
Perturbations of the Richardson Number Field by Gravity Waves

M. G. Wurtele, Principal Investigator

R. D. Sharman, Co-Investigator

Department of Atmospheric Sciences, UCLA, Los Angeles, CA 90024

Final Technical Report

under

NASA NSG 4024

"Models for numerical simulation of gravity

waves and CAT formation"

"(SASA-CK-1769ia> PEBTUSBATIOHS OF THE N86- 30273
R I C H A R D S O N NUHBES FIELD BY' GRAVIXT WAVES
Final Technical Beport, 1 Hay 1S79 - '31 .Dec,._.•
1984 {California Uuiv.), 74 p CSCLvOSK Unclas

G3/46 43282

Period of Report: May 1, 1979 to December 31, 1984

Date of Report: 1 July 1985

https://ntrs.nasa.gov/search.jsp?R=19860020801 2020-03-20T14:38:50+00:00Z



1. Introduction

Many gravity wave studies have been motivated entirely or in part to

determine the perturbation introduced by the wave into the Richardson number

field (e.g., Keller et al., 1983; Wurtele and Sharman, 1983; Thorpe, 1981;

Fritts, 1979; Gossard and Hooke, 1975; Scorer, 1969). However, there have

been few attempts at a systematic investigation of this problem, and since the

Richardson number is a rather complex combination of the basic variables, it

is difficult, even in the linear case, to form a conception of the Richardson

number field, given the fields of the basic variables.

Gossard and Hooke (1975, Section 36) derive the relevant formulas, and

present a single calculation of a three layer model; but this model has

infinite initial Richardson number and consequently is not well suited to

compute Richardson number changes induced by gravity waves.

In non-Boussinesq models, as is well known (Lamb, 1932), perturbation

quantities increase in magnitude exponentially with height; and this effect

has occasioned interest as a mechanism in the middle atmosphere for producing

negative static stability (Hodges, 1967; Lindzen, 1981). Here we are

concerned with the Boussinesq dynamics of the resonance lee wave, which dies

out exponentially above its level of trapping. Since the trapping mechanism

is wind shear, the upstream Richardson number is necessarily finite; however,

the plane wave solution is not applicable.

We propose here (1) to derive analytic solutions for an appropriate linear

model with finite initial Richardson number, so that we may study the perturbed

Richardson number field as a function of the mean flow parameters; (2) to

execute numerical time-dependent simulations to compare with the analytic

results; and (3) to obtain some useful qualitative non-linear formulations.
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2. Linear analysis

If ip' is the perturbation stream function, w'the vertical velocity,UQ and u'

the mean and perturbation horizontal velocities, respectively, 6' the vertical

displacement, and c' the vorticity, then we have, under steady state

conditions,

(1)
= u3x 3x

where subscript zero indicates mean-flow quantities.

The Boussinesq bouyancy, a1 = 9P'/P00 » where p'is the perturbation

density, and pQO a reference density, is related to these quantities by

2
where NQis the Boussinesq Brunt frequency, NQ = -gdp0/pQOdz , for the mean

density.

We denote the perturbation stream function wave amplitude by

s*.

i|>' •= ij) (z ) sin kx (2)

where k is the horizontal wavenumber of the disturbance, and similarly for other

variables. The familiar vertical structure equation for the stream function

is (Scorer, 1949):

{3a)
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where
a

<»>

The Richardson number for the perturbed flow may be written as

where Ri - N Y( du /dz) is the Richardson number of the mean flow. In terms

of the vertical displacement 6 , (4) becomes, using (1), (2) and (3):

A
- I (4 6 fa £).+

- (4a)
j ~ j , f]2 . /-i , i \~ i

A similar expression in terms of ^ is

TT~—~̂  («)•f JC-Uti-- ''

Equation (4b) reduces to equation (36-12) of Gossard and Hooke (1975) in the
2

case N = constant.

We now require a simple solution for a stable sheared flow permitting

trapped waves, in which we may exhibit the pattern of the Richardson number

field along side of the fields of \J>,' w, ui anda1. One candidate model is that

of Palm and Foldvik (1960) for a flow in which the mean velocity is

exponentially increasing with height. In this model, however, the mean

Richardson number is therefore also exponentially varying, with the result
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that it is difficult to interpret the perturbed Richardson number field.

