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FUGACITY AND CONCENTRATION GRADIENTS IN A GRAVITY FIELD

Charles E. May
National Aeronautics and Space Administration
Lewis Research Center
Cleveland, Ohio 44135

SUMMARY

Equations are reviewed which show that at equilibrium fugacity and con-
centration gradients can exist in gravitational fields. At equilibrium, the
logarithm of the ratio of the fugacities of a species at two different loca-
tions in a gravitational field is proportional to the difference in the heights
of the two locations and the molecular weight of the species. An analogous
relation holds for the concentration ratios in a multicomponent system. The
ratio is calculated for a variety of examples. The kinetics for the general
process are derived, and the time required to approach equilibrium is calcu-
lated for several systems. The following special topics are discussed: ionic
solutions, polymers, multiphase systems, hydrostatic pressure, osmotic pres-
sure, and solubility gradients in a gravity field.

INTRODUCTION

Application of the relationship that exists between fugacity and position
in a gravity field might lead to a better understanding of the behavior of
both 1iving and nonliving matter in a gravity field. For instance, this rela-
tionship might be involved in the mechanism by which the roots of a plant are
directed downward. Eventually, the resultant knowledge may suggest micro-
gravity experiments that will add sti11 more to the understanding of gravity.

Consider a material in a gravitational field. The upper portion of the
material has a higher gravitational potential energy than the lower portion.
Of course, the difference is small compared with most other effects. In zero
gravity this effect does not exist, and all parts of a material have the same
potential energy. The existence of a gravitational potential gradient can
affect the behavior of materials.

Sometimes, this fact is not recognized even though the effect was treated
years ago by Guggenheim (ref. 1) and others. Guggenheim began with the fol-
lowing equation.

d(u1 + M1¢) =0 (1)

where u 1s the chemical potential; ¢ 1is the gravitational potential; and
i refers to the i'th species in a solution. Equation (1) ignores contribu-
tions from surfaces and fields other than gravitational. Via equation (1)
Guggenheim expressed the change in mole fraction, N4y, of a species in an
jdeal solution as a function of the change in gravitational potential.
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where M refers to molecular weight; V, to partial molal volume; F(NgkMyk) 1s
the effective molecular weight of a mole of the solution; and L(NgVK) is the
volume of a mole of solution. The ratio, T(NgMk)/%(NkVk), equals the density
of solution, p. Koenig (ref. 2) extended Guggenheim's equation to apply to
nonideal solution. More recently Guggenheim (ref. 3) has expressed the fugac-
ity of species in a mixture of perfect gases as a function of position in a

gravitational field.

dp (M >
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where p 1is the fugacity (idealized pressure); and M, the molecular weight.
Guggenheim's equations are difficult to apply in the form they are given.
Because a single phase is sometimes defined as a system of uniform composi-
tion, and a gravitation field requires a nonuniform composition at equiliib-
rium, Guggenheim refers to an equilibrium system in a gravitational field as a
multiphase system. Thus, by his definition, an equilibrium aqueous solution
of sodium chloride in the earth gravitational field should be referred to as a
multiphase system. Such terminology is confusing and, therefore, is not used
in this report.

In the case of an ideal gas, the equations that have been derived are 1n.
a more usable form (ref. 4)

-Mg(h - h))
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where P 1is the pressure of the gas at the higher altitude h; Py, 1s the
pressure at the altitude hgy; M is the molecular weight; g 1is the accelera-
tion of gravity; R 1is the gas constant; and T 'is the absolute temperature.
Equation (4) can be derived in several ways, independently of Guggenheim's
equations. In a mixture of gases, each component obeys equation (4) individu-
ally where M, P, and P, refer to the same component. The concentration
gradient in the earth's atmosphere 1is due at least in part to the relationship
expressed in equation (4). Equation (4) also applies to the separation of
isotopic gaseous species under the high gravity conditions of a centrifuge.

In 1908, Perrin (ref. 5) modified equation (4) in order to apply it to a
suspension of particles in a liquid.

n
KL on 2 = 2 mrdgh(p - p') (5)
where r 1is the radius of the particles; N is Avogadro's number; p' 1is the
density of a particle; p 1is that of the liquid; n and ngy refer to the
concentration of the particles at two different heights; and h 1is the dif-
ference in their heights. From experimental data and equation (5), Perrin
calculated Avogadro's number to about a 15 percent accuracy. His experiments
validated equation (5). Since then, however, it has been shown that

‘equation (5) holds only in a relative narrow range of h (ref. 6).



Block et al. (ref. 7) have found concentration gradients to occur in
gravitational fields in excess of 10 times normal gravity for a 1iquid
solution several degrees above its liquid - 1iquid critical solution point.
The solution was a mixture of n-hexane and perfluoro-n-hexane. Similarly,
Moldover et al. (ref. 8) have reported density gradients to exist in gravity
fields for systems near their gas - liquid critical point. Other investi-
gators have shown similar results.

Diffusion kinetics for the attainment of concentration equilibrium in a
gravitational field appears to be lacking from the 1iterature although diffu-
sion of jons in an electrical field has been treated (ref. 9).

The purpose of this report is to present the appropriate equilibrium
equations in usable forms, to apply them first to simple examples, to derive
the applicable kinetic equations, to evaluate the time required for approach
to equilibrium, and finally to apply the equilibrium equations to certain
special cases such as ionic solutions and osmotic pressure.

EQUILIBRIUM EQUATIONS AND CALCULATIONS

In the first part of this report, our attention is directed toward only
single phases in a uniform gravitational field. We define hy as a distance
between the gravitational source and some position in the phase and hp as
the distance between another position in phase and the gravitational source.
If the difference between these values, h, is small with respect to the values
themselves, the gravitational potential may be expressed as a linear function
of h. In differential form the relationship becomes: '

de = - g dh (6)
where g 1is the acceleration of gravity, and h 1s measured toward the grav-
itational source. o

Concentration

To make equation (2) more usable in predicting concentration gradients in

the condensed state, equation (6) is used to express the gravitational poten-
tial difference. Combining equations (2) and (6) yields:

RT dN1 _
RTd 1n(N1) = N1 = (M1 - V1p)g dh (7)
If J refers to the solvent, de = - 7 dNy. Combining this equation
with equation (7),
RT dN, = - {2N1(M1 - V1p)}g dh (8)

Moreover, the average molecular weight of the solution, M = NJM + 2(NyMy);
the volume_of a mole of solution, V = NjVy + T(NyV3); and M = ep. Thus
T{N{(My - V4p)} = -Nj(My - Vjp). Combining this equation with equation (8),
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RT dN
My

Equation (9) states that if all the solutes obey equation (7), the solvent
obeys the same relationship.

= (M - Vjp)g dh (9)

Equation (7) can be integrated if p 1s assumed to be constant. This
assumption is only valid for a dilute noncompressible solution.

Nll _ . _
RT 1n<ﬁ%> = gh(M1 - V1p) = gh(V1p1 - V1p) = ghB1 (10)

where Vi 1s the partial molal volume of species 1 1in solution; V4 1is the
molar volume of pure species 1; and py 1s its density. Equation (10) is
completely valid for the solute in a dilute ideal noncompressible solutions
when the distance to the gravity source is large. The product, Vip, is the
weight of solution corresponding to a molal volume of species 1. The mass
difference, My - V4yp, corresponds to a buoyancy factor, Bj. When a species
has a positive buoyancy factor, the species can be said to be more dense than
the solution so that at equilibrium the concentration (mole fraction) of the
species will be greater at the bottom than at the top. When a solute has a
negative buoyancy factor, i1ts concentration at equilibrium will be greater at
the top than at the bottom.

The term ideal system (or perfectly ideal solution) is generally taken to
mean that both the solvent and solute behave ideally; Raoult's law is obeyed.
In this case, Vi 1s equal to the molar volume of the pure species because
Vi will not be a function of concentration. Thus,

Nt .
A e
RT m("i>_ M1< - p.1>gh | (11)

where 1 can refer again only to a solute. The examples of truly ideal sys-
tems are rare.

In general, one must be satisfied with the treatment of "ideal solutions"
in which the solutes obey only Henry's law. Henry's law requires that V4
does not vary with concentration in the low concentration region. Qutside
this region equation (10) should be considered to be only an approximation;
the value to be used for V4 outside the low concentration region should
1ikely be the value of V4 for the concentration of interest.

It should be noted that equation (10) does not predict a constant concen-
tration gradient throughout a column of material in a gravitational field. As
a result the equilibrium concentration at midheight, in general, is not equal
to the initial concentration, N1,0. The value of the midheight concentration,
Ny m, 1s dependent upon the variation of the cross section of the column with
he‘ght as well as on the other gravitational parameters. To derive an expres-
sion for Ny p, we have assumed a uniform cross section. In a dilute solu-
tion, the average concentration which is equal to Ny o may be set equal to



f(Ny dX)/h, where X 1is the distance measured from the top, and Ny 1is the
corresponding concentration. The variable, Ny, may be replaced by Ni exp{(M;

- V4p)gX/RT}, where N{ is the mole fraction at the top. Integration,
rearrangement, and substitution yield:

"
1>

' v L\ =
N1 ("1 - V1P)gh <N1

= — = (]2)
N (M, - V,p)gh N
1,0 i i : A
e 2% ] (i)
From equation (10) it can be shown that Ny  equals sqr(Nj - Ni). Intro-
ducing this into equation (12) yields: .
’ Nll
1
9.n<—>
N N!
i,m i | (13)

N = NII NI
i,0 i i
sqrisy | - sqriow
("1) <N1>
In figure 1, the ratio Ny p/Ny o 1is plotted as a function of Ni/Nj. The
m1dhe1gh§ c?ncentration is less than the initial concentration, both when the
ratio Njy/Ny 1s greater than unity (positive buoyancy factor) and when it 1is
less than unity (negative buoyancy factor). When N#/N{ approaches unity
(corresponding to a small product of g, h, and the buoyancy factor), Ni,m/Ni,o0
also approaches unity. The fact that Ny , 1is not equal to Ny o for a solu-

tion in a gravitational field means that {ts center of mass is not at its geo-
metric center.

