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ABSTRACT 

We consider the problem of estimating discontinuous coefficients, 

including locations of discontinuities, that occur in second order hyperbolic 

systems typical of those arising in I-D surface seismic problems. In 

addition, we treat the problem of identifying unknown parameters that appear 

in boundary conditions for the system. A spline-based approximation theory is 

presented, together with related convergence findings and representative 

numerical examples. 
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1. Introduction. 

In this paper we consider a one-dimensional seismic inverse problem: 

Our goal is to construct a parameter estimation scheme for the hyperbolic 

model equations treated in [7] extending these ideas to allow the estimation 

of discontinuous coefficients (including the location of discontinuities). 

The approach taken here contrasts with that taken in [7] in that we consider 

a different decomposition of the wave equation, yielding a different operator 

and state space for theoretical arguments. We combine these ideas with a 

variation of the approximation scheme in [15] which was developed to treat the 

problem of estimating discontinuous coefficients in parabolic systems. 

The underlying theoretical approach to the identification problem follows 

the outline of other related papers (eg. [3], [4], [5], [6], [7], [15] in that we 

define the (infinite mmensional) identification problem and construct associated 

approximate identification problems; under compactness assumptions on our parameter 

space, we prove convergence of parameter estimates and approximating state 

variables. Our arguments here are based on an application of the Trotter-Kato 

Theorem. In Section 5 we describe the numerical algorithm and conclude with 

some preliminary computational examples. 

We shall employ standard notation throughout, using, for example, HP(n) 

and w~(n) to denote the usual Sobolev spaces on n. If n is not specified, it 

is assumed that n = [0,1]. Further, given any w e L~(O,l) satisfying 

° < ~~ w(x) < W, for almost all x, we shall define the ~ - weighted HO(O,l) 

soace, denoted HO(w), with inner product <u,v> =il1uv (and associated . . w w 

° norm ,,'w), Similarly. given any c> ° we define the c - weighted real line by 

R(c) with inner product of two elements u, v e R(c) defined by cuv. Finally, 

throughout we shall write I : Y -+ Y to denote the identity operator, where the 

'.' . ,.'.' 
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space Y will be clear from the context. 

2. The Identification Problem. 

As in [7], we consider the problem of estimating unknown parameters 

that appear in the system 

2 
aU2=_1_-L(E(X)~), (-J [] ate O,t , x e 0,1 
at p(x) ax x 

(2. 1 ) 
~~ (t,O) - klu(t,O) 

'\, 

= s(t;k) 

aU(tl)+k~(tl)=O at' 2ax' 

. au 
u(O,x) = ¢(x) 'rr(O,x) = 1jJ(x) 

where, for the seismic problem, u represents subsurface particle displacement 

resulti ng from a di sturbance at the earth I s surface (x = 0). We model the 

disturbance here using the source term s(t;k) (s e Hl(O,t)) which may involve 
'\, 

an unknown vector parameter k. Other parameters of interest include p and E 

(p> 0, E > 0), which reoresent the density and elastic modulus, respectively, 

of the earth, and k, and k2 (kl>O, k2>0), which occur inthe elastic boundary 

condition at x = a and the absorbing boundary condition at x = 1, respectively. 

A more thorough discussion of the use of model equations (2.1) in the context 

of the seismic problem may be found in [7]; similar models are treated in [9J 

or [11], where boundary conditions are imposed instead on a semi-infinite strip. 

The estimation problem of interest then is to identify the unknown 

parameters using observations of the system, which may be given in the form of 
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displacement, velocity, or pressure (stress) measurements (corresponding to 

u, ut ' or Eux in (2.1». Throughout we shall assume that unknown parameters 

are expressed in the form 

where q belongs to the admissible set Q, 

for i = 1, 2: ° < q. < q.(x) < q. for almost all x e [O,lJ 
. -1 - 1 - 1 

Due to the fact that the spatial domain [O,lJ represents an inhomogeneous, 

layered medium, it is likely that the two spatially varying parameters, ql 

and Q2' will be discontinuous with locations of discontinuities corresponding 

to abrupt changes in subsurface structure. In keeping with the objectives 

of the seismic inverse problem, i.e., to assemble as much information as 

possible about the nature of the subsurface medium, our goal will be to 

determine the location of discontinuities, as well as to identify the spatial 

variation in ql and Q2' 

Before considering a precise statement of the parameter estimation 

problem, we first turn to an abstract formulation of (2.1), which is necessary 

for the convergence theory we develop in Section 4. To this end, we (formally) 

rewrite (2.1) as a first-order system in vet) = (vl(t), v2{t), v3(t}} ~ 

(u(t,o), ut(t,o), Q2(o)ux(t,o» e Rx Hl XH1, namely, 
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v(t) = 

(2.2) 

where 10 : C[O,1] 7" 1R is defined by law = w(O) and D represents the spatial 

differentiation operator. Such a decomposition of state variables can be found 

elsewhere in the literature (see for example [lOJ in a different context): It is 

a natural one for the application we have in mind because the components 

u(t,O), ut ' and q2ux are quantities needed to express the total energy of this 

system. In addition, these quantities are often readily observable in 

practice and thus their inclusion as components of the state variable facilitate 

our study of the estimation problem. 