Interpretation is greatly facilitated if the basic Ri-field is uniform with

height.

An analytic solution for such a model has been presented by Wurtele

(1953). This model assumes constant mean wind shear and stability, and

therefore a constant Richardson number; however, it includes certain

non-Boussinesq terms, for reasons to become apparent below. It has been known

since the beginning of lee-wave theory (e.g., Scorer, 1949) that if both

density gradients and potential termperature gradients are taken into account,

and if

po(z) =

and

then the density-weighted variable

oo

= const.

2N = const.

satisfies the equation

dz Jo dz'

2 „2 - B )J = 0 (6)

Some now-familar approximations are involed in deriving this equation (Scorer,

1949). The introduction of a constant mean wind shear into the model,

U = U(l+z/L) U, L constant
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thus provides a constant mean Richardson number

Ri0 = N^L 2 /U 2

against which one may study the perturbations arising out of the gravity-wave

disturbance. If variables are rendered dimension!ess by the seal ings

1=1 + z/L, <J> = <|>/U L , k* = k L , 6* = B L

the vertical structure equation (6) becomes

where

and
z2

= k2 + 62/4 ,

and equations (4a,b) for the Richardson number become

1 _ f(-2

. 1 +

where

and

L)

(8b)
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The most convenient representation of the Richardson number field is the

percentual change from the initial or mean field Ri,

ARi Ri i
~-

From equations (7), we see that this quantity must be in phase with the fields

of V and u,1 and 90 degrees out of phase with w. However, Ri is not linearly

related to these fields, owing to the modification by the denominator. To

see the effect of this shear term, consider the levels at which displacements
d 6*

have a maximum or minimum, i.e., — = 0. Then expanding the denominator by
d Z

the approximation

( ] + e ) ~ 2 = l - 2 e + e 2,

we have from (8a)

= -2 a2 6* sin kx + 3( a2 6*sin kx )2
o

Thus the percentual change in the Richardson number will be larger in

magnitude when it is positive than when it is negative. We shall see in the

simulations that this effect is important even for very small perturbations.

rl (̂
The term -:-=* in the numerator of (8a) is the linearized representation

of the vertical stretching or shrinking (and hence the modification of the

static stability) of an infinitesimal column of air when vertically displaced.
2

The term & <$* in the denominator obviously arises from the structural equation

(7), which gives the perturbation shear in terms of stream function or vertical

velocity. The factor RiQ in this term suggest that it will dominate over the
2

modification of N in the numerator for the normal range of atmospheric
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Richardson numbers. It also follows that the effect of the shear decreases

with elevation and wave number. As will be shown, this hypothesis is borne

out quantitatively in both analytic solutions and simulations.

The solution to equation (6) regular as Z -»• °° may be written simply as

(Wurtele, 1953)

o
where y = Ri - 1/4, and K. is a modified Bessel function of imaginary

order. This function is oscillatory in its argument for small argument and

falls off exponentially for large argument. It is discussed and diagrammed in

Appendix A.

Thus, depending on the relative magnitudes of v» and K, the solution (9)

permits a finite number, possibly zero, of gravity wave free modes, forced at

z^=0 ( 1 = 1) and trapped at elevations inversely proportional to their wave

lengths, and dying out exponentially above their level of trapping. The free

modes (at z = 0) are given by

that is, solutions satisfying a homogenous condition at the boundary. We

shall be concerned only with conditions for which one or two wave solutions,

or free modes, exist. These are determined by evaluation of the Bessel

function by computer, as outlined in Appendix A.
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The effect of the non-Boussinesq term 6 now becomes evident. The

function K. (<) is singular as<-»- 0, becoming infinitely oscillatory (see

Appendix A). In this model, regardless of how small k is, < will be limited

below by 0/2. Thus the non-Boussinesq effect is to filter out all waves

longer than the gravity wave asssociated with the mean density gradient.

