NASA Technical Memorandum 87685

Sonic-Boom Research—Selected Bibliography With Annotation

Harvey H. Hubbard, Domenic J. Maglieri, and David G. Stephens

SEPTEMBER 1986
Sonic-Boom Research—Selected Bibliography With Annotation

Harvey H. Hubbard
Bionetics Corp.
Hampton, Virginia

Domenic J. Maglieri and David G. Stephens
Langley Research Center
Hampton, Virginia
Contents

1 General Sonic-Boom Publications 1
2 Prediction and Measurement of Steady-Flight Sonic Booms 3
3 Steady-Flight Sonic-Boom Minimization by Design and Operation 9
4 Prediction and Measurement of Accelerating-Flight Sonic Booms 12
5 Sonic-Boom Propagation 16
6 Effects of Sonic Booms and Aircraft Noise on People and Communities 20
7 Effects of Sonic Booms and Aircraft Noise on Structures 30
8 Effects of Sonic Booms and Aircraft Noise on Animals and Birds 35
9 Effects of Sonic Booms on Terrain 37
10 Sonic-Boom Simulator Technology 39
Introduction

This document has been prepared, on request, for the USAF Noise and Sonic Boom Impact Technology (NSBIT) Advanced Development Office. It is a selected bibliography, with some annotation, of sonic-boom-related research papers significant to the NSBIT Program. They are grouped together for convenience into the following sections: general sonic-boom publications, prediction and measurement of steady-flight sonic booms, steady-flight sonic-boom minimization by design and operation, prediction and measurement of accelerating-flight sonic booms, sonic-boom propagation, sonic-boom simulator technology, and effects of sonic booms on people and communities, animals, birds, structures, and terrain. For those sections relating to the effects on animals, birds, people, communities, and structures, the scope is enlarged to include some aircraft-noise-related papers as well.

Our intent is to include those papers which collectively represent the state of the art in each of the subject areas of concern to the NSBIT Program. Certain key documents are listed first and abstracts are included when available. Other documents are then listed in chronological order without annotation. All documents are believed to be available, on request, from one of the sources listed below. The appropriate acquisition numbers are included when available to facilitate the filling of requests from the following sources.

<table>
<thead>
<tr>
<th>Source</th>
<th>Type of Material</th>
<th>Acquisition Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>American Institute of Aeronautics and</td>
<td>AIAA papers and published literature</td>
<td>A Numbers</td>
</tr>
<tr>
<td>Astronautics Technical Information Service</td>
<td>available from AIAA or in journals,</td>
<td>Example</td>
</tr>
<tr>
<td>555 West 57th St., 12th Floor</td>
<td>conferences, etc., as indicated</td>
<td>A75-25583</td>
</tr>
<tr>
<td>New York, NY 10019</td>
<td></td>
<td></td>
</tr>
<tr>
<td>National Technical Information Service</td>
<td>Report literature having no distribution</td>
<td>N Numbers</td>
</tr>
<tr>
<td>(NTIS)</td>
<td>limitation</td>
<td>Example</td>
</tr>
<tr>
<td>5285 Port Royal Road</td>
<td></td>
<td>N67-37604</td>
</tr>
<tr>
<td>Springfield, VA 22161</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NASA Scientific and Technical Information</td>
<td>Report literature having some kind of</td>
<td>X Numbers</td>
</tr>
<tr>
<td>Facility (STIF)</td>
<td>distribution limitation</td>
<td>Example</td>
</tr>
<tr>
<td>P O Box 8757</td>
<td></td>
<td>X71-83753</td>
</tr>
<tr>
<td>B W I. Airport, MD 21240</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Defense Technical Information Center</td>
<td>Report literature with or without</td>
<td>AD Numbers</td>
</tr>
<tr>
<td>Cameron Station</td>
<td>distribution limitation</td>
<td>Example</td>
</tr>
<tr>
<td>Alexandria, VA 22314</td>
<td></td>
<td>AD 475 662</td>
</tr>
</tbody>
</table>

For those documents having no acquisition number listed, copies may be obtained from NTIS, provided a complete citation is furnished. Some relevant documents have not been listed because it is known that certain material was published in other forms in the latter case, preference is given to the more recent publications. Many of the key documents, particularly those listed as general publications, have extensive reference lists and bibliographies which are complementary to those listed herein.
1. General Sonic-Boom Publications

A66-33020

The proceedings contain 11 state-of-the-art papers on generation, propagation, prediction, and measurement of sonic booms. The response of people and communities and an assessment of the problem for future vehicles are included.

N67-36765

This document contains discussions of the plans for the Edwards Air Force Base Sonic-Boom research and the results of meteorological studies, flyover tests of human subjects, structural response measurements, seismic measurements, and observations of responses of farm animals.

N68-21413

The proceedings document contains 12 papers on basic sonic-boom theory, wind tunnel and flight measurements, atmospheric effects, effects on people and structures, and sonic-boom reduction by operations and design.

N68-34907

The proceedings contain 18 state-of-the-art papers on sonic-boom theory, measurements, control of signature shape, lift effects, nonlinear effects, and propagation through caustics.

X68-19452

N71-21076

The report contains a condensed summary of the current knowledge, as of 1970, about the effects of sonic booms on human beings, property, animals, and terrain.

N71-23363

The proceedings contain 29 papers and the summary of a panel discussion on the theoretical and experimental aspects of sonic-boom generation, propagation, and minimization.

A72-21901

State-of-the-art papers are presented on sonic-boom prediction, minimization, propagation, focusing in maneuvers, simulation devices, seismic and underwater responses, building responses including damage, animal responses, and human responses.

A72-23320

Summary papers and discussions from a workshop held near Stockholm, Sweden, on September 9-11, 1971, are presented on several aspects of sonic-boom exposure effects, including generation and propagation, sonic-boom research, effects on structures and terrain, sleep effects, startle responses, annoyance reactions, effects on animals, and sonic-boom generators.

A73-41174

Some of the Concorde's supersonic test flying has been conducted along a so-called West Coast Route of Great Britain, and opportunity was taken to glean information on the effects of the sonic bangs. The sonic-bang waveform was measured for each flight at up to 12 measuring stations positioned along the route. The results of these measurements were analyzed, providing information on the signal interval, characteristic overpressure, and maximum pressure rise rate. Some indication of the subjective effects on humans was obtained from analysis of complaints. Qualitative studies were made on some animals, birds, and fish. Observations and measurements were made on various buildings, and two specific studies on terrain effects were made.

A74-46239

The sonic-boom research program recently initiated at UTIAS has already become quite extensive. A summary of research work already completed and in progress has been made. It includes many projects such as prediction techniques of sonic-boom phenomena (corridor width, effects of aircraft maneuvers on focusing of sonic boom, spiked and rounded sonic booms from atmospheric turbulence effects, and sonic-boom signature in the shadow zone), the development of sonic-boom simulation facilities (portable simulator, loudspeaker-driven booth, and traveling-wave horn) and effects of sonic boom on humans (hearing loss, heart-rate change, and automobile-driver behavior), animals (damage to eochleae of mice), and structures (cracking of plaster panels).
Authors present definitions of sonic-boom carpets, both primary and secondary, and discuss existing experience with primary sonic booms, including the status of overpressure predictions and boom minimization methodology through airplane design. They also give indications of the nature of sonic-boom waveforms and their audibility, along with data on focus booms resulting from aircraft maneuvers and the effects of abnormal atmospheric conditions on these maneuver booms.

