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1. INTRODUCTION

This report for the period 1 October 1985 through 31 March
1986 reports on the work performed during the second six-months
of NASA Contract NAG-1-586, under the technical direction of Dr.
J. B. Robertson.

The principal co-investigators of this study were Drs. C. J.
Summers and K. F. Brennan, who were assisted in part by several
graduate students, Mr. H. D. Rodgers, Mr. B. K. Wagner and Mr. R.
G. Benz.

The report briefly describes the theoretical and
experimental progress made so far.



2. THEORETICAL MODELING STUDIES OF VARIABLY SPACED
SUPERLATTICE STRUCTURES

This study consumed most of our effort during this report
period and was emphasized because it was essential to obtain an
accurate model of the VSSEF structure in order to fully explore
the viability of this concept. The work proved to be more
involved than anticipated and, because of its complexity, was
initially applied to the AlGaAs system so that comparisons could
be made with some previous, but less complete studies. The
results of this study produced the submission of a paper to the
Journal of Applied Physics and also the acceptance of a paper to
be presented at the Second International Meeting on
Superlattices, Microstructures and Devices, in Goteburg, Norway.
during August.

Copies of the paper and abstract complete this section.



THEORY OF RESONANT TUNNELING IN A VSSEF
MULTIQUANTUM WELL STRUCTURE:
AN AIRY FUNCTION APPROACH

K. P. Brennan1

and

C. J. Summers2

Microelectronics Research Center
Georgia Institute of Technology
Atlanta, Georgia 30332

ABSTRACT

A theoretical study of resonant tunneling in multilayered heterostruc-
tures is presented based on an exact solution of the Schroedinger equation
under the applicaéion of a constant electric field. By use of the transfer
matrix approach, the transmissivity of the structure is determined as a
function of the incident electron energy. The approach presented herein is
easily extended to many layer structures where it is more accurate tﬁan other
existing transfer matrix or WKB models; The transmission resonancés are
compared to the bound state energigs calculated fér a finite square well under
bias using eithéf’an asfmmetric square well model or the exact solution of an
infinite square well under the application of an electric field. The results
show good agreement with othef existing models as well as with the bound state
energies. The calculations were then applied to a new superlattice structure,
the variably spaced superlattice energy filter, VSSEF, which is designed such
that under bias the spatial quantization levels fully align. Based on these
calculations, a new class of resonant tunneling superlattice devices can be

designed.

1 School of Electrical Engineering.

2 Georgia Tech Research Institute.
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I. INTRODUCTION

Since the édvent of exac-tling epitaxiai growth techniques, particularly
MBE and MOCVD, realization of superlattice and multiquantum well structures
has become possible., The supetl#ttice, as originally proposed by Esaki and
Tsu {1], has found wide applicatﬂion in ma;ny new device structures such as
photodetectors [2-5], transistors [6,7]), and light emitters [8]. The most
thoroughly studied material system as applied to superlattices is the GaAs/
Al Ga,_ _As system owing to the relative ease in its fabrication as well as its-
close lattice matching. Under the application ofia bias, car;iers can tunnel
through these structures provided that the wider gap AlGaAs layers are suffi-
ciently thin. However, to optimiz_e_ the current flow in a multiwell structure,
the adjacent energy }gv_els within the GaAs wells, arising from spatial
quantization effects must be aligned. Several experimental measurements have
recently confirmed the presence of résonant tunneling in single and double
quantum well structures ([9-12]. Optical absorption measurements [13] have
also independently verified the fof:mation of superlattiqe minibands arising
from thg couplir;g of adjacent quantum states.

The theories used po explain resonant tunneling phenomena generally .
break dowﬁ into three different approaches, use of the WKB aﬁproximation
[14,15), which is valid 1if the barrier energy varies slowly compar~ed to the
scale of the electron wavelength, a Monte Carlo solution of the semiclassical
Boltzmann transport equation [16,17]), in which a quasi-particle picture of the
electron is assumed, and the transfer matrix approach which gives the
transmissivity of the structure as a function of energy directly. The WKB

approximation is not wvalid in the device structures of greatest interest,

those with narrow barriers. The Monte Carlo approach is useful since it



includes phonon scattering but does not easily lend itself to the calculation
of the sttuctﬁre's transparency.