We use the form of (2.2) to define a parameter - dependent operator 

A = A(q) and associated Hilbert space X = X(q), where dom A ~ X and X is chosen 

in such a way to ensure that A is dissipative in X. In particular, for any 

value of q e Q we define X(q) :: R(q3q2(O)) x HO(ql) x HO(q2) (see Section 1 

concerning notation) with associated norm denoted by II· Il q. It is easily seen 

that a positive constant \.l = \.l (.9.i' qi; i = 1,2,3) may be found so that 
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(2.3) 1 
;" z II 2. "z "q ~ ll" Z " 

for all q e Q, where "." denotes the R x HO x HO norm; it thus fo 11 ows that the 

X(q) norms are uniformly equivalent as q ranges over Q. Due to the set-wise 

equivalence of X(q) for all q e Q, we can consider an element z in X(q) to be 

an element in X(q), for q e Q, or even consider z in Rx HOx HO, and do so 

without a change in notation for z. 

The abstract differential equation associated with (2.2) may be stated 

precisely as 

(2.4) 
{

i(t) = A(q)z(t) + F(t;q) 

z(O) = zO(q) 

t e (O,t] , 

where the transformation (zl,z2,z3) = (v1,v2,(v3+ (x-l)s)) has been made in 

order to obtain homogeneous boundary conditions. In (2.4), z(t) e X(q), and 

A(q) = 

with dom A(q) = {z € X(q) n (lR x Hl x H1)IZ3(O) - q2(O)q3zl = a 

Q2(1)z2(1) + Q4z3(1) = a}; the nonhomogeneous term (due to the transformation 

to zero boundary conditions) and initial condition are given by 
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F(t;q) = -ql(·)s(t;q5) 

(._l)s(t;q5) 

respectively. 

6 

~(O) 

1/1 ( • ) 

q2(·)~x(·) + (.-1)s(0;q5) 

Theorem 2.1. A(q) is the infinitesimal generator of a Co - semigroup of 

contractions T(t;q) on X(q); thus for each q e Q, there exists a unique mild 

solution of (2.4) with the representation 

(2.5) z(t;q) = T(t;q)zO(q) + J:T(t-S;q)F(S;q)dS 

The proof of the theorem follows from standard results from the theory of 

semigroups (see, eg., [17; pp. 14, 106J) once it has been verified that A(q) 

is densely defined and dissipative in X(q) and that for some A> 0, R(AI - A(q)) = X(q). 

It is easy to see that dom A(q) = X(q) since X(q) is equivalent to IRx HO 
x HO, 

while dissipativity of A(q) is a consequence of the topology chosen for X(q). 

Moreover, using standard results from the theory of two-point boundary problems, 

one can show that R(AI-A(q)) = X(q) for any choice of A> O. 

Remark 2.1. Strong solutions of (2.4) (i.e., solutions where zO(q) edam A(q)) 

will satisfy (2.4) as well as (2.5). In this case, (vl ,v2,v3) = (zl'z2,z3 + (1-· )s) 

satisfies the formal equations (2.2) so that the identification may be made 

between zl and u(t,O), z2 and ut(t,.), and z3 + (l-·)s and q2(·)ux(t,.), 

where u is a solution of the original system (2.1). Hence, we shall develop 

a convergence theory based on formulations (2.4), (2.5), while keeping these 

relationships in mind throughout. 
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Remark 2.2. That our approach is advantageous from both a theoretical ~nd 

computational viewpoint is now apparent: Physical principles demand that 

q2ux be continuous even though q2' and thus ux' are discontinuous. By defining 

our operator as above, we satisfy this continuity condition simply by requiring 

that the third component of the state variable belong to Hl(O,l). 

We turn now to a precise statement of the parameter estimation problem. 

The unknown parameter, q, of interest contains for its first two components the 

piecewise continuous coefficients ql and q2; we fUrther parametrize ql and q2 by 

v 
ql (x) = C40(x) + j C4i (x)He-. (x) 

1=1 "'1 
(2.6) 

where HF; denotes the usual Heaviside function(H~ (x) = 1, x e (~, lJ, and 

Hr; (x) = 0 otherwise) on [O,lJ. Using this representation, the problem of 

estimating ql and q2 is equivalent to the problem of identifying 2(v + 1) 

continuous "pieces", C4 0(X), ... , C4 (x), 80(X), ... , 8 (x), and the location v . v 

of v discontinuities, ~l' ••• , E; • 
v 

Given v, our goal then is to estimate 

p = (C4 O' C41' ... , C4
V

' 80, 81, ... , 8v ,F;" ... , F;v' q3' q4' q5) where p 
IV 

belongs to a prescribed constraint set P ~ P, 

(2.7) 
IV 

.p = {( C4 O' ... , C4 V ' 80, ... , 8v ' ~l' ,,·,~v' q3' q4' q5) 

e (2(:IT) C[O,lJ) x 1Rv+2+k 
1=1 
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Although our estimation theory will be developed for the fully parametrized 

set P, it is clear that any choice of peP generates a physically meaningful 

entity q = q(.p) e Q through the construction (2.6) for ql and q2' and that 

sequential convergence pj + p in the topology for P implies the associated 

parameters qj = qj(pj), q = q(p) e Q satisfy qj + q in the topology on Q. We 

shall often make use of this association in the sections to follow. 