2. Prediction and Measurement of Steady-Flight Sonic Booms

Key Documents

The methods are applied to several flight maneuvers and the results are discussed in detail. The effect on sonic-bang distributions and intensities of refraction (caused by the temperature gradient existing in the actual atmosphere) are also considered.

Measured data are presented for two different sizes of aircraft and for a range of flight conditions. Measurements were made out to about 40 miles perpendicular to the ground track and for different weather conditions.

Measurements of sonic-boom ground overpressures have been made for the period February to July 1964 and for several flights each day. Data were obtained both inside and outside of buildings at locations on the ground track and at distances from the ground track of about 5 and 10 miles. Statistical analyses have been performed for both the overpressure and impulse data.

17. Hubbard, Harvey H , Maglener, Domenic J , Huckel, Vera, and Hilton, David A Ground Measurements of Sonic-Boom Pressures for the Altitude Range of 10,000 to 75,000 Feet. NASA TR R-198, 1964 (Superseded NASA TM X-633) N64-24824

The U.S. Air Force, National Aeronautics and Space Administration, and Federal Aviation Administration have engaged in a joint research program for the purpose of measuring sonic-boom pressure signatures. These measurements are presented for several locations for flight-testing of fighter and bomber airplanes in the altitude range from about 10,000 to 75,000 ft and at Mach numbers from about 1.1 to 2.0. Data were obtained for a variety of atmospheric wind and temperature gradients and for various flight paths and acceleration rates.

Current theoretical methods of estimating the flow field surrounding airplanes in supersonic flight are based on Whitham's solution for the flow about bodies of revolution and on other theoretical work that makes possible the representation of a complete airplane as an equivalent body of revolution. This paper presents a review of the fundamental theory and discusses the use of high-speed digital computers in providing rapid and reliable analysis of sonic-boom characteristics of complex airplane configurations. Application of the estimation techniques is illustrated in correlation with wind-tunnel and flight-test measurements.

This paper is a report on the state of knowledge of sonic-boom phenomena. The pressure buildups in the transonic-speed range and the lateral extent of the pattern in steady flight for quiescent atmospheric conditions are described. Also discussed are recent data from flight-test studies relating to atmospheric dynamic effects on the sonic-boom signatures. The acceleration and lateral-spread phenomena appear to be fairly well understood and predictable for current and future aircraft. Variations in the sonic-boom signature as a result of the effects of the atmosphere can be expected during routine operations. From the data evaluated to date, very similar variations in pressure signatures are noted for both fighter and bomber aircraft.

Within the past two decades, the combined contributions of scientists and engineers in this country and abroad have resulted in development of systematic and reliable methods for the prediction of sonic-boom phenomena. The prediction techniques reviewed in the present paper permit the calculation of sonic booms produced by rather complex conventional supersonic aircraft designs performing level, nonaccelerated flight in a quiet atmosphere. It has been found that the calculated characteristics
for a quiet atmosphere are representative of normal conditions in a statistical sense for a real atmosphere. Basic concepts of supersonic flow analysis, for representation of an airplane as a linear distribution of disturbances and for determination of the resultant pressure field complete with shocks, are outlined. numerical techniques for implementation of the theory are discussed briefly, and examples of the correlation of theory with experimental data from wind tunnel and flight tests are presented. Special attention is given to presentation of a simplified method for rapid "first-cut" estimation of far-field bow-shock overpressure. Finally, some problems encountered in attempts at applying the prediction techniques for the near field at high supersonic Mach numbers are recognized, and the need for further refinement of present techniques or the development of new systems is discussed.

A simplified method for the calculation of sonic-boom characteristics for a wide variety of supersonic airplane configurations and spacecraft operating at altitudes up to 76 km has been developed. Sonic-boom overpressures and signature duration may be predicted for the entire affected ground area for vehicles in level flight or in moderate climbing or descending flight paths. The outlined procedure relies to a great extent on the use of charts to provide generation and propagation factors for use in relatively simple expressions for signature calculation. Computational requirements can be met by hand-held scientific calculators, or even by slide rules. A variety of correlations of predicted and measured sonic-boom data for airplanes and spacecraft serve to demonstrate the applicability of the simplified method.

Other Documents

36. Morris, Odell A A Wind-Tunnel Investigation at a Mach Number of 2.01 of the Sonic-Boom Characteristics of Three Wing-Body Combinations Differing In Wing Longitudinal Location. NASA TN D-1384, 1962

40. Barger, Raymond L Some Effects of Flight Path and Atmospheric Variations on the Boom Propagated From a Supersonic Aircraft. NASA TR R-191, 1964

54. Morris, Odell A Wind-Tunnel Investigation of Sonic-Boom Characteristics of a Delta-Wing Combination at Mach Numbers of 1.41 and 2.01. NASA TN D-3455, 1966

69 Barger, Raymond L Design of Bodies To Produce Specified Sonic-Boom Signatures. NASA TN D-4704, 1968 N68-31484

70 Hubbard, Harvey H Recent Results of Sonic Boom Research NASA TM X-61240, 1968 N68-34432

71. Aircraft Engine Noise and Sonic Boom. AGARD-CP-42, May 1969 N70-13137

87 Miller, David S, Morris, Odell A, and Carlson, Harry W Wind-Tunnel Investigation of Sonic-Boom Characteristics of Two Simple Wing Models at Mach Numbers From 2.3 to 4.63. NASA TN D-6201, 1971

89 Schorling, Michael Calculation of Supersonic Flows at Large Distances From Slender Lifting Bodies. NASA TN D-6446, 1971

91 Pan, Y S, and Varner, M O Studies on Sonic Boom at High Mach Numbers. AIAA Paper 72-652, June 1972

94 Magheri, Domenic J, Huckel, Vera, and Henderson, Herbert R Sonic-Boom Measurements for SR-71 Aircraft
Operating at Mach Numbers to 3.0 and Altitudes to 24,384 Meters. NASA TN D-6823, 1972

98. Hunton, Lynn W, Hicks, Raymond M, and Mendoza, Joel P Some Effects of Wing Planform on Sonic Boom NASA TN D-7160, 1973

104. Findley, Donald S Comparison of Measured and Calculated Aircraft Lift Generated Pressures NASA TM X-72707, 1975

112. Darden, Christine M An Analysis of Shock Coalescence Including Three-Dimensional Effects With Application to Sonic Boom Extrapolation. NASA TP-2214, 1984

3. Steady-Flight Sonic-Boom Minimization by Design and Operation

Key Documents

Section III of this conference contained two experimental papers relating to flights at cutoff Mach number and for definition of lateral cutoff. Ten analytical papers relate to minimizing the strength of sonic booms from steady flight operations. Such topics as shock coalescence, airstream alteration, low-sonic-boom body shapes and unconventional configurations are included.

There have been many attempts to reduce or eliminate the sonic boom. Such attempts fall into two categories: (1) aerodynamic minimization and (2) exotic configurations. In the first category, changes in the entropy and the Bernoulli constant are neglected and equivalent body shapes required to minimize the overpressure, the shock pressure rise, and the impulse are deduced. These results include the beneficial effects of atmospheric stratification. In the second category, the effective length of the aircraft is increased or its base area decreased by modifying the Bernoulli constant a significant fraction of the flow past the aircraft. A figure of merit is introduced which makes it possible to judge the effectiveness of the latter schemes.