Another instance in which this effect permits a mathematically consistent

solution occurs in the internal wave study by Mowbray and Rarity (1967). Our

simulation model is entirely Boussinesq in its formulation; but in a

simulation, of course, the longer waves (k -*- 0) are eliminated simply by

virtue of the limited horizontal and vertical extent of the computational

grid. Since the wave length associated with the wave number 3/2 is of the

order of 100 km and greater, this constitutes no limitation to the present

study.

The wave solution is related to its kinematic forcing at the boundary by

a technique that is too familiar to warrant repetition here (Wurtele, 1953;

Palm and Foldvik, 1960; Queney, 1960). We assume a surface of the form known

as the "Witch of Agnesi"

h(x) =^-T
a +x

A

which has the convenient Fourier transform htk) = Ha exp(-a|k| ).

The integral expression for the perturbation stream function is then

-00

We follow the procedure referred to above, using the method of residues, and

taking the principal value of the integral when poles exist in such a way as

to cancel the upstream wave.
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The result is a wave solution, provided (10) is satisfied for some k = kj , that

has the form

*'(x,z) = -2wae-kla ^^ sinkx (12)

where K. is the derivative of K. with respect to its argument.
in iy

If other roots of (10) exist, these are of the same form and the

solutions are additive. There is of course, in addition, a forced monotonic

part of the solution that dies out exponentially both upstream and downstream,

and does not concern us here.

In the linear analytic computations we have calculated i|>' from (12),

other variables from the linear relationships, and the Richardson number

field from (8).

The comparison numerical simulations are computed not for purposes of

verification, but in order to identify limits on the assumption of linearity.

As will appear below, this is not entirely a straightforward matter. The

simulations are computed with the Boussinesq code described by Sharman and

Wurtele (1983) and more fully by Sharman (1981). In every case, the

computations are performed with a linear surface boundary condition, but with

all non-linear terms present in the dynamic equations. The comparisons with

the analytic computations thus isolate the departures from linearity due to

the dynamics from those inherent in the calculation of the Richardson number

itself.
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3. Results of the analysis and simulations.

Linearity in lee-wave problems is conventionally assessed by the parameter

NH/U and we accept this criterion for the moment. For a sensitivity study

of this parameter under the conditions N = const, U = const, see Miles (1965).

Results will be presented for a variety of cases which are defined by Ri and

NH/U. (See Table I for summary of cases and figures.)

Figure 1 (a,b,c,d) presents the analytically derived perturbation fields

for the conditions of Case I described in the legend. Note that as mentioned

above in this and all computations herein, the Brunt frequency and wind shear

are uniform, so that the basic Richardson number is also uniform with height.

The conditions assumed for Case I specify Ri0 = 8 and NH/U = 0.1, a

highly linear problem, as will be seen below. Figures la and Ib show,

respectively, the perturbation stream function and the vertical velocity.

Figure Ic contains contours of total horizontal velocity, and the smallness of

the perturbation relative to the mean flow is evident. In the areas near the

surface where the total horizontal speed is reduced (i.e., where the contours

of Figure Ic are lifted), the shear is increased, and the Richardson number is

decreased. Conversely, where the total horizontal speed is increased, the

shear is decreased, and the Richardson number is increased. This qualitative

assessment is borne out in Figure Id, which presents contours of the

Richardson number. Quantitatively, however, we see, consistent with the

analysis of Section 2, that even in this highly linear example, the fields of

increased Ri and decreased Ri are not symmetric, the maximum increase being

about 4.1 and the maximum decrease about -2.6. The trapped gravity lee wave

is more stabilizing than destablizing to the basic flow.
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For comparison, the simulation with nonlinear terms acting is presented in

Figure 2, for Case I. By 600 time steps (9000 sec) a steady state has been

achieved in the grid, the computational radiation boundary condition (Sharman

and Wurtele, 1983) permitting the wave to be established all the way to the

outflow boundary without significant reflection. Figure 2a shows the

streamfunction, here with the phase determined by the position of the

lOOm-obstacle. The wavelength (about 20 km) in the simulation agrees with the

analytic solution of Figure la. Figure 2a shows a similar agreement of the

vertical velocity fields, where the analytic solution has a maximum of 0.4 m/s

and the simulation, 0.5 m/s, both attained at an elevation of 3 km. Whether

this is scaled by the surface mean wind speed of 10 m/s or the mean speed at

3 km of about 21 m/s, the perturbation must be considered small. However, in

Figure 2c, corresponding precisely to Figure Id, we see the same lack of

symmetry in the Ri-field exhibited by the analytic solution. The simulation

Richardson number changes are about the same as those obtained by analysis.