The parameter identification problem may now be stated as follows: 

(10) Hinimize J(p) = ~ IICz(t.;q(p)) _y.1I 2 
J J J 

over peP, where q = q(p) e Q, z(t;q) is the solution to (2.4), 

C: X(q) + R x HO x HO is a (continuous) observation operator and 

YJ' e R x HO x HO denotes observed data corresponding to time t .. 
. J 

Remark 2.3. The estimation problem defined above allows for observations of 

particle displacement (at the surface), velocity, or pressure. Although 

it is not explicitly stated, our theory also includes the case of spatially 

distributed displacement observations below the earth's surface; in this case, 

the observed quantity is given by z(tj;q) = ¢(.) I
t. 

+ J z2(s;q)dS, and 

° observations are given by Yj' where Yj' ~(tj;q) e HO. 

Remark 2.4. The parameter estimation problem described above is an example 

of a large class of problems (llinverse ll problems) that are widely known to be 

ill-posed (see, for example [13J, [16J)from both a theoretical and computational 

standpoint. We shall not address here the nature of the difficulties that 

arise, among them a lack of continuous dependence of parameters p on observations 
. tV 

Yj' and the general nonuniqueness of an optimal parameter p. However, it is 
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appropriate to note that one may circumvent some of these inherent problems by 

guaranteeing a type of II problem stabilityll (see [2], [4], [11], and 

[12; Remark S.l]). There are a number of ways in which such stability may be 

obtained for the parameter estimation problem: These include such techniques 

as regularization [13], embedding methods [1], or parameter set compactness 

assumptions [2], [S]. As will be evident in later sections, we shall take the 

latter approach through the assumption that P is compact. 

3. Approximation. 

In this section we construct a spline-based framework for the approximation 

of the state variable z(t), where z satisfies (2.S). As these approximation 

spaces will be parameter-dependent, we shall assume that peP is given, 

where, p = (aO' a l , SO' Sl' E" q3' Q4' QS) and [, :: [,1 e (0,1) (for simplicity 

and without loss of generality, we shall take v = 1 throughout). Using 

(2.6) to construct ql' q2' we shall as usual associate with p the corresponding 

q = Q(p) 'e Q. 

The construction of approximation spaces XN(q) is as follows: For 

k = 0, ... , 2N we define uniform spatial mesh points by s~ = k/2N and denote by 

s~ the kth (standard) basis element for the space of continuous piecewise-linear 

B-splines with knots at {S~}; i.e., s~ is characterized by S~(s~) = 0jk' 

j,k = 0, •.. , 2N,[18J. We then transform to a parameter-dependent basis through 

the invertible mapping g: [0,1] ~ [O,lJ, 

(3.1) g(x) = 
{

X/2S, O<x<s 
.I -

(x + 1 - 2,)/2(1-,), [,~x~l, 

and define B~(X) = S~(g(x)). ""N Thus sp{Bk} is the space of linear B-splines 
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with knots at x~:: g-l(S~) (X~ = k~/N, k=O, .•. , N; x~ =~ +(k-N)(l-~)/N, 

k=N+l, •.. , 2N). The computational advantages of using~ -dependent elements 

will be discussed in Section 5. Finally, we define approximation spaces 

XN(q) :: sp {B~} where the basis elements B~I, j"; 0, .•. , 4N, are defined as follows 

(we use 0 to represent the identically zero function on [O,lJ): 

N 'UN 
B j = (0, B j' 0), j = 0, ... , 2N-1 ; 

N '\i • 
B. = (0, 0, B4N .), . J = 2N + 1, ... , 4N - 1 ; 
J -J 

It is clear from the above construction that xN(q) ~ dom A(q). It is also 

clear that if q i ~ then XN(q) i XN(~ ) and, in fact, XN(a ) ~ dom A(q ). 

Thus, as we iterate on q, we must take some care with the changing domains of 

the operators; we shall address this difficulty in the next section. 

We define approximating equations associated with (2.4) by defining 

operators AN(q) to "approximate" A(q). Here we take AN(q) :: pN(q)A(q)pN(q) 

where pN(q) : X(q) + XN(q) denotes the orthogonal projection (with respect 

to the topology on X(q) along (XN(q))~. The differential equation on XN(q), 

equivalent to a system of ordinary differential equations, is given by 

[

iN(t) = AN(q)zN(q) + pN(q)F(t;q), t e (O,~J, 
(3.2) 

zN(O) = pN(q)zO(q) 

where zN(t) e XN(q). Using standard arguments (see, e.g., [7J) it is easy to 

show that AN(q) is bounded and generates a Co - semigroup of contractions TN(t,q) 



11 

on X(q); thus, there exists a unique mild solution zN(.;q) e C(O,t;XN(q)) of 

(3.2), expressed as 

(3.3) zN(t;q) = TN(t;q)pN(q)zO(q) + r TN[t-s;q)pN(q)F[s;q)ds 

for t e [O,t]. 

The approximate identification problem associated with (3.3) is the 

foll owing: 

(ION) r~inimize IN(p) = ~ II czN(tj;q(p)) _ yj l12 
J 

over peP, s'ubject to zN(.;q(p)) satisfying (3.3). 

It is not difficult to argue, using the matrix representation for (3.2) 

(see Section 5), that, for z e R x HO x HO, the mappings por pN(q(p))z and 

p or TN(t;q(p))z are continuous, the latter uniformly in t e [O,t]. Under 

reasonable assumptions of continuity on the mappings q5 or s(t;q5) and 

q5 or s(t;q5) (again uniform in t) we also obtain the continuity of p or zO(q(p)), 

p or F(t;q(p)). We thus obtain, from the continuity of p or IN(p), the following. 

