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. NOMENCLATURE

6y U L
A Thermal constant, =- , (degree)

pc C
P .... •

C Radial clearance • ;

C Clearance at upstream edge when 6^0

d Diameter > .

D Flexural rigidity, Et3/[12(1 - v2)]

E Elastic modulus

F Radial shear force/unit circumferential -length

2 2F Dimensionless shear force FC /(6yU L )
' • • - . . o

Hz Hertz

K Dimensionless flow rate, Rj-
o

K .... Effective value of K corrected for starvation

L Hydrodynamic land width

L " Effective distance from fixed end to start of film

L. Dimensionless length, L /L

P(x) Radial loading function; see Equation (2-2)

Q Volumetric flow rate

Q Flow for pf = 0

R . Radius of ring

T Temperature

.pc C2(T - T )
T Dimensionless Temperature, p

6y U L
. o o

U Average rod velocity
o

V Normal velocity

c Specific heat

e Length over which .p acts
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k Integration constant
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p. Sealed Pressure
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2
p Dimensionless sealed pressure p,C /(6uU L)
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u Velocity

w Elastic deflection

x Position variable

x Position variable at cavitation point

y Variable across film

t2(R + )
Geometric bending parameter, 7

12L*(1 - v2)

6uU L (R + -|)
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C CtE

Slope of tapered surface, <C - C )/L

Dimensionless loading length, e/L
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NOMENCLATURE (CONT'D)

H Dimensionless film height, (y/h)

Vi Viscosity

y Inlet reference viscosity for thermal analysis
o

y Viscous heating function, rate of heat generated/unit area

p Density

v Poisson's Ratio

£ Dimensionless position variable x/L

a Squeeze film parameter (4L/S)

\l> Stream function

X Dimensionless starvation factor

SUBSCRIPTS

c Cavitation

F Forward flow

E Elastic

f At x = L

m Maximum
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SUMMARY

A steady-state design computer program has been developed to predict the

performance of pumping rings as functions of geometry, applied loading, speed,

ring modulus, and fluid viscosity. Additional analyses have been developed to

predict transient behavior of the ring and the effects of temperature rises

occurring in the hydrodynamic film between the ring and shaft. The analysis

was initially compared with previous experimental data and then used to design

additional rings for further testing.

Tests were performed with Rulon, carbon-graphite, and babbitt rings. Two

different shaft diameters were used for the babbitt rings. The design analy-

sis was used to size all of the rings and to select the ranges of clearances,

thickness, and loading. Although full quantitative agreement was lacking,

relative agreement existed in that rings that were predicted to perform well

theoretically, generally performed well experimentally. Some causes for

discrepancies between theory and experiment are believed to be due to starva-

tion, leakage past the secondary seal at high pressures, and uncertainties in

the small clearances and local inlet temperatures to the pumping ring.

The design criteria that evolved require the applied loading to be of the

order of the desired pumping pressure, the flow requirements and tolerances to

dictate clearance, and the elastic modulus and ring compliance to be such that

the deflection under load statically results in clamping at very small inter-

ferences so that back flow is inhibited, but that excessive power loss and

wear do not occur.

It was found that the pumping ring could be used to generate its own loading

pressure without any priming if an initial taper was applied to the ring.

However, for untapered rings, an initial loading had to be applied before

self-pumping could be obtained.

A separate preliminary analysis has been performed for a pumping Leningrader

seal. This analysis can be used to predict the film thickness and flow rate

through the seal as a function of pressure, speed, loading, and geometry.



1.0 INTRODUCTION

An analysis of pumping rings was performed under certain simplifying condi-

tions in previous phases of this work [l]. These conditions consisted of

first ignoring the contribution, if any, of the back flow occurring during the

return stroke of the rod." Other simplifications related to the use of

constant or average parameters, namely constant viscosity and mean rod veloci-

ty, throughout the stroke. The latter also presumed the neglect of squeeze

film forces due to the variation of film thickness engendered by the harmonic

motion of the rod.

The comparison ,of experimental data with theoretical results based on the

simplified analysis showed good agreement with respect to maximum pressures

generated by the pumping ring. The flows produced at reservoir pressures

below the maximum, however, were consistently lower in the experiments than

those indicated by the analysis. The agreement between theory and experiment

for the carbon-graphite rings [l] has been found to be incorrect due to an

erroneous use of an excessively low viscosity in the theoretical computation.

The present work, an extension of the previous effort, is aimed at advancing

the analysis of pumping rings. Thermal effects and variable rod velocity were

included and, with it, the effects of squeeze film action in the fluid film.

The analysis was extended to include the backstroke and concurrent cavitation

and their effect on net flow. The new analysis was then used .to run a parame-

tric study in order to obtain optimized configurations of pumping rings of

different shapes and materials including the effects of1 a geometric taper.

The results of tests run on these optimized designs were then compared with

calculations based on the new analysis.

A separate, preliminary analysis of the pumping Leningrader seal has also been

performed. . Since this analysis is separate from the pumping ring work, its

results are presented in Appendix A. .



2.0 ANALYSIS WITH CONSTANT PARAMETERS

2.1 Basic Equations

The equation governing deflection, w, of an axisymmetric shell under bending

is .-•;-•;. • • .

• ... E t3 d4w Eg. w = _p(x) (2.1}

12(l-v ) dx R

Referring to Figure 2-1, the radially outward loading, P(x), may be expressed in

terms of the clamping load, p , and the hydrodynamic pressure, p, as follows:

f 0, -L1 S x S 0

P(x) = < p , 0 < x S L - e (2-2)

(P-P0» L - e < x S L

The hydrodynamic pressure, p, is determined from the solution of the Reynolds

Equation

,h-k .
( 3 > (2-3)

with the geometry of the hydrodynamic film as given in Figure 2-2. k is a

constant of integration related to the flow, and U d
o

is related to the frequency, f, and the stroke, s, by:

constant of integration related to the flow, and U is the average speed, which

U = 2fs
o

11'i
This velocity represents the average of the sinusoidal velocity over each half

cycle. If the system contains two opposing pumping rings, it is double acting

and the average velocity, UQ is assumed to prevail over the entire cycle (though

in two different pumping rings) for the forward stroke, as well as for the back-

stroke. In this manner, the transient problem is reduced to and simplified into

a quasi-steady-state process. For a single ring, the resulting flow should be

divided by 2.
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The film thickness, h, appearing in Equation (2-3) is related to the deflection,

w, by

h = ( C - w ) , 0 < x < L

The system of equations given by Equations (2-1) through (2-3) represents a

fifth-order set of differential equations requiring five boundary conditions,

in addition to a sixth condition for the evaluation of the constant, k, appear-

ing in Equation (2-3). Two conditions result from the clamped-end requirement

w =.-ĵ  = 0 at x = -L-dx 1

»

Two conditions resulting from the prescribed pressures at x = 0 and L

p = 0 at x = 0 p = pf at x = L

where p is the sealed pressure. The remaining two conditions relate to the

free-end requiring zero moment and zero shear, or

2 3
d w d w _—~ = —r- = 0 at x = L
dx dxJ

The method of solving this set of equations subject to the specified boundary

conditions is outlined in Reference [ 1] . The solution and the results of this

analysis, reported in Reference [1], are based on the constancy of both viscosi-

ty and speed, namely

y = y = constanto
U = U = 2fs = constanto

The analysis in Reference [1] did not consider the backstroke and was thus only

applicable to sufficiently high loads and low elastic moduli to result in clamp-

ing during the backstroke.



2.2 Simplified Approach

A scrutiny of the pumping ring solutions formulated in Section 2.1 shows that

the shape of the film over the hydrodynamic portion of the ring is nearly

linear for the entire range of ring parameters and operating conditions. A

few such examples are shown in Figure 2-3. Consequently, the problem can be

considerably simplified if one postulates that the configuration of the film

is tapered similar to that of a plane slider. In addition, a constant taper

(shown in Figure 2-2) makes it possible to later treat the backstroke and

accompanying cavitation. Mathematically a constant taper implies that h' =

constant. The pertinent expressions for the hydrodynamic component of pumping

ring action are then given by

h (?)'= h2 + Ah (1 - C) (2'4)

p(h) = l/(h2 - h^ - 1/h + k'/(2h
2) + Cx (2-5)

where .

k' = [2h1h2/(h1 +h2)j[l - (h1h2pf)]

(h2 pf)l

The elastic deformation equation remains the same and may be written in dimen-

sionless form as

o (d4h/d£4) + h =

1 for -L < £ < 0

1 + pp for 0 < £ < 1 - e • (2-6)

1 + 3(p - p ) for 1 - t < £ < 1o

The solution algorithm thus consists of determining values for h2 and Ah by

the use of the secant method. Equation (2-6) is solved subject to the

previously stated elasticity boundary conditions. Convergence is achieved
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when the values of ii(l) and h'(l) computed from the solution to Equation (2-6)

are within the prescribed tolerance limit of the values of h*2 and -An used in

calculating p from Equations (2-4) and (2-5).

