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1. INTRODUCTION

This report for the period 1 October 1985 th rough 31 March

1986 reports on the work performed during the second six-months
of NASA Contract NAG-1-586, under the technical direction of Dr.
J. B. Robertson.

The principal co-investigators of this study were Drs. C. J.

Summers and K. F. Brennan , who were assisted in part by several
graduate students, Mr. H. D. Rodgers , Mr. B. K. Wagner and Mr. R.
G. Benz.

The r epor t b r i e f l y descr ibes the t h e o r e t i c a l and
experimental progress made so fa r .



2. THEORETICAL MODELING STUDIES OF VARIABLY SPACED

SUPERLATTICE STRUCTURES

This study consumed most of our e f f o r t du r ing this report

period and was emphasized because it was essential to obtain an

accurate model of the VSSEF s t ruc ture in order to f u l l y explore
the viability of this concept. The w o r k proved to be m o r e

involved than anticipated and f because of its complexi ty, was
initially applied to the AlGaAs system so that comparisons could
be made wi th some previous , but less complete studies. The
results of this study produced the submission of a paper to the
Journal of Applied Physics and also the acceptance of a paper to
b e p r e s e n t e d a t t h e S e c o n d I n t e r n a t i o n a l M e e t i n g o n

Superlattices, Microstructures and Devices, in Goteburg, Norway

during August.
Copies of the paper and abstract complete this section.



THEORY OF RESONANT TUNNELING IN A VSSBF
MULTIQUANTUM HELL STRUCTURE:
AN AIRY FUNCTION APPROACH

K. F. Brennan
and 2

C. J. Summers

Microelectronics Research Center
Georgia Institute of Technology

Atlanta, Georgia 30332

ABSTRACT

A theoretical study of resonant tunneling in multilayered heterostruc-

tures is presented based on an exact solution of the Schroedinger equation

under the application of a constant electric field. By use of the transfer

matrix approach, the transmissivity of the structure is determined as a

function of the incident electron energy. The approach presented herein is

easily extended to many layer structures where it is more accurate than other

existing transfer matrix or WKB models. The transmission resonances are

compared to the bound state energies calculated for a finite square well under

bias using either an asymmetric square well model or the exact solution of an

infinite square well under the application of an electric field. The results

show good agreement with other existing models as well as with the bound state

energies. The calculations were then applied to a new superlattice structure,

the variably spaced superlattice energy filter, VSSEF, which is designed such

that under bias the spatial quantization levels fully align. Based on these

calculations, a new class of resonant tunneling superlattice devices can be

designed.

1 School of Electrical Engineering.

Georgia Tech Research Institute.



I. INTRODUCTION

Since the advent of exacting epitaxial growth techniques, particularly

MBE and MOCVD, realization of superlattice and multiquantum well structures

has become possible. The superlattice, as originally proposed by Esaki and

Tsu [11, has found wide application in many new device structures such as

photodetectors [2-5], transistors [6,7], and light emitters [8J. The most

thoroughly studied material system as applied to superlattices is the GaAs/

Al Ga« As system owing to the relative ease in its fabrication as well as its

close lattice matching. Under the application of a bias, carriers can tunnel

through these structures provided that the wider gap AlGaAs layers are suffi-

ciently thin. However, to optimize the current flow in a multiwell structure,

the adjacent energy levels within the GaAs wells, arising from spatial

quantization effects must be aligned. Several experimental measurements have

recently confirmed the presence of resonant tunneling in single and double

quantum well structures [9-12], Optical absorption measurements [13] have

also independently verified the formation of superlattice minibands arising

from the coupling of adjacent quantum states.

The theories used to explain resonant tunneling phenomena generally

break down into three different approaches, use of the WKB approximation

[14.15], which is valid if the barrier energy varies slowly compared to the

scale of the electron wavelength, a Monte Carlo solution of the semiclassical

Boltzmann transport equation [16,17], in which a quasi-particle picture of the

electron is assumed, and the transfer matrix approach which gives the

transmissivity of the structure as a function of energy directly. The WKB

approximation is not valid in the device structures of greatest interest,

those with narrow barriers. The Monte Carlo approach is useful since it



includes phonon scattering but does not easily lend itself to the calculation

of the structure's transparency.