This paper gives a brief review of the currently accepted understanding of sonic boom phenomena and describes the manner in which modified linearized theory and geometric acoustics are used to predict the sonic boom caused by a complex aircraft configuration. Minimization methods that have evolved in recent years are discussed, with particular attention given to a method developed by Seebass and George for an isothermal atmosphere which was modified for the real atmosphere by Darden. An additional modification which permits the relaxation of the nose bluntness requirement in the defining aircraft is also discussed. Finally, an overview of current areas of sonic boom research is given.

Other Documents

140. Darden, Christine M. Minimization of Sonic-Boom Parameters in Real and Isothermal Atmospheres. NASA TN D-7842, 1975

141. Darden, Christine M. Comparison of Sonic Boom Minimization Results in Real and Isothermal Atmospheres. J. Aircr., vol. 12, no. 5, May 1975, pp. 496–497

144. Darden, Christine M. Sonic-Boom Minimization With Nose-Bluntness Relaxation. NASA TP-1348, 1979

A79-26927

N81-21016
4. Prediction and Measurement of Accelerating-Flight Sonic Booms

Key Documents

148 Lansng, Donald L Application of Acoustic Theory to Prediction of Sonic-Boom Ground Patterns From Maneuvering Aircraft. NASA TN D-1860, 1964

N64-37223

The acoustic theory of the propagation of weak disturbances through an atmosphere having a linearly decreasing sound speed is applied to the problem of determining the location of the shock wave produced by a maneuvering aircraft. A graphical procedure involving ray tracing and an analytical procedure based on the ballistic wave are discussed. Some examples are given which show the effects typical flight maneuvers may have upon the ground shock pattern.

149 Maglner, Domenic J, and Lansng, Donald L Sonic Booms From Aircraft in Maneuvers. NASA TN D-2370, 1964

N64-21271

Superboom measurements and calculated pressure patterns have been made for fighter aircraft in level accelerated flight and in turn maneuvers. A summary of the main findings of these superboom studies, qualitative comparisons with analysis, and a physical explanation of some of the observed phenomena are presented.

150 Lansng, Donald L, and Maglner, Domenic J Comparison of Measured and Calculated Sonic-Boom Ground Patterns Due to Several Different Aircraft Maneuvers. NASA TN D-2730, 1965

N64-25808

Detailed comparisons of the measured and calculated ground-shock pressure patterns resulting from aircraft performing pushover-dive-pullout, longitudinal-acceleration, pullup-climb-pusherover, and circular-turn maneuvers are presented. Calculations of the arrival time of the shock wave and the pressure amplitude as a function of distance along the ground are compared with the measurements from an array of microphones. Specific cases are also presented in which the superboom phenomena were obtained.

A72-29586

Under certain circumstances, it is possible for a maneuvering supersonic aircraft to produce sonic booms with overpressures much larger than would be normally expected. Such superbooms occur at points near those where the geometrical acoustics rays tend to focus. Linear acoustics allows the possibility of such focusing occurring along a surface in space known as a caustic. The generation of cusped caustics as a consequence of maneuvering or accelerating supersonic aircraft is discussed, and a simplified theory for the estimation of the peak overpressure at a caustic cusp is presented.

A72-36506

Knowledge of sonic booms produced by airplanes in steady rectilinear flight is not sufficient to allow for good predictions of the phenomena. In order to improve the knowledge of the effects of accelerations and curvatures of the flight path, the French Working Group on sonic booms has undertaken a set of theoretical and experimental studies on that subject. Theoretical studies of the propagation of the shock waves have helped identify the different cases of focus (linear acceleration, turn, pushover) and superfocusing (entry to turn). They have also shown that, after measurement of the actual characteristics of the atmosphere, it was possible to guide an airplane in order to produce focusing in a measurement zone of realistic size. During the four experimental exercises of "Operation Jericho," the accuracy of prediction of propagation and guidance of the airplane has shown that focus factors are higher than those predicted.

A73-36907

Results of theoretical and experimental studies of the problem of the supersonic boom are presented. These results concern the structure of the shock wave system generated by an aircraft traveling at supersonic speed in rectilinear flight, the changes in this structure during rectilinear acceleration, turning in the horizontal plane, and descent, and the value of the amplification coefficient due to focusing or superfocusing of the overpressure wave accompanying a sonic boom.

A new program called TRAPS has been written having the capability of modeling an aircraft-created sonic boom. Like an earlier program (ARAP), this program allows the aircraft to perform an arbitrary sequence of maneuvers, accelerations, and decelerations, and it uses a stratified atmospheric model of either a standard or user-specified composition. The new
program introduces the new feature of accounting for sonic booms which travel upward initially, but are subsequently refracted from the stratopause (≥50,000 m) or the thermosphere (≥100,000 m). Overpressures and shocks are computed from an initial aircraft F-function on the basis of Aging and Hilbert Transforms applied according to the travel paths (rays) of the acoustic energy. In addition, input procedures are simplified and information is made available as to what proportion of the aircraft sonic boom can intercept the ground.

Fighter aircraft, when engaged in air-to-air combat training maneuvers where supersonic flight is permitted, produce sonic booms. Definition of the noise environment at locations on the ground below these maneuver areas must rely on statistical descriptions of aircraft operating parameters and geographic location. Distribution functions for pertinent parameters are developed here for different fighter airplanes by analysis of tracking data obtained by air combat maneuvering instrumentation at supersonic military operating areas associated with Luke and Nellis Air Force Bases. In a second part of these studies a variety of pressure-time histories produced at ground microphone positions by sonic booms produced by an F-104 in an early NASA study are analyzed to obtain A-weighted and C-weighted sound levels. Particular attention was paid to the difference between peak unweighted overpressure, when expressed in decibels, and frequency-weighted sound exposure levels for sonic booms near a caustic produced by focusing during accelerated maneuvers and as lateral cutoff conditions are approached.

A review has been performed of sonic-boom focusing phenomena associated with U.S. Air Force supersonic training exercises. Specific aircraft considered were the F-4, F-15, F-16, and SR-71. Results for the three fighter aircraft are applicable to supersonic fighters in general, including the F-14 and F-18. It was found that, while the area over which focal zones occur is never more than a small fraction of the total boom footprint, virtually all transonic accelerations will generate some focus. This covers the normal training range of fighters and the initial phase of SR-71 supersonic missions. A matrix of focusing maneuvers, for which footprints should be computed, has been prepared.

Other Documents

161. Tarnogrodzki, A., and Luczywek, E. Approximate Method of Determination of Location of a Sonic Boom

176. Henderson, Herbert R., and Hilton, David A. Sonic-Boom Measurements in the Focus Region During the Ascent of Apollo 17. NASA TN D-7806, 1974

183. Schilling, H. Supersonic Maneuvers Without Superbooms. Paper presented at 24th Annual Conference on Aviation and Astronautics (Tel Aviv and Haifa, Israel), Feb 17–18, 1982

184. Schilling, H. Occurrence and Intensity of Focused Sonic Booms. VDI-Z Fortschr.-Ber., Reihe 7—Strom tech, no 63, 1982

5. Sonic-Boom Propagation

Key Documents

AD 610-463

This report is a study of the effect of changing meteorological conditions on the sonic boom produced during steady level flight. The influence of variations in atmospheric temperature, pressure, and wind on this noise are investigated. Simplified methods are established for estimating the effect of these variations. Combinations of meteorological conditions which can produce anomalous propagation such as complete cutoff, focusing, and extreme lateral spread are discussed. The effect of air turbulence near the ground is considered. A number of comparisons with test data measured at Oklahoma City (1964) are presented, and recommendations for additional experimental and theoretical work are outlined.

