearing s t i f f n e s s ,  is similar t o  r e s u l t s  presented by Lund (5).  
These r e s u l t s  i nd ica t e  t h a t  a l e v e l  of 400-500 lb-sec/in 
be idea l  f o r  a l l  modes up t o  and including t h e  fourth.  

The behavior of t h e  1st and 3rd modes, r e su l t i ng  from 

(70-87.5 N-sec/mm) would 

The a c t u a l  measured s t i f f n e s s  and damping characteristics f o r  t h e  magnetic 
bearing are given i n  Figure 8. 
ence when compared t o  conventional f l u i d  f i lm  bearings. 
tilt pad bearings have c h a r a c t e r i s t i c s  generated predominantly by operating speed, 
with l i t t l e  inf luence from non-synchronous exc i t a t ions  (8). The active magnetic 
bearing characteristics, shown i n  Figure 8,  
t a t i o n  regardless  of operating speed. 
mize unbalance forced response, t h e  damping characteristics a t  subsynchronous exci- 
t a t i o n  frequencies can be spec i f ied  t o  assure  optimum s t a b i l i t y  (3, 4).  

Active magnetic bearings have an important d i f f e r -  
Typical preloaded f i v e  shoe 

are dependent on t h e  frequency of exci- 
For a given s t i f f n e s s  va lue  se lec ted  t o  mini- 

The test program out l ined f o r  t h e  compressor w a s  d i rec ted  toward confirming t h e  
ana ly t i ca l  predict ions f o r  t h e  dynamic behavior of t h e  r o t o r  and experimentally dem- 
ons t ra t ing  t h e  r e l i a b i l i t y  of t h e  complete system under t y p i c a l  operating conditions.  
The f u l l y  assembled compressor w a s  i n s t a l l e d  on t he  test stand and operated a t  a max-  
imum discharge pressure of 600 psig (4.1 MPa) with speeds up t o  13,000 R P M  (217 Hz). 
The r e s u l t s  f o r  a dece l  as recorded a t  t h e  bearing probe loca t ions  are given i n  
Figures 9 and 10. The r e s u l t s  are i n  general  agreement with t h e  predicted unbalance 
forced response r e s u l t s .  Since t h e  amount and loca t ion  of t h e  a c t u a l  unbalance d i s -  
t r i bu t ions  are never known, t h e  amplitude of each damped response is d i f f i c u l t  t o  
predict .  
with t h e  test r e s u l t s .  

The predicted peak response speeds are considered t o  be i n  good agreement 

DESIGN EVALUATION OF A FIELD RETROFIT 

The economic advantages of gas seals and/or magnetic bearings has prompted in- 
terest i n  r e t r o f i t  of ex i s t ing  un i t s .  
must be given t o  placement of cri t ical  speeds f o r  both main and back-up bearings,  
response s e n s i t i v i t y ,  and ove ra l l  s t a b i l i t y  considerations.  The preliminary design 
study f o r  a 4 s t age  high speed cen t r i fuga l  compressor w i l l  i l l u s t r a t e  in more d e t a i l  
t h e  parameters that must be considered f o r  t o t a l  system dynamic analysis .  The bas ic  
design parameters f o r  t h i s  ro to r  are indicated in t h e  second column of Table 1. 

For e i t h e r  r e t r o f i t  o r  new machinery, a t t e n t i o n  

. The undamped critical speed map f o r  t h e  four  s t age  compressor with dynamic s t i f f -  
ness values  is shown i n  Figure 11. The magnetic bearing s t i f f n e s s  is posit ioned such 
that t h e  compressor must pass through t h r e e  cri t ical  speeds before  reaching a maximum 
continuous operating speed of 14,500 RPM (241.7 Hz). Due t o  t h e  r i g i d  body na ture  of 
t h e  second and t h i r d  modes, t h e  a c t u a l  damped critical speeds w i l l  occur from t h e  
f i r s t  and fou r th  modes as shown i n  Figures 13  and 14 a t  approximately 4300 (71.7 Hz) 
and 18,300 RPM (305 Hz) respect ively.  
constant f i r s t  mode s t i f f n e s s  of 86,300 l b / i n  
values.  
modes become c r i t i c a l l y  damped as t h e  bearing damping is increased. 
so r  design, t h e  f i r s t  mode increases i n  s t a b i l i t y  as t h e  damping increases  up t o  225 
lb-sec/in 
The damping va lue  i n i t i a l l y  supplied, 140 lb-sec/in (24.5 N-sec/mm), should be in- 
creased by 61% based on t h e  r e s u l t s  of t h i s  ana lys i s .  