Theorem 3.1. Assume P is compact. Then for each N there exists a solution 

pN € P to (ION). 

4. Convergence. 

In this section, we will establish that a subsequence of the parameter 

estimates generated by solving the approximating identification problems (ION) 

does indeed converge to a solution for the original identification problem. 

(We note that in practice, we and others working with similar schemes, have 

observed direct convergence of the estimates; in fact, under the assumption 

of a unique solution of (10), full sequential convergence is guaranteed.) 

We will use the theoretical framework developed in [5], and discussed 



12 

in the context of the seismic problem in [7]; we refer the interested reader 

to these references for proofs and details, and here simply state relevant 

results without proof, focusing instead on the details which are new to our 

formulation of the problem. 

Throughout this section we will assume P is compact and that an arbitrary 

sequence {pN} in P has been given with pN + ~ e P, where 
N _ (N N N N N N N N) ~ _ (~ ~ ~ ~ ~ ~ ~ ~) 

p = CLO' CLl' SO' 13 1, t; , q3' Q4' Q5 and p = CLO' CLl' 1:50' 1:51' t;, Q3' q4' q5 ' 

and ~ satisfies 0 < ~ < 1 - 0 for some 0 > O. We recall that the associated 

parameters qN = qN(pN) and q = q(p) in Q then satisfy qN + q in Q (i .e., in 

HOx HO x R2+k). 

An important intermediate result in our convergence theory is to show that 

zN(qN) + z(q) in X(q),where zN(qN) is a solution of (3.3) and z(q) is a 

solution of (2.5). To this end, we first demonstrate convergence, in an 

appropriate sense, of the semigroups. We will use the following version of 

the Trotter-Kato Theorem (see [5J). 

Theorem 4.1. Let (B,I·I) and (BN ,1·1 N)' N = 1, 2, ... , be Banach spaces and 

let wN : B + BN be bounded linear operators. Further assume that T(t) and 

TN(t) are CO- semi groups on Band BN with infinitesimal generators A and AN, 

respecti ve ly. If 

(i) for all z e B , 

(ii)· there exist constants M,w independent of N such that 

ITN(t)I N ~ Mewt , for t ~ 0, and 

~ ~ 

'(iii) there exists a set VC B, Vcdom A, with (Ao-A)V = B 

for some AO > 0, such that for all z e V we have 
~N N Nit 

J A 'IT Z - 'IT Az I N + 0 as N + co 
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then ITN(t)~Nz - ~NT(t)zIN ~ 0 as N ~ 00, for all z e B, uniformly in t on compact 

intervals in [0,00). 

We shall use the above theorem with B = X(tj) and BN = X(qN). For N= 1, 2, ... , 

the linear operators ~N : X(tj) ~ X(qN) are defined by ~N(zi ,z2,z3) = (~~zl '~~z2''IT~z3)' 
where the positive constants ~~ are defined by ~~ = q2(0)q3/(q~(0) q~), 
'IT~ = q~2(1)/(q4 q~(l)), and ~~ = 1. An essential property of ~N (which can 

be easily verified) is that 'lTN maps elements of dom A(q) to dom A(qN). It is 

clear that ~~ ~ 1 as N ~ 00 fo~ i = 1, 2, 3, so that for z e X(q), 

(4.1) N II('IT -I)zllqN~O asN~oo , 

and that Theorem 4.1(i) is satisfied; further, the operators are bounded uniformly 

in N. We take T(t) and TN(t) to be the Co - semigroups generated by A(q), AN(qN), 

respectively; condition (ii) of the theorem follows from the fact that for all 

N, TN is a contraction semigroup. As a first step in the verification of (iii), 

we select V = dom A(q)n (R x Wl x Wl ) and again appeal to the theory of two-point 00 00 

boundary value problems to claim that, for any A > 0, (AI - A(q)) maps V onto 

R x L
oo 

x L
oo , which is dense in X(q). To satisfy the hypotheses of Theorem 4.1 it 

only remains to show that for z e V, we have IIAN(qNhNz - ~NA(q)zll N ~ 0 
q 

as N ~ 00. 

It is helpful to establish several lemmas, the first of which is a 

generalization of standard estimates regarding the usual linear spline 

interpolating operator, iN, defined on the mesh {X~, k = 0, ••• , 2N} (i .e., 

;Nf = 2t f(X~)B~, in the notation of Section 3). The corresponding state 
k=O 

space interpolation operator of interest is the mapping 

rN:(IRx Hl x Hl) ~ (IR x Hl x Hl), where we define IN = I x iN x iN. 
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Lemma 4.1. There is a constant Co independent of Nand qN such that for any 

Z e dom A(q), 

(4.2) 

(4.3) IID(lNz - z)1I N + 0 as N + "". 
q 

Proof: For any f e Hl, it is an established result ([19J, eqn. (2.16))that 

in addition, one obtains 1 O(iNf - f)lo-r 0 as N -r"" from [19J, eqns. (2.10) and (2.17), and 

the dense inclusion of H2 in H'. Both (4.2) and (4.3) follow immediately 

from these estimates and the statement of norm equivalence (2.3). 1=1 

Lemma 4.2. There exists a constant cl independent of qN and N such that, 

for any z e XN(qN), 

(4.5) IIDzIIN~clNllzIIN' 
q q 

for N sufficiently large. 