N68-21416

Flight-test results obtained with the aid of small, medium, and large aircraft are presented to show the significance of the atmosphere and aircraft operation on sonic-boom exposures. The acceleration and lateral-spread phenomena appear to be fairly well understood and predictable for current and future aircraft. Variations in the sonic-boom signature as a result of the effects of the atmosphere can be expected during routine operations. From the data evaluated to date, very similar variations in pressure signatures are noted for small, medium, and large aircraft. That portion of the atmosphere below about 2000 ft is shown to be most influential, although in some cases the higher portions may also be important. Aircraft motions, in the form of perturbations about the normal flight track, are shown not to contribute significantly to observed sonic-boom signature variations. For cases where a large number of overpressure data points are available, the average measured values correlate well with current theoretical predictions.

N68-24682

This report reviews the most pertinent information obtained in recent years relating to atmospheric effects on the sonic boom and, in particular, includes some results of various flight programs. These atmospheric effects are complex, and a statistical approach appears necessary. The statistics of peak pressures follows approximately a log normal distribution, a result that is indicated by existing theory for pure (sinusoidal) sound. A tabular summary of the flight data gives the standard deviations of pressure peaks relative to nominal calculated values of the mean. Information is included on observed variations of sonic-boom signatures for different types and sizes of airplanes. Measurements indicate that wavelike spatial patterns exist in which peaked and rounded waves may alternate and vary with time. Such variations are shown to be induced by the atmosphere rather than by effects of airplane unsteady motion. The spectral content of some ideal and some measured pressure signatures is exhibited and discussed with reference to peakedness or roundness of the wave.

A72-21905

A review is given of information obtained in recent years concerning the effects on sonic-boom signatures of departures of the atmosphere from a perfectly stratified time invariant model. These effects include the observed random variations in boom overpressures from those expected for a stratified atmosphere, the anomalously large and variable rise times, and the occurrence of spiked or rounded waveforms rather than the characteristic N waves. The extent of the variability in data recorded during actual flight tests is summarized in the form of histograms representing experimentally obtained probability density functions. The physical mechanisms believed to be responsible for the variations and the anomalous features in the signatures are described. These include refraction and subsequent wavefront rippling by turbulence, the possible focusing or defocusing of rays, the formation of caustics, and the phenomena of wavefront folding, diffraction, and scattering. Recent statistical theories of shock propagation through a turbulent atmosphere proposed by Crow, George and Plotkin, Pierce, Hornung, and others are reviewed.

A78-48052

Infra-acoustic signals from supersonic flights of the Concorde are regularly recorded in northern Sweden at distances up to 5000 km from the aircraft. Relatively high signal amplitudes (up to 0.1 N/m²) are explained by a kind of long-distance focusing effect. Principle and consequences of the focusing effect are discussed.

A80-20399
A nonlinear theory for the long-range propagation of sonic booms through the thermosphere has been developed. A realistic atmosphere is employed, and consideration is given to nonlinear stretching and decay of the wave, the effects of the caustic, the linear caustic attenuation, and the increase in Mach number due to the decreasing density at high altitudes. Results are presented for Concorde SST in straight, level, and steady flight at 17.5 km and a velocity of Mach 2. The sound level is a minimum along the flight track with the maximum signal strength occurring about 300 km off the flight track. The strongest received signal travels initially downward and reflects off the surface of the ocean to the thermosphere. The wave turns around at an altitude of 160 km and is returned back to the ground at a horizontal distance of 320 km from the launch point. Ninety percent of the wave's energy is attenuated below 100 km with 99 percent attenuated by the time the wave reaches the turning point.

Other Documents

212. Stuff, Roland
Die Theorie der Knaulausbreitung in einer geschichteten Atmosphäre
Z Flugwiss., Jahrg. 17, Heft 5, Mai 1969, pp 156–164
A69-31171

213. Beasley, W D., Brooks, J D., and Barger, R L
A Laboratory Investigation of N-Wave Focusing
NASA TN D-5306, 1969
N69-31874

214. Baestek, Andrzej
Analysis and Determination of the Propagation of Sonic Booms.
A70-18779

Sonic Boom Propagation in a Stratified Atmosphere, With Computer Program.
NASA CR-1299, 1969
N69-22546

Variability in Sonic-Boom Signatures Measured Along an 8000-Foot Linear Array.
NASA TN D-5040, 1969
N69-17279

217. Tarnogrodski, A
Propagation of the Sonic Boom in the Still Atmosphere With Temperature Gradient
Arch Mecl Stosow, vol XXI, no 3, 1969, pp 271–280
A70-15786

218. Plotkin, Kenneth J., and George, A R
Weak Shock Waves in Turbulent Media
AIAA Paper 70-54, Jan 1970
A70-18190

219. Bauer, A B., and Bagley, C J
Sonic Boom Modeling Investigation of Topographical and Atmospheric Effects
Rep No FAA-NO-70-10, July 1970
N70-36809

220. Brooks, J D., Beasley, W D., and Barger, R L
Laboratory Investigation of Diffraction and Reflection of Sonic Boom by Buildings.
NASA TN D-5830, 1970
N70-30850

221. Hubbard, Harvey H., Maghen, Dominic J., and Huckel, Vera
N71-28389

222. Plotkin, Kenneth Jay
The Effect of Atmospheric Inhomogeneities on the Sonic Boom.
N72-23004

223. Davy, Bruce A., and Blackstock, David T
Measurements of the Refraction and Diffraction of a Short N Wave by a Gas-Filled Soap Bubble.
A71-24811

224. George, A R., and Plotkin, Kenneth J
Propagation of Sonic Booms and Other Weak Nonlinear Waves Through Turbulence
Phys Fluids, vol 14, no 3, Mar 1971, pp 548–554
A71-22858

225. Pierce, Allan D
Statistical Theory of Atmospheric Turbulence Effects on Sonic-Boom Rise Times
A71-24817

226. Kamali, Give
Sonic Boom Distortion by Atmospheric Turbulence

227. Herbert, Gary A., and Hass, William A
The Pendleton Project—A Study of the Atmospheric Effect on Weak Shock Waves Traversing Long Ray Paths
NOAA TR ERL 220-ARL 1, U S Dep Commer., Dec 1971

228. Hornung, W A
Sonic Boom in Turbulence.
NASA CR-1879, 1971
N71-33283

229. Hayes, Wallace D., and Runyan, Harry L
Sonic-Boom Propagation Through a Stratified Atmosphere.
A72-21904

230. Pierce, Allan D., and Maghen, Dominic J
Effects of Atmospheric Irregularities on Sonic-Boom Propagation.
A72-21905

231. Schorling, Michael A
A Nonlinear Theory for Sonic-Boom Calculations in a Stratified Atmosphere
NASA TN D-7105, 1973
N73-20010

232. Sirovich, L., and Chong, T H
Supersonic Flight in a Stratified Sheared Atmosphere
Phys Fluids, vol 17, no 2, Feb 1974, pp 310–320
A74-38755

6. Effects of Sonic Booms and Aircraft Noise on People and Communities

Key Documents

N66-35091

During a period of six months from February to July 1964, the Oklahoma City, Oklahoma, area was repeatedly exposed to sonic booms generated to simulate overpressure levels that are expected for supersonic transport overflights. The schedule provided for eight sonic booms per day. During the 6-month period, almost 3000 local residents were interviewed 3 times to determine the nature and extent of their reactions to the sonic booms. This report contains a detailed description of the overall study design including the selection of households, selections of respondents, training and selection of interviewers, and samples of questionnaires used during the interviews.

