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ABSTRACT

We consider the problem of estimating discontinuous coefficients,
including locations of discontinuities, that occur in second order hyperbolic
systems typical of those arising in 1-D surface seismic problems. In
addition, we treat the problem of identifying unknown parameters that appear
in boundary conditions for the system. A spline-based approximation theory is

presented, together with related convergence £findings and representative

numerical examples.,
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1. Introduction.

In this paper we consider a one-dimensional seismic inverse problem:

Our goal is to construct a parameter estimation scheme for the hyperbolic
model equations treated in [7] extending these ideas to allow the estimation
of discontinuous coefficients (including the location of discontinuities).

The approach taken here contrasts with that taken in [7] in that we consider

a different decomposition of the wave equation, yielding a different operator
and state space for theoretical arguments. We combine these ideas with a
variation'of the approximation scheme in [15] which was developed to treat the
problem of estimating discontinuous coefficients in parabolic systems.

The underlying theoretical approach to the identification problem follows
the outline of other related papers (eg. [31, [4], [5], [6], [7], [15] in that we
define the (infinite dimensional) identification problem and construct associated
approximate identification problems; under compactness assumptions on our parameter
space, we prove convergence of paraméter estimates and approximating state
variables. Our arguments here are based on an application of the Trotter-Kato
Theorem. In Section 5 we describe the numerical algorithm and conclude with
some preiiminary computational examples. '

We shall employ standard notation throughout, using, for example, HP(a)
and wg(n) to denote the usual Sobolev spaces on 2. If @ is not specified, it
is assumed that @ = [0,1]. Further, given any w € L"(0,1) satisfying
0 < w< wx) < w, for almost all x, we shall define the %-- weighted H0(0,1)
spacé, denqted Ho(w), with inner product < U,V > 31[1%4n/(and associated
norm [-lw). Similarly, given any c> 0 we define thé)c - weighted real line by

R(c) with inner product of two elements u, v € R{(c) defined by cuv. Finally,

throughout we shall write I:Y + Y to denote the identity operator, where the



space Y will be clear from the context.

2. The Identification Problem.

As in [7], we consider the problem of estimating unknown parameters

that appear in the system

Q

2
(Tg L2 (6(x) 3), te (0,81, xel0] ,

o(x) ax

(o3

U (40}~ kyu(t,0) = s(t:k)
o) | (50~ k(0 = sk
R+ =0,

\0(0,%) = ¢(x) 5 55 (0,%) = w(x)

where, for the seismic problem, u represents subsurface particle displacement
resulting from a disturbance at the earth's surface (x=0). We model the
disturbance here using the source term s(t;t)(s € H](O,E)) which may involve
an unknown vector parameter t. Other parameters of interest include p and E
(0 >0, E>0), which represent the density and elastic modulus, respectively,
of the earth, and k; and k, (k]> 0, ko> 0), which occur in the elastic boundary
condition at x=0 and the absorbing boundary condition at x=1, respectively.
A more thorough discussion of the use of model equations (2,1) in the context
of the seismic problem may be found in [7]; similar models are treated in [9]
or [11], where boundary conditions are imposed instead on a semifinfinite strip.
The estimation problem of interest then is to identify the unknown

parameters using observations of the system, which may be given in the form of



displacement, velocity, or pressure (stress) measurements (corresponding to
Us Uy, OF Eux in (2.1)). Throughout we shall assume that unknown parameters

are expressed in the form

q = (q7(-), a5(+), 935 94, q5) =
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where q belongs to the admissible set Q,

Q= {(q]sQZsQ3aQ4sq5) € Ho X HO X R2+k

-1 -

for i=1,2: 0<gq; < qi(x) <G for almost all x e [0,1]

and q; is continuous at x=0,1; 0 < g5 < q; < Q33 q > 0}

Due to the fact that the spatial domain [0,1] represents an inhomogeneous,
layered medium, it is likely that the two spatially varying parameters, q,
and CPY will be diséontinuous with locations of discontinuities corresponding
to abrupt changes in subsurface structure. In keeping with the objectives

of the seismic inverse problem, i.e., to assemble as much information as
possible about the nature'of the subsurface medium, our goal will be to
determine the location of discontinuities, as well as to identify the spatial
variation in q and 9.

Before considering a precise statement of the parameter estimation
problem, we first turn to an abstract formulation of (2.1), which is necessary
for the convergence theory we develop in Section 4. To this end, we (formally)
rewrite (2.1) as a first-order system in v(t) = (v1(t), vz(t), v3(t)) "
(u(t,0), uy(tse), ap(-)uy(t,+)) € Rx H' xH'

xH', namely,



0 I, ©
vit) = | 0 0 gD | v(t)
0 gD O

(2.2) ¢ valt) - A39,(0)v4(t) = a,(0)s(t;qg)

x=0

(QZ(])Vz(t) + Q4V3(t)) . =0 ,
X=

v(0) = (6(0), ¥(-)s gp(-)e (-1

where 15:C[0,1] > R is defined by Igw = w(0) and D represents the spatial
differentiation operator. Such a decomposifion of state variables can be found
elsewhere in the literature (see for example [10] in a different context): It is
a natural one for the application we have in hind because the components
u(t,0), Uy and qpu, are quantities needed to express the total energy of this
system. In addition, these quantities are often readily observable in
practice and thus their inclusion as components of the state variable facilitate
our study of the estimation problem.