Here the greatest increase in Ri is about 2.8 and the greatest decrease is

about -1.6.

We may now consider Case II, for which N and U are the same as in Case I,

but H = 500 m. Hence Ri = 8, as before, but NH/U = 0.5. Here one wouldo
expect to see the linear result of Case I amplified, by a factor of about

five, but with no significant nonlinear effects. And this is, in fact, what

we find, in all fields except that of the Richardson number. Figures 3a,b,c,d

present, respectively, the stream function, vertical velocity, horizontal

velocity and Ri-field for the analytic solution of Case II. The larger

disturbance shows more clearly the close correspondance between the maximum

shear (Fig. 3c) and the minimum Richardson number, and vice versa. For Case

II, the analytic Ri-field is highly asymmetric and varies between 3.2 and 32.
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Figures 4a,b,c show the simulation fields for Case II. Again the stream

function field (Figure 4a) is in agreement with the linear analytic solution.

However, the most convincing quantitative evidence of linearity is in the

vertical motion fields of Figs Ib, 2b, 3b and 4b. The forcing, as we have

seen, increases from Case I to Case II by a factor of five. The linear

solutions (Figs. Ib, 3b), not surprisingly, show an increase of the maximum

amplitude of vertical velocity from 0.4 to 2.0 m/s. The simulations

(Figs. 2b, 4b) show a corresponding increase from 0.5 to 2.7 m/s. In

contrast, the Richardson number field (Figure 4c) shows strong nonlinearity.

The positive cells are much larger in size than the negative cells, and the

field varies from a maximum of 111 to a minimum of about 1.5. The nonlinear

dynamics of the simulation, although not evident in the other fields, has

enhanced the asymmetry of the analytic solution for the Richardson number

field of Fig. 3d. As we have noted, this enhancement did not occur in the

highly linear Case I.

Although the Richardson number of the basic flow determines the

dimensionless wave length, other quantities, both dimensional and

nondimensional (including dimensional wave length) will vary with stability and

shear, even though the basic Richardson number is fixed. As an illustration of
-2 -1

this we consider Case III, for which N0= 0.5 x 10 s , L = 5.66 km and

H = 500 m. Thus Ri = 8, as in Cases I and II, but both shear and stability have
o

been decreased by a factor of two.

Figure 5 (a,b,c,d) displays the fields from the linear analysis for Case

III. The dimensional wave length has increasd to about 42 km. The level of

trapping has also increased; this is most evident in the vertical velocity

field Figure 5b, where the maximum is centered at about 7 km elevation, instead
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of at 3 km for Cases I and II. Since the level of trapping is higher, the

energy from the forcing is supplied to a larger volume of atmosphere, and the

disturbance amplitude is correspondingly smaller.

So far we have discussed conditions permitting a single trapped wave. In

order to limit the system to a single free mode, it was necessary to specify a

relatively small Richardson number by atmospheric standards, Rio = 8.

Reference to Appendix A and to Figure Al show that doubling this value to

Ri = 16 defines a condition in which two free modes are admissible, of
o

wavelengths approximately 15 km and 30 km. To define Case IV then, we take

N = 10"2s"1, L = 4 km, and H = 500 m. Thus RiQ = 16 and NH/U = 0.5. As with

Case II, we shall see that all fields except that of the Richardson number

exhibit linear behavior.

Figure 6 (a,b,c,d) displays the fields corresponding to those of Figures

1,3 and 5, that is, the stream function, vertical velocity, total horizontal

velocity, and total Richardson number for the first mode only. The patterns

are the familiar ones from The Ri = 8 cases. And the same is true of Figure 6

(a,b,c,d) containing the corresponding representations for the second mode

only. The second mode, of course, has two cells in the vertical in the

streamfunction, vertical velocity, and Richardson number fields, and three

cells in the horizontal velocity field. This mode has its maximum amplitude

at a higher level than the first mode velocity fields, but the maximum are

less than those of the first mode. Richardson number in each mode is reduced

by slightly more than 50% in the centers of the negative cells.