X66-16041

Exercise Westminster was a demonstration of sonic booms, together with some explosive bangs and flyovers by a jet aircraft, staged for an invited audience. This report describes how the exercise was conducted, from the operational point of view, and what monitoring measurements were made. An analysis of the physical characteristics of the sonic booms and other events is made.

Data are presented from a series of community-reaction flight experiments in which the population of a large city was repeatedly exposed to sonic booms in the range of overpressures up to about 31 lb/ft². Results were obtained from direct interviews, analyses of complaint files, and engineering evaluations of alleged damage and are correlated with information on aircraft operations and sonic-boom pressure measurements.

X66-23222

An investigation has been made, using explosive charges as the source of the bangs, of the effect of bangs on the subjective reaction of a community. Although the exercise had many imperfections, the two main facts that emerged were that the percentage of persons annoyed became less as the bangs became an established feature of the environment and that the exchange rate found between the effect of frequency and the effect of intensity was not inconsistent with that implied by the noise and number index concept introduced by the Wilson Committee on the problem of noise.

A66-33028

The vicinity of St Louis, Missouri, was repeatedly exposed to sonic booms ranging in overpressures up to about 31 lb/ft² during 1961-1962. Data obtained from over 2300 direct interviews, analyses of complaints, and engineering evaluation of alleged damage are related to information on aircraft operations and sonic-boom overpressure measurements.

A66-33027

This introduction to the second part of the Sonic-Boom Symposium reviews the history of observations on human reactions to the sonic boom from the time when the boom was a demonstration curiosity to the present day where reaction of the population to the sonic boom is a scientific problem of technical, economic, social, and political consequences at the national and international levels. The field programs conducted by the USAF and NASA over the last 15 years and over the last 5 years by the FAA were all of limited scope with respect to exploring direct and indirect physiological and psychological human reactions to sonic booms of different intensity and exposure frequency. Although the data accumulated might be adequate to decide on preliminary stopgap exposure criteria, it is obvious that a broader approach to the problem is required. Laboratory work in support of these questions has hardly been started. Neither conventional acoustic and vibration generators for boom-type simulation nor special equipment for high-fidelity sonic-boom simulation have been fully utilized. Some of the open questions and possible approaches are discussed as part of a broad, long-range research program required to come up with scientific data as bases for operational sonic-boom exposure criteria.

A67-34393
An experiment is described in which 61 subjects used the method of direct magnitude estimation to judge the relative annoyance of sonic bangs, explosions, and jet aircraft noise. Artificial white noises were included to test the subjects' performance for individual consistency and to compare their results with the established relationship between subjective magnitude and objective level.

A review is given of recently published research on human reactions caused by sonic booms. Some of the limitations of these studies are pointed out, and recommendations are presented with respect to the requirements and optimum course of future research. It is shown that the development of an annoyance reaction is dependent upon several primary reactions in addition to non-exposure-related factors in the environment. This report is from a workshop on methods and criteria held in Stockholm, Sweden.

A review is given of quantitative data which express sleep interference in terms of certain aspects of sleep patterns (sleep stage and accumulated sleep time), individual differences (age, sex, temperament, and responsiveness), and stimulus variables (type of sound and intensity). The findings of laboratory studies and their relationship to real-life situations are discussed, together with suggestions for standardization of some of the experimental techniques used in different laboratories in order to receive the maximum information from research efforts on sleep disturbance due to sonic booms. This report is from a workshop on methods and criteria held in Stockholm, Sweden.

A review is given of human reactions to impulsive acoustic stimuli of the sonic-boom kind in terms of startle reflexes, orienting responses, and effects on performance. Various aspects of reflex response measurement and conditioning are discussed, including overt behavioral, physiological, and subjective indices, relevant stimulus parameters, and factors modifying the response to impulsive stimulation. Recommendations on needed research are presented. This report is from a workshop on methods and criteria held in Stockholm, Sweden.

Present-day estimates regarding the acceptability of sonic booms by man are derived from various observations, overflight programs, and experimental field and laboratory studies conducted within and outside the United States. The loudness and annoyance of individual booms and their dependence on the boom overpressure and pressure-time function as well as the complex reaction of individuals, groups, and communities exposed to sonic booms of varied magnitude and frequency are discussed. The few experiments available proving that even sonic booms of the maximum intensity presently feasible do not produce direct medical injury are described. Based on the integrated body of results of recent physiological, psychoacoustic, behavioral, and sociological studies in various countries, estimates of the effects and acceptability of regular, frequent supersonic commercial overland flight schedules are presented and discussed in terms of aircraft noise pollution in general and of potential certification of aircraft with respect to noise and sonic boom. Findings support the current policy that commercial supersonic transport aircraft will not be permitted to fly over the United States unless and until the noise factors are brought within acceptable limits.

Research during the past decade at the Institute of Sound and Vibration Research, University of Southampton, on a number of aspects of human response to transportation noise and vibration is reviewed. These aspects include the following: sonic boom, subjective acoustics test procedures, human response to vibration, the effects of noise on performance and comfort, development of a mathematical model to determine the economic impact of achieving reduced community noise levels from aircraft, case studies of the effects on communities of aircraft noise, and construction site noise.

The present work discusses some of the main conclusions drawn from various studies on the effects of sonic boom on hearing and balance, sleep, and the cardiovascular system in man, on the breeding of certain production animals, and on some physiological indices of experimental animals. It is shown that the physiological effects of sonic boom in man and animals are not such as to have any serious consequences for the organism and that the annoyance caused by the boom must be of psychological nature.
251. Thackray, Richard I., Touchstone, R. Mark, and Bailey, Joe P.
Reactions to Sonic Booms: A Report of Two Studies and a General Evaluation of Startle

The first study reported was conducted primarily to determine an exposure level below which arm-hand startle responses to simulated sonic booms would not occur. The second study was concerned with an investigation of habituation effects. The results of the two experiments reported make it possible to conduct an evaluation of startle effects over a reasonably wide range of exposure levels. A summary of the behavioral, physiological, and subjective data obtained is presented in a table.

A brief discussion of human sleep is followed by presentation of data describing the variables that appear to affect human responsiveness to noise during sleep. Results from several studies that were conducted in different laboratories and that used several types of noises, age groups, and sexes are then combined to show that when EPNdB units are used as the measure of noise intensity, the correlation coefficient between intensity and the probability of no disturbance of sleep is -0.86. It is suggested also that a coefficient of similar magnitude would be obtained if units of EPNdB were used. Some implications of these data are then exemplified.

Information is presented on 22 noise metrics that are associated with the measurement and prediction of the effects of aircraft noise. Some of the instantaneous frequency-weighted sound level measures, such as A-weighted sound level, are used to provide multiple assessment of the aircraft noise level. Other multiple-event metrics, such as day-night average sound level, were designed to relate sound levels measured over a period of time to subjective responses in an effort to determine compatible land uses and aid in community planning. The various measures are divided into (1) instantaneous sound level metrics, (2) duration-corrected single-event metrics, (3) multiple-event metrics, and (4) speech communication metrics.