We use the form of (2.2) to define a parameter - dependent operator
A = A(q) and associated Hilbert space X = X(q), where dom A = X and X is chosen
in such a way to ensure that A is dissipative in X, In particular, for any
value of q € Q we define X(q) = R(q3q2(0))x Ho(q])x Ho(qz) (see Section 1
concerning notafion) with associated norm denoted by ”-Ilq. It is easily seen

that a positive constant p = “(94’ E&; i=1,2,3) may be found so that



(2.3)  fllzl < lzllg < izl

0

for all qe Q, where denotes the Rx Hox H” norm; it thus follows that the

X(q) norms are uniformly equivalent as q ranges over Q. Due to the set-wise
equivalenée of X(q) for all qeQ, we can consider an element z in X(q) to be
an element in X(a), for.a € Q, or even consider z in Rx Hox HQ, and do so
without a change in notation for z.

The abstract differential equation associated with (2.2) may be stated

precisely as

2(t) = AQ)z(t) + F(tsq) , te (0,E] ,
(2.4)
z2(0) = z4(q)

where the transformation (21,22,23) = (v],vz,(v34-(x-1)s))_has been made in

order to obtain homogeneous boundary conditions. In (2.4), z(t) e X(q), and

,

0 IO_ 0
0 qu 0

with dom A(q) = {z € X(q) 0 (R x H' x H1)|25(0) - qy(0)azz; = 0 ,

q2(1)22(]) + q4z3(1) = 0}; the nonhomogeneous term (due to the transformation

to zero boundary conditions) and initial condition are given by



0 ¢(0)
F(t;q) = [-q,(-)s(t;q5) . zp(a) = v(-)
("])é(.t;QS) QZ(’)¢X(') + ("])5(0;q5)

respectively.

Theorem 2.1. A(q) is the infinitesimal generator of a Cy - semigroup of
contractions T(t;q) on X(q); thus for each q € O, there exists a unique mild

solution of (2.4) with the representation
t
(2.5)  z(t;q) = T(tsq)zy(q) + JOT(t-s;q)F(s;q)ds

The proof of the theorem follows from standard results from the theory of
semigroups (see, eg., [17; pp. 14, 106]) once it has been verified that A(q)
is densely defined and dissipative in X(q) and that for some x> 0, R(xI-A(q)) = X(q).
It is easy to see that dom A(q) = X(q) since X(q) is equivalent to Rx HO x KO,
while dissipativity of A(q) is a consequence of the topology chosen for X(q).

Moreover, using standard results from the theory of two-point boundary problems,

one can show that R(AI-A(q)) = X(q) for any choice of 1> 0.

Remark 2,1. Strong solutions of (2.4) (i.e., solutions where zo(q) e dom A(q))

will satisfy (2.45 as well as (2.5). In this case, (y],vz,v3) = (z],zz,z3 + (1--)s)
satisfies the formal equations (2.2) so that the identificatibn may be made

between zi and u(t,0), z, and ut(t,-), and z5 + (1-+)s and q2(-)ux(t,-);

where u is a solution of the original system (2.1). Hence, we shall develop

a convergence theory based on formulations (2.4), (2.5), while keeping these

relationships in mind throughout.



Remark 2.2. That our approach is advantageous from both a theoretical and
computational viewpoint is now apparent: Physical principles demand that

SPUM be continuous even though Qps and thus U, are discontinuous. By defining
our operator as above, we satisfy this continuity condition simply by’requiring

that the third component of the state variable belong to H](O,]).

We turn now to a precise statement of the parameter estimation problem.
The unknown parameter, g, of interest contains for its first two components the
piecewise continuous coefficients q; and Q3 we further parametrize 9 and 9, by

= aO(X) + iz1ai(X)H (X) ’
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where HE denotes the usual Heaviside function.(Hé(x) =1, xe (£,1], and
Hi(x) = 0 otherwise) on [0,1]. Using this representation, the problem of
estimating a9, and 95 is equivalent to the problem of identifying 2(v+1)
continuous "pieces", ao(x), cees av(x), Bo(x), ey gv(x), and the Tocation
of v discontinuities, Eqs +-es B Givén v, our goal then is to estimate
p = (ao, Aps wees @ s Bgs Bys cees BsEqs oees £ s Ggs o q5) where p

"

belongs to a prescribed constraint set P = P,

N
(2-7) P = {(GO’ ceey avs Bos esey Bvs 51: ~o-’.£v’ q3s q4’ q5)

2(v+1
e ( (Iir) C[O,]]) " Ry+2+k

(ao + .z aiHE- » B ) Bng. > Q3s 9> q5) € Q}



Although our estimation theory wi]] be developed for the fully parametrized
set P, it is clear that any choice of p € P generates a physically meaningful
entity q = q{p) € Q through the construction (2.6) for gy and g,, and that
sequential convergence pj + p in the topo1ogy for P implies the associated
parameters qj = qj(pj), q = q(p) € Q satisfy qj'+ q in the topology on Q. We
shall often make use of this association in the sections to follow.

The parameter identiffcation problem may now be stated as follows:

(ID) Minimize J(p) = §|[Cz(tj;q(P))"yj“2

over p € P, where d = q(p) € Q, z(t;q) is the solution to (2.4),

q
0, .0

C: X(g) - RxH H” is a (continuous) observation operator and

¥; € R x H0 x H0 denotes observed data corresponding to time tj.