The total linear free-wave solution is the sum of these two modes,

presented in Figure 8 (a,b,c). The perturbation stream function field of

Figure 8a shows clearly the superposition of a short and long wave, the former
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dominating at lower, and the latter at higher elevations. The same is true of

the vertical velocity field of Fig. 8b. Yet the wavelengths of the two waves -

derived, it will be recalled, as roots of a Bessel function - are not of

integral ratio, and thus the combined pattern is not strictly periodic. In

the figure, there is a maximum value for w of about 2.3 m/s. Thus the

problem is within the bounds of linearity, and the fields of these two

figures have an ordered pattern.

The Richardson number field (Fig. 8c), however, is complex and the pattern

would be difficult to anticipate. The maximum Richardson number in the

graphed portion of the field is of the order of 10̂ , but the minimum, 3.1, is

greater than the minima of the two modes separately.

4. Limits of linearity

For the trapped lee wave, as the wind shear increases, the level of

trapping is displaced downward, and wave amplitudes are increased. As the

amplitude becomes larger, nonlinear effects may be expected to become more

significant. As an illustration of this we consider Case V, for which we
-2 -1choose N = 2 x l O s ,L= 1.414 km and H = 500 m. Thus RiQ = 8, as in Cases

I and II, but both shear and stability have been increased by a factor of two.

And NH/U = 1, also twice the value of Case II. The Figure 9 (a,b,c,d) shows

clearly the increased magnitude of all quantities. The maximum vertical

velocity is now 32% of U and the minimum Richardson number is 0.51,

approaching the critical. However, traditionally a value of unity for NH/U

would be said to render a linear analysis invalid, and we must at this point

consider the problem of criteria for nonlinearity.
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We first note that the conventional parameter of linearity, NH/U,

developed for uniform flow when these three parameters determine the flow

completely, is less easy to justify when shear is present. Another length, L,

is available, and H/L would seem to be a candidate dimensionless parameter of

the problem. The most thorough perturbation analysis of shear flow is that

developed by Brown and Stewartson (1982) for an essentially nonlinear problem,

that of a gravity wave propagating toward a critical level. Although the

forcing in their problem is not specified, if it is identified with kinematic

forcing at a lower (or upper) boundary, their expansion parameter can be

identified as our H/L. From equation (12) we have an expression for the

vertical velocity w :

clx

It is evident here that H/L is the ratio determining the amplitude, and that

the stabi

quantity

the stability, as represented by N , plays little role. It is true that the

exp -akj ,

associated with the shape of the forcing obstacle, is a function of N , but it

is not a monotonic function, and its maximum value is ie~.

Thus in general we have the results that NH/U is the amplitude parameter
H d u0for the zero-shear case and H/L, or more generally, ^— -g— , is. the
o

amplitude parameter for a shear flow. However, we cannot pretent that the

problem has been solved. In the first place, the shear flow must depend on

some combination of these parameters; otherwise L -»- «> (shear approaching

zero) gives a wrong result. The failure of the criterion for shear flow to

pass into the corresponding result for zero-shear flow is characterstic of all

theoretical formulations.
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In the second place, what does "nonlinearity" mean in this context. In

lee wave theory it has been taken to mean u1 -> -UQ, 8p/3z-»-Q , .i.e.,

overturning and wavebreaking. In order to examine the consequences of such a

situation, we have used a simulation code better adapted to extreme nonlinear

parameter-space, that of Pihos and Wurtele (1981). In Figures 10-12a, b, we

present the streamline pattern and density contours for RiQ= 8, under

conditions of Case V, except that NH/U takes on the values of 1.0, 1.5, and

3.0, respectively. We see that (1) overturning - as evidenced by heavier

fluid above lighter - is not present until NH/U = 3; and (2) even at this

value, the instability is highly local and does not spread with increasing

time. In fact, the choice of values to be plotted in the streamline field

fails to resolve the overturning at all.