Two hundred social surveys of peoples' responses to environmental noise in residential areas are briefly described. The surveys are indexed by country, noise source, and date of survey. The publications and reports about each survey are listed in a bibliography. Recent English translations of 14 publications are listed separately. Nineteen surveys are listed which are available for secondary analysis from a data archive.

The physiological and behavioral effects of noise on man are investigated. Basic parameters such as definitions of noise, measuring techniques of noise, and the physiology of the ear are presented prior to the development of topics on hearing loss, speech communication in noise, social effects of noise, and the health effects of noise pollution. Recommendations for the assessment and subsequent control of noise are included.

256. Stevens, K N. A Survey of Background and Aircraft Noise in Communities Near Airports. NACA TN 3379, 1954

Other Documents:

A65-29976

N65-17877

A66-33030

N66-14904

N66-21098

A68-22466

A68-45396

N69-11573

N69-11571

N69-11577

N68-33005

N69-11575

N69-11576

N68-35103

276. Pearsons, Karl S Combination Effects of Tone and Duration Parameters on Perceived Noisiness NASA CR-1283, 1969

N69-18722

A71-12364

A71-16277

N71-21976

N70-35881

N70-35898

296 May, D N Sonic Boom Startle: A Field Study in Meppen, West Germany J Sound & Vib, vol 24, no 3, Oct 8, 1972, pp 337–347

321. Pearsons, Karl S, Fidell, Sanford, Bennett, Ricarda L, Friedmann, Joyce, and Globus, Gordon Effect of Cessation of Late-Night Landing Noise on Sleep Electro-physiology In the Home NASA CR-132543, 1974 N75-16220

325 Gunn, Walter J , Shepherd, William T , and Fletcher, John L Effects of Three Activities on Annoyance Responses to Recorded Flyovers NASA TM X-72673, 1975 N75-23157

327 Gunn, Walter J , Shepherd, William T , and Fletcher, John L Annoyance Resulting From Intrusion of Aircraft Sounds Upon Various Activities NASA CR-145388, 1975 N75-29112

331. Lukas, Jerome S, Peeler, D J, and Davis, J E Effects on Sleep of Noise From Two Proposed STOL Aircraft. NASA CR-132564, 1975 N75-16219

N77-19752

N77-24638

N77-16864

344 Powell, Clemans A Judgments of Relative Noisiness of a Supersonic Transport and Several Commercial-Service Aircraft NASA TN D-8434, 1977

N77-26702

A79-20502

N79-10848

N79-24650

N78-21890

N79-10848

350 Powell, Clemans Ancelan, Jr Annoyance Due to the Interaction of Community Noise Sources. Sc D Diss, George Washington Univ, 1978

N78-33613

N78-33873

N78-28456

N79-13819

N78-32815

N78-24903

A79-29730

357. Ahumada, Albert, Jr., and Nagel, David C The Annoyance of Multiple Noisy Events. AIAA Paper 79-0653, Mar 1979

A79-26893

N80-15739

N79-20832

360 McCurdy, David A Effects of Sound Level Fluctuations on Annoyance Caused by Aircraft-Flyover Noise NASA TP-1576, 1979

N80-13880

27
361. Powell, Clemans A Effects of Road-Traffic Background Noise on Judgments of Individual Airplane Noises. NASA TP-1433, 1979

362 Powell, Clemans A Laboratory Study of Annoyance to Combined Aircraft and Road-Traffic Noise. NASA TP-1478, 1979

363 Powell, Clemans A A Summation and Inhibition Model of Annoyance Response to Multiple Community Noise Sources. NASA TP-1479, 1979

368. Fields, James M The Relative Importance of Noise Level and Number of Events on Human Reactions to Noise Community Survey Findings and Study Methods NASA TM-81795, 1980

371. Shepherd, Kevin P Cumulative Annoyance Due to Multiple Aircraft Flyovers With Differing Peak Noise Levels. NASA CR-3417, 1981

375 Willshire, Kelli F, and Powell, Clemans A Effects of Activity Interference on Annoyance Due to Aircraft Noise. NASA TP-1938, 1981

385. Hellman, Rhona P. *Growth Rate of Loudness, Annoyance, and Noisiness as a Function of Tone Location Within the Noise Spectrum*. J Acoust Soc Amer, vol 75, no 1, Jan 1984, pp 209-218

7. Effects of Sonic Booms and Aircraft Noise on Structures

Key Documents

A65-1014

Tests were made during the supersonic flight of an aircraft to measure the shock pressures of the sonic bangs and the vibrations produced by them in typical buildings. Shock pressures of up to about 5 lb/ft² on the ground were recorded in the central part of the bang area. Focus zones, where higher pressures were expected, did not fall within the measuring positions. Acceleration of roof structures of up to 10 g and roof vibrations of 0.087 in (peak to peak) were recorded. There was evidence of resonant vibration of parts of the buildings under suitable incident shock conditions.

388 Ramsey, W A Damage to Ottawa Air Terminal Building Produced by a Sonic Boom Mater Res & Stand, vol 4, no 11, Nov 1964, pp 612-616

A65-10115

Approximately $300,000 of damage to an almost completed air terminal building by a supersonic fighter aircraft accidentally passing over the building in a demonstration flight is described. The aircraft had flown along the runway at an altitude of less than 1000 ft and was in an accelerated climbing turn when it passed over the building but, unfortunately, precise information on the height and path of the aircraft and its speed and acceleration in relation to the building is lacking. There were no casualties or injuries because very few workmen were in the building at the time of the accident. Damage to glass, curtain walls, suspended ceilings, and roofing was fairly extensive, but the structural steel frame was unaffected by the bang.

X66-85126

Response and damage data from the Federal Aviation Administration Sonic Boom Tests at Oklahoma City, Oklahoma, and at White Sands, New Mexico, are analyzed and effects on structures are summarized. Parameters governing the free-field and near-field boom waves are also studied and their influence on scatter in the data estimated statistically. This report then conservatively summarizes the results in a damage prediction table and chart. Insurance adjustors are given guidance on the treatment of sonic boom damage claims along with the chart. Finally, recommendations for future work in sonic boom and structural behaviour studies are made.

A70-22203

This is a book on sonic boom effects on structures, covering shock wave generation and propagation, elastic structures response to dynamic loads, structural damage to buildings, and so forth.

N71-21976

This report attempts to sum up, in a condensed manner, the major part of knowledge as of 1970 about the effects of sonic boom on human beings, property, animals, and terrain. The opening chapter of the report gives a simplified account of the sonic boom phenomenon. The chapters that follow describe the ranges of sonic boom values—e.g., the peak overpressure to be expected during regular supersonic transport operations and, as quantitatively as is known, the effects of sonic boom on humans, property, animals, and terrain.

A72-21908

Concepts of sonic boom pressure loading of building structures and the associated responses are reviewed, and results of pertinent theoretical and experimental research programs are summarized. The significance of sonic boom-load time histories, including waveshape effects, are illustrated with the aid of simple structural elements such as beams and plates. Also included are discussions of the significance of other phenomena such as three-dimensional loading effects, air cavity coupling, multimodal responses, and structural nonlinearities. Measured deflection, acceleration, and strain data from laboratory models and full-scale building tests are summarized, and these data are compared where possible, with predicted values. Damage complaint and claim experience due to both controlled and uncontrolled supersonic flights over communities are summarized with particular reference to residential, commercial, and historic buildings. Sonic boom-induced building responses are compared with those from other impulsive loadings due to natural and cultural events and from laboratory simulation tests.
A comprehensive statistical technique has been developed for prediction of the probability of damage of various structural elements as a function of sonic-boom overpressure. This technique has been used to calculate the breakage probabilities of glass, plaster, brick, and brick-a-brack under sonic-boom loading. The calculations have been found to agree well with the results of sonic-boom experiments and with sonic-boom claims data.