Remark 2.3. The estimation problem defined above allows for observations of
particle displacement (at the surface), velocity, or pressure. Although
it is not explicitly stated, our theory also includes the case of spatially
distributed displacement observations below the earth's surface; in this case,
_ t.
the observed quantity is given by %(tj;q) = ¢(+) + J J
0

observations are given by yj, where yj, E(tj;q) € HO.

z,(s3q)ds, and

Remark 2.4. The parameter estimation problem described above is an example

of a large class of problems ("inverse" problems) that are widely known to be
il1-posed (see, for example [13], [16])from both a theoretical and computational
standpoint. We shall not‘address here the nature of the difficulties that -
arise, among them a lack of continuous dependence of parameters p on observations

. . : Y . A
yj, and the general nonuniqueness of an optimal parameter p. However, it is



appropriate to note that one may circumvent some of these inherent problems by
guaranteeing a type of "problem stability" (see [2], [4], [11], and

[12; Remark 5.1]). There are a number of ways in which such stability may be
obtained for the parameter estimation problem: These include such techniques
as regularization [13], embedding methods [1], or parameter set compactness
rassumptions [2], [5]. As will be evident in later sections, we shall take the

latter approach through the assumption that P is compact.

3. Approximation.

In this section we construct a spline-based framework for the approximation
of the state variable z(t), where z satisfies (2.5). As these approximation
spaces will be parameter-dependent, we shall assume that p € P is given,
where, p = (ao, ays Bys Bys €5 Q3 Gy q5) and £ = £y € (0,1) (for simplicity
and without Toss of generality, we shall takg v = 1 throughout). Using

(2.6) to construct y» Gp» We shall as usual associate with p the corresponding

q = q(p) € Q.

The construction of approximation spaces XN(q) is as follows: For

k=0, .;., 2N we define uniform spatial mesh points by SE = k/2N and denote by
SE the kth (standard) basis element for the space of continuous piecewise-Tinear

B-splines with knots at {SE}; i.e., Sﬁ is characterized by SE(S?) = 5jk’.

j,k =0, ..., 2N,[18]. We then transform to a parameter-dependent basis through

the invertible mapping g: [0,1] - [0,1],

} x/Zg,—fx 0<x<g
(3.1) g(x) = .
(x +1-2g)/2(1-¢),  £<x<1,

n VN
and define Bﬁ(x) = Sﬁ(g(x)). Thus sp{Bﬁ} is the space of linear B-splines
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with knots at xy = g7 (sh) (xf! = ke/N, k=0, .o\ Ny xh = £ + (k= N)(1-€ )/N,
k=N+1, ..., 2N). The computational advantages of using £ - dependent elements
will be discussed in Section 5. Finally, we define approximation spaces

XN(q) z sp{By}where the basis elements B?,

(we use 0 to represent the identically zero function on [0,1]):

j=0, ..., 8N, are defined as follows

BY = (0, BY, 0), 3=0, ..., 2N-1;

J J

N _ N .

BZN - (09 q482N’ "qZ(])BZN)’

N _ N . .
Bj—(og 0, B4N-j)’J—2N+1, s ey 4N"],

n

It is clear from the above construction that XN(q) < dom A(q). It is-also
clear that if ¢ # q then XN(q') # XN(a ) and, in fact, XN(G ) ¢ dom A(q ).
Thus, as we iterate on q, we must take some care with the changing domains of
the operators; we shall address this difficulty in the next section.

We define approximating equations associated with (2.4) by defining
operators AN(q) to "approximate" A(q). Here we take AN(q) z PN(q)A(q)PN(q)
where PN(q) : X(q) » XN(q) denotes the orthogonal projection (with respect
L

to the topology on X(q) along (XN(q)) The differential equation on XN(q),

equivalent to a system of ordinary differential equations, is given by

2Nty = AMQ)ZMNa) + PN(a)F(tsq), t e (0,81,

(3.2)
N(o)

i]
=]

a)zpla)

where zN(t) € XN(q). Using standard arguments (see, e.g., [7]) it is easy to

show that AN(q) is bounded and generates a Cj - semigroup of contractions TN(t,q)
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on X(q); thus, there exists a unique mild solution zN(-;q) € C(O,E;XN(q)) of

(3.2), expressed as
t
(3.3)  2Mtsq) = ™(t50)PN(q)zp(a) + JO ™(t-550)PN(q)F (s30)ds

for t e [0,t].
The approximate identification problem associated with (3.3) is the

following:
(10") winimize MNp) = 1| c2"(t530(p)) - w5117
J

over p € P, subject to zN(-;q(p)) satisfying (3.3).
It is not difficult to argue, using the matrix representation for (3.2)

0 . HO, the mappings p*-PN(q(p))z and

(see Section 5), that, for z € Rx H
p > TN(t;q(p))z are continuous, the latter uniformly in t e [0,t]. Under
reasonable assumptions of continuity on the mappings g s(t;q5) and

g5 > é(t;qs) (again uniform in t) we also obtain the continuity of p » zo(q(p)),

p+ F(t;q(p)). We thus obtain, from the continuity of p » JN(p), the following.

Theorem 3.1. Assume P is compact. Then for each N there exists a solution
N N)

B e Pto (ID

4. Convergence.

In this section, we will establish that a subsequence of the parameter
estimates‘generated by solving the approximating identification problems (IDN)
does indeed converge to a solution for the original identification problem.
(We note that in practice, we and others working with similar schemes, have .
observed direct convergence of the estimates; in fact, under the assumption

of a unique solution of (ID), full sequential convergence is guaranteed.)