2 2 2 2 2 Proof: From (2.3), IIOz II N ~ ~ IDz2 10 + ~ 1Dz310 where, for j = 2,3, 
q 
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N N 
2 2N jXk 2 2N N N -2 fX k 2 

IOz·l o = I loz·1 dx ~ 12 I (x k - xk_1) Iz·1 dx , 
J k=l N J k=lN J X

k
_
1 

X
k
_
1 

from the Schmidt inequality [19; p. 7J. Since ~ satisfies 0 < ? < 1- 0,' it 

is clear that, for N sufficiently large, ~ N satisfies 0 ~ ~ N ~ 1 - 0 and that 
N N2 2 2 2 xk - xk_1 ~ o/N. Thus, IIOz II N ~ 12(~N/o) (l z210 + IZ310) and, ustng (2.3) 

q 

again, the result in (4.5) is obtained. I-I 

Lemma 4.2 is a generalization of the Schmidt inequality for our product 

space and topology. The next lemma is such a generalization of the First 

Integral Relation for linear splines (i.e., IO(iNf)l o ~ IOfi o for f e Hl [19; p. 16J); 

the proof in our case follows directly from that relation and the statement of 

equivalence of norms (2.3). 

Lemma 4.3. There is a constant c2 independent of Nand qN such that 

for any z e X(q), and any q e Q. 

The spline estimates in the preceding lemmas may now be used to obtain 

convergence of pN(qN) to I, in an appropriate sense. To simplify notation 

we shall write pN ~ pN(qN), where no confusion exists. 
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) II N N II II N N N II {4.7 (P - I)1T z 'qN~ r ':1T Z - 1T Z qN 

for a constant c3 independent of N, qN and Z; moreover, for z € X(q), 

(4.8) N N 
" (P - I)1T Z" N -+ 0 as N -+ ex> • 

q 

Proof: For any z € dam A(q), the definition of 1TN guarantees 1T NZ € dam A(qN) 

and hence rN1T NZ e XN(qN). Thus 

From (4.4), it follows that 

for j = 1,2, where 
,-
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N .N 
< 210((7r z). - z·)l o+ 10(1 z. - z·)l o ' 
- J J J J 

(we have used the First Integral Relation for linear splines in the last inequality). 

Combining these estimates with (2.3), and noting that OnNz= 7r NOZ, we obtain (4.7). 

Finally, the convergence in (4.8) for arbitrary z € X(q) is guaranteed by (4.7), the 

dense inclusion of dom A(q) in X(tD, and the uniform (in N) boundedness of 

pN and 7rN. I-I 

Lemma 4.5. For z € dom A(q), 

Proof: We use the triangle inequality to show 

where the last inequality is due to estimates (4.5) (applicable since 
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where we have used (4.7) to argue the last inequality". Therefore, 

the estimates in (4.1) and (4.3) may be 

used to argue IID(pN - I),rNzll N +0 as N+",. [I 
q 

We now have the machinery at hand to 'complete our verification of the 

hypotheses of Theorem 4.1 to obtain a statement of semigroup convergence. 

Theorem 4.2. For each z € X(q) we have 

as N + "', uniformly in te[O,tJ, 

Proof: It remains to argue that 

as N +'" 

for z e V. We see that 

-; 
[ 

.. 



19 

That E: 3(N) -+ 0 as N -+ '" follow-s directly from (4.8). We consider E:l(N) and note that 

2 11 ( N N N N N N N N N N N )T 112 [E:l(N)] = (P1Tz-1Tz)2(0),ql D(P1Tz-1Tz)3' Q2D(P1Tz-1Tz)2 qN 

NN NN N 2 __ NN N 2 
~q3 Q2(0)I(P 1T Z-1T z)2(0)1 + (Q1Q2)!ID(P 1T Z-1T z)II N 

q 

where convergence of the second term follows from Lemma 4.5; in addition, 

1 (pN1T NZ - 1T NZ)2{0) 12 -+ 0 as N -+ '" because lemmas 4.4 and 4.5 guarantee the 

1 N N N H (0,1) convergence of (P 1T Z - 1T z)2. Thus E:l{N) -+ 0 as N -+ "'. Regarding 

E:2{N), we use the equivalence of norms to write 

so that, from the convergence of 1T~ -+ 1 (i = 1,2,3), and qN -+ q in Q. we have 

E:2{N) -+ 0 as N -+ "'. I] 
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Just as in [7], we may use the properties of nN, TN, and T to obtain a 

statement of semigroup convergence which does not involve the nN; similarly, 

we can obtain an analog of (4.8), i.e., strong convergence of pN to I for any 

z e X(tj'}. Then, under the assumption that the mapping qS+ s{o;Q5): IRk + H1{0,t) 

is continuous (so that both q + zo(q) and q + F{t;q) are continuous), we may 

obtain state variable convergence via an argument based on the "variation of 

constants ll formulation of solutions. 

Corollary 4.1. For zN{. ;qN) .and z(o ;(0 solutions to (3.3) and (2.5) 

respectively, 

uniformly in t e [O,t]. 

In addition, we may use the established state variable convergence to 

conclude with the desired result of this section (a slight modification of 

[5; p. 820]). 

Theorem 4.3. Assume P is compact in the P- topology (see (2.7)) and that pN is 

a solution of (ION) for each N. Then {pN} contains a subsequence {pNk} satisfying 

ei) 

Nk 'UNk n. 