Tsu and Esaki [18] first provided a theoretical description of the

electron tunneling current density in a multilayer structure. Their approach

involves the solution of the Schroedinger equation in each region of the

device under the assumptions that the applied bias is small (allowing for the

use of plane wave and evanescent wave solutions) , the effective mass is

constant throughout, and phonon scattering can be neglected. The tunneling

transmission coefficient is then determined by the transfer matrix method; a

2x2 matrix at each interface is formed by matching the continuity of the

wavef unctions and their derivatives. Successive multiplication of these

matrices then couples the incident wavevector to the outgoing wavevector of

the heterostructure stack. The current density is calculated from the

transmission coefficient T for a one-dimensional system as [18],

* ~ 1 + exp(E.-E,)/kT

where Ep is the Fermi energy, E- the energy of the N = 1 subband, V the

overall applied bias, T the temperature, and m the effective mass of the

carrier.

Mukherji and Nag [19] reformulated the calculations retaining a staircase

potential shape (plane wave and evanescent wave solutions are used throughout)

but added the effect of band nonparabolicities and differing masses within the

layers. Their method is mathematically similar to that of Esaki and Tsu [18]

in that a transfer matrix approach is used. Vassel et al. [20] have further

extended the transfer matrix model by computing the transmission coefficient



from direct numerical calculation of the 2x2 transfer matrices. Thus, their

approach is directly applicable to arbitrary potential profiles. However,

good numerical convergence near the turning points is difficult to achieve and

may lead to significant error in many layered stacks [21],

The exact solution of a particle in a uniform static field is well known

and can be expressed as a linear combination of Airy and complementary Airy

functions [18], The solution of the infinite square well under an applied

field is then expressible in terms of Airy functions. There are two indepen-

dent means of determining the energies in a quantum well, a direct Airy

function solution which becomes exact for an infinite square well [22,23], and

a transmission resonance calculation. Miller et al. [23] have found excellent

agreement between the two models provided that effective widths are chosen for

the infinite square well such that the correct finite square well zero field

energies result.

Recently a new superlattice structure has been proposed, the variably

spaced superlattice energy filter (VSSEF) [24], In this structure, the energy

levels arising from spatial quantization effects become resonantly aligned

under bias. By varying the narrow gap layer widths, and hence the energies of

the quantum levels, the quantum states in adjacent wells are designed to be

separated in energy by the voltage drop across each cell, thus resulting in

their alignment under the appropriate bias voltage. This structure has the

advantage of providing a high speed resonant tunneling channel under bias as

opposed to the original Esaki-Tsu constant period superlattice [18] which is

resonantly aligned only at zero or very low bias. As shown by Dohler et al.

[25] in a constant period superlattice, if the voltage drop across each period

is greater than the miniband width, the transport changes from Bloch-like



propagation to "hopping" conduction. It is expected that "hopping" conduction

is slower than resonant tunneling. Therefore, a VSSEF structure should

provide better performance than a constant period superlattice under large

bias.

We present resonant tunneling transmissivity calculations in a VSSEF-like

superlattice structure made from the GaAs/AlGaAs material system. The calcu-

lations are based on an exact Airy function solution to the Schroedinger

equation using the transfer matrix approach. The calculations are described

in detail in Section II. As a control on our calculations in Section III, the

Airy function solution is compared to that of Vassel et al. [20] and also to

the predicted energy levels using an uncoupled finite square well calculation.

In Section IV, the transmissivity of a six and eight period VSSEF superlattice

is calculated. The results clearly show the resonant tunneling transition.

As the bias varies from the critical voltage, under which the levels align,

the transmissivity peaks broaden away from the sharp resonant levels.

Finally, the conclusions are presented in Section V.