Tsu and Esaki [18] first provided a theoretical description of the
electron tunneling current density in a multilayer structure. Their approach
involves the solution of the Schroedinger equation in each region of the
device under the assumptions that—ﬁhe applied bias is small (allowing for the
use of plane wave and evanescent wave solutions), the effective mass is
constant throughout, and phonon scattering can be neglected. The tunneling
transmission coefficient is then determined by the transfer matrix method; a
2 x 2 matrix at ggch interface is formed by matching the céntinuity of the
wavefuncéions and their derivatives. Successive multiplication of these
matrices then couples the inciden; wavevector to the outgoing wavevector of
the heterostructure ;;;ck. The current density is calculated from the

transmission coefficient T for a one~dimensional system as [18],

1+ exp(Ef-ET)/kT

* o
em XT [ ¢ on ( YaE )

J =
: 2“2n3 0 . 1 + exp(Ef-E1—eVa)/kT ' 1

where EF is ;hé Fermi energy, E1 the energy of the N = 1 subband, Va the
overall applied bias, T-the température, and m* the effective mass of the
carrier.

Mukherji and Nag [19) reformulaged the calculations retaining a staircase
potential shape (plane wave and evanescegt wave solutions are used throughout)
but added the effect'of band nonparabolicities and differing masses within the
layers. Their method is mathematically similar té that of BEsaki and Tsu [18)

in that a transfer matrix approach is used. Vassel et al. [20] have further

extended the transfer.matrix model by computing the transmission coefficient



from direct numerica} calculation of the 2 x 2 transfer matrices. Thus, their
approach is directly applicable to arbitrary potential profiles. However,
good numerical convergence near the turning points is difficult to achieve and
may lead to significant error in many layered stacks [21].

The exact solution of a particle in a uniform static field is well known
and can be expressed as a linear combination of Airy and complementary Airy
functions [18]}. A The solution of the infinite square well under an applied
field is then expressible in terms of Airy functions. There are two indepen-
dent means of determining the energies in a quantum well, a direct Airy
function solution which becomes exact for an infinite square well [22,23)}, and
a transmission res;nance calculation. Miller et al. [23] have found excellent
agreement between the two models éfdvided that effective widths are chosen for
the infinite square wéli‘such that the correct finite square well zero field
energies result. '

Recently a Anew sﬁperlattice structure has been proposed, the variably
spaced superlattice energy filter (VSSEF) [24]). In this structure, the energy
levels arising -from spatial quantization effects become resonantly aligned
under bias. By varying the narrow gap layer widths, and hence the energies of
the quantum levels, the quantum states in adjacent wells are designed to be
separated in energy by thé voltage drop across each cell, thus resulting in
their alignment under the appropriate bias voltage. This structure has the
advantage of providing a high speed resonant tunneling channel under bias as
opposed to the original Esaki-Tsu constant period superlattice [18] which is
resonantly aligned ogly at zero or very low bias; As shown by Dohler et al.

[25] in a constant period superlattice, if the voltage drop across each period

is greater than the miniband width, the transport changes from Bloch-like



propagation to "hopping” conduction. It is expected that "hopping™ conduction
is slower than resonant tunneling. Therefore, a VSSEF structure should
provide better performance than a constént period superlattice under 1large
bias.

We present resonant tunneling transmissivity calculations in a VSSEF-like
superlattice structure made from the GaAs/AlGaAs material system. The calcu-
lations are based on an exact Airy function solution to the Schroedinger
equation using tﬁe transfer matrix approach. The calculations are described
in detail in Section II. As a control on our calculations in Section III, the
Airy function solution is compared to that of Vassel et al. [20]) and also to
the predicted eneréy 1eveis using an uncoupled finite square well calculation.
In Section 1V, the‘transmissivity of a six and eight period VSSEF superlattice
is calculated. The results clearly show the resonant tunneling transition.
As tﬁe bias varies from the critical wvoltage, under which the levels align,-
the transmissivity peaks broaden away from the sharp resonant levels.

Finally, the conclusions are presented in Section V.