We will use the theoretical framework developed in [5], and discussed
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in the context of the seismic problem in [7]; we refer the interested reader
to fhese references for proofs and details, and here simply state re]eQant
results without proof, focusing instead on the details which are new to our
formulation of the problem. |

Throughout this section we will assume P is compact and that an arbitrary

sequence'{pn} in P has been given with pN > B e P, where

N N ~
p = (ag’ Q],‘ng B¥3 EN; qg’ qzs qg) and B = (3:03 &’]a ’é‘os 'g]’ g, ’63’ 84’ as)s

and Q satisfies § < g < 1-6 for some § > 0, We recall that the associated

parameters qN = qN(pN) and § = 4(p) in Q then satisfy qN >4 inQ (i.e., in

0 0 2+k)

H'x H" x R

An important intermediate result in our convergence theory is to show that
zN(qN) > z(q) in X(3), where zN(qN) is a solution of (3.3) and z(4) is a
solution of (2.5). To this end, we first demonstrate convergence, in an
appropriate sense, of the semigroups. We will use the following version.of

the Trotter-Kato Theorem (see [5]).

Theorem 4.1. Let (B,]+]) and (BN,I-IN), N=1, 2, ..., be Banach spaces and
let nN : B> BN be bounded linear operators. Further assume that T(t) and
N N

TN(t) are CO- semigroups on B and B" with infinitesimal generators X and A R

respectively. If

(i) Tim lnNle = |z] forallzeB ,

(ii) - there exist constants M,w independent of N such that

]Tr‘l(t)ll\l_g_Me“’t , for t > 0, and

(i1i) there exists a set D= B, D<dom 'IX, with (AO-A)D =B
for some g > 0, such that for all z € D we have

]waNz- wale +0as N>= ,
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N

then |TN(t)nNz -7 T(t)zlN +~ 0 as N+ », for all z € B, uniformly in t on compact

intervals in [0,=).

N).

We shall use the above theorem with B = X(g) and BN = X(q For N=1, 2, ...,

the linear operators nN : X(a) > X(qN) are defined by nN(z1,22,z3) = (n¥z1,ngzz,ngz3),

where the positive constants w? are defined by n? = 32(0)53/(qg(0) qg),
wg = q?ﬁz(l)/(a4 qg(l)), and wg = 1. An essential property of nN (which can

N

be easily verified) is that = maps elements of dom A(a) to dom A(qN). It is

clear that w? ~1as N+« fori=1,2, 3, so that for z ¢ X(4),
N- o
(4.1) || (=" = 1)z ”qN +~0 as N~ ,

and that Theorem 4.1(i) is satisfied; further, the operators are bounded uniformly
in N. We take T(t) and TN(t) to be the Cj- semigroups generated by A§), AN(qN),

respectively; condition (ii) of the theorem follows from the fact that for all

N

N, T' is a contraction semigroup. As a first step in the verification of (iii),

we select D = dom A(G) N (R x wl x wl) and again appeal to the theory of two-point

boundary value problems to claim that, for any » > 0, (AI - A(§)) maps D onfo
R x L”x L”, which is dense in X(a). To satisfy the hypotheses of Theorem 4.1 it
only remains to show that for z e D, we haQe HAN(qN)nNz -nNA(a)zll y * 0
as N » =, !
It is helpful to establish several lemmas, the first of which is a
generalization of standard estimates regarding the usual linear spline
N

interpolating operator, iN, defined on the mesh {xk, k=0, ..., 2N} (i.e.,

2N
iV = ) f(xE)EE, in the notation of Section 3). The corresponding state
k=0

space interpolation operator of interest is the mapping

IN:(IR><H] x H]) + (IR x H] x H]), where we define TN = Ix il x iN.
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N

Lemma 4.1. There is a constant ) independent of N and q° such that for any

z € dom A(Q),

RV TR -
(4.2) ™ o2l o< e HD(Nz - 2 :
1% 21y < oo otz - 2]

where we define D(z],zz,z3) = (O,Dzz,Dz3). Further,

(4.3)  [Ip(i%2-z)] y ~ 0 as N> =.
g

Proof: For any f € H], it is an established result ([19], eqn. (2.16))that
(4.9)  JiN-ely < (a7 0(N - 6) | s

in addition, one obtains ID(iNf- f)loe-o as N+~ from [19], eqns.(2.10) and (2.17), and
the dense inclusion of H2 in H1. Both (4.2) and (4.3) follow immediately

from these estimates and the statement of norm equivalence (2.3). ||

N

Lemma 4.2. There exists a constant 9 independent of q ' and N such that,

for any z € XN(qN),

(4.5) -~ |ipzl NS C]N” z|l N °
q q

for N sufficiently large.