Application to Salts

A question arises when applying the equations just derived to jonized
salts. Should one treat the salt or the ion as the solute species?
Equation (1) which is the starting point of the derivation is for a single
species. However, when the species is an ion, it must be modified to include
and the electrical potential, Zy: d(uy + py + Z4) = 0. To derive a usable
equation from this modified equation, Zy must be eliminated by adding
together the equations for all the species in a molecule of the salt. From
such a composite equation, an equation similar to equation (7) can be derived.

RT dN1 i (Ms - Vsp)g dh
where Y 1is the total number of ions present in a molecule; s refers to the
salt; and 1 can refer to either the cation or the anion. The 1§ can also
refer to the salt in the sense that the concentration of the 'ionized' salt
must vary with the concentration of the anion and the cation. Remember, how-
ever, that the concentration of the 'nonionized' salt species itself is zero
because we assumed a completely ionized salt. However if some of the salt
were nonionized, that component of the salt would obey equation (10).

5
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Equation (14) applies only when a single salt is present in the solution. The
problem of the presence of more than oné€ salt is treated in a later section.
By the comparison of equations (10) and (14) one sees that the buoyancy factor
for an ionized salt, Bs, is (Mg - Vgp)/Y. Thus equation (10) is applicable to
an ionized salt if the proper buoyancy factor is used.

Fugacity

A gravitation field also gives rise to a fugacity gradient in a column of
material. This gradient may be looked upon as a combination of two effects:
the concentration gradient just discussed and the hydrostatic pressure of the
column itself. The effect of pressure on fugacity is well known (ref. 10).

f
RT 2n<?¥> = PV1

d ln(fi)
dp

or more precisely,

RT =V (15)

i

where fi is the fugacity of species 1 without the applied pressure, P;

f# is 1ts fugacity with the applied pressure; and V4 1s the partial
molal volume of the species. Because the hydrostatic pressure is equal pgh,
equation (15) can be written as follows:

d 9.n(f1 0) _
RT ————?ﬁ;-L—- = V1pg (16)
where the subscript o indicates the condition of homogeneous composition.
Thus even without a concentration gradient, a fugacity gradient exists in a
column of material in a gravitational field. This equation applies to both
the major and minor components (solvents and solutes).

Because Henry's law is assumed, the ratio, f4/Njy, 1s a constant for
an nonionized material at any specified position in the column, and f4/Ny
= f1,0/Ni, 0, f1 being the equilibrium value of the fugacity. For an ionized
salt’ fg/f3Y = fs,0/Ni,oY. Because Nj o 1s not a function of h, one
may write

d Qn(fs) ) d ln(fs’o) . Yd ln(N1) (17)
dh - dh dh

For an nonionized material, the s subscripts become 1i's and the Y becomes
one. Combining equations (7), (16), and (17) yields
d 2n(f1) i

RT —qp—— = W49



or

f
RT an\zv ) = Mygh (18)
i )

where f{ is the gqu111br1um fugacity value for species 1 at the top of

the column, and f3§ 1s its equilibrium value at the bottom. The integration
step requires g to be constant. Equation (18) holds for liquids, solids
(including fonized salts), gases, solutes and even solvents. Moreover, because
equation (18) does not specify properties of the solution, it holds even though
Henry's law is not obeyed.

Equation (18) as applied to gases may also be derived by combining equa-
tions (3) and (6). For an ideal gas, one may also substitute pressures for
fugacities and thus derive equation (4). Thus, in a mixture of ideal gases,
equation (4) will apply individually to each component. Of course, when a gas
or gas mixture deviates from ideality, equation (4) can sti11 be used as an
approximation.

Numerical Evaluation

Calculation of a concentration gradient expected in a gravitational field
at equilibrium requires the knowledge of V4 of the solute. This value is
calculable from the variation of density of a solution with concentration.

(100 - pi) (100 - p:)

V = £ " | £ M
i Py - Py

(19)

where p' 1s the density of a solution containing pi" weight percent of

solute 1; p", the density of a solution containing pj weight percent of
the solute; and My, the molecular weight of the so]u;e. Equation (19) is
approximate but becomes precise in the 1imit where py approaches pj.

The required density data as a function of concentration are available
from a variety of sources (e.g., aqueous solutions from ref. 11). Via such
data and equation (19), we have calculated the values of V4 and thereby
the buoyancy factors for a variety of solutes in water. These are listed in
table I. The molecular weight used for a solute is that of its anhydrous form.
The value of Y (number of species per molecule) that was used is listed in the
second column. For nonionic materials, Y 1is one. For sodium sulfate which fis
a completely ionized salt, Y 1s three (two sodium ions and one sulfate ion).
The concentration ratios given for it in table I are therefore those for the
fons. For sodium chloride, also completely ionized, Y 1is two (one sodium ion
and one chloride ion). For only slightly ionized materials such as acetic
acid, ammonium hydroxide, and phosphoric acid, the value of Y given in
table I is one; therefore, the concentration ratios given refer to those of
the nonionized species which is the major component. Trichloroacetic acid is
somewhat of a special case because it is almost but not completely ionized; in
this case, the value used for Y 1s two. It is interesting to note that at
infinite dilution, a partially ionized material would become completely
jonized, and the Y to be used would be that of the completely ionized

1



material. Under such consideration, the value of Y for acetic acid would be
two, and the concentration ratios would refer to those of the ions. However,
the Y's used in table I are ones of practical interest, those for ‘reasonably’
dilute solutions for which such materials are essentially not ionized.

Selection of Parameters

At equilibrium, concentration gradients are not found under normal gravity
conditions. Only when large values of h (ref. 4) or large values of g are
involved (refs. 7 and 8), have concentration gradients been observed. The
three sets of parameters used in this report were selected in order to encom-
pass the conditions where the gravitational effect is expected to be detected
and where it is not. Parameters 'a' are 1 G (i.e., g = 980 cm/sec?) and a
1 m high column; parameters 'b' are 100 000 G's and a 1 cm high column; and
parameters 'c' are a 10 000 m column at 1 G. This height approximates the
depth of the 5 mile ocean. Because the gravitational concentration effect is
dependent on the product of g and h (eq. (10)), ratio c 1is also valid for
one million G's and h =1 cm. In table I the ratios of the lower to upper
concentrations are given for these three sets of gravitational parameters.
Equation (10) was used to make the calculations.

Examination of table I shows that the concentration ratios 'a' (corre-
sponding to parameters a) are generally very close to unity; this is in
accord with observations under normal conditions (a relatively small value for
the product of g and h.) Calculated concentration differences between the
top and bottom are in most cases less than one part per thousand. Only in the
case of high molecular weight material (e.g., dextran) does the calculated
ratio (1.122) depart significantly from unity.

Ultracentrifuge Conditions

In contrast to concentration ratios close to unity, table I shows that a
considerable number of concentration ratios 'b' (for 100 000 G's and a 1 cm
high column of solution: ultracentrifuge conditions) are greater than 1.1.
This corresponds to concentration differences from top to bottom of more than
10 percent. Thus, concentration gradients of many dissolved materials should
be measurable under ultracentrifuge conditions. There are several extreme
examples in table I. One is the ratio for lead nitrate, 307, which means a
concentration gradient of over 30 000 percent. It would appear from table I
that the ratio is greatest for high molecular weight materials, e.g., poly-
mers. The ratio for dextran is greater than 1038: the ratio for inulin,
2767. As discussed earlier, when the buoyancy factor is negative, the concen-
tration of the solute at the top of a column is greater than at the bottom.
This is demonstrated in the case of the organic liquids: acetone, ethanol,
and methanol. Ammonium hydroxide also has a negative buoyancy factor.

Effect in Ocean
) The concentration ratios ‘c' in table 1 (for 1 G and a 10 000 m deep
ocean) deviate even more from unity than the concentration ratios b. Many of
the concentration ratios ‘'c' are greater than 10. This would imply that at
equilibrium, many dissolved materials should tend to concentrate at the bottom
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of the ocean and lead to the purification of its surface regions. For
instance, sugars such as glucose would be about 15 times more concentrated at
the ocean's bottom than at its surface. The ratio for copper sulfate is over
26, meaning that at equilibrium a copper salt dissolved in the ocean water
would tend to concentrate at the bottom, leaving a much lower concentration
near the surface. In contrast, the ratio for sodium chloride is only about
2.2 which means that the concentration of this salt near the surface would be
comparable with its concentration near the bottom. When more than one salt
exists in solution, equation (10) is not completely valid because the ions
which compose the individual salts can interact. This topic is discussed
later in more detail. '

Higher Concentrations and Fugacities

Also included in table I is a 'range' column which is the percentage range
in which the partial molal volume of the solute varies only 1 percent. For
many salts this is only up to 0.5 or 1.5 percent. However, for many organic
materials, the range extends to 10 percent. Acetic acid extends to 30 percent;
fructose and methanol extend to over 50 percent. For this range of concentra-
tions, the concentration ratios d were calculated assuming a constant average
density and the parameters of 100 000 G's and h =1 cm. In general, the ratio
d does not vary more than about 1 percent from the corresponding ratio b.