Other Documents

31

N66-30081

N66-38754

N69-15161

N69-18094

N67-36765

N68-13270

A68-16301

N69-80134

A68-40906

419 Hubbard, Harvey H., Maglieri, Domenic J., and Mayes, William H. *Results of Recent NASA Research Pertinent to Aircraft Noise and Sonic-Boom Alleviation.* ICAS Paper No 68-02, Sept 1968

A68-39219

N69-20221

N68-33373

N68-33168

N69-11008

N68-34432

N69-31191

A69-38987

A69-38988

N70-15505

A70-30861

448. Findley, Donald S, Huckel, Vera, and Hubbard, Harvey H Vibration Responses of Test Structure No. 2 During the Edwards Air Force Base Phase of the National Sonic Boom Program. NASA TM X-72704, 1975

449. Findley, Donald S, Huckel, Vera, and Henderson, Herbert R Vibration Responses of Test Structure No. 1 During the Edwards Air Force Base Phase of the National Sonic Boom Program. NASA TM X-72706, 1975

N77-18081

N76-20949

N76-30603

453 Staff, Langley Research Center *Concorde Noise-Induced Building Vibrations, Montgomery County, Maryland—Report No 3.* NASA TM X-73947, 1976

N76-30923

N78-10839

N78-18873

N78-20919

457 Staff, Langley Research Center *Concorde Noise-Induced Building Vibrations, John F. Kennedy International Airport—Report Number 3.* NASA TM-78727, 1978

N78-26876

N78-33874

A80-37607
8. Effects of Sonic Booms and Aircraft Noise on Animals and Birds

Key Documents

Individual domestic or pet animals may react to a boom, a simple startle response being the most common reaction. However, specific reactions differ according to the species involved, whether the animal is alone, and perhaps whether there has been previous exposure. Occasional trampling, moving, raising head, stampeding, jumping, and running are among the reactions reported. Avian species occasionally run, fly, or crowd. Reactions vary from boom to boom and are not predictable. Animal reactions to booms are similar to their reactions to low-level subsonic airplane flights, helicopters, barking dogs, blown paper, and sudden noises. Conclusive data on effects of booms on production are not available, but no change in milk production by one dairy herd was noted. The reactions of mink to sonic booms have been studied in considerable detail. Female mink with kits may be alerted, pause in activity, and look for source of sound. Sleeping females may awaken and mating pairs may show momentary alertness, but the mating ritual is not disturbed. The effect of booms on eggs being hatched under commercial conditions was examined in detail, and no effects on hatchability were found. However, a mass hatching failure of the Dry Tortugas sooty tern occurred in 1969, and the circumstantial evidence suggests that physical damage to the eggs by severe sonic booms caused by low-level supersonic flights was responsible.

461 Cottereau, Ph Sonic Boom Exposure Effects on Animals J Sound & Vib, vol 20, no 4, Feb 22, 1972, pp 531-534

Brief review of studies on the effects of sonic booms on poultry, farm and wild animals, and pets. To date there has been only a limited number of controlled studies of animal response to sonic booms. The literature yields relatively few meaningful data on wild animal response. Recommendations about needed future research are presented. This report is from a workshop on methods and criteria held in Stockholm, Sweden.

Studies were conducted at three sites on Mitkof Island, Alaska, to determine the effects of three real or three simulated sonic booms of about 6 lb/ft² overpressure upon reproduction in farm-raised mink. Control animals were not boomed. No differences were found among experimental treatments of length of gestation, number of kits born per female whelping, number of kits alive per female at 5 and 10 days of age, weight of kits at 49 days of age, and kit pelting value and selling price. A behavioral study showed no evidence that the female mink under observation were sufficiently disturbed by sonic booms to engage in kit packing, kit killing, or to disrupt normal lactation. Results of necropsy examinations showed no mink deaths attributable to real or simulated sonic booms. Likewise, no evidence was found that bacterial disease was induced in the herd following exposure to sonic booms. There were no detectable differences in the overall health of the females at the three sites. The conclusion drawn from these studies is that exposure of farm-raised mink to intense sonic booms during whelping season had no adverse effect on their reproduction or behavior.

463 Bond, James, Rumsey T S, Menear, J R, Colbert, L I, Kern, Dona, and Weiland, B T Effects of Simulated Sonic Booms on Eating Patterns, Feed Intake and Behavioral Activity of Ponies and Beef Cattle. U S Dep Agriculture paper presented at the International Environment Symposium (Univ of Nebraska, Lincoln), Apr 1974

Eight ponies, 2 open cows, 6 cows with calves, and 24 steers fed ad libitum were used in a series of 6 trials to study the effects of simulated sonic booms on eating patterns, feed intake, and behavioral activity. Eating patterns were monitored for 5 days before exposure, during exposure, and for 5 days after exposure to simulated booms by means of photoelectric cells and a time-operation recorder. The animals were similar in temperament to those found on small farms. The behavioral activity of all animals was monitored before, during, and after the exposure to simulated sonic booms. On the day of exposure, one boom was generated at 10:00 a.m. and one at 10:15 a.m. by a 4 1-m-diameter exponential horn, into which two charges of compressed air were released sequentially by time-controlled ruptures of two diaphragms. The resulting boom from the horn produced overpressures of approximately 200 N/m². All animals clearly showed a startle response, but the animals returned to preboom behavioral activity comparable to that of baseline observations. The eating patterns and feed intake of the animals after exposure were not distinguishable from those of the same animals before exposure. Less overt response to the later boom suggests that the animals adapted or habituated quickly to recurring booms. Of more importance was the total absence of continual arousal or general panic in any of the animals.

464 Boutelier, C, Demange, J, and Vettes, B Effect of Sonic Boom on Man and Animals—Review of Principal
The present work discusses some of the main conclusions drawn from various studies on the effects of sonic booms on hearing and balance, sleep, and the cardiovascular system in man, and on the breeding of certain production animals and some physiological indices of experimental animals. It is shown that the physiological effects of sonic booms in man and animals are not such as to have any serious consequences for the organism, and that the annoyance caused by the boom must be of psychological nature.