2.3 The Backstroke

2.3.1 Analytical Approach

The previous analysis assumed clamping during the backstroke. This is valid

for very high loadings, or for highly flexible pumping rings. Lower ring

loadings which do not cause clamping during the entire backstroke may be

desirable for pumping ring design in order to reduce wear. Also, when the

upstream pressure is high, the ring may stay open during the reverse stroke,

even under high clamping forces. Thus, backstroke effects are here added on

to the analytical model.

The basic equations remain unchanged except for two important aspects. One is

that the shaft motion will be in the negative x direction; thus Reynolds

Equation assumes the form

= -[(h - K)/h3] (2-7)

The other critical modification consists in the appearance of cavitation. As

shown in Figure 2-4, due to the divergence of the film in the direction of

motion, there may not be enough fluid to fill the gap at sufficiently high

values of h. The fluid film will then break up into a pattern of streamers

similar to that which occurs in the diverging films of a journal bearing.

From continuity requirements, the downstream boundary conditions of C , where

the film ends, must then satisfy the following boundary conditions:

(dp/d£) at 5 = C =0

(2-8)

P(5C) =0
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Fig. 2-4 Pumping Ring During Reverse Stroke
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To account for cavitation during the backstroke, the equations are integrated

backward from £ = 1. As for the forward stroke solution, values of 62 and Ah

must be determined by using the secant method. Selected values for 62 and Ah

are used in determining h(£) from Equation (2-4) which is in turn substituted

in the Reynolds Equation (2-7). The resulting equation is then integrated

analytically, subject to the constraints that p(l) = p_ , and either the condi-

tion given by Equation (2-8) for 0 < £ < 1 or the condition p(0) = ;0 if cavi-

tation is not predicted to occur. These conditions are sufficient to

determine the constant, K, £ (if applicable), and the pressure distribution,

p(£). Equation (2-6) may now be integrated backward from £ = 1, with the

boundary condition at 5 3 1 such that

h(l) = h2
h'(l) = -Ah

h"(l) = h'"(l) = 0

The secant method is then used to find the values of h£ and Ah that make the

quantities |h(-Li) - 1| and |h'(-Li)| be within prescribed tolerance limits.

The solutions so obtained provide dimensionless values of the film thickness

profile, the pressure profiles and the flow rates for prescribed values of

parameters a, 8, p. , p,, £, and LI-

2.3.2 Nature of Solution

The nature of the solution for the backstroke depends very much on the value

of pf relative to the clamping force, p . It is thus first necessary to

describe the conditions which are apt to generate either high or low levels of

Pf .

If a pumping ring delivers oil to a closed reservoir of finite volume, the

parameters <X, 8^ £, and p describing the pumping ring will predetermine the
o •

maximum p that the pumping ring is likely to generate. At that point, i.e.,

when p is reached, there will be no further inflow into the reservoir, and
fm

the pressure in the reservoir will be maintained by pumping ring action at

p . In Figure 2-5 this situation would be represented by both valves A and B
fm
being closed. However, should there be an outflow from the reservoir, that

11
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Fig. 2-5 Conditions Determining Level of p
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is, were valve A open, then the pumping ring would be delivering a net inflow

equal to the amount of outflow, with the pressure in the reservoir below the

maximum, i.e., pf
 < pf • On the other hand, if an external pump were to deliv-

er a certain flow, then it is possible to have pf > pf . The pumping ring

would then be overloaded. The net flow over a cycle would be negative and the

outflow through the pumping ring would equal the inflow delivered by the pump.

Since there is no external pump .in the present system, the overloaded condi-

tion will be of academic interest only.

The interaction of pumping ring behavior versus conditions in the reservoir

has a direct bearing on the nature of the backstroke solution. The mechanism

can be summarized as follows:

• If p is low, i.e., if there is an appreciable outflow from the reser-

voir, the film, during the backstroke always cavitates. It is only by

having a cavitating backstroke that a net inflow can be maintained over

a complete cycle.

• At high values of p , there are generally two possible solutions, name-

ly:

- High h.2 with a noncavitating film

- Low h2 with a cavitating film

V:'

Such a double set of possible solutions is shown in Figure 2-6, both

the same pj = 2.7 and po = 3.5. The performance of the pumping ring

under these two sets of conditions is as follows:

Noncavitating Cavitating

Back h2 0.482 0.120

Forward h2 , 0.580 0.580

Back K -1.433 -0.225

Forward K -0.42 -0.42

Net K -1.85 -0.642

13
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• If there is no supply of oil to the reservoir by a pump, that is, if the

pressure, p., is generated by the pumping ring only, then the solution

of a high h2 with a npncavitating film is practically impossible, since

a thick noncavitating film would produce a net outflow so that no high

p producing that outflow could possibly be generated in the first

place.

Thus, in conclusion, for practical cases of an active pumping ring, the back-

stroke is always accompanied by cavitation.

2.3.3 Performance Characteristics

For the practical range of ring operation, the pumping ring will, in most

cases, cavitate during the backstroke. When the condition.of (dp/d£)|£ = 0

is introduced during the backstroke, the resulting film thickness, pressures,

and flows are significantly altered from the full film case. Table 2-1 gives

the detailed characteristics of cavitating pumping rings as a function of

sealed pressure, pf. Particularly significant for these purposes is the

•amount of back flow and its effect on the net pumping accomplished over a

complete cycle. Figures 2-7 and 2-8 show the pressure distribution during the

forward and reverse strokes for a range of pif from 0 to 5. As seen, cases of 0

< p < 3 produce cavitation, and the fluid film and corresponding positive

pressures for these cases occupy merely a fraction of the interspace. This

reduced pressure profile naturally has a strong effect on the film thickness

distribution shown in Figures 2-9 and 2-10. Although h£ for the noncavitating

cases, pf > 3, is about the same for the forward and backstrokes, there is a

manyfold (5 to 10 times) decrease in h2 during a cavitating backstroke. The

shapes of the pressure profiles for a range of values of po (all previous
."r-*

•plots were for p = 3.0) are shown in Figure 2-11.

A scrutiny of the data contained in Table 2-1, as well as of the accompanying

plots, reveals the following interesting features regarding cavitating versus

noncavitating films.

15



TABLE 2-1

PERFORMANCE OF CAVITATING PUMPING RINGS

a = 0.0282 B = 0.257 e = 0.518 3.5 1.57

pf

0

1.0

1.5

2.0

2.5

3.0

3.5

Flow, K

Forward
Stroke

0.355

0.315

0.244

0.0877

-0.227

-0.786

-1.6650

Reverse
Stroke

0.0452

0.0635

0.0759

0.0954

0.903

2.068

3.284

Net

0.310

0.252

0.168

-0.008

-1.130

-2.854

-4.949

V-

1.0

0.983

0.975

0.963

0.0604

None

None

min

Forward
Stroke

0.213

0.285

0.342

0.422

0.527

0.652

0.790

Reverse
Stroke

0.045

0.045

0.052

0.059

0.342

0.603

0.771

<Pmax/Pf)

0.74

1.011

1.0

1.0

1.0

1.0

1.0

16
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• The change from a cavitating to a noncavitating film is rapid. This is

shown in Figures 2-12 and 2-13 where the transition region

(2.0 < pj < 3.0) is plotted in some detail. The onset of cavitation

seems to occur at about pf = 2.5 where £ - 0.

• Noncavitating films seem to be accompanied by a net reverse flow even

during the forward stroke, emphasizing the previous remark, that such

cases would be of little practical interest in the application of pump-

ing rings.

• The total net flow, including both the forward and backstrokes, becomes

negative, even for cavitating films at about p"f - 2.0.

22
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3.0 ANALYSIS WITH VARIABLE PARAMETERS

This part of the analysis not only abandons the assumptions of constant speed

and constant viscosity but also considers some other factors which were previ-

ously neglected. Specifically, the analysis included the following elements:

• Thermal effects

• Variable speed

• Squeeze film action

• Starvation

• Nonpara1lei contours.

Of course, the analysis also retained the backstroke and accompanying

cavitation. However, since for the cavitating backstroke, the film thickness is

of limited extent, the refinements of variable temperature were not included for

that part of the cycle. Thermal effects and transient effects were considered

separately to obtain their individual influence. This provides the quantitative

corrections associated with these effects without adding the high degree of

complexity of a fully coupled analysis.

3.1 Thermal Effects

3.1.1 The Energy Equation

Since no side leakage exists, the one-dimensional energy equation could be used.

This, of course, assumes that temperature variation with y can be averaged, a

fact which, as will be seen later, is particularly relevant here. It was also

assumed that all the heat generated is convected away by the lubricant.