II. MODEL DESCRIPTION

The calculation is performed in a straightforward way by solving the

Schroedinger equation exactly in each region (barrier and well) and then

matching the continuity of the wavefunction and its derivative at each

boundary. A representative multilayer stack is diagrammatically presented in

Figure 1. The solution of the Schroedinger equation in region one is simply a

linear combination of an incident and reflected plane wave,

ik.x -ik x
flr = e + Re ' (2)



where k^ = / 2m.E/n and nu is the effective mass in the narrow gap (GaAs)

layer. The Schroedinger equation in region two can be written as,

- P*2(P) - 0 (3)

where
2m eV 1/3

- 2 -P = ( , 3) (x + n) ; n = (L/eV )(V - E )
L1T a o X,

eVa/L is the applied electric field, VQ is the barrier height, and x is the

real space distance measured from the interface between regions 1 and 2. The

solution is readily expressed in terms of Airy functions as.

= C*Ai(P) + C~Bi(p) (4)

Within region 3, the Schroedinger equation becomes,

i|>"{p) + pijj (p) = 0 (5)

where
2m eV 1/3

P - ( * a) (x + n) ; n = (E.£ + b*eVa/L)/(eVa/L)
Ln

and b is the barrier width. In this case, x is now measured with respect to

the second interface. The solution in this region is then.

*3{p) = C3Ai(~p> + C~Bi(-p) (6)



The solution in all succeeding regions is the same then as either that in

region 2 or in region 3.

The imposition of the boundary conditions at x = 0 (the interface between

region 1 and region 2) gives.

1 + R = C2Ai2(x = 0) +
 C2Bi2

(x = 0)

- R) - C*Ai2(x - 0) + C~Bi^(x = 0)

which in matrix form becomes,

,-v 1 9 Bi (x-0)C*~lk ~1 2 2 2

(7)

Ai2(x=0) Bi2(x=0)/\C2

Extending the analysis to a multiple well system gives,

Ilk tik _jjs2(x » 0)s2'(x - b)S3(x

S2(x = 0)S~1(x = b)S3(x = 0)S~
1(x = a2) ••• S2 (x = OJS^

1 (x = b) (9)

-ik'nO

where the matrices S2 and S^ are defined as,

TAi(P) Bi(P) 1 (10)LAi'(P) Bi'(p) J l '

(p is given as in equation (3));



TAi(-p) Bi(~p)LAi'(-p) Bi'(-P)

(p is given as in equation (5) ) .

The subsequent product of the transfer matrices (82 and S^) is found. The

resulting expression becomes,

using the notation of Vassel et al. [20] for the product of the S matrices.

Note that equation (11) is essentially the inverse to equation (12) in Vessel

et al. [20] . From equation (11) the transmissivity, T, can be found noticing

that T * k/k'l./M where the matrix M is

Therefore, T is given by,

4k/k'

(A + k'AD}2 + (c/k - k'B)

where A, B, C, D are the elements of the S(0,L) matrix. Finally, the tunnel-

ing current density can be obtained through substitution in equation (1).

III. MODEL COMPARISON

It is useful to compare the resonant tunneling calculation, as outlined

in Section II, to the calculation of Vassel et al. [20] and to the calculated



bound state energies in a finite square well under the application of an

applied electric field. Resonances in the transmissivity vs. electron energy

curve correspond to the bound state energies in the wells. Additionally, the

width of these resonances determines the broadening of the energy levels. The

transmission resonances in one and raultiwell structures are presented below

and are compared to Vassel's inodel [20] and to two different bound state

energy calculations.

The logarithm of the transmission coefficient as a function of energy in

a one well, two barrier GaAs/AlxGa1_xAs structure is presented in Figure 2.

The structure analyzed is identical to that used by Vassel et al. [20], The

calculation is performed under two conditions, the masses are assumed equal to

the GaAs mass in the wells and barriers, m1 = n^ = 0.067 mQ, and different

masses in the layers "are considered, m1 = 0.067 mo, m2 = 0.1087 mQ. It is

expected that the different mass model more nearly approximates the physical

situation since the energy wavevector dispersion relation is different between

the barrier and the well. The use of an effective mass remains valid even for

energies in the forbidden band as is the case in the barrier region [20],

Figure 2 shows that at an applied bias of 0.16 V two resonances appear in the

transmissivity. The peaks appear systematically at higher energy than that

calculated by Vassel et al. [20], The resonances are also shifted upwards in

energy in the two mass model from those calculated using the one mass model.