Proof: From (2.3), ||Dz IIEN-i ”2|DZQIS + uZIDZBIS where, for j = 2,3,
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N
2N X 2N X
2 k 2 N N -2 [Tk 2
02,12 = 3 j 02,2 ax < 12§ (M- ) J 12,2 dx
O ey 1 Kok T
k-1 k-1

from the Schmidt inequality [19; p. 7]. Since Q satisfies § <£ < 1-8, it

is clear that, for N sufficiently Targe, gN satisfies & f_EN

xE - XE_] > §/N. Thus, HDZ'HEN 5_12(uN/6)2 (|zz|g + |z3|3) and, using (2.3)

< 1-6 and that

again, the result in (4.5) is obtained. |_|

Lemma 4.2 is a generalization of the Schmidt inequality for our product
space and topology. The next Temma is such a generalization of the First
Integral Relation for linear splines (i.e., ]D(iNf)]0 5_|Df|0 for f e H [19; p. 16]);
the proof in our case follows directly from that relation and the statement of
equivalence of norms (2.3).

N

Lemma 4.3. There is a constant Cy independent of N and q° such that

(4.6) o)l y < cpllvzfl
q q
for any z € X(q), and any q € Q.

The spline estimates in the preceding lemmas may now be used to obtain

convergence of PN(qN) to I, in an appropriate sense. To simplify notation

N(

we shall write PN = P qN), where no confusion exists.
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Lemma 4.4. For z € dom A(a)

N N
(4.7) | (PY - I)n zl!q < ItNa z-nzlqu

°3 N 2 N 2 \4
< Ul -I)quN+HDU z—ﬂqu

N

for a constant Cq independent of N, q and z; moreover, for z € X(a),

(4.8)  JIEN -1)az]| 4 > 0as N e
q
Proof: For any z € dom A(a), the definition of nN guarantees nNz‘e dom A(qN)

and hence INnNz € XN(qN). Thus

-1l 2y < - Dty
W21, - (Me),)2
+ 118N2), - (M2),419)

From (4.4), it follows that

[Mat); - G215 < a7 jaeta - wtaplg

for j = 1,2, where
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[0iM(a"a) - (aM2) )1 < DG a2)5 - 1Mz g+ (00N - 2401+ [0z - (a2), I8
< ZID(('n’ z) 5773 )l0+lD -2z, )I0 ,
(we have used the First Integral Relation for linear splines in the last inequality).
Combining these estimates with (2.3), and noting that DwNz= nNDz, we obtain (4.7).

Finally, the convergence in (4.8) for arbitrary z € X(q) is guaranteed by (4.7), the

dense inclusion of dom A(4) in X(§), and the uniform (in N) boundedness of

P and V. ||

Lemma 4.5. For z € dom A(a),

(4,9)  Jo(PN-1)a"2)| >0, as Noa
q

Proof: We use the triangle inequality to show
0PN - 1)az N i N)wNz”qN + “D[IN(nNz-z)]“.qN
+ oz - 2]l g + uo(z-anN
S G T R ORI LSRR
+ ]|D(INz-z)HqNb .

where the last inequality is due to estimates (4.5) (applicable since
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N_N

I'mze XN(qN)) and (4.6). Thus we have

”DP -InZHN

IA

NN - Dz o+ e - NN
q q
+ C2+1 ”‘TT -I)DZH N+”DIZ-1.HqN

)2

A

zereg(lla" - Dezll oy + flotz - 2]

2
q
F gD =Dzl gy + otz -2)l] y

where we have used (4.7) to argue the last inequality. Therefore,
the estimates in (4.1) and (4.3) may be

N

used to argue |[|D(P -I)nNz|| N 0 as Noe. ||
q

We now have the machinery at hand to complete our verification of the

hypotheses of Theorem 4.1 to obtain a statement of semigroup convergence.

Theorem 4.2. For each z € X(4) we have

HTN(t;qN)nNz-nNT(t;E)quN >0 as N+ «, uniformly in te[0,t].

Proof: It remains to argue that
”AN(qN)WNZ'-ﬂNA(a)ZH N>0 asNoe
q

for z € D. We see that

. '
Prp e
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14%@ )z - aMa@al] y - 17"tz - Gl

< 1P @) Pz o) ]y + IPEAGGY )z - MA@l ¢ P - taell

NN N

1A GqY) (PNAMz - nNZ)HqN-+|[A(qN)nNz -

A

n N N, v
-I)n A
A@z]] y+ IPT- DerAld)z]

i

5](N) + t"32(N) + 53(N)

That eB(N) + 0 as N+ = follows directly from (4.8). We consider e](N) and note that

NN

e (017 = || ((P%"2 - w2000, aforetalz- oMy L aocelez -t “ N

2
a5 ap()1 (P12 )y (0)12 + (@3 ot - )y

| A

where convergence of the second term follows from Lemma 4.5; in addition,

|(PNnNz-'nNz) (0)|2 > 0 as N » « because lemmas 4.4 and 4.5 guarantee the

N Nz - nNz)z. Thus e](N) +~ 0 as N+ «. Regarding

H (0,1) convergence of (P
e2(N), we use the equivalence of norms to write

2
[EZ(N)]Z _<_1J2 “ ((ﬂ - Tr-l)Zz(O), (q1 1r3 'nzq-l) DZ3 R (qgng -'ﬂgaz) 022 >T "

2
N N N 2 2

so that, from the convergence of n? -1 (i =1,2,3), and qN > 8 in Q, we have

ep(N) > 0 as N> o, |7
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N

Just as in [7], we may use the properties of nN, T", and T to obtain a

statement of semigroup convergence which does not involve the nN; similarly,

R to I for any

we can obtain an analog of (4.8), i.e., strong convergence of P
z ¢ X(4). Then, under the assumption that the mapping qg - s(-;qs):Rk -> H](O,f)
js continuous (so that both q > zo(q) and q -~ F(t;q) are continuous), we may
obtain state variable convergence via an argument based on the "variation of

constants" formulation of solutions.