Ignoring conduction, the one-dimensional energy equation can be written as,

pcu(3T/3x) = y[Ou/3y)2] (3-1)

Since, from one-dimensional bearing theory

(3'2)

25



Equation (3-1) can be integrated with respect to y in the interval 0 < y ̂  h to

yield

PC
h *\ *̂ T

dp. ,di.

~2 T2y ~3x' ^3x; 12y h (3-3)

or

pc
12y
U h
o

,2-,

1. a_h _ 3p
12u "3x"

Normalizing and utilizing the relationship

(1/V) Op/35) = (h - K)/(h J)

(3-4)

the following can be obtained

3T/3? {[(h - K) 2 / (h 3 ) ] (3-5)

where

U L(T - T )o o o

pc(C2)

3.1.2 Lubricant Flow

The flow pattern at the interface of a pumping ring was somewhat problematic.

The nature of this flow can' be visualized in Figure .3-1. As shown in Figure

3-la, at zero or low upstream pressure, the flow is mainly forward, with only a

small pocket of fluid circulating near the inlet of the film. This recirculat-

ing flow is induced by the adverse hydrodynamic pressure gradient prevailing

near x = 0. When the level of pf rises, more and more of the forward flow near

26
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Fig. 3-1 Lubricant Flow in the Fluid Film
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the stationary surface is blocked and eventually reversed (Figure 3-lc) by the

static pressure gradient induced by pf. Eventually, when the upstream pressure

is sufficiently high, fluid from the sealed chamber begins to leak backwards

along the stationary surface. When the magnitude of pf becomes very high (Fig-

ure 3-Id), most of the flow is backward, with only thin, vanishing layers of

forward and recirculating flows maintained near the moving surface.

Thus, in general, there are three layers of flow possessing the following char-

acteristics:

• Forward Flow - This flow is along the moving surface. It enters at a

temperature, T , that prevails at x = 0 and is heated on its way to the

reservoir to some T at x = L.max

• Recirculating Flow - This flow also enters at a temperature, T , but

various portions of that flow penetrate only part way into the film

before they are reversed and returned to their source. It should be

noted that the bulk of the flow recirculates near the entrance, where h

is large. It undergoes relatively little viscous shearing, resulting in

low energy dissipation to the fluid.

• Reverse Flow - This flow originates in the reservoir entering at a

temperature, T,., and is heated while traveling upstream. Its maximum

temperature is reached at the entrance to the pumping ring, at x = 0.

In view of these characteristics, only fluid which transverses the whole length,

L, i.e., only the forward and reverse flows, was considered instrumental in

carrying away the dissipated heat. Since the bulk of the intermediate layer

recirculates near the entrance where the temperature differential is relatively

small, its effect is left out of the heat balance. This treatment represents a

conservative approach because inclusion of the recirculating flow would yield

lower temperatures and thus safer operating conditions than those predicted by

the present method.

28



The first task was to find expressions for the three flow regimes in terms of

ring geometry and its operating conditions. Defining a dimensionless transverse

coordinate and a dimensionless velocity by

u(y) = (u/uo); n(O = [y/h]

the velocity from Equation (3-2) may be expressed in dimensionless form as

u= 3(1 - K/h) T)0l - 1) + (1 - TO . (3-6)

The line of zero velocity, or the line below which all fluid flows forward and

above which the flow is backward, is easily obtained from Equation (3-6) by

writing u = 0 which yields the locus

u-0 3[l-K/h(Ol

At a given £, the total flow contained between the moving surface and any point

(TI, £) line is given by

*Oi,O = h o;
n u(n') dn-'

and after integration yields

*Ol,O = ftnOl - I)2 + Kn2 (3/2 - n) (3-8)

By assigning to <KT|,5) various constant values, the flow streamlines are

obtained. The net flow, of course, is contained between TI = 0 and T) = 1 or

=qNET

which is shear flow at h = K where (dp/d£) = 0.

The film thickness is given by

h2[l + (a -
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So that the value of (K/2) for an isoviscous, linear slider is given by

K 2a . ~ ~ 2.

where

For the variable viscosity case where y = v(£)> the value of K is

K -- , - . (3-10)

;z .
h

fJ

The individual streamlines are obtained by assigning different constants to

5) in Equation (3-7). A sample plot of such streamlines for a = 3 and
~ 2different values of Pfh_ is shown in Figure 3 -2. Reverse flow will commence

when the dividing streamline between the forward and recirculating flow reaches

5 =• 1. This, from. Equation (3-7), occurs at .

n (1) - - — — = 1 (3-11)
3[1 - K/h2]

~ 2or at (K/h.) = 2/3. At values of K/h. < 2/3, the tangent point of the recircu-

lating envelope at 5 = 1 will lie below TI* = 1, opening up a passage for reverse

flow. Below the recirculating envelope the fluid will, as shown in Figure 3-3,

flow forward at a rate of

whereas, above the envelope there will be reverse flow at a rate of

1] - (K/2) (3-12)
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n* = l

= 0

Fig. 3-3 Mapping of the Three Flow Regions
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3.1.3 Modeling of Thermal Problem

•

As stated previously, the viscous heating is assumed to be convected away only

by the fluid that passes the interspace, be it to the right or to the left. For

this purpose, the interspace is modeled so as to be filled with these two

streams, i.e. a forward flow, q,,, and a reverse flow, qD, as shown in Figure 3-4.r K
By designating

f = qF/(qF + qR) (3-13)

f6(x) will be the heat convected to the right by q^ and (1-f) 8 the heat

connected to the left by qD. Likewise, temperatures will be averaged across the
K

film (i.e., in the y but not in the x direction) with T̂ x) and TD(x) represent-
r K

ing the temperature profiles generated in the two flow layers, q_ and q . The
r K

overall average temperature profile will be obtained from

T(x) = f Tp(x) + (1 - f) TR(x) (3-14)

The viscosity at each x station will be based on this averaged temperature, i.e.

u(x) = u[T(x)].

The expression for the viscous heating (Section 3.1.1) is exact in the sense

that the losses are calculated over the exact velocity profile, including the

region of recirculating flow, namely-

0(x) = y(x) Q/
h (du/dy)2dy (3-15)

where u (x,y) is the velocity profile shown in Figure 3-3. Consistent with the

flow model, u(x) in the calculation of this viscous shear will be that corre-

sponding to the average temperature T(x).

It should be noted that, whereas with no reverse flow (qD = 0), the temperatureK
at the inlet to the film is a constant equal to T , this is no longer true when

reverse flow sets in. The reverse flow, starting at an initial temperature, T,,

33



ooor-OvO
•

OmoenoC
N

O

<U
u-iencCOMHCO01
3Cy01CouoCo•HCO
•H•HT

3£>3onoo

I 
I 

I 
I

I 
I 

I 
I 

I 
I 

I 
I 

I
oo

vO

C
N

oo
oo

-3- 
C

N

0
 

O



will reach a maximum at x = 0 and, since temperatures are averaged across y, the

inlet temperature will be some T ' > T .o o

3.1.4 Calculation Procedure

The procedure to be followed in calculating thermal effects in the fluid film

is, in view of the previous discussion, as follows:

a. The differential equation to be solved is

h - K

where due to the variable viscosity

K
0 h

f Mil
J , 30 h

and

[ 6u U L . "1
r + —^-^ T (£)
° PC C2 J

b. If (K/h_) > 2/3, there is no reverse flow and

3hl
(3-16)

with T = T at ? = 0.o
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c. If (K/h.) < 2/3, there is reverse flow, and the following quantities

have to be established in order to account for both the forward and

backward streams:

1-4

+ 2K(n*) [3/2 - i*] = 2qp

KR = - K =

= Kp + ̂  = 2KF - K = 2(qF + qR) =

dT (h - K)* , 1

h3 3h

(3-17)

Equation (3-17) needs a solution with two different boundary conditions:

• For TF «), T = TQ at $ = 0

• For T , T = Tf at $ = 1

The averaged temperature, any given £> is thus

T(O
TRKF

where

T =
pc C (T - T )o

6M U L
o o

A sample solution for the temperature profile in the fluid film for various

values of upstream pressure is given in Figure 3~5. The solutions are for the

case of equal upstream and downstream boundary temperatures. Curves which start

at T = 86°F are those without reverse flow and thus have what may be called a

conventional profile. However, at pf > 1.5, there is reverse flow and, due to

the averaging of temperatures across y, the inlet temperature is higher than
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86°F. It is interesting to note that, due to the cooling effect of the backward

flow, the maximum temperatures in the film actually decrease as the back flow

increases above a certain level. Thus;,...for p.. = 0, > Tu . = ,10,7°F,. and for• • '; • ' rf ' , max '
p = 3.0, T = 92°F and occurs not at the trailing but "at the leading edge ofi nicLx
the film. The highest temperatures, occur at some intermediate combination of

forward and backward flows; in this particular example..it happens at p = 2.0

with! reaching 120°F.
IDcLX . • '

3.2 Variable Velocity and Squeeze-Film Effects

Throughout the previous discussions,, the rod .velocity .was considered .to be

constant, given by U = 2sf. This, of course, represents the average velocity

over each half cycle. In actuality, the rod, driving a crankshaft, moves with a

variable velocity given by

u = u cosir2ftmax

where

u = fs = TtU /2 • -max o

Consequently, a normal velocity component and squeeze film forces are imposed on

the ring, as shown in Figure 3-6. These are generated by a variation of the

hydrodynamic forces and of film thickness, as a function of the variable veloci-

ty. The normal velocity introduces perturbations on nearly all the relevant

quantities, such as film thickness, pressures, flows, extent of cavitation, and

others. •• • ••' ••- •' * • '•'" •• ' - '

When variable velocity and squeeze-film-"-effects.vare included, the Reynolds

Equation becomes:

[h3(3p/35)l = .(ir/2)[cosT(3h/3O +-a(3h/.3f)] ' ' (3-19)
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Fig. 3-6 Variable Velocity and Squeeze Film Effects
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where o is the squeeze-film parameter given by 0 = 4L/s, and t is the dimension-

less time T = 2irft.