This can be easily understood as follows. A larger mass value within the

barrier region (the case for the GaAs/AlGaAs material system) is equivalent

mathematically to choosing a greater potential barrier height and subsequently

a deeper potential well energy. As is well known, the bound state energies

within the infinite square well lie at higher energy than the corresponding



finite square well states. Thus, as the well depth increases, the bound state

energy levels increase in energy.

The calculation is repeated at a higher bias, 0.4 V, in Figure 3. Again,

the resonance energy is shifted to higher energy in the Airy function approach

as compared to that of Vassel et al. [20]. In this case, only one peak in the

transmission coefficient occurs. As the bias increases, the resonances appear

at lower energy owing to the conduction band bending under the action of the

electric field. For 0.4 V bias, the N = 1 level lies below the Fermi level

and is, therefore, no longer in alignment with Ep, thus the first resonance

completely disappears as can be seen in Figure 4. The results again confirm

that the resonance peak occurs at higher energy in the two mass model.

From Figures 2 and 3, it is apparent that the Airy function approach

agrees reasonably well with the approach of Vassel et al. [20] in predicting

the location of the transmission resonances. It is necessary, however, to

check the agreement with the bound state energies in a finite square well

under the application of an electric field. Being that an exact solution of

the bound state energy in a finite square well under bias is not possible,

three different approaches can be used to estimate the energy. A straight-

forward application of time independent perturbation theory proves useless

in determining the energy at sizeable electric field strengths. Numerous

terms in the perturbation expansion are required which is impractical.

Alternatively, a finite square well under bias can be treated as an asymmetric

square well; the potential barrier is higher on one side of the well than on

the other side. This problem can be solved analytically [20,22] for the well

width in terms of the energy level and barrier heights as [22],



ka = nir - sin" ("hTc// 2mU, ) - sin (iTk// 2mU_) (13)
I fL

U1 and U2 are the potential barrier heights, a is the well width, and k is

the k vector corresponding to the energy level. The bound state energies in

an asymmetric square well of equivalent dimensions to those calculated using

the resonant tunneling approach are shown in Figure 4. At 0.16 V bias, the

n = 1 state is shifted (after1 subtracting the band bending) to 0.00855 eV

while the n = 2 state is shifted to 0.289 eV. Both calculations are well

below the corresponding tunneling resonance values. However, Kelly [26] has

shown that an asymmetric square well deviates significantly from an exact Airy

function calculation. Therefore, it is expected that the asymmetric square

well approach is not a wholly reliable means of determining the bound state

energies within the system.

Miller et al. [23] have adopted an alternative approach using the exact

solution of the infinite square well under bias. In principle, the eigen-

states of an infinite quantum well under bias are exactly determinable,

however, the solution is generally quite difficult to obtain. Excellent

agreement is obtained with the tunneling calculation if the infinite square

well width is adjusted such that the bound state energies correspond to those

in a finite square well [23], The bound state energies are obtained using a

variational calculation [27], From this calculation, a universal result for

the binding energy as a function of the normalized field induced energy is

obtained [27]. The location of the n = 1 quantum states in our single well

system under the application of a constant bias are readily determined from

Figure 1 in Reference 27. After subtracting off the band bending due to the

bias (the energy level is measured with respect to the band minimum) , the

10



n = 1 levels occur at 0.03 eV at 0.16 V bias, and at -0.108 eV at 0.40 V bias

(Figure 4). This result agrees more favorably with our resonant tunneling

calculation.

The transmission coefficient as a function of energy for a two well,

three barrier system at 0.16 and 0.4 V bias is presented in Figure 5. Similar

qualitative agreement is obtained with the results of Vassel et al. [20],

Again, it is interesting to note that the resonances occur at higher energy in

the Airy function calculation than in the numerical approach of Vassel et al.

[20]. It has been shown by Kelly [26] that the Airy function approach shows

much finer detail than either the WKB method or the stepped (asymmetric)

quantum well method. In addition, since the calculation is exact, no

convergence errors at the turning points are introduced, thus making this

calculation more suited'to multiple well structures.

IV. VSSKF CALCULATIONS

A representative diagram of the VSSEF structure is presented in Figure 6.

As can be seen from the figure, the energy level scheme is designed (by

varying the well widths) such that under bias all of the n = 1 levels align.