The greatest variation, about 5 percent, is for fructose; but this is for the
concentration range up to 52 percent. The final column in table I gives the
equilibrium fugacity ratio for 100 000 G's and a 1 cm high column.

Nonaqueous Systems

Equation (10) may, of course, be applied to nonaqueous solutions. This
has been done in table II using data in reference 12. Table II gives the par-
tial molal volumes of solutes in the indicated solvents, the concentration
ratios for particular values of h and G, and the fugacity ratios. (The
fugacity ratio of a particular species is independent of the solvent.) 1In the
first part of table II one can find data for organic solvents, while the last
part gives data for some metals. Again for the condition h = 100 cm and nor-
mal gravity, the concentration ratios are very close to unity. However, in a
few cases, the difference between the top and bottom concentrations may exceed
0.1 percent; for example, the ratio a for tin in gold is 0.9988.

In general, ratios b 1in table II (h = 1 cm and 100 000 G's) Just as
those in table I deviate noticeably from unity. The exceptions are aluminum
in magnesium and iron in copper. Again for solutes with high molecular weights
(e.g., tristearin) the ratios b are unusually large. For many alloys, the
ratios are less than unity because the corresponding buoyancy factors are
negative.

One of the first solutes listed in table II is sodium nitrate. Its ratio
data in methylamine can be compared with its ratio data in water given in
table I. 1Its calculated ratio b 1is 1.122 in water while it is 136 in methyl-
amine. This large calculated value in methylamine is the result of an apparent
large negative value used for its partial molal volume.



In reference 12, the density of the tristearin - bromocamphor system is
given over its entire composition range. This allowed two sets of calculations
to be made: one where the tristearin is assumed to be the solvent and one
where the bromocamphor is taken as the solvent. The calculations show bromo-
camphor to have a positive buoyancy factor when assumed to be the solute, and
the tristearin to have a negative buoyancy factor when it is taken as the sol-
ute. The calculations imply that regardless of the concentration, the bromo-
camphor is expected to be more concentrated on the bottom and tristearin to be
more concentrated on the top. This brings to mind a metaphysical necessity
for all two component solutions: 1f one component is more concentrated on the
top, the other must be more concentrated at the bottom.

The tristearin - bromocamphor system is useful for another purpose. The
density data are available for three different temperatures. In table 1I,
this data has been used to show that the concentration ratio is a function of
temperature as would be expected from the fact that the buoyancy factor varies
with temperature.

KINETIC EQUATIONS AND CALCULATIONS

Although we have seen that at equ11ibr1um,.a gravitational field can pro-
duce a detectable concentration gradients in a variety of systems, one must be
sure that equilibrium of this sort can be approached in a reasonable time
frame.

The equilibrium which we are discussing is brought about by diffusion.
However, normal diffusion equations predict a uniform equilibrium concentra-
tion. It becomes obvious that for our application, the diffusion equations
must be derived incorporating the effect of a gravitational field. To treat
the effect of a gravitational or other type of field, one needs to consider
only one dimensional diffusion. When a gravitational field is not considered,
the following one dimensional equations are applicable (ref. 13).

dC

1
Fy = - Dy & (20)
and
dc dF
1 _A
at = " ax (21)

where F4 1s the flow (g/cmz/sec); D, the diffusion coefficient (cm2/sec);
Cy, the concentration (g/cm3); X, the distance (cm); and t, the time (sec).
Diffusion proceeds parallel to the concentration gradient. To include the
effect of gravity on diffusion, one must return to the derivation of the dif-
fusion equations.

Jump Frequency Approach

One of the derivations for the diffusion equations starts with the concept
of a molecule jumping from one position to another in a material. Reference
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to figure 2 will aid in the visualization. One may set up the following equa-
tion for a solution that obeys Henry's law.

(1] El - 01 ] <(E'; - 01) 1] ]
Fy= -y dCiexp \—5—) -Cexp \— 7 (X" - X') (22)

where Fy 1s the flow; =y, the proportionality constant; X', the distance
parameter of the starting position (being farther away from the gravitational
source); X", the distance parameter of the position after the jump (being
c]oseg to the gravitational source); C{, the concentration of'spec1es i at
X'; Ci, the concentration at X"; k, the Boltzman constant; E4, the extra
energy of the system due to the presence of an 1'th molecule, before the jump;
E4y, the corresponding value after the jump; and Q4, the extra energy of the
system due to the presence of the i1'th molecule in the activated position for
diffusion (essentially halfway between the initial and final positions).

As X" approaches X', equation (22) becomes:

c!\ de!)  [-q, + E!
act (G4 984 15 |
Fi=- Y %dx * <kT> ax % exp( kT ) (23)

the Ci may be written simply as Cy; the «y exp{(-Qy + E%)/kT} may be
replaced by D4, the diffusion coefficient; and E4/RT may be substituted for
E4/kT where E4 1s the extra energy of the system due to the presence of a
mole of species 1. Thus,

dC1 (C1> dE1 :
1= - T \RT/ @ (24)
The first term in equation (24) corresponds to the relation expressed in
equation (20). The second term in equation (24) corresponds to the change 1in
potential energy of the system due to a molecule!s position in a gravity field
as the molecule moves toward the gravitational source. Thus far, equation
(24) 1s applicable to any type of field because we have not yet introduced the
actual dependence of the energy upon position in a gravitational field. Note

that equation (24) has the same form as that for an ion in an electrical field
(ref. 9, eq. (5) in Chap. 6).

F

The change of the concentration with time is dependent solely on the flow
gradient as described in equation (21). It is independent of any field which
might exist. Combining equations (21) and (24) yields:

dE.\ /dC
2 dE4) (dCy 2
dc, a0, (dx)(dX) . (C1) d"t,

-+ =D =] —5 (25)
d i dx2 RT RT dxz
Energy Versus Height
'Equat1on (26) relates the change of E4 with X within a gravity field.
dE1
ax 9% (26)
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where g and By are assumed not to be a function of X so that d2E1/dX2

= 0. In equation (26) as in earlier equations, the expression Vip 1s the
weight of solution corresponding to the volume of one mole of the 1'th species.
Substituting equation (26) into equations (24) and (25) yields, respectively:

dc, C,g8,
fi= - D\ax - ®T (27)
2
dc d°c gB,\ dC
1 1 (204) (28)
dt W 4y RT / dX
Equilibrium

At equilibrium, Fy in equation (27) becomes zero. The resultant equation
may be integrated if the solution is dilute and noncompressible.

co |
RT ln(f%> - ghB, (29)
1

The C?/C{_ may be replaced by N?/N{, and equation (29) becomes

equation (10). It should be noted that for the derivation of equation (29),
the solution did not have to obey Raoult's law; only Henry's law has to be
obeyed.

Alternate Derivation

Equations (27) and (28) can be derived in a simpler and less rigorous
fashion. In this alternate derivation, one can determine more easily the
expression to be used for By if the diffusing species is an fon. The
derivation involves subtracting the equilibrium value of dC/dX from its
actual value in equation (20). Thus,

dc, <é0{>
f1= - e - \ax/, (30)

where the subscript e refers to the equilibrium condition. For a dilute
solution, equation (14) can be written as follows:

(dc1) (MS - Vsp)

ax/, = C,9 Y (31)

where the Y = 1 for an uncharged diffusing species. Combining equation (30)
and (31) result in the diffusion equation for an ion.

ax - Y9 TVRT (32)

12
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Equation (32) is just a more detailed way of writing equation (27)._ Thus,
equations (27) and (28) apply to ionic diffusion where B1 = (Ms - Vsp)/Y.

Program

Equation (28) is not readily integrated. But with modern computers,
integration is not required to make equation (28) useful. A simple Basic com-
puter program implementing equation (28) is given in table III; it yields the
concentration and concentration gradient profiles as a function of time. The
program is written for an initially uniform concentration and with the follow-
ing set of default parameters: buoyancy factor equal 100 g/mol; 100 000 G's;
D = 1x10-2 cm@/sec; h = 1 cm; and 20 finite elements.

Kinetic Plots

Our calculations via the program in table III are shown graphically in
figures 3 to 8. The solid lines in figure 3 gives the concentration profile
for various periods of time, using the default parameters. These default
parameters represent a typical solute - 1iquid solvent system under ultra-
centrifuge conditions. The points represent calculations using 100 finite
elements; these are in good agreement with its respective Tine for which only
20 finite elements were used. Note in figure 3 that initially only the con-
centrations at the top and bottom of the column change. This is in accord
with equation (28): 1initially, there are no concentration gradients present
except for the discontinuities at the top and the bottom. Thus initially
according to equation (28), only the concentrations at the top and bottom
should change. As time proceeds, the concentration gradients move toward the
middle of the column accompanied by changes in the concentrations.

One can also see in figure 3, that equilibrium is approached in about
50 000 sec (about 13 hr). This is a reasonable time frame for an ultracentri-
fuge experiment intended to measure such a concentration gradient. Figure 4
is a similarly calculated profile for the concentration of sodium chloride in
the ocean, us1ng its buoyancy factor from table I and a diffusion coefficient
of 1.54x10-5 cmé/sec (ref. 14). For this system, equilibrium is approached in
about 10*1® sec (about 500 million years). Because of this long time period
and the almost constant motion of the ocean, it is doubtful that gravitation
equilibrium of sodium chloride in the ocean will ever be approached.