( i i) z ( 0 ; p ) + z (0 ;'p ) (in an appropriate sense), and, 

(iii) P is a solution of the original parameter estimation 

problem (IO). 

Our approximation theory is not complete in that we have really only 
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considered the problem of state space approximation and have not addressed 

the problem of estimating truly variable parameters (where the infinite 

dimensional parameter space P must also be discretized). In keeping with the 

ideas of [6],[7] and [lS], we shall avoid ~ priori parametrizations of P 

and take a more general approach that involves (linear) spline-based 

approximations for P that are independent of the level of state variable 

approximation. To this end we define pf" :: IM(P) where 1M takes elements 

p = (aO' al' SO' Sl' ~, q3 q4' qS) from P and interpolates the spatially 

varying components (aO' al' SO' Sl) to a ~- dependent mesh; that is, 

IMp (f1 ~1 MM· ) h f th f f:1 = aO' al' SO' Sl' ~, Q3' Q4' q5 were, e.g., or e case 0 aO' 

M M ~ 2M M ruM M ruN 
aO = ao' = L aO(xk)Bk (the ~- dependent knots xk and linear elements Bk 

k=O 
are defined in Section 3). It is easy to see that 1M is continuous in the 

topology on P, so that compactness on P guarantees compactness on P~. 

We now review our convergence theory in light of these finite dimensional 

parameter spaces. Let IN(pN,M) = mi"-.MJN(P). From the construction of p"1 
p € V· 

there exists a sequence {pN,M} in P such that ~N,M = IMpN,M~ further, usi~g 

N. ,f\ N M 
compactness of P, a subsequence {p J } of {p , } may be found so that 

N. ,Mk M 
P J + peP; using properties of I and by making additional smoothness 

N. ,Mk assumptions for P, we may argue that ~ J + peP. Simple modifications 

in arguments made earlier in this section may be made to obtain corresponding 

state variable convergence as Nj,Mk + =. We thus obtain an analog to Theorem 4.3 

where a subsequence of solutions pN,M to the problem of minimizing IN over pM 

converges to a solution p to the original problem (10). 
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5. Numerical Implementation. 

In this section we discuss some aspects of the computational algorithm for 

solving the approximate parameter estimation problem (ION) over the finite 

dimensional parameter space pM. To simplify the presentation we assume that 

\) = 1 and that q1 = ~ = 1 is fixed so that an arbitrary parameter peP has the 

form p = (SO' Sl' ~, q3' q4' q5) with corresponding parameter in Q, 

q = (q2' q3' q4' qS)' q2(x) = SO(x) + Sl(X)H~(X). In order to more easily 

describe the numerical algorithm in the case of truly variable Q2' it will be 

more convenient to temporarily work with the parameter ~2 instead of Q2. To 

this end, we note that __ 1 may be written 
Q2 

1 
Q2 (x) = YO(x) + Y1 (x)H~ (x) 

where YO = 1 / SO' Y1 = 1 / (SO + Sl) - yo; in practice (when we search for a 

nonconstant Q2)' the C[O,l] functions YO and Yl will be estimated in place of 

So and 81 so we shall use the notation p = (YO' Yl' ~, Q3' Q4' q5) to designate 
A 

the unknown parameter of interest and constrain p to belong to the usual parameter 
. . " M A" M M M _M • 

set P. Approx1mat10ns p to p, P = (Yo' Yl' ~, Q3' Q4' Q5) e p' w1ll be 

constructed as in Section 4, i.e., we express y~, Y~ in terms of ~ -dependent 

1 • 1 • 1 t?lM b . t . M 2~p br~ "'BM f . a 1 Th 1near sp 1ne e emen s ~k y wr1 1ng Yi = L i k k or 1 = ,. e 
. k=Q' 

l' 1 M_ M M 
approximation to Q2 then becomes. (Q2) = YO + Yl H~, or, 
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xe (~, 1] , 

N M 
where~, bo,k' and b1,k (k=O, •.. , 2M) are unknown and to be determined. (We 

remark that the use of YO' Y1 in place of 80 , 81 does not change our convergence 

findings due to the fact that the convergence of pM to p in P yields the needed 

convergence of pM to p in P, Where now pM = (1 / Y~ , -Y~/ ({y~ + Y~h~) , 

~, Q3' Q4' QS) e P. ) 

For given values of N and parameters, asolutionzN of approximating system (3.2) maybe 

4N 
written zN(t;q) = /. wJ~(t;q)BJ~ where wN = col (w~) satisfies 

j=O J 

(5.1) 
[ 

QNwN(t) = KN(q)wN(t) + FN(t;q) , 

QNwN(O) = w~ . 

t e (O,t] , 

Here (FN(t;q))i = < F(t;q), B~ >q and (w~)i = < zO' B~ >q , for i = 0, •.. , 4N, 

while the (i,j) - elements of the (4N + 1) -square matrices QN and KN are 

given by 



N Q •• 
lJ 

N _ N N K .. - <A(q)B., B. > 
lJ J 1 q 
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(throughout<"'>q denotes the X(q) inner product). For a typical i and j, 

the last term in Q~j satisfies (for some 0 ~ £, m ~ 2N), 

where the parameterization for approximations to 1/q2 has been used. 
"'M "'N "'N If, in contrast to the approach we take here, the spline elements Bk, B£, Bm are 

defined on a uniform mesh, the appearance of ~ in the range of integration for 

the above integrals leads to a large amount of computational work: Such 

quadratures must be recomputed each time that ~ changes (i .e., every time the 

parameter pM is updated in an iterative scheme to minimize IN over pf'l). An 

advantage of our formulation is that we need only compute such quadratures once. 