The relevant boundary conditions are:

• For no caviation: p(0)=0;p(l)=p

• For cavitation: p(l) = Pf»
dp
d£

= 0

The one-dimensional, transient Reynolds Equation, given by Equation (3-19), may

be solved with the use of the implicit time-transient method. 3h/di may be

written as:

- h(± _

where the subscript i in parentheses denotes the i time step, and AT is the

interval between the i and (i-1) time steps. Hence

and the discretized form of Equation (3-19) is written as

0-20,

If it is assumed that h,._ . is known, then Equation (3-20) can be integrated

analytically to obtain P,.^ as.a function of £ at the i time step. The elas-

ticity equation, Equation (2-6), remains unchanged except for the time depend-

ence of p, and may be coupled with the solution to Equation (3-20) and solved at

each time step as described previously for the steady-state solution. Values of

hL and Ah at the previous time step C^of-lV f-11^ were used in evaluating

h,.,. in Equation (3~20) and for initial guesses for h9,., and Ah,., for use in

the secant method.
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Quasi-static solutions (o = 0) were obtained at the middle of the forward stroke

(T.= 0) to start the marching procedure. Solutions were then computed at

successive time steps until periodic solutions were obtained.

Sample solutions were run on a pumping ring having the following dimensionless

characteristics:

a = 0.0282, 3 = 0.2569, e = 0.518, L = 1.567, a = 4.0

Three cases were considered, at different combinations of p. and p ; the

p =4.0 solution also represents a case where the ring is clamped on the back-

stroke. The three cases were all solved for steady-state (u = u ), quasi-static

(o = 0), and transient conditions to show the effects of squeeze film on ring

performance. The value of o = 4.0 is quite large for practical applications as

it corresponds to a stroke, s, equal to the bearing land, L. For present appli-

cations, o is generally less than 1. The large value was used to exaggerate the

effects of squeeze film for purposes of illustration and interpretation. Graphs

for film thickness, flow, and pressure profiles are given in Figures 3-7 through

3-14, whereas the values of the component flows are itemized in Table 3-1. Note

should be taken that T = 0 corresponds in these plots to rod position at u =

u , i.e., at the midpoint of its forward stroke,
max' ^

Considering first the effects of variable velocity alone (quasi-static

solution), the plots show the following trends:

• The film thickness variation during the forward stroke follows the sinu-

soidal shape of the velocity curve. During the backstroke velocity,

variation has no effect whenever cavitation commences at the trailing

edge and a small effect when cavitation is located at 5 < 1 (Figure 3-9).

• The flow curve follows the shape of the velocity curve throughout the

cycle, except, of course, when, due to a clamped ring, the flow during

the backstroke is zero. In the particular case of Figure 3-14, the flow,

after peaking at u , became negative at the end of the forward strokem&x
(u -* 0). However, upon commencing the backstroke, the ring clamped and

flow ceased.
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• Variable velocity has the effect of increasing the absolute values of all

flows; that is, even though it boosts both the forward and back flows,

the net flow is increased. Table 3-1 shows this increase to be of the

order of several percent for the case of p, = 0. The high percentage

changes shown for other cases should not be given too much signficance

since they center about very low flow levels when a small variation is

apt to produce deceptively large effects in terms of percentages.

• The pressures are, of course, positive over the entire ring during the
T

forward stroke, as shown by the 0- IT range of the constant lines on Figure

3-11. Their magnitude, too, follows the velocity curve. During the

backstroke, fr/2 < T < 3ir/2, cavitation sets in as high negative veloci-

ties are approached (T •* IT); they tend, however, to disappear at the

beginning and end of the backstroke, when the negative velocities are

low.

The inclusion of squeeze-film effects have the following effect:

• The largest film thickness does not occur at u . The peak is delayed

so that it is reached after u . Likewise, the onset of constant h
max

during the reverse stroke does not commence at u = 0, but is also

delayed. Thus, squeeze films have the effect of producing a phase shift

in the film thickness curve. The shift is fairly large, varying from 50°

to 90° in the three cases considered. However, the absolute values of h

seem not to be affected.

• The effect on the flow curves is similar in that there is a phase shift

with little change in their magnitude. Both the forward and net flows

are reduced in comparison to . either the steady-state or quasi-static

solutions; the amount of back flow tends to increase under the influence

of squeeze film forces. Since the quasi-static solution gives higher

flows and the static solution gives lower flow than the constant parame-

ter approach, the inclusion of variable velocity without squeeze film

effects would yield errors of at least 10%.
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'• Unlike the behavior in the quasi-static solution, the pressure curves

are not identical over the 0-ir and TT-2 halves of the cycle. The pres-

sures are lower when squeeze film effects are included, except over the

latter half of the backstroke, when a closing gap helps to increase the

pressures above those of the quasi-static analysis.

3j3 Starvation

An estimate of the effect of starvation can be obtained by first considering

the clamped case where the area under the bearing land, 0 < x < L, is

predicted to be completely dry at the end of the backstroke. The average film

thickness in this area is Ah/2, and the average Couette flow per unit of

circumferential length is Uo Ah/4. The time, ts, for the starved volume to

fill up would thus be the cross-sectional area AhL/2 divided by the flow per

unit of circumferential length. Thus,

ts = (AhL/2)/(UQAh/4)

The distance traveled prior to flooding is Uots = 2L. This would reduce the

effective forward stroke by an amount equal to 2L. The value of ts given above

will be somewhat low in that it does not account for the development of a

resisting pressure gradient that will occur as the starved volume fills up nor

does it account for any inertial effects in the entrance region that could

impede the start of the filling process. In order to account for these

effects when analyzing experimental data, multiply ts by a factor X which will

in general be greater than or equal to 1. Thus,

seff = s - 2LX

and the dimensionless flow rate Keff becomes

Keff = K (seff/s) = K [1 " X<2L/S>] (3-21)

The starvation process is, of course, much more complex than that treated

here, especially in the undamped case where there is a partial film and the

film is exposed to the sealed pressure, pQ, so that the cavity could be
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trapped in the middle. In order to understand more fully the influence of

starvation on pumping ring performance, transparent model experiments should

be performed so that the size and behavior of the partial film can be observed

and modeled. In the interim, a simple model was adopted to estimate the

effect of starvation on pumping for either the clamped or cavitating,

none lamped case.

If the film cavitates during the backstroke at 5 = £ , the film thickness at

the point, hc, is

hc = h2 + Ah(l - Cc)

and the void volume (volume of gas or vapor in the cavitated region) per unit

of circumferential length, Vc, would be

Vc = (h2 + Ah - hc) L Cc/2 = L £c
2 Ah/2

If it is assumed that the void volume must fill up before significant pumping

can begin and if it fills based on Couette flow at the average film thickness

of the cavitated region, the incoming flow per unit of circumferential length

would be U0 (h2 + Ah + hc)M, and the starvation time, ts, would be Vc divided

by that flow

Ah

As for the clamped case, the effective forward stroke would be reduced by Xuo

ts. If the dimensionless flow in the forward stroke is denoted by Kf and the

backstroke by KR, then

Kf eff = K f (s - AVs)/s

K, 1 - 2A -s + Ah + h
2 c

Kf 1 - 2X -L \ Ah 1
s /2h2 + Ah (2 - E, )
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and

Keff = Kf eff - KK (3-22)

For the clamped condition, Kg =0, 5C = 1 and b.2 = 0; thus Equation (3-22)

reduces to Equation (3-21).

In order to show the effects of starvation, the data for a clamped carbon

graphite ring is given in Figure 3-15. The dotted curves include the effects

of starvation for a value of X = 1. It can be seen that, although the inclu-

sion of the effects of starvation reduces the discrepancy between theory and

experiment, it does not resolve the lack of agreement. The effect of values

of X > 1 will be shown later when comparing theory to experiment.