Figure 5 shows a "concentration" profile that allows a fuller comprehen-
sion of the approach to equilibrium. In figure 5 the ratio of the concentra-
tion change to the concentration change at equilibrium is plotted as a function
of the distance from the bottom of the column. Thus, the ordinate represents
the fraction of the equilibrium achieved for the time period indicated for a
particular curve. The default parameters were used. A similar type profile
for the concentration gradient is given in figure 6. Both figures 5 and 6
show that equilibrium is very closely approached after 50 000 sec. Figure 6
shows that the concentration gradients at the top and bottom are achieved
immediately. But this does not mean that the concentration itself reaches
equilibrium; see figure 5.

The irregularities near the middle of the curves in figure 5 are a result
of the fact that the position at which the equilibrium concentration equals
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the 1nitial concentration moves with time. This in turn results from the fact
that the ends of the equilibrium profile are not perfectly symmetric with
respect to the middle position of the column as can be seen in figure 5.
However, when the gravitational equilibrium effect (product of g and the
buoyancy factor) is small, the profile is more symmetric, and the irregulari-
ties disappear. This is illustrated by the points in figure 5 which represent
G = 1 and a buoyancy factor of 100. However, the essential features in figure
5 are independent of G and the buoyancy factor; thus, the fraction of equilib-
rium achieved is essentially independent of these two parameters: g and

By.

In any experimental investigation, measurement of only the upper and lower
concentrations is all that would be necessary to establish the "equilibrium"
values for the gravitational effect. Therefore, one can use the fraction of
equilibrium achieved at the top and bottom of a column as an overall measure of
the fraction of equilibrium achieved. To obtain a single value for the top and
bottom, the product of G and the buoyancy factor can be assumed to be small.
With these two assumptions, figure 7 is plotted: the fraction of total change
of concentration at the top (and bottom) is the abscissa, and the log of time
is the ordinate. The dotted 1ine represents the default values of the diffu-
sion coefficient (10-5 cm@/sec) and height (1 cm). The time required to
achieve over 96 percent equilibrium is not graphed in figure 7 because it has
nearly a vertical slope. Remember that equilibrium is never achieved in a
finite time frame.

Effect of D and h

Via the computer program in table III, the concentration function profiies
(similar to those in figure 5) can be calculated for various values of D and
h. The values of the concentration function at the ends (top and bottom) are
again plotted as a function of time in figure 7. Curves for a constant value
of D/h2 are superimposable. Undoubtedly, this: fact could be proven mathe-
matically starting with equation (28).

From figure 7, the time, t, required to achieve a certain degree of equi-
1ibrium is seen to be inversely proportional to the square of h. Because of
this, the curves in figure 7 can be combined into the single curve in figure 8,
where tD/h2 4s plotted as a function of the fraction of equilibrium (concen-
tration change) achieved. Via this graph and the values of D and h, one
can readily determine the fraction of equilibrium achieved. If one is content
with 96 percent equilibrium, the following equation may be written as an
approximation.

t =0.3 g— (33)

where 0.3 1s a unitless value. For our default values, the time predicted
by equation (33) is 30 000 sec (about 9 hr). In contrast for sodium chloride
in the ocean, the time required for 96 percent equilibrium is predicted to be
about 2x1076 sec (roughly a billion years). Because the time to approach
equilibrium is dependent only on D and h, and the D for all ions are
quite similar, roughly the same time to approach equilibrium in the ocean is
required by all salts.
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Solid Solutions

The default parameters for the computer program in table III represent a
solute in a 11quid solution because the diffusion coefficient used is 10-5
cmé/sec. The diffusion coefficient of the solute in a solid solution can be
several orders of magnitude lower. Equation (33) would predict t to be
900 hr when the diffusion coefficient of the solute is 10-7 cm2/sec. This
time 1s 1ikely too long for an ultracentrifuge experiment.

Gases

Gases exhibit diffusion coefficients in the range of 10-4 cmz/sec, larger
than those for solutes in 1iquid solutions. Thus according to equation (33),
a 1 cm high column of gas would approach equilibrium in less than an hour.
For a gas, the buoyancy factor is its molecular weight which is in general
larger than the buoyancy factor for a solute in a solution (M3 - V4p). Thus,
the gravitation - concentration effect should be more easily observable in a
gas than in a Tiquid solution with the assumption that both are under the same
gravitational conditions, e.g., 100 000 G with h =1 cm. Under a lower
gravitational force, h would have to be larger to observe the same difference
in concentration between the top and bottom of the column. This would require
a longer equilibrium time. If one sets the maximum time at 10 hr then equa-
tion (33) gives a height of about 4 cm for the column of a gas.

Summary of the Kinetics

Figure 8 and equation (33) summarize our findings concerning the kinetics
of gravitational induced concentration gradients. The fraction of gravita-
tional equilibrium achieved is directly proportional to the diffusion coeffi-
cient and inversely proportional to the square of the height of the column.
The time required to attain essentially 96 percent equilibrium is given by
equation (33). This equation shows that the diffusion induced by gravity is a
very slow process; in general, very long times are required to approach equi-
1ibrium. Only for low values of h, about 1 cm or less, is equilibrium
approached in a reasonable time period, less than 10 hr. Gravitational -
concentration equilibrium in the ocean would require a biilion years. Gravi-
tational equilibrium is therefore not approachable because the convection in
the ocean operates on a smaller time scale.

Even if the kinetics are favorable, the equilibrium values themselves must
be sufficiently different from the original concentration; see equation (10).
This means that the gravitation constant must be large, of the magnitude
achievable in an ultracentrifuge.

Although attainment of concentration equilibrium is a slow process,
figure 5 indicates that concentration equilibrium at the top and bottom of any
column is achieved immediately. Unfortunately, this is a very small gradient
under normal gravity conditions: 0.001 percent/cm for sodium chloride in the
ocean (or any column of water at 1 G). However, if a device were built that
.could measure such a small gradient, detection of the gravitational - concen-
tration effect would cease to be a kinetics problem.
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SPECIAL TOPICS
Ionic Species

As we have seen earlier, equation (14) describes the variation of the
concentration of an ionized salt in a solution subject to a gravitational
field. However, equation (14) is valid only when a single salt is present in
solution. One way to obtain a more general equation is to start with the

following equation.
dC1 '
b1 an /- 0 (34)

where by 1s the valence of an ifon (it is negative for an anion); and the
summation is over all the cations and anions present. The equation merely
states that an electrical charge gradient cannot exist, even in a gravita-
tional field. Also required is an equation that relates concentration gradi-
ents to buoyancy factors.

B, B
dc, dC] g<b_1 . El)
NS B
= RT

(35)

This equation can be derived in the same manner as equation (7) by combining
the equations for two different ions so that the effect of electrical charge
is eliminated from the calculation. In equation (35) both subscripts, 1 and
J, refer to any ion present; note that the b's are negative for anions. By
combining equation (34) and (35) followed by simplification, one obtains:

d QZ;CQ ] gb1Z(B1’.'chb~'2')
Z(%%)

RT (36)

or

<C'> 1 Z(Cjb?')

i
where the summations are again over all the fions present; and By § = By - Bj
= Bg (1/by - 1/bj). When 1 and J are both anions or both cations, one may
substitute By g - By g for B4 5 where the subscript k represents any
cation when 1 and j are both anions, and k represents any anion when 1
and J are both cations. Thus, the use of equation (36) does not require
knowledge of the values of B for individual ions, only those for salts. The
integrated form of equation (36) is only an approximation because all the con-
centrations, Cy, are functions of h. However, equation (36) allows one to
demonstrate the general dependence of concentration ratios on the composition
of a solution.
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OQur first example is an aqueous solution of sodium chloride and ferric
chloride. Figure 9 is a plot of the concentration ratio of each ion as a
function of the relative concentration of the two salts: the cation fraction
of the ferric ion. The conditions assumed are 100 000 G's and h =1 cm. The
actual concentrations of the salts need not be specified. However, the plot
in figure 9 is more precise for very dilute solutions. The data used in the
plot are available in table I. Note that the ratio N"/N' for both cations
varies with composition even though each of these cations can exist only as
the chloride. Only when one salt predominate in a solution will equation (14)
yield a precise ratio of N"/N' for that salt.. This is {1lustrated in
figure 9 by the fact that the N"/N' of both the sodium and chloride ions
approach the value for sodium chloride (table I) near zero ferric ion
concentration.

A more complex example involves the mixture of two salts without a common
fon. This means that two cation and two anions are present, and thus the
solution really contains four salts. The desired calculations can only be
made when the buoyancy values of all four salts are known. The example to be
used s a solution of sodium chloride and potassium nitrate, which includes
following ions: Na® , K+, C1~ and NO3. The results of the calculations are
piotted in figure 10. The same parameters are used as are used for figure 9:
100 000 G's and h =1 cm. Again one finds that the N"/N' ratio for each of
the ions varies with the concentration parameter.

To plot the values of N"/N' as a function of all the ions present in
two salts (without a common ion) would require at least a pseudo-three dimen-
sional graph. Treatment of solutions with more than two salts would require
multidimensional graphs. Thus, application of equation (36) to multisalt sys-
tems is best accomplished by restricting calculations to the composition(s) of
particular interest.

Osmosis

Generally the van't Hoff equation (ref. 15) i1s used to express osmotic
pressure: P, = NoRT/Vy where 2 refers to the solute; and 1 to the sol-
vent. Let us envision a vertical semipermeable membrane separating a solution
containing a solute from the pure solvent. A pressure equal to the osmotic
pressure is applied to the solution side so that the surfaces of both the pure
solvent and the solution will be at the same level. Under these conditions,
there will be a hydrostatic pressure difference, APh , between the two sides
of the membrane which increases with depth according to the following equation.

d ap,
—an = ale - py) (37)

where Jj refers to the pure solvent. For equilibrium to exist at all depths,
the osmotic pressure would have to vary in the same way with h. To substan-

tiate this, one can start with a different formu]at1on of the osmotic pressure
equat1on (ref. 15).