Corollary 4.1. For zN(-;qN).and z(+34) solutions to (3.3) and (2.5)

respectively,

Il 2M(tsq") - Z(t;ﬁ)lqu >0 as N> o

uniformly in t e [0,t].

In addition, we may use the established state variable convergence to
conclude with the desired result of this section (a slight modification of
[5; p. 820]).

N

Theorem 4.3. Assume P is compact in the P- topology (see (2.7)) and that P is

N
a solution of.(IDN) for each N. Then {BN} contains a subsequence {P k} satisfying

N
(i) PF-BerP ,
Nk '\/Nk n
(ii) z “(e3p ") » z(+3p) (in an appropriate sense), and,

(iii) P is a solution of the original parameter estimation

problem (ID).

" Qur approximation theory is not compliete in that we have really only
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considered the problem of state space approximation and have not addressed
the problem of estimating truly variable parameters (where the infinite
dimensional parameter space P must also be discretized). In keeping with the
ideas of [6],[7] and [15], we shall avoid a priori parametrizations of P
and take a more general approach that involves (linear) spline-based
approximations for P that are independent of the level of state variable
approximation. To this end we define PN E IM(P) where IM takes elements
(ao, ays Bgs Bys €5 Q3 Gy q5) from P and interpolates the spat1a11y

varying components (a ags a1s By B]) toag- dependent mesh; that is,

IMp - (“0’ “T’ Bg, B¥, £s a3 §4, q5) where, e.g., for the case of ag,
M M £ 2M M
ag = ap” = Y a (xk)Bk (the £ - dependent knots xk and linear elements Bk

M is continuous in the

are defined in Section 3). It is easy to see that I
topology on P, so that compactness on P guarantees compactness on PM.

We now review our convergence theory in light of these finite dimensional

parameter spaces. Let J (DN M) = min J . From the construction of PM
pePM
. WNGM o MONLM,
there exists a sequence {p } in P such that p = I'p*"5 further, using

N.,Mk N.M
compactness of P, a subsequence {p 37Ky of {p >} may be found so that

NJ Mk M

p > B € Py using properties of I'' and by making additional smoothness

assumptions for P, we may argue that BNj’Mk -+ B € P. Simple modifications

in arguments made earlier in this section may be made to obtain corresponding
state variable convergence as Nj’Mk + =, We thus obtain an analog to Theorem 4.3
where a subsequence of solutions BN’M to the problem of minimizing JN over PM

converges to a solution p to the original problem (ID).
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5. HNumerical Implementation.

In this section we discuss some aspects of the computational algorithm for
solving the approximate parameter estimation problem (IDN) over the finite

dimensional parameter space PM. To simplify the presentation we assume that
1
p
form p = (BO, Bys £ G3s Gy q5) with corresponding parameter in Q,

v=1 and that 93 = — =1 is fixed so that an arbitrary parameter p € P has the

q = (a9, G3s Qg5 95)» Gp(x) = Bo(x) + B](x)HE(x). In order to more easily

describe the numerical algorithm in the case of truly variable 9o» it will be
more convenient to temporarily work with the parameter éL-instead of dy. To
2

this end, we note that éL-may be written
2

312-(x> = v(x) + v (K (x)

where Yo = 1/ Bg> Y7 T 1/ (304-31) - Ygs in practice (when we search for a
nonconstant q2), the C[0,1] functions vq and y] will be estimated in place of
By and By SO we shall use the notation ﬁ = (yo, Yys &5 935 A q5) to designate

the unknown parameter of interest and constrain p to belong to the usual parameter

set- P. Approximations BM to B, BM = (yg, yT, Es Qg5 Gg» q5) € M win be

constructed as in Section 4, i.e., we express yg, y¥ in terms of £ -dependent
2M n
linear spline elements %E by writing y? = ) b? k Br for i = 0,1. The
: k=0 °

approximation to ;L-fhen becomes,(—ll--)M = yg + Y?Ii , or,
ar 4 £



My
L by Be(x) »  xe[0£]
k=0
é%)M(x) =
%? (N + BN )BM(X) x'e (£,1]
L kdo 0k T PTLKPK

where £, bg K’ and b? K (k=0, ..., 2M) are unknown and to be determined. (We

remark that the use of Yoo Yq in place of By» B4 does not change our convergence

findings due to the fact that the convergence of BM to B in P yields the needed
convergence of pM to p in P, where now pM z (]/‘yg,'-ym/((yg + YT)Yg) ,
£, Q35 Gy qg) € P. ) |

For given values of N and parameters, aso]utionzN of approximating system (3.2) may be

N NN N N N
written z'(t;q) = .X wj(t;q)Bj where w' = co](wj) satisfies

j=0

QM) = Nwie) + Fl(te) . te (0,81

(5.1)

N _ .y N Ny N .
Here (F (t;q))i = < F(t,q), B, > and (wo)i <z By > for i =0, ..., 4N,

q’
while the (i,j) - elements of the (4N + 1) -square matrices QN and KN are

given by



24

N _ N N
Qij = <Bj’ B'i >q

1 | 1
a30,(0) (81), (8)), + L)(B?)Z 8%, +-j6 RCHIICHI

<
1t

N RN

' 1 | 1
a39,(0) (8} ,(0)(8}), + jOD(B§>3(B?)2 + [0 2y 92°5), (B3)

]

(’chroughout<-,->q denotes the X{q) inner product). For a typical i and j,

the last term in Q?j satisfies (for some 0 < 2, m < 2N),

1

1
. 1 N Ny _ T N N
JO a5 (Bj)3 (31)3 - fo a5 Bz Bm
_ M M YN MN M M M N N
= kZO by, k Jé By By Bp * kZO (bg,k * by, k) j; B B¢ B

where the parameterization for approximations to 1/q2 has been used.