As a result of the uncertainty regarding the mechanisms of the starvation

process, the effects of starvation are not included in the parametric studies

in Section 4.0. It is recommended, however, that Equation (3-22) be used to

estimate potential effects of starvation when designing pumping rings. The

dimensionless starved net flow is given as an output to the computer program

RING listed in Appendix B of this report.

3.4 Nonparallel Contours

Essentially, the contours considered are tapered surfaces with a constant

slope as shown in Figure 3-16. The reference clearance is that at the trail-

ing edge of the ring; the leading edge clearance is designated by C^. The

slope parameter, 6, is then given by

6 = (dh/dx) = (C - CM)/L (3-23)

In terms of the nondimensional quantities h and £, the slope is given by

6 = (dh/dC) = (C - CM)/C = (1 - O (3-24)
M M '



00

•H(*00I104O0)
UCDUO<4-i
M(UOcdo0)60

o
^

o
 

o
0
0

oovO

o
o

 
o

o
 

o
 

o
 

o
 

"
o

 
o

" 
o

o
o

 
o

o
o
 

o
o

 
o

o
o

t/1
 

-3
- 

m
rg

 
rH

 
O

 
<

y
>

 
O

O
r

^
v

o

ooin
oo-»

o
 

o
o
 

o
f>

 
<
N

o
 

o
o

Tsd

CN
C

O

5
5



c - c
s 'M

St ' (VC)

Fig. 3-16 Geometric Taper on Pumping Ring
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The clearance ratio CM = (CM/C) in terms of this 6 is then given by:

CM = 1 - L6/C (3-25)

The effect of using tapers on the performance of pumping rings is discussed in

Section 5.0. Briefly, it can be said that the use of tapers has little effect,

except in cases of low clamping load, p , or high values of E, i.e., when there
o

is little elastic deflection of the ring. Clearly, when there is no

deflection at all, a taper would constitute the sole mechanism of generating

hydrodynamic pressures. In practical applications where deflections are

present, the effect of tapers is minimal.
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4.0 PARAMETRIC STUDY

A study was made regarding the impact of various structural and operational

parameters on the performance of the pumping rings. These parameters include:

• Modulus of Elasticity (E)

• Poisson's Ratio (v)

• Clearance (C)

• Length (L & LI> •

• Ring Thickness (t)

• Taper (6)

• Loading (p and e).

The computer runs that provide the results of the parametric study are based

on the constant-parameter approach without starvation but including the

effects of the backstroke and attendant cavitation. Thermal and transient

effects were omitted because, as shown on Figure 4-1, their effect is not of

the sort as to qualitatively change the behavior of the pumping ring. The

constant parameter analysis should be sufficient to reveal the essential

features of the parametric relationships without the undue complications of

the more elaborate analysis.

Since it would ultimately be desirable to optimize the design of pumping

rings, the question arises as to what constitutes an optimum. Given the

purposes for which these devices are customarily used, an optimum ring was

deemed to be one which, within given constraints such as reasonable values of

p , C, etc'., can maintain the highest possible sealing pressure without exces-

sive wear. This implies the highest values of p~ and a low, preferably zero,

frictional force F. Thus, a ring design which generates high pf and just

clamps shut upon reversing.the stroke would fulfill this criterion. An addi-

tional quantity of interest, perhaps, is also the maximum flow Q. (flow at pf

= 0), that such a ring can produce. Thus, in the plots that follow, the items

of pf, F, and QQ will be the items against which ring performance will be meas-

ured.

The parametric study was conducted by first establishing a standard or refer-

ence design and then by varying its parameters, one at a time, to values below
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and above the reference quantities. The parameters for this standard ring are

given in Table 4-1 along with selected departures from the standard set.

Including the standard, most parameters have four computed points from which

optimization plots can be made. The results of the parametric study are

summarized in Table 4-2; more relevant plots are portrayed in Figures 4-2

through 4-11. In Figure 4-4, the reason the film thickness h2 drops with an

increase in clearance, is due to the drop in p, ; a high p, usually helps to

contract the clamping pressure and thus maintain a high ti2« In Figure 4-6,

the explanation for an increase in flow with a rise in length L is that with a

greater L the hydrodynamic effects are increased, and thus, also the flow. As

seen, four parameters, the lengths L and LI, taper 6, and Poisson's ratio have

little effect on performance. Of the two important variables, namely, clear-

ance and clamping force, the first has to be raised above its optimum for

maximum pf, and the latter reduced below the optimum, if large frictional

forces are to be avoided. Since the clamping force is given by the product of

p and e, Figure 4-12 shows the effects of using the same clamping force,

31.96 KN/m (182.5 Ib per in.) of circumference, but by varying the relative

values of pQ and e. As seen, higher values of p^ are achieved when pQ is high,

while higher values of (^ are achieved when e is high. The differences,

however, are not striking.

It should be pointed out that the particular optima recorded in Table 4-2,

such as t = 2.54 mm (0.1 in.), C = 25.4 microns (1 mil), etc., are valid in the

range of parameters characterizing the particular ring specified in Table 4-1.

Thus, for example, for a material with a much higher E value, optimum results

would be achieved with lower values of clearance and ring thickness. The

opposite would be true for a material with a value of E much below the 34.5 GPa

(5 x 10 psi) assigned to the standard design.
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TABLE 4-1

STANDARD DESIGN FOR PARAMETRIC STUDY

p = 10.3 MPa (1500 psi)

e = 3.175 mm (0.125 In.)

T = 49°C (120°F), u = 59 x 10~3 Pa-sec, (8.6 x 10"6 Reyns)

E = 3.45-104 MPa (5-106 psi)

v = 0.36

s = 12.7 mm (0.5 in.)

f = 35 Hz

R = 12.7 mm (0.5 in.)

L = 6.35 mm (0.25 in.)

LX = 10.2 mm (0.4 in.)

C = 0.019 mm (0.75 x 10~3 in.)

t = 1.9 mm (0.075 in.)

6 = 0

VARIATIONS IN PARAMETERS

C: 0.0063 mm, '0.0127 mm, 0.0381 mm (0.25 x 10~3in. , 0.5 x 10~3in. , 1.5 x 10~3in.)

E: 6.895-103MPa, 20.7-103MPa, 68.95-103MPa, 207-103KPa (106 psi, 3 -106 psi,
10-10 psi, 30-106 psi)

L: 5.1 mm, 7.6 mm, 10.2 mm (0.2 in., 0.3 in., 0.4 in.)

p : 5.17 MPa, 6.895 MPa, 13.79 MPa (750 psi, 1,000 psi, 2,000 psi)

v: 0.25, 0.5

t: 1.27 mm, 2.52 mm, 3.81 mm (0.05 in.^ 0.1 in., 0.15 in.)

L 6.35 mm, 15.2 mm (0.25 in, 0.6 in.)

6: -10~3, -2-10~3, -3-10~3
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TABLE 4-2

OPTIMUM PARAMETERS FOR STANDARD RING

(See Table 4-1)

E

V

C

L

Ll

t

6

PC*

ITEM

psi 10"6

MPa 10~3

mils '•-••--!» ••

microns

in

nun

in

HUfl

in

nun

F .'•

psi

MPa . ;

RANGE
EVALUATED

1 - 30

6.89 - 207

0.25 - 0.5

^0*25 - 1.5

6.35 - 38.1

0.2 - 0.4

5.08 - 10.16

0.25 - 0.6

6.35 - 15.2

6.05 - 0.15

. '1.27 - 3.81

0 - (-3-10"3)

750 - 2,000

5.17 - 13.8

For Pfm

SUBJECT TO F=0

5.5

41.3

No Effect

1.0

25.4

No Effect

No Effect

0.100

2.54

No Effect

; HOG

7.5

FOR Q

6

41.3

.. No Effect

1.0

25.4

Highest

No Effect

0.102

2.64

0

1050

7.20

^ ..„*See.. Also...Fig. 4-12.
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5.0 EXPERIMENTAL PROGRAM

Following the optimization of the candidate rings, tests were run on three

rings to verify their performance and their agreement with theoretical pre-

dictions. The test rig and the experimental procedures were the same as those

used on the tests described in Ref. [l].

The pumping ring program, given in Appendix B based on the analysis performed

here, has been used to select ring designs for experimental testing. Initial-

ly, a set of studies was performed with steel, babbitt, and Rulon J rings as

examples of a high, medium, and low modulus pumping ring. Overall dimensions

were selected consistent with the experimental test rig. The principal design

variables to be evaluated within the applied pressure, p , the clearance, c,
o

and the-average thickness, t. A target value of p . of 1500 psi was used;
o

however, it was found not feasible to design to this pressure with the low

modulus Rulon ring. Sample geometries that have been arrived at are shown in

Table 5-1. The general configuration of the pumping rings submitted for test

is shown in Figure 5-1.