For all these three runs, the value of L is 4 km, so that H/L is 0.174,

0.265 and 0.530 respectively. The beginnings of instability for this last

value suggests that H/L is the decisive dimensionless parameter for stratified

shear flows.

As a control, we submit the experiment of Figure 13, in which there is

zero shear, i.e. U = constant, N = constant. In this case, as indicated

above, the parameter NH/U governs linearity, and the value of unity assigned to

it in this run has clearly produced overturning.
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5. Nonlinear Analysis

It is not clear that a linear (or perturbation) analysis is the best or

only possible approach to this problem. Some light is cast by following a

line begun by Scorer (1969), using one Lagrangian coordinate, say, potential

temperature. The transformation equations - somewhat more complicated than in

the hydrostatic model - are listed for convenience in Appendix B. We consider

only the steady-state, in which isentropes are streamlines. We thus have from

(B5), the equation of continuity, and (B6), the vorticity equation, in terms

of the total (finite) variables:

o X 36

where z is the height of an isotropic surface or streamline, and

uii = _ £(3 .̂}-1 J? (14)

where e is the vorticity. The first of these may be integrated to yield,

using (B3),

where UQ and NQ are values far upstream on the streamline, both functions of

height. This equation simply quantifies our intuitive knowledge that when a

streamline becomes vertical (u = 0), the stability also vanishes. This is

not in general the case in linear analysis, if we identify U
0
 + u' with u

and N2-3a'/3z with N2. From (1) to (3) we obtain in contrast to (15),
o
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O

N

This equation illustrates the familiar result that linear solutions satisfy
Nothe nonlinear equations provided -— is constant. For the model of Section
o

2,

II III v I ' •N; uo UL L

This will, in general, occur in a finite layer, with -^- and N both near

zero or negative, emphasizing that when convective instability enters the

problem, the Richardson number ceases to be a useful concept.

We may gain a little further insight from the vorticity equation (B6),

again using (83)

oX oX

2
Since by (15) the ratio N /u is constant along a streamline, this may be

integrated to yield

- -6

where 6 is the vertical displacement of a streamline. Qualitatively this

equation states that (in this right-handed system) the vorticity increases

when the streamline is depressed and decreases when it is lifted; but it

further states that the change is linear with streamline displacement and

specifies the constant of proportionality for each streamline.
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6. Conclusions

An analytic solution has been presented for a stratified fluid of

arbitrary constant Richardson number. By computer aided analysis the

perturbation fields, including that of the Richardson number can be

calculated. The results of the linear analytic model were compared with

non-linear simulations, leading to the following conclusions.

1. The perturbations in the Richardson number field, when small, are produced

primarily by the perturbations of the shear.

2. Perturbations of in the Richardson number field, even when small, are not

symmetric, the increase being significantly larger than the decreases. The

linear analytic solution and the nonlinear simulations both confirm this

result.

3. As the perturbations grow, this asymmetry increases, but more so in the

nonlinear simulations than in the linear analysis.

4. For large perturbations of the shear flow, the static stability, as
2

represented by N , is the dominating mechanism, becoming zero or negative,

and producing convective overturning.

5. The convectional measure of linearity in lee wave theory, NH/U, is no
H duo

longer the critical parameter. It is suggested that —̂37̂  takes on.,this
o

role in a shearing flow.
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TABLE I

Case Figure N(s] U(m/s) L(km) Ri H(km) NH/U H/L

I
II

III
IV

V

VI

VII

VIII

1,2

3,4

5

6,7,8

9,10

11

12

13

.01

.01

.005

.01

.02

.02

.02

.02

10

10

10

10

10

10

10

10

2.83

2.83

5.66

4.00

1.41

1.41

1.41

oo

8

8

8

16

8

8

8

oo

0.1

0.5

0.5

0.5

0.5

0.75

1.50

0.50

.1

.5

.25

.5

1.0

1.50

3.00

1.00

.035

.177

.088

.125

.354

.265

.530

0
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LEGENDS

Figure la. Graph of perturbation stream function from linear analysis in

Case I (see Table I). All units in this and other computations

are MKS.