(en N)) (en N
P - _RT — . _RT —————1— (38)
0sS V-l j
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where the final form of the equation uses our subscript notation. If V
is assumed to be independent of h, differentiation of equation (38) y1e1ds:

dPOS _RT d 1n(Nj)
P dh

dh TV
Substituting the value of d in(Nj)/dh from equation (9) into equation (39)
yields:

(39)

dp_ ] g(M, - V,p)
J

dh ~ v
The final form of the equation results from the fact that pg = Mj/v . Com-
parison of equations (37) and (40) shows the correspondence etween the change
in osmotic pressure with h and the change in hydrostatic pressure with h.

= g(p - pj) (40)

Vapor Pressure

Let us now apply equation (10) to the concept of vapor pressure. Assume
that we have a pure liquid with a vapor that behaves ideally. A 1iquid with a
low vapor pressure will suffice. Actually, one could consider a solid just as
well as a 1iquid. For such a material the fugacities in equation (15) can be
replaced by the vapor pressures because the fugacity is the jdealized vapor
pressure.

RT &n (%T) = P(applied)V (41)

where V 1is the volume of a mole in the condensed state. Equation (41) states
that the vapor pressure of a material increases with an increase in the applied
pressure. However, generally the effect is quite small. The effect of the
earth's atmosphere on the vapor pressure of water at 20 °C is only about

0.07 percent.

In equation (41) the applied pressure may be the hydrostatic pressure of
the 1iquid itself which changes with depth; P = pgh. Interpretation of equa-
tion (41) in this manner tells us that the vapor pressure at the bottom of an
ysothermal 1iquid in a gravitational field is somewhat greater than that at
the top.

Equation (15) can be modified sti1l further; the applied pressure can be
assumed to be the vapor pressure. Thus, we have

pll

RT 2n (57) = P"V (42)
In this equation, P' s the vapor pressure measured under vacuum (Langmuir)
conditions while P" 4is the value obtained under equilibrium (Knudsen) condi-
tions. Equation (42) show us that from a theoretical viewpoint the two are not
jdentical. However, from a practical viewpoint, the difference is negligible.
For water which has a vapor pressure of about 17.5 mm of Hg at 20 °C, the
Knudsen pressure would be only 0.0017 percent greater than the Langmuir value.
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For ethanol which has a vapor pressure of about 42 mm of Hg at 20 degrees, the
Knudsen pressure would be 0.008 percent greater than the Langmuir pressure.

We have applied equations (41) and (42) to only pure materials. However,
they may be applied just as validly to components in an ideal solution.
Two Continuous Phases In Contact
If two phases are set up as side-by-side columns, and each phase is

assumed to be in equilibrium with respect to h, equation (18) holds for all
the components of both phases. As a result

f" fll
1,1 _N,2 .
ER IR ()

where the 1 and the 2 refer to the two different phases. The system is
most easily visualized in terms of a solid and a gas, but the concept is valid
for solid - solid, solid - 1liquid, liquid - 1iquid, and 1iquid - gas systems.
Systems involving two fluids requires the visualization of semipermeable mem-
brane between the phases.

Let equilibrium be assumed to gx1st between the two phases at the higher
altitude. In other words, f4i 7 = f4 2 for each component. As a consequence
of equation (43), fy,7 = fj 2 for each component. Thus, if two phases are
in equilibrium with respect to h, and in equilibrium with each other at one
altitude, they are in equilibrium at all altitudes. Under these conditions no
net transport of any species is expected. Let us restate the conclusion for a
more specific case. A column of a single phase solid setting in an atmosphere
of 1ts own vapor is not expected to be transported from a higher elevation to
a lower elevation. This also means that extraction coefficients based on
fugacities do not vary with position in a gravitational field; this does not
mean that an extraction coefficient based on concentrations will not vary
with h.

Two Phases In Contact, One Not Continuous

Phase 2 i1s now assumed to be noncontinuous while phase 1 is still con-
tinuous. One portion of the noncontinuous phase 2 is allowed to contact the
column of phase 1 at one altitude, and another portion of phase 2 is allowed
to contact the column of phase 1 at another altitude, a distance h below the
first. In this case, equation (18) applies to the components in the continuous
phase but not to those in phase 2. For phase 2 the fugacity of a component 1s
determined by the pressure exerted by the continuous phase 1.

fll .
i,2 = =
RT n (’f—i—’—z'> = V1'2P = V1,2P'|gh (44)

where V1'2 is the partial molal volume of species 1 1in phase 2, and the
pressure at the higher elevation is assumed to be nil.
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Next let us assume that equilibrium exists at the higher altitude.

e = fin (45)

Combining equation (18) for phase 1 with equations (44) and (45) y1e1d§

)
RT 9.n<%'—12—> - (M, - ¥y 1op)ah (46)

thus, the fugacities of species 1 are not the same in both phases at depth

h. Transport of species 1 between the phases is expected. If the buoyancy
factor is positive, transport at depth, h, will be from phase 1 to phase 2
because the fugacity is greater in phase 1. This will cause a displacement of
phase 1 from gravitational equilibrium; and eventually at the higher elevation,
species 1 will tend to be transported from phase 2 to phase 1. Recall that
such transport is not predicted when both phases are continuous. The transport
in the case of a noncontinuous phase is due to the fact that the lower portion
of the noncontinuous phase is not subjected to a hydrostatic pressure equal to
that of a column of phase 2, h in height.

Under the conditions where transport does occur between different eleva-
tions, the mechanism varies depending upon whether the phase 1 is condensed or
a gas. When phase 1 is a gas, transport occurs by vaporization - condensation,
and the rate of transport depends upon the vapor pressure of the species in
phase 2 (or the vapor pressure of phase 2 itself if 1t is a pure material).
Thus for very low vapor pressures, the transport could be undetectable. When
phase 1 is a 1liquid or solid, transport would occur by solution - diffusion -
dissolution. The rate of transport will be highly dependent on the solubility
of phase 2 in phase 1. Low solubility would mean that transport would essen-
tially be nil.

Transport can occur even if none of the material to be transported is at
the lower elevation; only nucleation sites are required. Consider the follow-
ing example. A container is filled with an aqueous saturated salt solution
and a crystal of the salt is adhering to the side and near the top of the con-
tainer. Equation (46) predicts that the crystal of salt will tend to dissolve
and recrystallize near the bottom of the container. (Evaporation of the water
is assumed to be nil.)

wWhen phase 2 i1s a metal, transport can occur electrochemically if certain
conditions are met. The metal at the upper position must be connected elec-
trically to the metal in the lower position. The column of 1iquid must contain
an electrolyte. Finally, the electrochemical transition between the metal and
its fon must be reversible. Without the short circuit between the two identi-
cal pieces of the metal (each at a different elevation), a small voltage would
exist between them. Such a voltage would not only be dependent upon the chem-
ical potential difference between the two electrode but upon the transference
numbers of the ions involved. Thus, a discussion of the voltage generated
becomes too far outside the scope of this report.
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Multiphase Systems

From the preceding sections, one can see that a multiphase system can be
in equilibrium only when all the phases are continuous. If one phase is non-
continuous, complete equilibrium between various parts of such a phase is not
possible. This follows from equation (46). If diffusion between phases 1is
permitted, the system would be unstable as the example of a salt in a satu-
rated water solution. 1In contrast if diffusion between phases is not permit-
ted, stability (but not equilibrium) of the system is possible. 1In such a
multiphase system, equilibrium with respect to h for continuous phases can
st111 exist: equations (10) and (18) would apply to the components in these
phases. Equilibrium with respect to h for noncontinuous phases is not pos-
sible because N# = Ni for all the components of such phases. The fugaci-
ties are determined by the hydrostatic pressure to which they are subjected;
see equation (15). The hydrostatic pressure is given by pgh, where the den-
sity, p, is that of a continuous phase surrounding the noncontinuous phase.

Solubility

Consider again, two columns of different phases in a gravitational field,
each phase being in equilibrium with respect to h. Let phase 2 be of a pure
condensed phase, and phase 1 be a saturated solution of phase 2 in some sol-
vent. Equation (10) is applicable, and the Nyi's can be replaced by Si's,
the solubilities.

[]]
RT nn(—?'l> - ghB, | (47)

where Bp 1 is the buoyancy factor of phase 2 in phase 1; and S2 1 1s the
solubiiity of phase 2 in phase 1. v

Like equation (10) from which it was derived, equation (47) applies pre-
cisely only to dilute solutions. Therefore, equation (47) applies best to
relatively "insoluble" materials. However, the partial molal volumes of such
materials are sometimes difficult to measure. Therefore, the greatest appli-
cation of equation (47) might be for more soluble materials where the equation
would only be an approximation. For instance, equation (47) predicts about a
6 percent change (increase in the downward direction) in the solubility of
sodium chloride in water for h =1 cm and 100 000 G's. The values of Vp 4
and p used for the calculation are those in the vicinity of the saturation
concentration.

The ratio of solubilities of a noncontinuous phase 2 in a continuous

phase 1 may also be expressed as a function of h. The fugacity ratio for
phase 2 is determined by the pressure exerted by phase 1. Thus,

fll
RT an(—?) = V,P = V,pgh (48)
2

Qhefe Vo 1s the molar volume of pure phase 2, and p 1is the density of
the saturated solution (phase 1). Because saturation is assumed at both
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altitudes, the fugacity of the dissolved phase 2 1s equal to the fugacity of
solid phase 2. Thus,

]
RT nn<F§L§> = V,pgh ‘ (49)

Because Henry's law is assumed to hold, the ratio f/N for an nonionized mate-
rial is constant for any particular value of h. This constant may be evalu-
ated from the equilibrium values of f and N. Therefore, the dependence of
f/N on h 1s the same as for the dependence of their equilibrium values on

h, which can be ascertained by combining equations (10) and (18).