The principal criterion used involves being able to significantly deflect the

ring to obtain pumping action without excessive clamping during the back-

stroke, which would result in excessive wear.

Based on the criterion above, the design of the steel ring would require rela-

tively small thickness and a small clearance to obtain suitable compliance and

deflection characteristics. The tolerances required seem excessive for the

present application, and it is thought that steel rings would only be applica-

ble in situations requiring much higher pressures. It was thus decided to

confine testing to medium and low modulus materials ranging between babbitt,

carbon graphite, and Rulon. The test rig and experimental procedures were the

same as those used on the test.

One problem area revealed in the course of testing concerns the clamping load.

Difficulties were encountered in testing the carbon and Rulon rings, and often

such attempts at testing led to breakage of the specimens. It was also noted

that some of the babbitt rings were severely worn, not at the downstream end
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TABLE 5-1

SAMPLE GEOMETRIES AND CONDITIONS FOR

PARAMETRIC STUDY OF CANDIDATE TEST RINGS

L = 6.73 mm ( 0.265 in.), ~L = 7.62 mm (0.30 in.), 6 = 0 , s = 38.1 mm (1.5 in.),

f = 35 Hz.

ITEM

R, mm

(in.)

E, MPa

(psi)

V

p , MPa

(psi)

C, microns

(mils)

t , mm

(in.)

STEEL

9.5

(0.38)

207-103

(30 x 106)

0.3

10.34

(1500)

8.96

(0.35)

1.27

(0.05)

BABBITT

9.5

(0.38).

51- 103

(7.5 x 106)

0.36

10.34

(1500)

19

(0.75)

1.90

(0.075)

RULON J

9.5

(0.38)

1.72-103

(0.25 x 106)

- 0 . 4 6

5.17

(750)

50.8

(2)

3.81

(0.15)
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where wear might be anticipated but far upstream, ahead of the actual pumping

area, as shown in Figure 5-2a. This led to the conclusion shown in Figure 5-2b

that the high-pressure oil used for clamping leaked past the 0-ring and, by

pressing against bracket A, effectively produced a sealed chamber over the OD

of the ring. The pumping ring was thus loaded with a pressure, p , over the
o

entire length (L + L) instead of only the narrow region, e, covered by the

0-ring. This unpresidented pressure loading gave the ring the flared shape

shown in Figure 5-2b which led to high wear upstream of the active pumping

area and to breakage of the weaker rings.

The problem was resolved by opening relief passages behind bracket A so that

any fluid leaking past the 0-ring would be scavenged outside. Since the leak-

age past the 0-ring occurs only when p. approaches p , such leakage should not

affect the build-up of sealed pressure p at levels below p . With the relief

grooves in place, all unsatisfactory tests were repeated; no further difficul-

ties in testing the Rulon and carbon rings were encountered. It should also

be noted here that the sealed pressure p was not observed to significantly

exceed the loading pressure p . This is believed to be a result of leakage

past the 0-ring, which occurs when p starts to exceed p , as indicated in

Figure 5-3.

The rings tested were made of either babbitt, carbon graphite, or Rulon. The

geometry and dimensions of the various rings tested are as summarized in Table

5-2 and, except for one item (Item VII), had the following two dimensions in

common:

Shaft Diameter - 19.05 mm

Inside Diameter of Back Section (over length L ) - 19.3 mm

The viscosities of the oil used are those given in Figure C-l of Appendix C.

5.1 Tests with Large Babbitt Ring

The 19.05-mm diameter babbitt ring was tested at three frequencies, 60, 35,

and 10 Hz, and at two strokes, 50.8 mm and 25.4 mm. The parameters investi-

gated were the pumping ring length (L), clearance (C), and the effect of a

taper (6). Tables C-l through C-4 in Appendix C give the detailed results of
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High Pressure Oil

0-Ring

a) Evidence of Wear

b) Distortion of Ring

Fig. 5-2 Leakage of High Pressure Oil Past 0-Ring
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Fig..5-3 Schematic of Leakage Past 0-Ring at
High Sealed Pressures
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Che tests. The self-pressurization runs represent an arrangement in which the

clamping pressure was provided by the sealed pressures generated by the pump-

ing ring. This represents the case of p = p at any instance. It turned out

that, in order to start the untapered pumping ring, a priming pressure was

required (that is, when at the start, p_ = 0, no self-clamping was possible).

Some initial p > 0 had to be provided by external means in order to enable
to

the pumping ring to apply self-pressurization and build up a pf beyond the

initially supplied priming pressure, p. . The tapered rings were found to be

self-priming.

With regard to the effect of the several variables tested, the plots suggest

the following:

• Effect of Clearance - Table 5-3 shows the changes in maximum flow and

pressure induced by changing the clearance from 11.4 microns to 19

microns. These changes are minimal, indicating that the optimum lies

within the range of values.

• Effect of Length - As shown in Table 5-4, there is a definite advantage

to a higher length, L, with regard to maximum flow rates; but the

shorter rings produced higher maximum levels of sealed pressure, p .
f m

• Effect of Taper - Table 5-5 confirms what can be intuitively deduced as

the desirability of having a geometric taper. At high clamping pres-

sures when ring deflections are large, the geometric taper is counter-

productive. However, at p = 3.45 MPa, a taper produces higher flow

rates and higher levels of maximum pressure.

5.2 Tests with the Rulon and Carbon Ring

The detailed results of the tests on the Rulon and carbon rings are given in

Tables C-5 and C-6 in Appendix C. In both rings, the higher clamping pres-

sures produced higher reservoir pressures, p , but the lower values of p
tm o

yielded higher maximum flow rates. This trend was already noticeable with the

babbitt ring, but as the value of E drops, it becomes more pronounced so that,
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TABLE 5-4

EFFECT OF REDUCED LENGTH L

RUNS I AND III

PO
MPa (psi)

6.895
(1000)

3.45
(500)

8.62
(1250)

s

mm (In. )

50.8
(2)

50.8
(2)

25.4
(1)

f.

Hz

60

35

. .,10

60

35

10

60

QQ, gra/min

L=6. 78 nnn
(0.267 in.)

50

25

.4

59

28

3.5

70

L=4.83 nun
(0.19 in.)

34

17

2.5

51

27

3.5 .

60

. Pfm' **a

L=6. 78 mm
(0..267 in.)

7.2

7.2.

7 .2-

3.8

. 3.8

3.8

8.8

L=4.83 mm.
(0.19 in.)

7.8

7.8

7.0

7.2

7.2

7.2

8.0
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TABLE 5-5

EFFECT OF TAPER

RUNS I AND IV

'f

Po
MPa (psi)

8 . 62
(1250)

6.895
(1000)

3.45
(500)

8.62
(1250)

s

mm (in.)

50.8
(2)

50.8
(2)

50.8
(2)

25.4
(1)

f. Hz
*

60

35

10

60

35

10

60

35

10

60

QQ, gm/min

6 = 0

42

22

4

50

24

4

60

28

4

7

6=-3.75-10~3

32

17

4

42

18

2

> 80

38

4

2 .5

Pfm, MPa

6 = 0

9.2

8.9

9.2

3.8

3.8

3.8

8.8

6=-3.75-10~3

9.2

9.0

7 .2

7.5

4.2

4.2

3.8

8.8



for the Rulon rings, Q at p = 1.72 MPa (250 psi) is two or three times the

value of Q at p = 5.17 (750 psi).
o o

5.3 Tests with the Small Babbitt Ring

The results for the 6-mm radius babbitt ring are given in Table C-7. The diam-

eter was reduced roughly 1/3 as compared to the large rings. Neither the

flows. Q , nor the maximum sealed pressure, p. , were much affected by the
o tm

change in size.
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6.0 DISCUSSION OF RESULTS

Three sets of comparative results are presented in Appendix D.

• The babbitt rings, which comprise the large size with two different

clearances and a small size ring

• The carbon graphite ring

• The Rulon ring.

The theoretical curves presented in Appendix D were obtained without the star-

vation correction and without allowance for the fact that the sealed pressure

does not exceed the loading pressure due to leakage past the 0-ring.

|

A number of qualitative conclusions can be drawn from a study of the figures

in Appendix D. The major discrepancy observable is the fact that the measured

flows are substantially smaller than those predicted by theory at zero sealed

pressure. This is believed to be partially due to effects of starvation as

will be discussed later. For practical purposes, this discrepancy is not

believed to be a major one in that the pumping rings will normally be used to

develop a buffer pressure as opposed to being designed to deliver prescribed

flow rate. The predicted maximum developable pressure at zero net flow was

found to be in better agreement with the experimental data. Again, all of the

curves that predict sealed pressure higher than the loading pressures should

be truncated at the loading pressure value due to leakage past the secondary

seal.