As mentioned above, this provides a resonant tunneling channel through the

superlattice structure. It is expected that for a VSSEF device, designed to

show alignment of the n = 1 levels, that only at certain bias will the

transmissivity be sharp. As the bias is either increased or decreased from

this value then the structure becomes dealigned leading to a broader

transmissivity.

In a superlattice, miniband formation arises from the coupling of the

energy levels in adjacent quantum wells. From a plot of the transmission

11



coefficient versus the incident electron energy, the transmission resonances

can be determined. Figures 7-9 show the transmission coefficient for a six

well, seven barrier GaAs/AlQ 45Ga0 55As superlattice. The barrier height is

chosen to be 0.347 eV in accordance with the 60/40 rule [28]. The effective

masses are 0.067 and 0.1067 in the GaAs and AlGaAs layers, respectively. The

device dimensions are chosen by designing the structure such that adjacent

levels align. The wells are first assumed to be uncoupled. Equation (13) can

then be used to determine the well widths necessary for alignment to occur at

a fixed bias, in this case, 0.20 volts. These dimensions are used in the

resonant tunneling calculation in which full coupling is considered to obtain

the structure's transmissivity. The calculated results using equation (13)

are not exact since use of it assumes that the wells are uncoupled. However,

it provides an estimate as to a structure which will align under bias.

The tunneling calculation shows that as the bias changes from 0.16 V to

0.20 V (Figures 7-9), the low energy (n = 1) transmissivity peak changes

dramatically. At 0.16 V, roughly four separate peaks arise (Figure 7). As

the bias increases to 0.18 V, only two sharp peaks closely spaced in energy

appear (Figure 8). Further increase in bias results in the reappearance of

four peaks broadening the transmission resonance once again. These figures

clearly show that the structure resonantly aligns at a fixed bias. As the

voltage changes away from this value (0.18 V in this case), the structure

becomes resonantly dealigned reflected by the broadening of the transmissivity

peaks.

The calculation is repeated for an eight well, nine barrier structure.

The tunneling transmission resonances are plotted versus incident electron

energy in Figures 10-14 at different biases, 0.16-0.20 V. Again, a resonant

12



tunneling transition can be observed at 0.17 V. At 0.17 V bias, the four

peaks occur evenly spaced in energy and have approximately the same magnitude

(excepting one). As the number of wells increases, the number of states

common to the superlattice increases as well. It is expected that sharp

coincidence of these states is progressively more difficult to achieve under

bias. The calculations presented herein indicate that sharper alignment is

achieved in the six well case as opposed to the eight well case.

Sharp alignment of the transmissivity peaks, as demonstrated by Tsu and

Esaki [18] for a constant period superlattice at zero bias, cannot be attained

as neatly in a VSSEP structure. This is due to two limitations. First, it is

not definite that the devices presented above have perfect alignment of each

quantum level since the method used to design the well widths (equation (13))

is not precise. Most likely, the levels are reasonably aligned but perhaps

not fully. This will result in some splitting in the transmissivity peaks.

Additionally, since the quantum wells have different widths, it is not clear

that the wavefunctions corresponding to each quantum well contribute equally

to the net superlattice wavefunction. This explains the lack of as sharply

defined resonance peaks in the VSSEP calculations as compared to that within a

constant period superlattice [18],

IV. CONCLUSIONS

A solution to the resonant tunneling problem is presented based on the

exact solution of the Schroedinger equation within the potential wells and

barriers of a multilayered heterojunction stack. Good qualitative agreement

is obtained with previous models. In addition, the calculated resonances

agree fairly well with the calculated bound state energies derived from the

13



solution of the infinite square well under bias. The Airy function approach

shows much finer structure than either the WKB or potential step models of

previous workers. The Airy function approach is apparently better suited to

many layered structures (since it has no convergence error) as well as narrow

barrier structures in which the WKB approximation becomes invalid.