If, in contrast to the approach we take here, the spline elements EE, Ey, Erl: are
defined on a uniform mesh, the appearance of £ in the range of integration for
the above integrals leads to a large amount of computational work: Such
quadratures must be recomputed each time that ¢ changes (i.e., every time the
parameter pM is 'updated in an iterative scheme to minimize JN over PM). An

advantage of our formulation is that we need only compute such quadratures once.

That is, we may use the coordinate transformation g in (3.1) to write
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1
2¢ f sﬂ sf sr’:
0

Ty o 1
M YN XN M N N
L:Bk B, Ey 2(1-5)J Se Sy Sn

1
2

1
Sg, Sg SS need only be evaluated once, at the outset,
4

1
where L; Sﬁ SN SN J
then stored for recall during iteration when the coefficients 2¢ and 2(1-%)
are updated. This savings in computational effort is even more substantial
in the case of multiple discontinuities Eqs +ves €y and in the case of
unknown 9y

We consider now several numerical examples which illustrate the ideas presented
thus far. In the examples that follow we return to the use of standard notation(si will
beusedinsteadofyi)and weassumethata]jparametersareknownexceptforso,BPand £, SO
that only 9y =8y + H€B1 is to be determined. The reader is referred to [7] for examples with
constant parameters in the source term s(t;qs).and in boundary conditions, and to
[15] for multiple discontinuity examples in the context of parabolic systems.
Indeed, both of these references provide a more complete numerical study than
we present here: In [ 7], more realistic seismic examples are considered,
as is the problem of surface observations (at x=0) only, while in [15],
examples are given to illustrate that the assumption that the number of
discontinuities is known a priori is not unnecessarily restrictive (one
may both overestimate and underestimate the number and still get Qsefu]
information).

In the examples that follow, the "true" parameter, B = (EO, E], gﬁ, is

known and is used for comparison with our approximations, pN’M = (éng, Bq’M, EN’M).
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Initial data for (2.1) is given, as are both velocity and pressure observations
(ut and aéux are determined from either analytic or finite difference

solutions for (2.1), with random noise added in some cases) at discrete time
and spatial locations. For our numerical examples we use a "pointwise"

fit-to-data criterion,

2
N _ N
(5.2) J(p)= ] |Cz (t53a(p))] - Yij
13\] X=‘x-i
T. T Y
where C(Z-l ,‘ 223 23) = (0,22,23) and ,Y]J = (03 ut(tjsxi)s (qzux)(tj’xi))T; we note

that in using BN (instead of the distributed criterion JN defined in Section 3) for our

examples, we are actually illustrating stronger convergence of zN(t) to z(t) than is

guaranteed in Section 4 (where only IR x H0 X Ho convergence is found). We

thus exploit the fact that in practice IR x C x C convergence is observed,

. %
and only present examples that use dN (numerous examples with distributed

N

criterion such as J" exist in the literature; e.g. [14] for an elliptic problem).

We initiate the parameter estimation process by supplying an initial '

0. (88, B?, 50) to IMSL's minimization routine ZXSSQ (a Levenberg-

Marquardt algorithm) which is used in the numerical minimization of BN. For

guess p

each updated value of p, the Nth approximating system (5.1) is solved using
IMSL's DGEAR, an ordinary differential equation solver. A1l calculations were
performed on the IBM 3081D at Southern Methodist University. .

Our first example is one in which an analytic solution u is available.
The construction of initial data and forcing function is somewhat artificial
and serves only to guarantee an analytic solution; nevertheless, this example
N(

is instructive in that it is the only one in which data Cz '(t) for the
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approximate solution is compared to exact observations (Cz(t)). In later

examples, random noise is added, or finite differences are used to solve for

u(t) and to construct observations Cz(t).

Example 5.1. We consider the problem of estimating the piecewise constant

parameter g, with true value

5 , xel[0, ,.4]
4, =
0 , xe(.4,1]

(thus &, = 5, (8, + §,) =10, & = .4). Observed data is calculated using the
0 0 ]

true solution

1 2 2
7-(-102.5x + 96x + 48) + 12.5tx~ , x e [0, .4] ,

u(t,x) =

2

[05(-31.25x% + 45x + 187) - 2t (5 - 10x + .8), x ¢ (.4, 1] ,

and is available at tj = .5, 1.0, 1.5, 2.0, and X; = di, =0, 1, ..., 10.
The actual model system we use here is a nonhomogeneous version of (2.1)

(with o = 1), i.e.,

2

[o3

U= 2 (B0 )+ f(tx) . te(0,E] L xel00]

N

t

(o34

where boundary and initial conditions are given in (2.1). For this nonhomogeneous

system we take f = Uiy - aZ”xx » U and 82 given above, and use q3 = 2,

Qg = 4, and s = 0 to construct the boundary conditions. Initial data and
forcing function for equation (3.2) are computed using u, Hz and f, i.e.,
25(x) = (u(0,0), ug(0,x), Gp(x)u,(0,x)) and F(t,x) = (0,f(t,x), 0).