It is important to note that all of the data presented in Appendix D was

obtained with seals that were sized and designed with the analysis contained

Here. In all cases, as predicted, the seals did perform the task of develop-

ing and maintaining the designed sealed pressures. Significant pressures

could not be developed for steel rings where the theory indicated that suffi-

cient deflection would not be obtainable to provide adequate pumping.

Although the analysis presented so far does not accurately predict deliverable

flow, it can be used reliably to size and design pumping rings. In order to

obtain and improve fit to the flow data, a two-constant empirical relationship

has been determined from the data for babbitt pumping rings to attempt to
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account for starvation. The results of this fit when compared with exper-

imental data are described below.

6.1 Empirical Correction for Starvation

An empirical relationship for the starvation factor, X, as a function of L/s

of the form

X = 0.74 (s/L)°-58

has been obtained by fitting flow rates at zero sealed pressure for ring No. I

at p = 8.62 MPa. Comparisons have been made for rings I - III over a range of

frequencies, strokes, loading pressures, sealed pressures, and geometries.

Values of X obtained from the above equations varied between 1.6 and 2.4 for

all the cases shown in Figures 6-1 through 6-10.

Comparisons of the data for a 50.8-mm stroke at 35 Hz in Figure 6-1 with those

for a 25.4-mm stroke at 60 Hz shown in Figure 6-4 indicate that, even though

the speeds (product of stroke and frequency) are fairly close together, the

short stroke data in Figure 6-4 shows a factor of 3 less flow. .This is very

much in keeping with the starvation analysis that predicts that reduced flow

will occur when the land length becomes an appreciable fraction of the stroke.

If starvation is neglected, the theory would predict the flows to be solely a

function of the product of frequency and stroke. Even though only a two-

constant fit was used, the agreement between theory and experiment for all of

the cases involving the small clearance babbitt ring looks reasonably good.

Figure 6-6 shows the comparison between theory and experiment with the larger

clearance babbitt ring. The shaded area shows the difference between pre-

dictions for a 0.75-mil clearance and a 0.65-mil clearance. The difference

being well within the limit of the measurements. In general, the data tend to

indicate that the 0.65-mil clearance is probably closer to the truth. This

appears to be particularly true when one looks at the data at 10 Hz. Again,

the agreement is reasonably good and no additional constants were used in

fitting the data for the large clearance ring.
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Figures 6-9 and 6-10 show comparisons between theory and experiment for the

shorter length ring. The increased discrepancies indicate that the starvation

correction depends more on the stroke than on the seal land. This could be an

effect of inertia in the inlet region. In general, the starvation correction,

along with the constraint that the end pressure doesn't exceed the loading

pressure, provides much better agreement between theory and experiments but is

still somewhat incomplete.

6.2 Effects of Viscosity

Since the viscosity cannot be measured at the interface (it is, in fact, meas-

ured several inches upstream of the inlet) and since the clearances are very

small, both parameters could, in actuality, differ from the assumed values.

Major reductions in viscosity, such as that which would occur if the actual

temperature were 100°F higher than the measured inlet temperature, would

provide remarkably improved agreement between theory and experiment. This

fact was observed in numerous parametric studies which are not presented here

in that no justification has been found for this temperature rise.

6.3 Suggested Design Procedure

The most effective use of a pumping ring is believed to be for generating a

buffer pressure to back up another seal. Thus, if one were to seal gas at 10

MPa from oil at ambient pressure, the pumping ring should be used to develop

the 10 MPa backup pressure in a buffer reservoir, thus alleviating the pres-

sure gradient on the primary seal. This should provide prolonged life for the

sealing system since the pumping ring is essentially a "light contact" device.

Clearances should be selected based on shaft diameters and machining toler-

ances. Values of C/R should be of the order of 10" , thus resembling bearing

clearances rather than the tight clearances (or interference) that one would

generally find in a seal.

The loading pressure should be of the order of the desired buffer pressure.

Back leakage past the 0-ring could thus provide a potential relief valve to

protect against excessive pressure buildup in the buffer chamber.
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The computer program RING (given in Appendix B) should then be used to arrive

at a combination of material properties (E, v) and geometries (t, e, L, LI) so

that the computed value of Pfm is equal to the desired buffer pressure, and a

small amount of clamping is predicted to occur during the back stroke. Allow-

ances should be made for some wear to occur due to friction resulting from the

radial shear force F. .

If the pumping ring is designed to generate its own loading pressure, p, = pf,

an initial taper should be used. Values of CM/C of the order of 2-3 have been

shown to be adequate for obtaining self-pumping without the need for external

priming. Caution should be used here in providing pressure relief to avoid

overloading.

Finally, if the pumping ring is used as a flow device, rather, than a pressure

generator, allowances should be made for the fact that the analysis tends to

overpredict flow under many circumstances. In general, the "starved net flow"

prediction generated by RING should be within a factor of. 2 of the flow that

one would expect to obtain in practice, based upon the measurements reported

here.
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7.0 CONCLUSIONS

A design analysis has been developed for predicting pressure-flow relation-

ships for various input geometries, speeds, fluid viscosities, and elastic

moduli of pumping rings. The analysis can be used to size and design pumping

rings for various applications. Results of testing with Rulon, babbitt, and

carbon-graphite rings at various loads, speeds, and geometries indicate that

the analysis can consistently be used to design rings that work well over a

fairly broad range of parameters.

The design criteria for selecting the clearance would be dictated by tolerance

and flow rate consideration. The applied loading, p , should be the order of

the desired pumping pressure. The choice of materials and geometry are then

dictated by elasticity considerations so that the deflected ring, under static

load, clamps the shaft with a very small force to nearly eliminate the back

.flow without resulting in excessive friction and ensuing wear and power loss.

The greatest discrepancy between theory and experiment lies in the prediction

of flow at zero sealed pressure, Q . Predicted values of Qo are substantially

higher than those observed experimentally in almost all cases. Predictions of

the maximum sealed pressure at zero net flow, p , differ from those observed

experimentally, in that values of p substantially greater than the loading

pressure, p , are frequently predicted but have never been observed.

The analysis shows that starvation can have a significant influence on QQ,.

although not sufficient to completely explain the discrepancies, and that

leakage past the 0-ring could cause p not to exceed pQ. Further causes of

discrepancy could be due to uncertainties in the clearance and the local

temperature at the inlet to the pumping ring.

It was found experimentally that the use of tapers on pumping rings enabled

the rings to self-pump up to high sealed pressures. The untapered rings, in

general, needed to be initially loaded until a sufficiently high sealed pres-

sure could be generated to load the ring. No priming was necessary for the

tapered rings. Theory indicates that performance of a tapered ring and an

untapered ring at the same minimum film thickness are similar under signif-

icant loading, but the tapered ring is predicted to pump even when unloaded.

100



8.0 REFERENCES

1. "Experimental Evaluation of Oil Pumping Rings," M. W. Eusepi, J. A.

Walowit, M. Cohen, DOE/NASA/0119-81/1, NASA CR-165271, U.S. Department of

Energy, April 1981.

101



APPENDIX A

PRELIMINARY ANALYSIS OF -PUMPING LENINGRADER SEAL

'• " NOMENCLATURE ' " ' • •

6 • • - • • . interference

w / ' • • - . - " Radial inward deflection

h ' Film thickness

1, x9 Coordinate variables

Interface pressure

p Sealed gas pressure
O

p. Interference pressure

p . Ambient oil pressure

E '' Elastic modulus of seal

v : Poisson's ratio

t Thickness of steel

R Radius

D = Et3/[12(l-v2)] Flexural rigidity

f(x) Shape of urideformed seal ring relative'to

shaft radius

V Viscosity

8 Inlet slope

L, L- Lengths shown in Figure A-4
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Figure A-l is a schematic of a pumping Leningrader seal cross section mounted on

a shaft. The seal, which is preloaded against the shaft with an interference

fit, is loaded by a backup spring and by high-pressure gas, which acts behind

the seal and is separated from the oil by the static sealing land. The long,

chamfered inlet region provides the pumping action in that it forms a gradual

inlet which tends to trap or to provide a preferred direction for flow when the

shaft moves toward the cooling supply. (This is referred to as the forward

stroke.) During the backstroke, the seal (as drawn in Figure A-l) tends to rub

and wipe oil away. Thus, any oil that leaks toward the high-pressure gas tends

to be pumped back toward the cooling oil reservoir.

Figure A-2 shows the actual dimensions of the seal used in an automotive Stir-

ling engine. The dotted line denotes the geometry used in the initial modeling

of the seal discussed below.

A preliminary model has been developed for a seal with a constant thickness as

shown in Figure A-3. The pressure profile drawn under the seal is the pressure

anticipated to occur between the seal and the shaft during the forward stroke.