Other Documents

471. Effects of Noise on Wildlife and Other Animals. NTID 300 5, U.S. Environmental Protection Agency, Dec. 1971

9. Effects of Sonic Booms on Terrain

Key Documents

This paper includes a brief introduction to the science of seismology, gives examples of results obtained in field experiments with actual sonic booms, and provides preliminary interpretations

Sonic booms produced by aircraft moving at supersonic speeds apply moving loads to the Earth's surface. In deep water, a moving underwater pressure field is observed to accompany the hyperbolic boom trace sweeping over the surface. The pressure waveform underwater near the surface is almost identical to that of the N-wave in air, but it is rapidly smoothed and attenuated with depth, typically becoming one-tenth as large at a depth less than 0.6 of the N-wavelength. Adequate quantitative theories for the underwater effect have been developed and have been verified by scale-model experiments. On land, which is generally stratified, there are two major effects: the 'static' deformation field traveling with the surface load, and air-coupled Rayleigh wave trains following each N-wave transient. Present quantitative theories for the major seismic effects agree reasonably well with the experiments. Seismic forerunner waves, which begin at least 7 sec before arrival of the sonic boom, might be exploited for automatic warnings to lessen the startle effect. Sonic booms probably cannot trigger earthquakes, but might possibly precipitate incipient avalanches or landslides in exceptional areas which are already stressed to within a few percent of instability

This paper contains an evaluation of sonic-boom effects on topographical features and ground motion effects on structures, and a discussion of damage-pertinent structural parameters. The attempt is made to present conclusive statements on sonic-boom exposure and on occurrence of damage to structures on the basis of the extensive data on sonic-boom damage accumulated over the past 10 years. This is a report from a workshop on methods and criteria held in Stockholm, Sweden

Current theory treats the case of a sonic-boom N-wave impinging upon a flat air-water interface at an angle greater than the critical angle, which is about 13°. An acoustically scaled sonic-boom simulation experiment was performed, and its results verify the validity of current theoretical predictions of the penetration of sonic-boom energy into a flat ocean. The effects of the penetration of sonic-boom energy into the ocean should not be significant at depths greater than about 100 ft, on the basis of comparisons with ambient sound pressure levels

Other Documents

AD 468794

N66-23618

A68-41859

N68-35151

490 Hubbard, Harvey H Recent Results of Sonic Boom Research NASA TM X-61240, 1968

A70-16795

A69-29880

37

A70-28078

A70-34095

N71-10094

N71-21976

496. Schaffar, M., Carrie, B., and Amarde, L. P. *Effect of Sonic Boom on Avalanches—Preparation for Flight of a Supersonic Jet Over the Lavey Valley*. ISL-13/72, Institut Franco-Allemand de Recherches (St Louis, France), June 1972

N73-21940

A73-12967

A73-39624

N76-32751
10. Sonic-Boom Simulator Technology

Key Documents

This paper gives a review of the research facilities for the study of sonic-boom effects and discussion of the types of study for which these facilities are suitable. Sonic-boom simulators for field and laboratory studies discussed include explosive charges, acoustic guns, traveling-wave devices, speakers, and pistons. The characteristics are enumerated that research facilities must have in order that meaningful and relevant experiments may be performed. This is a report from a workshop on methods and criteria held in Stockholm, Sweden.

The motivation, design, theory, and initial performance of two Canadian sonic-boom simulation facilities—a loudspeaker-driven booth and a large traveling-wave horn—are described. Early performance and some research results are outlined, and the potential for a variety of future investigations is pointed out. The horn and booth-type simulators complement each other by providing flexibility for the study of human, animal, and structural response to sonic boom. This study is to provide the information needed in the preparation of accurate guidelines for new legislation that will govern SST flight paths as affected by Canadian weather, terrain, wildlife, and population distribution.

A pneumatic valve is described which can be used to replace the diaphragm of a conventional shock tube. The device opens practically independently of the pressure difference between the driver section and the driven section, permitting the use of very low driver pressures in order to obtain low shock Mach numbers. It can be opened always at exactly the same driver pressure, so a good reproduction of the state of the shocked gas is possible. Results of test runs are presented and analyzed.

Other Documents

N66-14904

N68-24966

508 Hawkins, S J , and Hicks, J A *Sonic Bang Simulation by Explosives* Aerodynamic Noise, Univ of Toronto (Canada), 1969, pp 409-422

512 Strugelski, R T , Fugelso, L E , and Byrne, W J *Sonic Boom Simulation With Detonable Gases* AIAA Paper 71-186, Jan 1971

513 Thery, C , Peter, A , and Schlesser, F *The Sonic Boom Simulator at ISL* ISL-R 15/71, Institut Franco-Allemand de Recherches (St Louis, France), June 1971

516 Gottlieb, James J *Simulation of a Travelling Sonic Boom in a Pyramidal Horn*. Prog Aerosp Sci , vol 17, no 1, 1976, pp 1-66

519 Shepherd, Kevin P , and Powell, Clemans A *Status and Capabilities of Sonic Boom Simulators* NASA TM-87664, 1986
Standard Bibliographic Page

<table>
<thead>
<tr>
<th>1. Report No</th>
<th>NASA TM-87685</th>
</tr>
</thead>
<tbody>
<tr>
<td>2. Government Accession No</td>
<td></td>
</tr>
<tr>
<td>3. Recipient's Catalog No</td>
<td></td>
</tr>
<tr>
<td>4. Title and Subtitle</td>
<td>Sonic-Boom Research—Selected Bibliography With Annotation</td>
</tr>
<tr>
<td>5. Report Date</td>
<td>September 1986</td>
</tr>
<tr>
<td>6. Performing Organization Code</td>
<td>776-33-41-02</td>
</tr>
<tr>
<td>7. Author(s)</td>
<td>Harvey H Hubbard, Domenic J. Maglieri, and David G Stephens</td>
</tr>
<tr>
<td>8. Performing Organization Report No</td>
<td>L-16127</td>
</tr>
<tr>
<td>9. Performing Organization Name and Address</td>
<td>NASA Langley Research Center</td>
</tr>
<tr>
<td></td>
<td>Hampton, VA 23665-5225</td>
</tr>
<tr>
<td>10. Work Unit No</td>
<td></td>
</tr>
<tr>
<td>11. Contract or Grant No</td>
<td></td>
</tr>
<tr>
<td>12. Sponsoring Agency Name and Address</td>
<td>National Aeronautics and Space Administration</td>
</tr>
<tr>
<td></td>
<td>Washington, DC 20546-0001</td>
</tr>
<tr>
<td>13. Type of Report and Period Covered</td>
<td>Technical Memorandum</td>
</tr>
<tr>
<td>15. Supplementary Notes</td>
<td>Harvey H Hubbard, Bionetics Corp., Hampton, Virginia</td>
</tr>
<tr>
<td></td>
<td>Domenic J. Maglieri and David G Stephens, Langley Research Center, Hampton, Virginia</td>
</tr>
<tr>
<td>16. Abstract</td>
<td>Citations of selected documents are included which represent the state of the art of technology in each of the following subject areas: prediction, measurement, and minimization of steady-flight sonic booms, prediction and measurement of accelerating-flight sonic booms, sonic-boom propagation, the effects of sonic booms on people, communities, structures, animals, birds, and terrain, and sonic-boom simulator technology. Documents are listed in chronological order in each section of the paper, with key documents and associated annotation listed first. The sources are given along with acquisition numbers, when available, to expedite the acquisition of copies of the documents.</td>
</tr>
<tr>
<td>17. Key Words (Suggested by Authors(s))</td>
<td>Sonic-boom bibliography</td>
</tr>
<tr>
<td></td>
<td>Steady-flight technology</td>
</tr>
<tr>
<td></td>
<td>Accelerating-flight technology</td>
</tr>
<tr>
<td></td>
<td>Structural effects</td>
</tr>
<tr>
<td></td>
<td>Physiological effects</td>
</tr>
<tr>
<td>18. Distribution Statement</td>
<td>Unclassified—Unlimited</td>
</tr>
<tr>
<td>19. Security Classif (of this report)</td>
<td>Unclassified</td>
</tr>
<tr>
<td>20. Security Classif (of this page)</td>
<td>Unclassified</td>
</tr>
<tr>
<td>21. No of Pages</td>
<td>45</td>
</tr>
<tr>
<td>22. Price</td>
<td>A03</td>
</tr>
</tbody>
</table>

For sale by the National Technical Information Service, Springfield, Virginia 22161

NASA-Langley, 1986
End of Document