IXI. MODEL DESCRIPTION

The calculation is performed in a straightforward way by solving the
Schroedinger equation exactly in each region (barrier and well) and then
matching the continuity of the wavefunction and its derivative at each
boundary. A representative multilayer stack is diagrammatically presented in
Figure 1. The solution of the Schroedinger equation in region one is simply a

linear combination of an incident and reflected plane wave,

ik1x -ik1x
¢1 = e + Re (2)



where ky = v 2m1E/HZ and my is the effective mass in the narrow gap (GaAs)

layer, The Schroedinger equation in region two can be written as,

w;(p) - owz(p) =0 ‘ (3)

where

2m2eva 1/3
p=(—5=) x+m ;= (L/eV)(V -E)

1 .

eVé/L is the applied electric field, Vo is the barrier height, and x is the
real space distance measured from the interface between regions 1 and 2. The

solution is readil? expressed in terms of Airy functions as,
STy, (p) = CoAL(P) + C_Bi(p) (4)
2P =5 2
Within region 3, the Schroedinger equation becomes,

wg(p) + pw3(o) =0 (5)

where

p = ( 1 a) (x+mM) ;n= (B, + b*eVa/L)/(eVa/L)

and b is the barrier width. In this case, x is now measured with respect to

the second interface. The solution in this region is then,

— + 5 - = . -
¢3(o) = C3A1( p) + C3Bl( p) (6)



The solution in all succeeding regions is the same then as either that in
region 2 or in region 3,
The imposition of the boundary conditions at x = 0 (the interface between
region 1 and region 2) gives,
+ -

= C2A12(x = Q) + C2

+
-]
!

Biz(x = 0)

(M

s - *on = TRt
ik (1 R) C2A12(x 0) + C2B12(x 0)

which in matrix form becomes,

Ai,. (x=0) Bi. (x=0)\/C
2 2 (8)

NN+

ALj(x=0)  Bij(x=0)/\C

Extending the analysis to a multiple well system gives,

1 1 ik 1 -1 -1
(R) =35 (G _1)sptx = 005, (x = BIS5tx = 0)55 (x = ay)

-1

-1
3 (x=ay) cte5,(x =05, (x = b) (9)

-1
S,(x = O)S2 (x = b)Sa(x = 0)s

2(
1 1 T
(ik' -ik? (0) :
where the matrices s2 and S3 are defined as,

Ai(p) Bi(p) ]

1
Ai'(p)  Bi'(p) to

5, (x) = [

(p is given as in equation (3)):



- [Pil=p)  Bil-p)

S3(%) = lpiv-p)  Bi'(-p)

(p is given as in equation (5)).

The subsequent product of the transfer matrices (52 and S3) is found. The
resulting expression becomes,

Ty _ 1 ik 1 1 1 T

R) =7 G olsenmy, 0 )6) an
using the notation of Vassel et al. [20] for the product of the S matrices.
Note that equation (11) is essentially the inverse to equation (12) in Vessel
et al. [20]. Prom equation:- (11) the transmissivity, T, can be found noticing
that T = k/k'l./Mf1 where the matrix M is

ik

1 1 1
ik 150D G gy) (12)

’ 1
M=o (

Therefore, T is given by,

4k/x"'
(A + k'/kn)z + (C/k - k'B)2

T =
where A, B, C, D are the elements of the S({0,L) matrix. Finally, the tunnel-
ing current density can be obtained through substitution in equation (1).

III. MODEL CCMPARISON

It is useful to compare the resonant tunneling calculation, as outlined

in Section II, to the calculation of Vassel et al. [20] and to the calculated



bound state energies in a finite square well under the application of an
applied electric field. Resonances in the transmissivity vs. electron energy
curve correspond to the bound state energies in the wells. Additionally, the
width of these resonances determines the broadening of the energy levels, The
transmission resonances in one and multiwell structures are presented below
and are compared to Vassel's iwodel [20] and to two different bound state
energy calculations.