Figure Ib. Vertical velocity from analysis for Case I. Contour interval is

0.2 m/s. In this and all subsequent figures of vertical velocity

from analysis the first (leftmost) cell is negative.

Figure Ic. Total horizontal velocity from analysis for conditions of Case I.

Contour interval is 2 m/s.

Figure Id. Richardson number field from analysis for Case I contoured for

the quantity (Ri - Ri0)/RiQ . The contour interval (dimensionless)

is 0.05. In this and all subsequent figures of Ri from analysis

the first (leftmost) cell is a region of Ri increase.

Figure 2a. Stream function in simulation for conditions of Case I, at time

step 600 (9000 sec).

Figure 2b. Vertical velocity in simulation of Case I. Contour interval is

0.1 m/s. (Note that contour interval is one-half that of Fig. Ib).

Figure 2c. Richardson number field in simulation of Fig. 2a. As in Fig. Ic,

the quantity contoured is (Ri-Ri0)/Ri_, and the contour interval is

0.05.

Figure 3a. Graph of perturbation stream function from linear analysis for

Case II. (See Table I).

Figure 3b. Vertical velocity field from linear analysis for Case II. Contour

interval is 0.2 m/s .

Figure 3c. Total horizontal velocity contours from linear analysis for

Case II. Contour interval is 2 m/s .
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Figure 3d. Total Richardson number field from linear analysis for Case II.

Contour interval is 1.0.

Figure 4a. Graph of perturbation stream function from simulation for Case II,

600 times steps (7200 sec).

Figure 4b. Vertical velocity contours from simulation for Case II. Contour

interval is 0.2 m/s.

Figure 4c. Richardson number field from simulation for Case II. The quantity

contoured is (Ri-Ri )/Ri with a contour interval of 0.10, or

equivalenctly total Ri with a contour interval of 0.8.

Figure 5a. Graph of perturbation stream function from linear analysis for

Case III (see Table I).

Figure 5b. Vertical velocity contours from linear analysis for Case III.

Contour interval is 0.2 m/s.

Figure 5c. Total horizontal velocity contours from linear analysis for

Case III. Contour interval is 2.0 m/s.

Figure 5d. Total Richardson number field from linear analysis for Case III.

Contour interval is 1.0.

Figure 6a. Graph of perturbation stream function from linear analysis for

Case IV (see Table I). First mode only.

Figure 6b. Vertical velocity contours from linear analysis for Case IV, first

mode only. Contour interval is 0.2 m/s.

Figure 6c. Total horizontal velocity contours from linear analysis for Case IV

first mode only. The contour interval is 2 m/s.

Figure 6d. Total Richardson number field from linear analysis for Case IV,

first mode only. The contour interval is 2.0.

Figure 7a. Same as Fig. 6a, but for second mode only.

Figure 7b. Same as Fig. 6b, but for second mode only.

-25-



Figure 7c. Same as Fig. 6c, but for second mode only.

Figure 7d. Same as Fig. 6d, but for second mode only.

Figure 8a. Graph of complete perturbate in stream function from linear

analysis for Case IV. Sum of the two modes.

Figure 8b. Vertical velocity contours from linear analysis of two mode sum

for Case IV. Contour interval is 0.2 m/s.

Figure 8c. Total Richardson number field from linear analysis of two mode sum

for Case IV. The contour interval is 2.0.

Figure 9a. Graph of perturbation stream function from linear analysis for

Case V (see Table I.)

Figure 9b. Vertical velocity contours from linear analysis for Case V.

Contour interval is 0.2 m/s.

Figure 9c. Total horizontal velocity contours from linear analysis for Case V.

Contour interval is 2.0 m/s.

Figure 9d. Total Richardson number field from linear analysis for Case V.

Contour interval is 1.0.

Figure lOa. Stream function at 800 time steps (4800 sec) as simulated by the

non-linear gravity wave code of Pihos and Wurtele (1981) for

Case V.

Figure lOb. Total density field corresponding to Figure lOa.