The first theoretical verification of the resonant alignment of the

variably spaced superlattice energy filter, VSSEF, has been presented. The

VSSEF structure becomes resonantly aligned under bias as opposed to the

traditional constant period superlattice which is resonantly aligned only at

zero or low applied bias. The transport within the VSSEF device is Bloch-

like. Hence, the VSSEF is much faster than a "hopping" transport super-

lattice, a constant period superlattice biased such that the voltage drop

within each period exceeds the miniband width. Based upon these calculations,

new high speed resonant tunneling devices can be designed. Future work will

address the design of electroluminescent devices, avalanche photodiodes, and

IMPATT structures based on the VSSEF concept and the calculations presented

herein.
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FIGURE CAPTIONS

Figure 1:

Figure 2:

Figure 3:

Figure 4:

Figure 5:

Figure 6:

Figures 7-9:

Schematic representation of a multilayer stack for purposes of

discussion concerning the tunneling current calculations.

Logarithm of the transmission coefficient as a function of

incident electron energy for a one well structure at an

applied bias of 0.16 V. The curve shows the location of the

transmission resonances in both the Airy function model and

the model of Vassel et al. [20].

Logarithm of the transmission coefficient as a function of

incident electron energy for a one well structure at an

applied bias of 0.4 V. The curve shows the location of the

transmission resonances in both the Airy function model, as

well as the model of Vassel et al. [20].

Diagram showing the calculated bound state energies in a

finite square well under a) zero bias, b) 0.16 V bias, and

c) 0.40 V bias.

Logarithm of the transmission coefficient as a function of

incident electron energy at 0.16 V and 0.40 V bias to a two

well, three barrier device. Again, the Airy function model

and that of Vassel et al. [20] are compared.

Schematic representation of the VSSEF structure. a) Device

geometry; b) zero bias; c) applied bias, eV ~ Ej.

Logarithm of the transmission coefficient as a function of

incident electron energy at 0.16 V, 0.18 V, and 0.20 V bias

for a six well, seven barrier VSSEF structure. The well

widths are 139 A, 45.7 A, 35.3 A, 29.1 A, 24.8 A, and 21.4 A.

16



The barrier widths are all 20 A wide. Notice that the

transmissivity sharpens to two closely spaced peaks at low

energy at 0.20 V bias. This is the signature of the resonant

alignment of the device.

Figures 10-14: Logarithm of the transmission coefficient as a function of

incident electron energy at 0.16 V, 0.17 V, 0.18 V, 0.19 V,

and 0.20 V bias for an eight well, nine barrier VSSEF

structure. The well widths are 148.3 A, 52.5 A, 41.0 A,

34.2 A, 29.5 A, 26.0 A, 23.0 A, and 20.7 A, At 0.17 V bias,

the peaks at low energy approach one another in magnitude thus

signifying the resonance condition.
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REGIONS 2,4,6 CORRESPOND TO BARRIER LAYERS.
1,3.5 CORRESPOND TO WELL LAYERS.
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3. GROWTH STUDIES

During this period, the MBE system previously used for CdTe

growth studies was prepared for the growth of ZnS, ZnSe and also

CaF2 and SrF2. Unfortunately, considerable difficulty was

experienced in obtaining reproducible high-vacuum conditions in

this system. These problems were traced to malfunctions in the

main ion-pump and also the cryopumps used to pump the sample

preparation chambers. Both of these items have been replaced and

the system now has a stable base pressure of <lxlO~* Torr. Also

during this retrofit, a graphite furnace was added for

evaporating flourides and improvements were made in the furnace

temperature control system and flux monitor. Preliminary growth

runs of ZnS on (001) GaAs substrates are in progress and will be

reported in detail in the next report. A description of the

system which is designed to perform studies of the surface growth

conditions as well as to grow high quality epitaxial layers is

shown in .Figure 3.1 and described below.

As shown, the system consists of three interconnected vacuum

chambers, a growth chamber, isolation chamber and introductionary

chamber. The growth chamber is based on a Varian surface

analytical chamber which has been extended to incorporate MBE

growth furnaces and a sample load-lock mechanism. The advantage

of this chamber is that there are four 4-inch diameter and four 1

1/2-inch diameter ports in the surface plane of the sample which

gives good access to the substrate.