The logarithm of the transmission coefficient as a function of energy in
a one well, two barrier GaAs/Alea1_xAs structure 1is presented in Figure 2.
The structure analyzed 1is identical éo that used by Vassel et al. [20]. The
calculation is performed under two cénditions, the masses are assumed equal to
the GaAs mass in the wells and barriers, my = m, = 0.067 m,, and different

masses in the layers "are considered, my = 0.067 m , m, = 0.1087 m It is

(o} o°
expected that the different mass model more nearly approximates the physical
situation since ihe energy wavevector dispersion relation is different between
the barrier and the well. The use of an effective mass remains valid even for
energies in the forbidden band as is the case in the barrier region [20].
Figure 2 shows that at an applied bias of 0.16 V two resonances appear in the
transmissivity. The peaks appear systematically at higher energy than that
calculated by Vassel et al. [20]. The resonances are also shifted upwards in
energy in the two mass model from those calculated using the one mass model.
This can be easily understood as follows. A larger mass value within the
barrier region (the case for the GaAs/AlGaAs material system) 1is equivalent
mathematically to choosing a greater potential barrier height and subsequently

a deeper potential well energy. As is well known, the bound state energies

within the infinite square well lie at higher energy than the corresponding



finite square well states. Thus, as the well depth increases, the bound state
energy levels - increase in energy.

The calculation is repgated at a higher bias, 0.4 V, in Figure 3. Again,
the resonance enerqgy is shifted to higher energy in the Airy function approach
as compared to that of Vassel et al. [20). 1In this case, only one peak in the
transmission coefficient occurs. -As the bias increases, the resonances appear
at lower energy owing to the conduction band bending under the action of the
electric field.. Por 0.4 V bias, the N = 1 level lies below the Fermi level
and is, therefore, no longer in alignment with Ep, thus the first resonance
completely disappears as can be seen in Figure 4. The results again confirm
that the resonance'peak occurs at higher energy in the two mass model.

From Figures 2 and 3, it is apparent that the Airy function approach
agrées reasonably well with the approach of Vassel et al. [20] in predicting
the location of the transmission resonances. It is necessary, however, to
check the agreement with the bound state energies in a finite square well
under the application of an elect;ic field. Being that an exact solution of
the bound state energy in a finite square well under bias is not possible,
three different approaches can be used to estimate the energy. A straight-
forward application of time independent perturbation theory proves useless
in determining the energy at sizeable electric field strengths. Numerous
terms in the perturbation expansion are required which is impractical.
Alternatively, a finite square well under bias can be treated as an asymmetric
square well; the potential barrier is higher on one side of the well than on
the other side. This problem can be solved analytically [20,22] for the well

width in terms of the energy level and barrier heights as [22],



ka = nm - sin” (1KY 2n0,) - sin” (Tk/Y 2mu,, ) (13)

U, and U, are the potential barrier heights, a is the well width, and k is
the ; vector corresponding to the energy level. The bound state energies in
an asymmetric square well of equivalent dimensions to those calculated using
the resonant tunneling approach are shown in Figure 4. At 0.16 V bias, the
n = 1 state is shifted (after subtracting the band bending) to 0.00855 eVv
while the n = 2 state is shifted to 0.289 eV. Both calculations are well
below the corresponding tunneling resonance values. However, Kelly [26] has
shown that an asymmetric square well deviates significantly from an exact Airy
function calculation. Therefore, it is expected that the asymmetrie square
well approach is not a wholly reliable means of determining the bound state
energies within the system.

Miller et al. [23] have adopted an alternative approach using the exact
solution of the infinite square well under bias. 1In principle, the eigen-
states of an infinite quantum well under bias are exactly -determinable,
however, the solution is generaily quite difficult to obtain,  Excellent
agreement is obtained with the tunneling calculation if the infinite square
well width is adjusted such that the bound state energies'correspond to those
in a finite square well {23]. The bound state energies are obtained using a
variational calculation [27]. Prom this calculation, a universal result for
the binding energy as a function of the normalized field induced energy is
obtained [27]. The location of the n = 1 quantum states in our single well
system under the application of a constant bias are readily determined from
Pigure 1 in Reference 27. After subtracting off the band bending due to the

bias (the energy level is measured with respect to the band minimum), the

10



n = 1 levels occur at 0.03 eV at 0.16 V bias, and at -0.108 eV at 0.40 V bias
(Figure 4). This result agrees more favorably with our resonant tunneling
calculation.