Figure lla. Stream function at 600 time steps (3600 sec) as simulated by the

non-linear gravity wave code of Pihos and Wurtele (1981) for

Case IV (see Table I).

Figure lib. Total density corresponding to Figure lla.

Figure 12a. Stream function at 900 time steps (2700 sec) as simulated by the

non-linear gravity wave code by Pihos and Wurtele (1981) for

Case VII (see Table I).
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Figure 12b. Total density field corresponding to Figure 12a.

Figure 13. Stream function at 400 time steps (4000 sec) as simulated by the

non-linear gravity wave code by Pihos and Wurtele (1981) for

Case VIII (see Table I).
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Figure 3a
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Figure 5a
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Figure 8a
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Figure 8c
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Figure 9c
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APPENDIX A

The modified Bessel function KV(£) is discussed and tabulated for real

v and £ in may sources (e.g. Abramowitz and Stegun, 1964; Sections 9.6-9.8).

However, the useful function K.. (£), although arising naturally in fluid

dynamical contexts (e.g. Booker and Bretherton, 1967; Mowbray and Rarity,

1967) seems to have been tabulated only by Morgan (1947). Morgan's work is

relatively difficult of access; and since it was done at a time when computing

capability was relatively slight, his tables provide less than adequate

resolution. Therefore, we present here some relevant formulas and a diagram

illustrating the behavior of the function.

A qualitiative characterisation is easily obtained by means of the

integral representation

derived from Abramowitz and Stegun (1964, 9.6.24) by the substitution v = iy.

From this formulation, by straightforward application of the method of

steepest descents, we derive the following two asymptotic limits, for

and y << C . For w » £ ,

(A2)

and for y «^

*«> • -•
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These are given by Morgan (1947). Thus in the range y^£ , K .,- (£) changes

from oscillatory to exponential behavior as £ increases. The oscillatory

singularity in (A2) for £-»-0 is familiar as arising in the problem of the

propagation of a gravity wave toward a critical level . (Booker and Bretherton,

1967).

The values of K • (C) for use in Section 2 were calculated using three

different relations for various ranges of the parameters y and £ . For large £
2 r2(|£| > 20, or |£| > 5 and 2|£| > y , or |̂-| >5y), the asymptotic relation (A3)

with higher order terms included (see e.g. Abramowitz and Stegun Eq. 9.7.2)

was used. For large y ( £ > 20, y > £ ) Debye's asymptotic expansion (A2) with

higher order terms included (see Abramowitz and Stegun Eq. 9.3.7) gave

satisfactory results. For all other parameter values the standard ascending

series (Abramowitz and Stegun Eq 9.1.10) was used to compute J. (i£), with the

value of K. (£) provided by the identity

The leading term of the result of this process reduces to

If. (f I = f-?-r- ) "3 OA, L - <y vv' t sc^*tTry L/ 2.

where r represents the gamma function. This representation is also given in

Morgan (1947).

The most convenient form for visual representation of the function K ( £
iy

is a contour plot in (w.^)-space, following Jahnke, Emde, and Losch (1960,

Figs. 79, 87) for Bessel functions of the first kind and Neumann functions.

This plot is shown in Fig. Al. The figure readily shows the change from

oscillatory solutions to exponentially decaying solutions in the neighborhood

of y = £, In the oscillatory region, for the given order ( = /RiQin our

model), the function becomes infinitely oscillatory as the argument C -»• 0.



LEGEND FOR APPENDIX A

Figure Al. Contour plot of the Bessel function K. (£) in the ( £ , y )
plane. Negative regions are shaded. The format is selected for compatibility

with Figures 79 and 87 of Jahnke, Emde, and Losch (1960).
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APPENDIX B

A transformation to (x,6,t) coordinates requires the following identities:

(B2)

(B3)

All variables are total quantities and not perturbations.

,, For completeness we list the •momentum equations In (x,6)-coordinates

although they will not be used here:

where IT is the barotropic pressure function

IT -c
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The continuity equation 1n the non-hydrostatic system becomes time-dependent.

I

if the vorticity is defined as

' ^ *> *\ ..

the vorticity equation

+ V. \7

becomes in the (x,e) -system
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