The growth chamber has a base pressure of <10~10 Torr and

has six ovens. The ovens, and the growth area, are surrounded by

liquid nitrogen cooled shields to minimize cross-contamination

and immediately condense excess vapors in the chamber. The

desired growth fluxes are obtained by heating the furnaces and

measuring the beam pressure from each oven with an ionization

gauge which can be positioned at the sample growth position. A

10 KeV reflection high energy electron diffraction gun and screen

are used to measure in-situ, the crystallographic properties of

the substrate and growing MBE layer. The chemical composition,



SAMPLE ROTATION
AND MANIPULATION

INTRODUCTORY
CHAMBER

SAMPLE TROLLEY WITH
MAGNETIC COUPLER*

V

Figure 3.1. Schematic of the Analysis/MBE chamber
used for surface studies of CdTe.



or contamination, of the substrate can be measured by the Auger

spectrometer placed opposite the sample entry port. These

measurements are possible without changing the temperature of the

substrate but required that the sample be withdrawn approximately

7" down the main chamber and rotated 90° to be at the focus of

the analyzer.

The system is also equipped with a retractable ion-gauge for

absolute flux measurement when placed in the growth position and«
a residual gas ana lyzer (RGA) to iden t i fy and measure the

concentration of impurities remaining in the chamber.

From the above description it is apparent that to accomplish

all of the r e q u i r e d sample t r e a t m e n t s and analyses i t is

necessary to manipula te the sample into several positions. To
perform these manipulations, the substrate holder is mounted on a

trolley which runs on a t r ack down the center of the chamber .

The position of the trolley is controlled by a rack and pinion

drive placed on the side of the chamber . Two ro ta tory vacuum

feed- throughs placed at the end of the chamber dr ive , th rough

collapsable rods, a gear mechanisms at the sample head which

enables 90° lef t or right turns in a vertical plane, and also

continuous sample rotation when facing the MBE furnaces. These

controls give the motions needed to mount or dismount samples, or

to take AES measurements . The sample rotation is required to

align certain crystallographic directions in the surface plane of

the s u b s t r a t e w i t h the e lec t ron beam in o r d e r to ob ta in

meaningful analysis of the RHEED data; this rotation can also be

used to rotate the sample during growth.

To ob ta in o p t i m u m use of the a p p a r a t u s and m a i n t a i n

r e p r o d u c i b l e u l t r a h i g h v a c u u m c o n d i t i o n s ( i .e . , l o w

contamination levels) in the analysis/growth chamber, the sample

is in t roduced th rough a two stage load-lock. This is shown on

the r ight hand side of F igu re 3.1. At present , this load-lock

ar rangemen t a l lows f ive samples to be loaded at a t ime but can be

expanded to accommodate more samples. The samples are mounted

ver t ical ly on a t rol ley wh ich runs along the center of the

introductory and isolation chambers.



The introductory chamber is rapidly evacuable to <10~' Torr

by use of a cryopump and contains a heater for preliminary

substrate and substrate holder degassing. By using the magnetic

manipulator, a substrate can be removed from the trolley, placed

on the heater, degassed, and then replaced back onto the trolley.

After all the samples have been degassed, the introductionary

chamber is pumped to its lowest pressure and the trolley is

transferred into the isolation chamber by a magnetic transfer

mechanism. Thus, the samples are stored in the isolation

chamber, which is kept in the 10~9 Torr range by a cryopump. A

substrate is introduced or removed from the analysis/growth

chamber by using the magnetic coupler positioned opposite the

main gate valve.
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4. FUTURE WORK

In the next six months of the program a strong emphasis will

be placed on the growth and characterization of ZnS fi lms by MBE

as well as the cont inuat ion of the model ing studies. Specific
tasks to be performed are listed below.

1. A t t e m p t to de s ign a r ea l i s t i c TFEL-dev ice
structure using the theory recently formulated for
resonant tunneling in quantum well structures in
an electric field.

2. G r o w (001) ZnS on (001) GaAs s u b s t r a t e s for
substrate temperatures between 300-500°C at growth
r a t e s o f 0 .5-2 u m / h r . E v a l u a t e m a t e r i a l
p r o p e r t i e s b y X - r a y r o c k i n g c u r v e s , S E M ,
photoluminescence and cathodoluminescence.

3. Repeat 2, for Mn doping up to concentrations of 2-
5%.

4. Investigate the use of (001) Si substrates.

5. P e r f o r m pre l iminary g r o w t h studies of CaF2 and
SrF2.