We search for constant values of Bg and B> using the initial guess
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.001 , x e [0, .8]

uE
.001 , xe (.8, 1]

N

for N =2; we then use the converged values of a, to begin the iteration

on q, for the next value of N. Our results are summarized in Table 5.1.

Example 5.1.a. We repeat Example 5.1 but add Gaussian noise to our observations

at a level of 5% relative error. For example, if Gt = average value of ut(tj’xi) over

all i,j, then the new data for Uy is (ﬁt) = ut(t.,xi) +riss where rijfallsin1herange

1] J J
[-.osﬁt, .Osﬁt] with 99% certainty. These findings are reported in Table 5.1.a.

Example 5.1.b. We repeat Example 5.1 but add 10% relative noise to the

observed data; the results may be found in Table 5.1.b.

Example 5.2. We present here an example that is a modification/rescaling

(in order to include our boundary conditions) of an example found in [ 8 ; p. 381].
For this problem, the true value of 9 is given by
6.25 , x e-[0,%5] ,

v

Q9

6. , xe (%11 ,

(so (ab, ab + 31, 8) = (6.25, 36., .5)) while parameters a3 3 1, g = 6 are held
fixed. In keeping with [ 8], we use zq = (6(0), v, az¢x), where

s(x) = exp [-160(2x - .5)%] and y(x) = 1600(2x - .5) exp [-160(2x - .5)%] ,

for initial data, and set F = 0. Observations at times tj = .05, .1, .15, .2,

and spatial locations X; = .05, i=0, ..., 20, are determined by solving

(2.1) for u using a finite difference scheme (with aé, 93> Qs ¢ and y
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(true)

-
-——

(o) BN o « BN~ )

32

o' SR -~ X

16
32

N
Bo

(0.001)

4.942
4.959
4.974
4.987
4.991

(5.000)
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Table 5.1: Example 5.1

w0+BﬁN gt
(0.001) (.8000)
8.051 .4069
8.939 .4034
9.382 .4019
9.719 .4009
9.846 .4005
(10.000) (.4000)

109.05
24.21
5.21
1.27
0.31

Table 5.1.a: Example 5.1.a (5% Noise Level)

Bg (BO+B])N N N
4.952 8.064 .4075 109.64
4,981 8.999 .4042 30.06
4,953 8.934 .4042 24.87
4.959 9.124 .4039 14.88
5.001 9.877 .4010 7.71

Table 5.1.b: Example 5.1.b. (10% Noise Level)

84 (8 +8y)" g\ i
4.986 8.150 .4092 202.39
4,957 8.001 .4098 194.80
4.974 8.703 .4071 153,74
4,974 8.704 L4071 133.75
5.072 8.640 .4280 123.16

CP. time
(secs)

20.
67.
410.
1309.
1141.

CP time

(secs)

20.
65.
203.
638.
1901.

CP time

(secs)

19.
61.
185.
300.
659.
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as above; s=0). We note that this finite difference solution for t e [0 ,.2],
matches the graph in [8; Fig. 2] for t € [0 ,2.0] (our problem has been
rescaled), and that we obtain similar wave reflection/transmission behavior at
the interface (see Fig. 5.1).

To estimate constant values of Bg and By» We use an initial guess

of

15. , xe[0,.4] ,

Q-
]5. 3 XE (0491-] )

for N = 4 and use previous converged values to begin the N = 8, 16, 32, 40

iterations. Our findings are given in Table 5.2 below.

Table 5.2. Example 5.2

N 8y (8 +8)" e M Tscans
(init) ~ (15.00) (15.00) (.4000)

4 13.78 16.92 4667 158.09 14,

8 9.78 23.09 .5105 147.85 174.

16  5.95 32.10 L4641 60.07 130.

32 6.30  35.93 .5000 1.21 260.

0 6.26 35.95 5004 0.44 245.

(true) (6.25) (36.00) (.5000)
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Example 5.3 Finally,we consider an example with truly spatially varying dps

2.5x + 1.5 , x e [0,.6] ,

2

15.625x~ - 24.375x + 9.75 , xe (.6,1] ,

(so that true ¥ = .6). We fixed q3 = 1, g, = 1, initial data 2y = (¢(0),
v, 3¢x), where ¢(x) = e* and v(x) = -e*, and set F = 0(i.e., s =0). Velocity and
pressure observations wereobtained by solving (2.1) (with the above parameter values

and initial data) using finite difference techniques; observations

were available at tj = .5, 1.0, 1.5, 2.0, and X; = 05i, 1i=0,1, ..., 20.

The results of the parameter estimation process are illustrated in Figures 5.2 -
1

5.4 where we compare the graphs of — with those of the converged parameter (gE)N’M

q v .
(we recall that-g— is used as the pagameter in case of truly variable qz). Figure 5.2
2
depicts the outcome of the estimation process when an initial guess of

2. , xel0,.7]
Q9 =
2. o, xe(.7,1]

is used, and search is made in the space PM, M =3. Figures 5.3 and 5.4 show
results‘for M =4 and M = 5, respectively, where the initial guess for M = 4
(M =5) is the M =4 (M = 5) linear interpolation of the converged value of

(17a) " for M= 3 (M = 4) and N = 40.
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