1]
Nll
A 2,1/
f ]
1
2,1
where the Va 1 1s the partial molal volume of phase 2 in phase 1, not the
molar volume of pure phase 2. By combining equations (49) and (50) and sub-

stituting S's for N's because the concentrations correspond to solubilities,
one obtains:

RT &n = VZ’]pgh (50)

2,1\ _ v
RT ‘"<§é ]> = gha(V, - V, ) (57)

The same equation may be derived for ionized salts. Moreover, i1t may be
derived in a manner which shows it is not limited to dilute solutions. To
apply equation (51) we again use a 1 cm high column of an aqueous solution of
sodium chloride at 100 000 G's. The change in solubility predicted is less
than 2 percent, less than the change in solubility (6 percent) predicted when
sodium chloride is a continuous phase.

The pgh 1n equation (51) may be replaced by P, the hydrostatic
pressure.

RT Qn(}%*l> = (V, -V, )P (52)

From this equation one sees that the solubility change with h for a non-
continuous phase can be attributed solely to the hydrostatic pressure of the
solution.

Equilibrium Constants
The fact that solubility changes with h, leads to the question whether

other types of equilibrium constants change with h. An equilibrium constant
at the higher position in a gravitational field is defined as follows.
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K' = n—(—j—j)— (53)
n(r; )

where 1 refers to the reactant species; j, to the product species; and the
y's, to the coefficients of the species in the chemical reaction under consid-
eration.” By restricting the equilibrium constant to molecular (nonionic)
reactions, equation (18) for each molecular species may be substituted into

equation (53).
y
J
n f!l
K' = —(—J—) exn[{X(y1M1) = L(ysMy) ﬁ%] (54)

n(ry)

But I(y4My) = I(yjMy) so that

K' = ——J—H(f'lyj> (55)
nr;”)

The right side of equation (55) is the definition of the equilibrium constant
at the Tower positions, K"; this shows that equilibrium constants involving
molecular species and based on fugacities are independent of depth in a gravity
field.

Polymers

_Let us write equation (10) for an addition polymer, assuming that Vp
= p'Vy where 1 represents the monomer; p, the polymer; and p', the number
of monomer units in the polymer.

NII _
RT sm(r—ﬁ) = p'(My - V,p)gh (56)
p

Combining this equation with equation (12) for the monomer gives the following
relationship.

"ip' ng'
TN (57)
p p

Thus at gravitational equilibrium, the value of N /N1p' is a constant inde-

pendent of h, even though the polymer concentration may not be in equilibrium
with the monomer concentration. Combining equation (57) with equation (12),
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n Nl| _
‘ﬁ? - (ﬁ) exp{(p' - 1)gh(My - Vyp)} (58)

Because My 1s expected to be greater than V4p, the ratio of Np/N1. should
increase with depth if equilibrium with respect to h exists.

When equilibrium also exists between the polymer and the monomer concen-
trations, equation (56) states that the equilibrium constant (based on con-
centrations) is independent of h, providing Vy = p'V4. 1In a similar manner
it can be shown that the equilibrium constant (gn terms of concentrations) for
any reaction is independent of h 1if the sum of the molal volumes of the
products is equal to the sum of the molal volumes of the reactants.

Near the Critical Solution State

The variation in concentration in a gravitational field seems to be most
easily observed near a critical solution temperature. Most if not all inves-
tigations of this phenomenon have involved two component systems. At the
critical temperature and critical composition, such a system separates into
two phases. 1In the single phase region near the critical point, one might
expect that molecules of Tike species would cluster together to form what
might be called physical polymers (molecules held together by physical not
chemical forces). Acceptance of this concept of physical polymers near the
critical point would mean that equation (56) could apply. Via experimental
data, equation (56) could be used to calculated a value for p'; p' would be
an estimate of the number of molecules in a cluster (or polymer) of the
component.

Extrapolation to Higher Concentration

To apply equation (7) to solutes of higher édncentrat1on, one must express
the density in terms of the mole fraction of species 1. 1In this treatment the
solution will be considered to contain only one solute.

M, + N,(M, - M,)

VJ + N1(V1 - Vj)
Substitution of this equation into equation (7) and expansion of reciprocals
to only the first power of Ny results in the following:

v dh
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where 1 refers to the solute; j, to the solvent; and p1 is the density

of the solvent. To integrate equation (60) one must sti1l assume a constant
V4 and noncompressibility of the solution.

; ;
= (M, - V,p,)gh = RT 1n<—7) (61)
L , 173 N1 X

V1PJ

where the subscript x refers to the value of N?/N{ calculated from
equation (10). Equation (12) is then used to calculate Ny. Finally,
egua§1on (61) can be used to obtain a closer approximation for the ratio
Ny/Njy.

Suspensions

Let us now return to Perrin's work (ref. 5) involving a suspension of
particles in a liquid. The fact that equation (5) is obeyed leads to an
interesting inference. Note that equation (5) treats each suspended particle
as a molecule, and that equation (5) specifies a mole of suspended particles.
This is clear from the occurrence of Avogadro's number in the equation. If
one attributes a molecular weight, Mg, and a molecular volume, Vs, to the
particles, equation (5) becomes

n
RT £n<%%> = (M - Vse)gh (62)

Because equation (62) has the same form as equation (10), and equation (10)
can be viewed as a balance of chemical and gravitational potentials, one can
postulate that a similar balance gives rise to equations (5) and (62). Thus,
a chemical potential could be attributed to suspended particles in a fluid,
Just as one is attributed to a solute in a solvent. However, remember that
for the suspension, an Avogadro's number of particles is taken as a mole of
the material.

Suggested Microgravity Experiment

Equation (52) tells us that via pressure one can increase the solubility
of a solute. Releasing the pressure would cause crystals of the solute to
form. The purity, size, and perfection of these crystals would depend on the
slowness at which the pressure is released. In 1 G, a difference in density
between the crystals and the solution can induce convection that can 1imit the
perfection of the crystals. However, under microgravity conditions, the con-
vection would be minimal, and the resultant crystals should be more perfect.

An example would be the recrystallization of sodium chloride from water.
The difference between the molar volume of the solid and its molal volume in
solution is about 9.3 cc. With an applied pressure of 100 atm, an increase in
solubility of about 4 percent is expected. For a liter of solution and a
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solubility of 0.357 g/cc under zero applied pressure, the expected yield is
14 g. This is more than required to test the method.

SUMMARY OF FINDINGS

Under equilibrium conditions, the fugacity of molecular and ionic species
is a function of the position in a gravitational field: equation (18). This
effect 1s partly due to the hydrostatic pressure of the material above it:
equation (15). The rest of the effect is associated with a concentration gra-
dient necessary for equilibrium: equation (10). For multiple lonic species,
equation (36) can be appiied. The concentration effect is generally less than
0.1 percent for a meter column at 1 G. But under ultracentrifuge conditions
of 100 000 G's, over a 10 percent difference is generally expected between the
concentration at the top of a 1 c¢cm column as compared with its concentration
at the bottom, tables I and II. The ocean's depth could lead to even greater
concentration gradients for the salts present. However, the existence of fluid
convection inhibits the attainment of such equilibrium.

Modifications of the usual diffusion equations are necessary to treat the
achievement of concentration equilibrium in a gravitational field: equations
(27) and (28). The important parameters for approaching equilibrium are the
diffusion coefficient and the height of the column. Figures 7 and 8 give the
time required to achieve various fractions of equilibrium. Equation (33) glves
the time required to achieve 96 percent equilibrium. For 96 percent equilib-
rium in a 1 cm high column, about 9 hr are required for a liquid solution. As
the height increases, the time required becomes extremely long; gravitational
equilibrium in the ocean requires about a billion years.

Under certain conditions a gravity field can give rise to bulk mass trans-
port: equation (46). Another effect of a gravitational field is the existence
of solubility gradients: equations (47) and (51). However, equilibrium
constants and extraction coefficients based on fugacity are not affected by a
gravity field. Moreover, the dependence of fugacity on depth and pressure
helps explain some details of osmotic pressure and vapor pressure.
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TABLE I. - PARTIAL MOLAL VOLUMES AND CONCENTRATION RATIOS OF SOLUTES IN AQUEQUS SOLUTION IN A GRAVITATIONAL FIELD

(Temperature = 20 °C)

Solute Species Mole Part. Buoyancy | Conc. Conc. Conc. Conc. Conc. Fuga.
per weight molal factor [{ratio ratio ratio range ratio ratio

molecule vol. (a) (b) (c) percent (d) (e)
Acetic acid 1 60.05 51.05 8.955 |1.000 1.036 1.433 30 1.028 11.273
Acetone 1 58.05 66.18 -8.10 .9999 .9678 .7215 9.5 L9706 { 1.263
Ammonium chloride 2 53.5 36.40 8.531 {1 1.034 1.409 .5 1,033 | 1.240
Ammonium hydroxide 1 35.05 42.42 -7.33 .9999 .9709 .7444 | 58 L9799 1 1.151
Ammonium sulfate 3 132.1 53.09 26.32 |1 1.111 2.885 .5 1.109 | 1.702
Barium chloride 3 208.2 25.79 60.80 |1 1.277 11.55 .5 1.275 | 2.312
Calcium chloride 3 110.9 20.34 30.19 |1 1.129 3.371 .5 1.130 |1.563
Cesium chloride 2 168.3 41,37 63.41 |1 1.290 12.84 2 1.290 §1.969
Citric acid 1 192.1 115.4 76.57 |1 1.361 21.80 1 1.364 | 2.166
Cobalt chloride 3 129.8 13,50 38.77 |1 1.168 4,761 .5 1.168 | 1.686
Copper sulfate 2 159.6 -2.36 80.99 |1 1.385 26.04 .5 1.387 | 1.901
Creatinine 1 113.1 86 27.06 |1 1.115 2.972 .5 1.119 | 1.576