Figure 15 shows t h e  Lund s t a b i l i t y  map using a 
(15.1 N/W) with v a r i a b l e  damping 

The f i r s t  forward mode typ ica l ly  goes uns tab le  while t h e  second and t h i r d  
For t h i s  compres- 

(39.4 N-sec/mm) but then decreases as t h e  damping is increased fu r the r .  

The optimum damping f o r  s t a b i l i t y  w a s  a l s o  ca lcu la ted  by an  approximate method 
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using the  modal 
(see Tab le  1). 
high K r a t i o s ) :  

m a s s ,  r i g i d  bearing cr i t ical  frequency, and ac tua l  bearing s t i f f n e s s  
The equation from Reference (9) can be wr i t ten  a s  follows (val id  f o r  

70417.7 Kg 1.356 x lo-’ Ncr {G + 
N2cr 

Example f o r  4-stage 1st mode: 

Co = 1.356 x lo-‘ x (5423) x (146 + (70417.7) x (86300)/(542312) 

= 259 lb-sec/in 

This ca lcu la t ion  gives  an  answer 15% higher than the ac tua l  optimum damping f o r  
t h i s  K r a t i o  of 1.41. 

Figure 16 shows a comparison of s t a b i l i t y  versus aerodynamic exc i ta t ion  between 
the  conventional f l u i d  f i lm design and t h e  magnetic bearing r e t r o f i t  design. 
crease i n  s t a b i l i t y  due t o  t h e  magnetic bearings moves t h e  fog dec from near zero t o  
a value of 1.41. 

The in- 

CONCLUSIONS AND RECOMMENDATIONS 

The capab i l i t y  of an active magnetic bearing system t o  support a f l e x i b l e  turbo- 

During t h e  350 hours of accumulated operating time f o r  t h e  development 
compressor ro tor  and simultaneously inf luence its v ibra t ions  has been successful ly  
demonstrated. 
compressor supported by magnetic bearings t h e  following observations have been made: 

1. The ro to r  behaved in  a s t a b l e  manner a t  a l l  times when accelerating/deceler- 
a t ing  through its f i r s t  t h ree  critical speeds. 

2. The ro to r  behaved i n  a s t a b l e  manner while undergoing surge cycles a t  maxi- 
mum discharge pressure. 

3. The ro to r  w a s  ab l e  t o  s a t i s f y  commonly accepted v ibra t ion  amplitude and 
cri t ical  speed amplif icat ion criteria a t  a l l  operating speeds up t o  13,000 RPM (217 
Hz). Speeds beyond t h i s  point w e r e  l imited by impeller stress considerations.  

The ana lys i s  of t he  two compressors has c lea r ly  shown t h e  advantages of adjust-  
ab le  bearing s t i f f n e s s  and damping t o  achieve minimum response s e n s i t i v i t y  and opt i -  
mum s t a b i l i t y .  
zero t o  1.41 f o r  t h e  4-stage compressor could not be accomplished by conventional 
f luid-f i l m  bearings. 

For example, t h e  increase i n  s t a b i l i t y  from a log dec of approximately 

The following recommendations can be made f o r  t he  design and ana lys i s  of magnet- 
i c  bearing suspension turbomachinery: 

1. Bearing s t i f f n e s s  should be selected by evaluation of shaft s t i f f n e s s  r a t i o  
with typ ica l  placement a t  t h e  beginning of t h e  3rd mode ramp on t h e  undamped cr i t ical  
speed map. 

2. Bearing damping should be specif ied t o  give t h e  optimum growth f ac to r s ,  with 
consideration given t o  a l l  modes below maximum operating speed. 
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3. Consideration must be given t o  t h e  next mode above operating speed ( typ i -  
c a l l y  t h e  4 t h  mode) t o  assure  adequate separat ion margins. 

4. All clearances i n  t h e  bearings and seals should be se lec ted  t o  avoid ro to r /  
s t a t o r  contact  (i.e., rubs) f o r  normal expected operating conditions.  

5 .  The machinery must be engineered t o  g ive  a minimum of 10% separat ion margin 
on any continuous operating speed f o r  operat ion on t h e  aux i l i a ry  bearings. 
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