The transmission coefficient as a function of energy for a two well,
three barrier system at 0.16 and 0.4 V bias is presented in Figure 5. Similar
qualitative agreement is obtained with the results of Vassel et al. [20].
RAgain, it is interesting to note that the resonances occur at higher energy in
the airy functi&n calculation than in the numerical approach of Vassel et al.
[20]. It has been shown by Kelly [26] that the Airy function approach shows
much finer detail than either the WKB method or the stepped (asymmetric)
quantum well metﬁod. In addition, since the calculation is exact, no
convergence errors at the turning points are introduced, thus making this

calculation more suited 'to multiple well structures.
IV, VSSEF CALCULATIONS

A representative diagram of the VSSEF structure is presented in Figure 6.
As can be seen from the. figure, the energy level scheme is designed (by
varying the well widths) sucﬁ that under bias all of the n = 1 levels align.
As mentioned above, this provides a resonant tunneling channel through the
superlattice structure. It is expected that for a VSSEP device, designed to
show alignment of the n = 1 1levels, that only at certain bias will the
transmissivity be sharp. As the bias is either increased or decreased from
this wvalue then the structure becomes dealigned leading to a broader
transmissivity.

In a superlattice, miniband formation arises from the coupling of the

energy levels in adjacent quantum wells. From a plot of the transmission

11



coefficient versus the incident electron energy, the transmission resonances
can be determined. Pigures 7-9 show the transmission coefficient for a six
well, seven barrier GaAs/A10.45Ga0.55As supeflattice. The barrier height is
chosen to be 0.347 eV in accordance with the 60/40 rule [28]. The effective
masses are 0,067 and 0.1067 in the GaAs and AlGaAs layers, respectively. The
device dimensions are chosen by ‘designing the structure such that adjacent
levels align. The wells are first assumed to be uncoupled. Equation (13) can
then be used to'determine the well widths necessary for alignment to occur at
a fixed bias, in this case, 0.20 volts. These dimensions are used in the
resonant tunneling calculation in which full coupling is considered to obtain
the structurefs tgansmissivity. The calculated results using equation (13)
are not exact since use of it assumes that the wells are uncoupled. However,
it provides an estimate as to a structure which will align under bias.

The tunneling calculation shows that as the bias changes from 0.16 V to
0.20 V (Pigures 7-9); the low energy (n = 1) transmissivity peak changes
dramatically, At 0.16 V, roughly four separate peaks arise (Figure 7). As
the bias increases to 0.18 V, only two sharp peaks closely spaced in energy
appear (Figure 8)., Further increase in bias results in the reappearance of
four peaks broadening the transmission resonance once again. These figures
clearly show that the structure resonantly aligns at a fixed bias. As the
voltage changes away from this value (0.18 V in this case), the structure
becomes resonantly dealigned reflected by theAbroadening of the transmissivity
peaks.

The calculatioﬁ is repeated for an eight well, nine barrier structure.
The tunneling transmission resonances are plotted versus incident electron

energy in Figures 10-14 at different biases, 0.16-0.20 V. Again, a resonant

12



tunneling transition can be observed at 0.17 V. At 0,17 V bias, the four
peaks occur eﬁehly spaced in energy and have approximately the same magnitude
(excepting one). As the number of wells increases, the number of states
common to the superlattice increases as well. It is expected that sharp
coincidence of these states is progressively more difficult to achieve under
bias. The calculations presenteé herein indicate that sharper alignment is
achieved in the six well case as opposed to the eight well case.

Sharp alignment of the transmissivity peaks, as demonstrated by Tsu and
Esaki [18] for a constant period superlattice at zero bias, cannot be attained
as neatly in a VSSEF structure. This is due to two limitations., Pirst, it is
not definite tﬁat the devices presented above have perfect alignment of each
quantum level since the method used to design the well widths (equation (13))
is not precise. Most iikely, the levels are reasonably aligned but perhaps
not fully. This will result in some splitting in the transmissivity peaks.-
Additionally, since tﬁe quantum wells have different widths, it is not clear
that the wavefunctions corfesponding to each quantum well contribute equally
to the net superiattice wavefunction. This ‘explains the lack of as sharply
defined resonance peaks in the VSSEP calculations as compared to that within a

constant period superlattice [18].