Dextran 1 72 000 43 257 28 699 1.122 (f) (f) 5.5 (f) (f)
Ethanol 1 46.07 55.30 -9.17 .9999 .9637 L6911 9 - .9713| 1,203
Ethylene glycol 1 62.07 54.62 7.427 {1 1.030 1.348 9.5 1.029 | 1.283
Ferric chloride 4 162.2 23.30 34,71 |1 1.149 4,044 .5 1.149 [ 1.921
Formic acid 1 46.03 33.63 12.34 i1 1.050 1.643 7 1.047 |1.203
Fructose 1 180.1 110.1 69.77 |1 1.324 16.58 52 1.259 | 2.064
Glucose 1 180.1 111.8 68.22 |1 1.316 15.58 4.5 1.310 | 2.064
Glycerine 1 92.09 70.04 21,96 |1 1.092 2.420 58 1.069 | 1.448
Hydrochloric acid 2 36.47 18.28 9.083 |1 1.037 1.441 1.5 1.036 | 1.158

Inulin 1 5 200 3 227 1 969 1,007 |2 767 (f) 5.5 2 344 (f)
Lactose 1 342.3 205.6 136.4 |1 1.731 |[242.6 7.5 1.694 | 3.965
Lead nitrate 2 331.2 -2 460 1 423 1.005 307.2 (f)- .5 269.2 3.793
Lithium chloride 2 42.4 17.87 12.24 {1 1.050 1.637 .5 1.051 | 1.186
Magnesium chloride 3 95,23 17.46 25.91 |1 1.109 2.837 .5 1.109 | 1.467
Magnesium sulfate 2 120.3 -1.78 61.08 |1 1.278 11.69 .5 1.277 ] 1.623
Maltose 1 342.2 205.6 136.4 |1 1.731 |242.6 .5 1.752 | 3.965
Manganese sulfate 2 151 3.741 73.62 |1 1.344 19.36 .5 1.342 [1.836
Mannitol 1 182.1 116.7 65.35 |1 1.300 13.88 .5 1.290 | 2.081
Methanol 1 32.04 37.81 -5.74 1 .9999 9771 .7936| 56 .983111.137
Nickel sulfate 2 154.7 -11.4 83.13 |1 1.397 28.39 .5 1.390 | 1.864
Nitric acid 2 63.02 29.08 16.94 (1 1.070 1.978 1.5 1.070 | 1.288
Phosphoric acid 1 98 43,27 54,66 |1 1.246 9.027 .5 1,240 | 1.483
Potassium bromide 2 119 33.63 42,65 |1 1.187 5.567 1 1.185 | 1.614




TABLE I. - Concluded.

Solute Species Mole Part. Buoyancy | Conc.| Conc. | Conc. Conc. | Conc. [Fuga.
per weight | molal factor |ratio| ratio | ratio range | ratio |ratio
molecule vol. (a) {b) (c) percent | (d) (e)
Potassium carbonate 3 138.2 14.37 41.26 1 1.180 5.263 .5 1.179 (1.744
Potassium chloride 2 74.55 | 26.99 23.75 1 1.100 2.601 1.5 1.099 ]1.349
Potassium chromate 3 194.2 39.45 51.55 1 1.230 7.964 .5 1.229 |2.185
Potassium dichromate 3 294.2 88.98 68.35 1 1.316 | 15.66 1 1.313 {3.267
Potassium iodide 2 166 46.91 59.51 1 1.270 | 10.97 .5 1.273 |1.950
Potassium nitrate 2 101.1 38.61 31.21 1 1.133 3.512 1 1.134 }1.502
Potassium oxalate 3 166.2 46.96 39.71 1 1.173 4,946 1 1.173 }1.952
Potassium dihydrogen 2 136 38.45 48,78 - 1 1.216 7.123 1 1.214 [1.729
phosphate .
Potassium monohydrogen 3 174.1 25.02 49.69 1 1.221 7.391 .5 1.217 |2.015
phosphate
Potassium sulfate 3 174.2 35.40 46.26 1 1.204 6.436 .5 1.203 |2.016
Propylene glycol . 1 76.09 { 70 6.070 1 1.024 1.276 9.5 1.022 11.358
Silver nitrate 2 169.8 21.04 74.40 1 1.349 | 19.97 .5 1.342 |1.981
Sodium acetate 2 82.04 | 39.48 21.24 1 1.089 2.352 .5 1.087 {1.391
Sodium bicarbonate 2 84.02 | 23.74 30.11 1 1.128 3.360 1 1.127 {1.402
Sodium bromide 2 102.9 22.95 39.95 1 1.174 4,993 .5 1.173 1.513.
Sodium carbonate 3 106 -3.66 36.55 1 1.158 4,355 .5 1.157 {1.532
Sodium chloride 2 58.45 | 17.67 20.37 1 1.085 2.270 .5 1.086 |1.265
Sodium hydroxide 2 40.01 | -4.55 22.28 1 1.093 2.452 .5 1.093 {1.174
Sodium molybdate 3 205.9 29.58 58.76 1 1.266 | 10.64 .5 1.265 12.290
Sodium nitrate .2 85.01 | 27.39 28.78 1 1.122 3.185 .5 1.120 {1.407
Sodium monohydrogen - 3 141.9 .7063]: 47.09 1 1.208 6.654 .5 1.205 |1.770
phosphate
Sodium sulfate 3 142 14.77 42.41 1 1.186 5.513 .5 1.187 |1.771
Sodium tartrate .3 194 58.69 45.09 - 1 1.198 6.140 1 1.199 [2.183
Sodium thiosulfate 3 158.1 28.99 43.02 1 1.189 5.650 .5 1.190 }1.889
Sodium tungstate 3 293.9 30.57 87.75 1 1.423 | 34.19 .5 1.426 |3.264
Strontium chloride 3 158.5 19.63 46.28 1 1.204 6.443 .5 1.206 |1.892
Sucrose 1 342.3 1209.3 132.5 1 1.705 (207.6 58 1.530 {3.965
Sulfuric acid 2 98.08 | 31.83 33.06 1 1.142 3.784 1 1.139 |1.484
Trichloroacetic acid 2 163.4 81.90 40.69 1 1.177 5.144 1 1.179 1.930
Urea 1 60.06 | 43.26 16.76 1 1.069 1.963 1 1.067 |1.273
Zinc sulfate 2 161.4 -5.58 83.52 1 1.399 | 28.83 .5 1.397 j1.915

aDilute solution; 1 G; h =1 m.
Dilute solution; 100 000 G's; h = 1 cm.

CDilute solution; 1 G; h = 10 000 m.

dConc. indicated in ‘range' column; 100 000 G's; h = 1 cm.

€100 000 G's; h =1 cm.

TExceeds 10 to the 38th power.




TABLE II. - PARTIAL MOLAR VOLUMES AND CONCENTRATION RATIOS OF SOLUTES IN METALS AND ORGANIC SOLVENTS
20 °C unless otherwise specified)

IN A GRAVITATIONAL FIELD (Temperature

Solute/solvent Mole Part. Buoyancy | Conc. Conc. Conc. Conc. Conc. | Fuga.
weight molal factor |ratio ratio ratio range ratio | ratio
vol. (a) (b) (c) percent (d) (e)
Benzene 78.11 97.86 | -122 0.9995 0.6105 0.0072 |10 0.6595| 1.369
/stannic chloride
Bromocamphor 231.1 211.9 -83.4 .9996 .7130 .0339 |11.12 .7250| 2.551
[tristearin; 18 °C
Ethanol/acetone 46.07 60.48 -1.91 .9999 .9923 .9258 | 5.455 .9957 | 1.203
Sodium nitrate 84,99 |-1689 1241 1.004 {136 (f) .07 42.41 1.399
/methylamine; 25 °C
Stannic chloride 260.5 161.2 115.6 1 1.592 {105.1 10 1.664 2.853
/benzene
Tristearin 891.4 511.2 365.3 1.001 4.395 (f) 20 3.883 | 37.06
/bromocamphor; 18 °C
Tristearin . 891.4 505.5 364.4 1.001 4,827 (f) 20 4.090 | 47.03
/bromocamphor; 0 C
Tristearin 891.4 564.6 398.7 1.001 3.652 (f) 20 3.113 | 18.10
/bromocamphor; 90 °C
Aluminum/copper 63.54 |6.633 44,36 |1 1.195 5.964 |18 1,196 1.291
Aluminum/magnesium 26.98 15.50 2.772 1 1 1 1 2 1.015 1.114
Aluminum/zinc 26.98 10.34 -41.6 .9998 .8457 .1873 | 9.59 .8649| 1.114
Copper/aluminum 63.54 |6.634 44,37 {1 1.195 5.965 |18 1.196 1,291
Copper/gold; g 63.54 | 8.442 -93.4 .9996 .6863 .0232 | 5 .7028 | 1.291
Iron/aluminum 55.84 |-.529 57.28 |1 1.259 10.03 1 1.266 1.252
Iron/copper 55.84 |6.260 1.267 |1 1 1 .96 L9901 1.252
Lead/gold; g 207.1 20.01 | -171 .9993 .5020 .0010 | 5 .4613 1 2.302
Lead/mercury; g 207.1 18.02 -35.6 .9998 .8663 .2380 (10 .8586{ 2.302
Lithium/mercury; g 6.939 | 5.912 -65 .9997 .7697 .0730 | 2.5 .7465| 1,028
Magnesium/aluminum 24.31 13.01 -10.7 .9999 .9575 .6483 | 1 L9785 1.102
Manganese/aluminum 54.93 18.328 32.40 |1 1.139 3.684 .5 1.254 1.247
Nickel/aluminum 58.71 |7.349 38.78 |1 1.168 4.764 1 1.228 1.266
Oxygen/copper 16 5.816 -35.8 .9998 .8655 .2359 .015 2.747 1.066
Phosphorus/copper 123.8 -83.1 866.7 1.003 32.73 (f) .04 4.941 1.646
Potassium/mercury; g 39.10 |5.504 -34 .9998 .8717 .2535{ 5 .8818| 1.170
Silicon/aluminum 28.08 13.95 -9.10 .9999 .9640 .6930 | 8 .97221 1.119
Silver/gold; g 107.8 15.69 | -182 .9992 .4797 .0006 | 5 .48491 1.543
Sodium/mercury; g 22.98 13.236 -20 .9999 .9224 L4462 | 5 .9287 1.096
Tin/gold; g 118.6 21,97 | -281 .9988 .3224 1E-5 1| 5 .3569 | 1.612
Zinc/copper 65.37 21.90 | -118 .9995 .6217 .0086 | 7 .6776| 1.300
aDilute solution; 1 G; h = 1 m,
bpilute solution; 100 000 G's; h = 1 cm.
CDilute solution; 1 000 000 G's; h = 1 cm.
Conc. indicated in ‘'range' column; 100 000 G's; h = 1 cm.