That is, we may use the coordinate transformation g in (3.1) to write 
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J
l
"'fc4 "'N "'N Jl M N N Bk" Bn BM = 2(1 - ~ ) s s S 

t" 1., I k R. m 
I, ~ 

where J;' s~ s~ s~ , J~ s~, s~ s~ need only be evaluated once, at the outset, 

then stored for recall during iteration when the coefficients 2~ and 2(1-".;) 

are updated. This savings in computational effort is even more substantial 

in the case of multiple discontinuities ~ l' .•. , ~v, and in the case of 

unknown ql' 

W~ consider now several numerical examples which illustrate the ideas presented 

thus far. In the examples that follow we return to the use of standard notation (e. will 
1 

be used instead ofYi) and we assume that an parameters are known except for eo'~' and ;, so 

that only q2 = eO + ~el is to be determined. The reader is referred to [7] for examples with 

constant parameters in the source term s(tjQ5) and in boundary conditions, and to 

[15J for multiple discontinuity examples in the context of parabolic systems. 

Indeed, both of these references provide a more complete numerical study than 

we present here: In [ 7J, more realistic seismic examples are considered, 

as is the problem of surface observations (at x=O) only, while in [15], 

examples are given to illustrate that the assumption that the number of 

discontinuities is known ~ priori is not unnecessarily restrictive (one 

may both overestimate and underestimate the number and still get useful 

information) . 

I h 1 h 11 h II II '" ('" '" "') • n t e examp es t at fo ow, t e true parameter, p = eO' el , ~ , 1S 

known and is used for comparison with our approximations, pN,M = (e~,M, e~,M, ~N,N). 
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Initial data for (2.1) is given, as are both velocity and pressure observations 
'V 

(u t and q2ux are determined from either analytic or finite difference 

solutions for (2.1), with random noise added in some cases) at discrete time 

and spatial locations. For our numerical examples we use a IIpointwise" 

fit-to-data criterion, 

(5.2) 'IN(p) = L 
i ,j 

2 

CzN(t·;q(p))1 - y .. 
J x=x. lJ 

1 

T . T . 'V T 
where C(zl' z2' z3) = (O,z2,z3) and Yij = (0, ut(tj,xi ), (q2ux)(tj,xi)) ; we note 

that in using ~N (instead of the distributed criterion IN defined in Section 3) for our 

examples, we are actually illustrating stronger convergence of zN(t) to z(t) than is 

guaranteed in Section 4 (where only IR x HO x HO convergence is found). We 

thus exploit the fact that in practice IR x C x C convergence is observed, 

and only present examples that use ~N (numerous examples with distributed 

criterion such as IN exist in the literature; e.g. [14J for an elliptic problem). 

We initiate the parameter estimation process by supplying an initial 
o 0 0 0 guess p = (SO' 61, ~ ) to IMSL's minimization routine ZXSSQ (a Levenberg-

Marquardt algorithm) which is used in the numerical minimization of ~N. For 

each updated value of p, the Nth approximating system (5.1) is solved using 

IMSL's DGEAR, an ordinary differential equation solver. All calculations were 

performed on the IBM 3081D at Southern Nethodist University. 

Our first example is one in which an analytic solution u is available. 

The construction of initial data and forcing function is somewhat artificial 

and serves only to guarantee an analytic solution; nevertheless, this example 

is instructive in that it is the only one in which data czN(t) for the 
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approximate solution is compared to exact observations (Cz(t)). In later 

examples, random noise is added, or finite differences are used to solve for 

u(t) and to construct observations Cz(t). 

Example 5.1. We consider the problem of estimating the piecewise constant 

parameter q2 with true value 

x e [0, ,.4J 

x€(.4,lJ 

(thus ~o = 5, (~o + ~1) = 10, ? = .4). Observed data is calculated using the 

true solution 

x e [0, .4 J __ {t (-102.5x
2 

+ 96x + 48) + 12.5tx
2 

u(t,x) 
2 5 2 .05(-31.25x + 45x + 187) .. "6t (5x .. lOx + .8), x e (.4, lJ 

and is available at tj = .5, 1.0, 1.5, 2.0, and xi = .1i, i = 0, 1, ... , 10. 

The actual model system we use here is a nonhomogeneous version of (2.1) 

(wi th p = 1 ), i. e . , 

2 
~ = ~ (E(x) ~) + f(t,x) 
at2 ax ax t € (0, tJ x e [O,lJ 

where boundary and initial conditions are given in (2.1). For this nonhomogeneous 
I\" I\" system we take, f = Utt - q 2uxx ' U and q2 given above, and use q3 = 2, 

q4 = 4, and s = ° to construct the boundary conditions. Initial data and 

forcing function for equation (3.2) are computed using u, q2 and f, i.e., 

zO(x) = (u(O,O), ut(O,x), Q2(x)ux(0,x)) and F(t,x) = (O,f(t,x), 0). 

We search for constant values of So and Sl' using the initial guess 
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.001 

q~ ~ 
.001 
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x e [0, .8] 

xe(.8,1] 

for N = 2; we then use the converged values of q~ to begin the iteration 

on q2 for the next value of N. Our results are summarized in Table 5.1. 