IV. CONCLUSIONS

A solution to the resonant tunneling problem is presented based on the
exact solution of the Schroedinger equation within the potential wells and
barriers of a multilayered heterojunction stack.. Good qualitative agreement
is obtained with previous models. In addition, the calculated resonances

agree fairly well with the calculated bound state energies derived from the
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solution of the infinite square well under bias. The Airy function approach
shows much finer structure than either the WKB or potential step models of
previous workers. The Airy function approach is apparenfly better suited to
many layered structures (since it has no convergence error) as well as narrow
barrier structures in which the WKB approximation becomes invalid.

The first theoretical verification of the resonant alignment of the
variably spaced superlattice energy filter, VSSEF, has been presented. The
VSSEF structure‘ becomes resonantly aligned under bias as opposed to the
traditional constant period superlattice which is resonantly aligned only at
zero or low applied bias. The transport within the VSSEF device is Bloch-
like. Hence, thé VSSEF is much faster than a “hopping"™ transport super-
lattice, a constaﬁt period superlattice biased such that the voltage drop
within each period exceeds the miniband width. Based upon these calculations,
new high speed resonant tunneling devices can be designed. Future work will
address the design of electroluminescent devices, avalanche photodiodes, and
IMPATT structures based on the VSSEF concept and the calculations presented

herein,
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Figure 1:

Figure 2:

Figure 3:

Figure 4:

Figure 5:

Figure 6:

Figures 7-9:

FIGURE CAPTIONS

Schematic represenfation of é multilayer stack for purposes of
discussion concerning the tunnelin; current calculations.
Logarithm of the transmission coefficient as a function of
incident electron energy for a one well structure at an
applied bias of O;iﬁ V. The curve‘shows the location of the
transmission resonances in both the Airy function model and
the model of Vassel et al. [20].

logarithm of the transmission coefficient as a function of
inpident electron energy for a one well structure at an

applied bias of 0.4 V. The curve shows the location of the

transmission resonances in both the Airy function model, as

well as the model of Vassel et al. [20].

Diagram showing the calculated bound state energies in a
finite square well under a) zero bias, b) 0.16 V bias, and
g{ 0.40 V bias.

Logarithm of the transmission coefficiént as a function of
incident electron energy at 0.16 V and 0.40 V bias to a two
well, three barrier device. Again, the Airy function model
and that of Vassél et al. ([20] are compared. )

Schematic representation of the VSSEF structure. a) Device
geometry; b) zero bias; c) applied bias, eV ~ E;.

Logarithm of the transmission coefficient as a function of
incident electron energy at 0.16~V, 0.18 v, and 0.20 V bias

for a six well, seven barrier VSSEF structure. The well

widths are 139 A, 45.7 A, 35,3 A, 29.1 A, 24.8 A, and 21.4 A,

16



Figures 10-14:

The barrier widths are all 20 A wide; Notice that the
transmissivity sharpens to two closely spaced peaks at low
energy at 0.20 V bias. This is the signature of the resonant
alignment of the device.

logarithm of the transmission coefficient as a function of

incident electron energy at 0.16 Vv, 0.17 v, 0.18 V, 0.19 V,

and 0.20 V bias for an eight well, nine barrier VSSEF

structure. The well widths are 148.3 &, 52,5 A, 41.0 A,
34.2 R, 29.5 A, 26.0 A, 23.0 A,_and 20.7 A, At 0.17 V bias,
the peaks at low energy approach one another in magnitude thus

signifying the resonance condition.
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3. GROWTH STUDIES

During this period, the MBE system previously used for CdTe
growth studies was prepared for the growth of ZnS, ZnSe and also
CaFy and SrFj;. Unfortunately, considerable difficulty was
experienced in obtaining reproducible high-vacuum conditions in
this system. These problems were traced to malfunctions in the
main ion~-pump and also the cryopumps used to pump the sample
preparation chambers. Both of these items have been replaced and
the system now has a stable base pressure of <1x10~9 Torr. Also
during this retrofit, a graphite furnace was added for
evaporating flourides and improvements were made in the furnace
temperature control system and flux monitor. Preliminary growth
runs of ZnS on (001) GaAs substrates are in progress and will be
reported in detail in the next report. A description of the
system which is designed to perform studies of the surface growth
conditions as well as to grow high quality epitaxial layers is
shown in Figure 3.1 and described below.