€100 000 G's; h = 1 cm.

fExceeds 10 to the 38th power.

90btained from graph.




TABLE III. - KINETICS PROGRAM FOR DIFFUSION IN A GRAVITATIONAL FIELD

10 REM GRAV/DIF

11 GOTO 101: REM SET UP PARAMETERS

28 REM LINES 28-31 CALC FLOW; AD=MAX

29 T=T + U: FOR X = 2 TO N:S2 = F(X):S1 = C(X - 1,6) - C(X,G):F(X) = D * (S1/
L + SQR ((1 + C(X,G)) * (1 + C(X - 1,6))) * Y): IF T = U THEN 31

30 IF ABS (F(X) - S2) > AD(X) THEN AD(X) = ABS (F(X) - S2):BD(X) = T

31 NEXT X :

32 FOR X = 1 TO N:S2 = C(X,6):C(X,G) = (F(X) = F(X +1)) / L * U+ C(X,6): IF
T = U THEN 35

33 IF ABS (C(X,G) - S2) > AC(X) THEN AC(X) = ABS (C(X,G) - S2):BC(X) =T

34 S3 = ABS (C(X,G) - C(X - 1,8) - S2 + S1):S1 = S2: IF S3 > AE (X) THEN
AE(X) = S3:BE(X) = T

35 NEXT X: REM LINES 32-35 CALC NEW CONCENTRATIONS

36 IF T < .9999999 * S * U THEN 29: REM SELECTS VALUES TO BE PRINTED AS
DETERMINED BY DATA SET

38 HOME : PRINT S$: PRINT "GRAD. --- T="; INT(T): FOR X = 2 TO N:W = (C(X,G
C(X = 1,6)) / (B(X) - B(X - 1)) * (1 + B(X)) / (1 + C(X,6)) * 1000: IF X /
ST < > INT (X/ST) THEN 40

39 IF W < >0 THEN PRINT " ";X;")";.1 * INT (W);

40 WW = WW + W: NEXT X:WW = WW / (N - 1): PRINT " AVER)";.1 * INT (WW):WW = 0
41 PRINT “CONC. —-— T="; INT (T): FOR X = 1 TO N STEP ST:W = C(X,G) / B(X) *
1000 :

42 IF W < > 0 THEN PRINT " ";X;")";.1 * INT (W);

43 NEXT X: PRINT : PRINT E$

) -

44 G(G) = T:G =G + 1
45 FOR X = 1 TO N:C(X,G) = C(X,G - 1): NEXT X
59 READ S

60 IF G <6 0OR ABS (C(N /2 +1,G)) < .95 * ABS (B(N / 2 + 1)) THEN 29

70 PRINT S$: PRINT

71 IF XX$ < > "Y" THEN 85: REM BYPASSES ACTUAL GRAD AND CONC DATA PRINT OUT

72 FOR Gl =1 TOG -1

73 HOME : PRINT “GRAD. --- T="; INT (G(G1)): FOR X = 2 TO N:W = (C(X,61) -
C(X -1,G1)) / L: IF X / ST <> INT (X / ST) THEN 75

74 IF W < > 0 THEN PRINT " ";X;")";W;

75 NEXT X: FOR X = 2 TO N:WW = WW + W: NEXT X: PRINT " AVER)";W / (N - 1):WW
=0

77 PRINT “CONC. --- T="; INT (G(G1)): FOR X = 1 TO N STEP ST:W = 1 + C(X,61):
PRINT " ";X;")";W;: NEXT X: PRINT
81 NEXT 61

85 PRINT : PRINT "TIME OF MAX FLOW"

90 FOR X = 2 TO N: PRINT " ";X;")";BD(X);: NEXT X: PRINT : PRINT "TIME OF MAX
CONC CHANGE": FOR X =1 TO N: PRINT " “;X;")";BC(X);: NEXT X: PRINT : PRINT
"TIME OF MAX CONC GRAD"

91 FOR X = 2 TO N: PRINT “ ";X;")";BE(X);: NEXT X: PRINT

95 PRINT E$

100 HOME : PRINT “"FINISHED": END

107 HOME : REM EVERY QUESTION HAS A DEFAULT VALUE

103 PRINT "ENTER DIFFUSION COEFFICIENT IN CM2/SEC": INPUT D$:D = VAL (D$): IF
D=0THEN D = 1E - 5



TABLE III. - Concluded.

105 PRINT : PRINT “ENTER THE NUMBER OF G's": INPUT G2$:G62 = VAL (G23): IF G2
= 0 THEN G2 = 1E5

107 PRINT : PRINT "ENTER BUOYANCY FACTOR IN GRAMS/MOLE": INPUT BU$:BU = VAL
(BU$): IF BU = 0 THEN BU = 100

109 PRINT : PRINT "ENTER HEIGHT IN CM*: INPUT H$:H = VAL (H$): IF H = 0 THEN
H =1

711 PRINT : PRINT "ENTER TEMPERATURE IN CENTIGRADE":H$ = " ": INPUT H$: TEMP
VAL (H$): IF TEMP = O THEN TEMP = 293

112 PRINT : PRINT "ENTER NUMBER OF INCREMENTS": INPUT N$:N = VAL (N$): IF N
0 THEN N = 20

113 PRINT : PRINT "DO YOU WANT A PRINT OUTZ (Y/N)": INPUT H$: IF H$ <> "Nt
THEN S$ = CHR$ (4) + "PR#1":€$ = CHR$ (4) + "PR#O"

114 PRINT : PRINT : "DO YOU WANT ACTUAL CONC AND GRAD DATA PRINTED OUT?
(Y/N)": INPUT XX$

115 PRINT : PRINT “ENTER STEP INCREMENT IN PRINT OUT: 1, 2, 3, OR 4" INPUT
ST$:ST = VAL (ST$): IF ST =1 OR ST = 3 OR ST = 4 THEN 117

116 ST = 2

117 HOME : READ S:A = 1: DIM C(N,15): DIM F(N + 1): DIM B(N): DIM G(15): DIM
AD(N): DIM BD(N): DIM AC(N): DIM BC(N)

118 G = 1: DIM AE(N): DIM BE(N)

119 Y = BU * G2 * 980 / 8.31E7 / TEMP:L =H / N:U=L*L /2 /D /A

120 U1 = INT ( LOG (U) / LOG (10)):U2 = 10 ~ Ul: IF U > 5 * U2 THEN U = 5 *
U2 : GOTO 123

121 IF U > 2 * U2 THEN U = 2 * U2: GOTO 123

122 U = U2

123 FOR X =1 TO N:Q = Q + EXP (Y * ((X — .5) * L - .5 * H)): NEXT X

124 Q =N/ 0 Q = LOG (Q)

125 FOR X = 1 TO N:B(X) = = 1 + EXP (Y * ((X - .5) * L - .5 % H) +Q): IF

B(X) = O THEN B(X) = - 1E - 38

127 NEXT X: REM LINES 120-126 CALCULATE EQUILIBRIUM CONCENTRATIONS, B

129 PRINT S$: PRINT "BUOY=";BU;" HEIGHT=";H;" # OF SLICES=";N;" DIFF
COEF=";D;" *;62;"G's TIME INCREMENT=";U: PRINT

130 PRINT "EQUIL VAL ";: FOR X = 1 TO N: PRINT " ";X;")";B(X):: NEXT X: PRINT
. PRINT E$

140 GOTO 29

1000 DATA 1,2,5,10,20,50,100,200,500,1000,2000,5000,10000

1002 DATA 20000,50000,100000,200000,500000
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Figure 1. - Ratio of mid-height concentration to initial concentration as a function of N;'IN; at gravi-
tational equilibrium.

I L " - x‘)—J

Figure 2. - Mode! of diffusion in a gravitational field.
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