Example 5.l.a. We repeat Example 5.1 but add Gaussian noise to our observations 

at a level of 5% relative error. For example, if ut = average value of ut(tj,xi ) over 

all i,j, then the new data for ut is (Ut)ij = ut(tj,xi ) + r ij , where r ij fallsin1herange 

[-.05ut , .05ut ] with 99% certainty. These findings are reported in Table 5.l.a. 

Example 5.l.b. We repeat Example 5.1 but add 10% relative noise to the 

observed data; the results may be found in Table 5.1.b. 

Example 5.2. We present here an example that is a modification/rescaling 

(in order to include our. boundary conditions)o'f an example found in [ 8 ; p. 381J. 

For this problem,the true value of q2 is given by 

'V {6. 25 
q2 = 

36. 

'V 'V 'V 'V 

(so (SO' So + Sl' ~) = (6.25, 36., .5)) while parameters q3 ~ 1, q4 = 6 are held 

fixed. In keeping with [8J, we use zo = (4,(0),1/1, Q2</>x)' where 
. 2 2 

<p-<x) = exp [-160(2x - .5) J and 1jI(x) = 1600(2x- .5) exp [-160(2x- .5) J 

for initial data, and set F = O. Observations at times tj = .05, .1, .15, .2, 

and spatial locations xi = .05i, i = 0, ... , 20, are determined by solving 
'V 

(2.1) for u using a finite difference scheme (with q2' q3' Q4' </>, and 1jI 
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Table 5.1: Exam~le 5.1 

sN N N 'UN CP time 
N (SO+sl) ~ J (sees) 0 

(init) (0.001 ) (0.001) (.8000) 

2 4.942 8.051 .4069 109.05 20. 

4 4.959 8.939 .4034 24.21 67. 

8 4.974 9.382 .4019 5.21 410. 

16 4.987 9.719 .4009 1.27 1309. 

32 4.991 9.846 .4005 0.31 114l. 

(true) (5.000) (10.000 ) ( .4000) 

Table 5.l.a: Exam~le 5.1.a (5% Noise Level} 

'1 sN N ~N ",N CP time 
.1 0 (SO+sl) J (sees) 

2 4.952 8.064 . 4075 109.64 20 . 

4 4.981 8.999 . 4042 30.06 65 . 

8 4.953 8.934 . 4042 24.87 203 . 

16 4.959 9.124 .4039 14.88 638. 

32 5.001 9.877 .4010 7.71 1901. 

Table 5.l.b: Exame 1 e 5. 1 . b . (10% Noise Level) 

N sN oN ~N 'UN CP time 
0 (sO+sl) J (sees) 

2 4.986 8.150 .4092 202.39 19. 

4 4.957 8.001 .4098 194.80 6l. 

8 4.974 8.703 .4071 153.74 185. 

16 4.974 8.704 .4071 133.75 300. 

32 5.072 8.640 .4280 123.16 659. 
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as above; s:: 0) • We note that thi s fi ni te di fference sol uti on for t e [0 ,.2], 

matches the graph in [8; Fig. 2] for t e [0 ,2.0] (our problem has been 

rescaled), and that we obtain similar wave reflection/transmission behavior at 

the interface (see Fig. 5.1). 

To estimate constant values of 80 and 81' we use an initial guess 

of 

o {15. 
q2 = 

15. 

X e [0 ,.41 , 

xe(.4,1.] , 

for N = 4 and use previous converged values to begin the N = 8, 16, 32, 40 

iterations. Our findings are given in Table 5.2 below. 

Table 5.2. Example 5.2 

8N N E;N 'UN CP time N 0 '(80 +8,) J (sees} 

(i nit) (15.00) (15.00) ·(.4000) 

4 13.78 16.92 .4667 158.09 14. 

8 9.78 23.09 . 5105 147.85 174 . 

16 5.95 32.10 . 4641 60.07 130 . 

32 6.30 35.93 • 5000 1. 21 260 . 

40 6.26 35.95 . 5004 0.44 245 . 

(true) (6.25) (36.00) (.5000) 
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Example 5.3 Finally, we consider an example with truly spatially varying Q2' 

{ 

2.5x + 1.5, x e [0 ,.6] 

15.625x2 - 24.375x + 9.75 x e (.6,1] 

(so that true ~ = .6). We fixed Q3 = 1, Q4 = 1, initial data Zo = (cp(O), 

~, q¢), where ¢(x) = eX and ~(x) = _ex, and set F :: 0 (i.e., s :: 0). Velocity and 

pressure observations were obtained by solving (2.1) (with the above parameter values 

and initial data) using finite difference techniques; observations 

were available at tJ" = .5, 1.0, 1.5, 2.0, and x· = .05i, i = 0, 1, ... , 20. 
1 . 

The results of the parameter estimation process are illustrated in Figures 5.2 

5.4 where we compare the graphs of ~ with those of the converged parameter (q12)N,M 

(we recall that ___ 1 is used as the pa~ameter in case of truly variable q2). Figure 5.2 
q2 

depicts the outcome of the estimation process when an initial guess of 

x e [0,.7] 

x e (.7,1] 

is used, and search is made in the space pM, r~ = 3. Figures 5.3. and 5.4 show 

results for M = 4 and M = 5, respectively, where the initial guess for M = 4 

(M = 5) is the M = 4 (M = 5) linear interpolation of the converged value of 

(l/Q2)N,M for M= 3 (M = 4) and N = 40. 
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