As shown, the system consists of three interconnected vacuum
chambers, a growth chamber, isolation chamber and introductionary
chamber. The growth chamber is based on a Varian surface
analytical chamber which has been extended to incorporate MBE
growth furnaces and a sample load-lock mechanism. The advantage
of this chamber is that there are four 4-inch diameter and four 1
1/2-inch diameter ports in the surface plane of the sample which
gives good access to the substrate.

The growth chamber has a base pressure of <1010 Torr and
has six ovens. The ovens, and the growth area, are surrounded by
liquid nitrogen cooled shields to minimize cross-contamination
and immediately condense excess vapors in the chamber. The
desired growth fluxes are obtained by heating the furnaces and
measuring the beam pressure from each oven with an ionization
gauge which can be.positioned at the sample growth position. A
10 KeV reflection high energy electron diffraction gun and screen
are used to measure in-situ, the crystallographic properties of
the substrate and growing MBE layer. The chemical composition,
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or contamination, of the substrate can be measured by the Auger
spectrometer placed opposite the sample entry port. These
measurements are possible without changing the temperature of the
substrate but required that the sample be withdrawn approximately
7" down the main chamber and rotated 90° to be at the focus of
the analyzer.

The system is also equipped with a retractable ion-gauge for
absolute flux measurement when placed in the growth position and
a residual gas analyzer (RGA) to idedkify and measure the
concentration of impurities remaining in the chamber.

From the above description it is apparent that to accomplish
all of the required sample treatments and analyses it is
necessary to manipulate the sample into several positions. To
perform these manipulations, the substrate holder is mounted on a
trolley which runs on a track down the center of the chamber.
The position of the trolley is controlled by a rack and pinion
drive placed on the side of the chamber. Two rotatory vacuum
feed-throughs placed at the end of the chamber drive, through
collapsable rods, a gear mechanisms at the sample head which
enables 90° left or right turns in a vertical plane, and also
continuous sample rotation when facing the MBE furnaces. These
controls give the motions needed to mount or dismount samples, or
to take AES measurements. The sample rotation is required to
align certain crystallographic directions in the surface plane of
the substrate with the electron beam in order to obtain
meaningful analysis of the RHEED data; this rotation can also be
used to rotate the sample during growth.

To obtain optimum use of the apparatus and maintain
reproducible ultra high vacuum conditions (i.e., low
contamination levels) in the analysis/growth chamber, the sample
is introduced through a two stage load-lock. This is shown on
the right hand side of Figure 3.1. At present, this load-lock
arrangement allowé five samples to be loaded at a time but can be
expanded to accommodate more samples. The samples are mounted
vertically on a trolley which runs along the center of the
introductory and isolation chambers.



The introductory chamber is rapidly evacuable to <10~7 Torr
by use of a cryopump and contains a heater for preliminary
substrate and substrate holder degassing. By using the magnetic
manipulator, a substrate can be removed from the trolley, placed
on the heater, degassed, and then replaced back onto the trolley.
After all the samples have been degassed, the introductionary
chamber is pumped to its lowest pressure and the trolley is
transferred into the isolation chamber by a magnetic transfer
mechanism. Thus, the samples are stored in the isolation
chamber, which is kept in the 1079 Torr range by a cryopump. A
substrate is introduced or removed from the analysis/growth
chamber by using the magnetic coupler positioned opposite the
main gate valve.
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4. FUTURE WORK

In the next six months of the program a strong emphasis will
be placed on the growth and characterization of ZnS films by MBE
as well as the continuation of the modeling studies. Specific
tasks to be performed are listed below.

l; Attempt to design a realistic TFEL-device
structure using the theory recently formulated for
resonant tunneling in quantum well structures in
an electric field.

2, Grow (001) ZnS on (001) GaAs substrates for
substrate temperatures between 300-500°C at growth
rates of 0.5-2 um/hr. Evaluate material
properties by X-ray rocking curves, SEM,
photoluminescence and cathodoluminescence.

3. Repeat 2, for Mn doping up to concentrations of 2-
5%.

4. Investigate the use of (001) Si substrates.

5. Perform preliminary growth studies of CaF, and
Ser.