The pressure on the far left corresponds to the high-pressure gas, and the pres-

sure on the right represents the oil pressure. The constant pressure, p.,

denotes the compressive radial stress associated with the interference fit of

the ring on the shaft. The gas pressure is assumed to act along the outside of

the seal with an imaginary secondary seal separating the gas from the oil. The

deformation of the seal is assumed to be governed by the elasticity equations

for a thin axisymmetric cylindrical shell.

D(d4w/dx4) + (Et/R2)w = -(p - p ) (A-l)
O

The geometric variables and coordinate system are shown in Figure A-4; w denotes

the inward radial deflection, E denotes the elastic.modulus of the seal, and D

denotes the flexural rigidity defined as:

D = Et3/[12(l - v2)]

where v is Poissons ratio for the seal.
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I
Inlet Region

High-Pressure Gas

Static
Sealing Land

Coo ling Oil

Fig. A-l Pumping Leningrader Seal
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15.75 mm nominal

41.85 + 0.05 mm

15.6 mm

4> 18.0 mm

<{> 22. 0 mm

20.0 mm

18.0 mm

13.0 mm

3.0 mm

« v »

Fig. A-2 Seal Geometry for Automotive Stirling Engine Application
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g . ,

± Contact Zone Exit Zone

p»- t

T

Fig. A-3 Pressures Acting on Pumping Leningrader Seal Used
in Preliminary Analysis
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Underformed Seal

x = -L

Rod

JO IV

Fig. A-4 Schematic of Geometry Used in the Analysis
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The quantity, p, enotes the pressure in the interface between the shaft and the

seal which will be determined by the Reynolds Equation for axisymmetric

steady-state motion during the forward stroke given by:

dp/dx = 6yU [(h - h*)/h3] . . . (A-2)

where h is the local hydrodynamic film thickness, y is the viscosity of the oil,

U is the average velocity during the forward stroke, and h* is a constant of

integration to be determined from the boundary conditions.

The film thickness h is related to the elastic deflection w by:

h = f(x) - w (A-3)

where f(x) is the radius of the undeformed seal relative to the shaft radius.

For the model depicted in Figure A-4, f (x) is given by:

0 < x < L

(A-4)

< x < 0

The boundary conditions on the elasticity equation come from the requirement

that both ends of the seal are free (forces and moments are zero at each end of

the seal). The boundary conditions on the Reynolds equation comes from the

requirements that the hydrodynamic pressures equal the prescribed gas pressure

at the high-pressure side and the prescribed oil pressure on the low-pressure

side. These may be written as:

'* ", v;.

d2w/dx2 = d3w/dx3 = 0 at x = -L and x = L (A-5)

p = p at x = -L. (A-6)

p = po at x = L (A-7)

Equations (A-l, through (A-7) represent a fifth-order nonlinear system corre-

sponding to the mo'el under consideration.
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A number of approximations that are characteristic of elastohydrodynamic lubri-

cation may be introduced. These are based largely on the fact that the hydrody-

namic film thickness, h, will be small compared with the interference fit, 6.

The elastohydrodynamic behavior may be characterized by three zones:

• an inlet zone where the film develops ,

• a contact zone where the film thickness is nearly constant

• an exit zone where the pressure drops to ambient.

This type of behavior has been seen in many other types of elastohydrodynamic

lubrication, e.g., Hertzian contacts in rolling element bearings, elastomeric

bearings and foil bearings.

A.I Contact Zone Solution

The contact zone is the region extending from x = 0 to the start of the exit zone

which will be localized near x = L. In that region, from Equation (A-4) , f(x) =

-6 and from Equation (A-3), w = - 6 - h, which may be approximated by w = 5 since

|h/6| « 1. With w being constant, the left-hand terra in Equation (A-l) will
)

vanish; hence the relationship

2
p - p - p. = (Et5)/R , contact zone pressure (A-8)

Since p as determined in Equation (A-8) is constant in the contact zone, the

left-hand hand term in Equation (A-2) will vanish and the result will be h = h*,

constant (contact zone film thickness).

Equation (A-8) is essentially the dry contact pressure resulting from the inter-

ference fit. The dry contact profile would also contain a radial shear load at

the sharp corner at x = 0. With a small amount of wear, however, this corner

will be rounded, thus alleviating the radial shear load without radically

affecting the inlet film shape. Equation (A-8) will then be assumed to prevail

throughout the contact zone with the value of h* to be determined by matching

the pressure obtained from the solution to the equations for the inlet zone.
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A.2 Inlet Zone Solution

In order to match the solution in the inlet zone with the contact zone solution,

the pressure and flow must be continuous at x = 0. This results in the

constraint

P = P +P iatx = 0 (A-9)

and ' • • • •

dp/dx = 0 at x = 0

which is equivalent to

h = h* at x = 0 (A-10)

For values of 8 'of the order of a few degrees or more, the pressure will vary

from its limiting values of p + p . at x = 0 to p over a relatively small
o •*• g

portion of the inlet zone as sketched in Figure A-3. If the shape of the inlet

zone is assumed to be unaffected by the pressure distribution in the region, the

film thickness relationship is

h = h* - 9x , x < 0

The stretched variable £ = - 8x/h* may now be introduced into Equation (A-2) to

obtain

dp/d? = -6u.UoC;/[9h*(l -I- O] ' --' (A-ll)

with the constraints - . .

= 0

and p = p at £ = 1̂ 8/h* (A-13)
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The quantity L..6/h* will be a large number for practical cases. Equation (A-13)

may be replaced by its limiting form

p = Pg at $ - » . - • • • • (A-14)

Equation (A-ll) may readily be integrated to yield

6yU0 o
Pi ~ 6h* '<.

Thus the film thickness h* is given by -

h* = 3vUo/(9Pi) = 3uUoR
2/(Et68) (A-15)

which may, in turn, be used to calculate flow.

A.3 Exit Zone Solution

The exit zone solution is the region in the neighborhood of x = L where the pres-

sure must drop from p + p. down to the ambient value of p . This will, again,

occur over a relatively short region. The .film thickness deflection relation-

ship for the exit zone as determined from Equations (A-3) and (A-4) is the same

as that for the contact zone and may be written as

w = -(h + 6)

The above relationship may be substituted for w in Equation (A-l), to obtain

DCdSi/dXj4) + Et(6 + h)/R2 = p - p

where x. = L - x.

Neglecting h compared with 6 in the second term of the above equation and

employing Equation (A-8), one obtains
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) = p - (pg + pi) (A- 16)

One may now differentiate Equation (A-16) with respect to x and substitute

Equation (A-2) for -dp/dx. to obtain the exit zone equation

D(d5h/dx,5) = -6uU (h - h*)/h3 (A-17)1 o

where h* is now determined from Equation (A-15).

The boundary conditions at x. =0 may be obtained from Equations (A-5), (A-7)

and (A-16)

= d3h/dx1
3 = 0 at x1 = 0 (A- 18)

and

j) = pQ - p - pL at x = 0 (A-19)

Without going through the formality of introducing a stretching transformation

as was done for the inlet zone, the exit zone solution must merge with the

contact zone solution as x1 -*• «. Thus, we look for a bounded solution with h -*•

h* as x- •*«»..

The above system of equations may be solved numerically by Runge-Kutta inte-

gration, however; if the variation in h is not excessive (|h = h*| « h*) , then
3

one may replace h appearing in the denominator of the right-hand side of
3

Equation (A-17) with h* to obtain a linear system of equations with constant

coefficients that may readily be solved algebraicly.

The algebraic solution is in the form:

h/h* = 1 + A"^ e"Xl? (A cos \ + A sin \~)

where

= [6uUQ/(h*
3D)]1/5 xl , \1 = cos (2TT/5)

 and X
2
 = sin (2lT/5)-
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The constants A , A« and A_ are readily determined from Equations (A-18) and

(A-19).

A.4 Sample Solution

,1
Film thickness and pressure profiles have been calculated corresponding to the

geometry shown in Figure A-2 with the trapezoidal section modeled by the dotted

line shown in the figure. A fluid viscosity of 55 cp, an elastic modulus of

1.72 GPa, and a Poisson's ratio of 0.41 have been used in the computation.

As shown on the scale in Figure A-5, the inlet zone film thickness profile is

very steep, indicating that only the portion of the inlet zone very near the

contact zone is relevant in affecting the film thickness profile, and that the

major portion of the seal to the left of this region is probably not necessary.

This is again shown in Figure A-6, where the pressure, approximately 1 mm before

the start of the contact zone, is very nearly that of the gas (10 MPa). The

pressure rises very steeply and joins the pressure in the contact zone smoothly,

although it appears to have a sharp corner on the scale in Figure A-6. The pres-

sure profile in the contact zone is constant and equal to the sum of the gas

pressure plus the interference pressure (the pressure that would be associated

with interference fit statically). Near the exit region, the pressure starts to

oscillate, peaks to 18 MPa, and then falls rapidly to 0 (the oil pressure).

Examination of the rapid falloff in pressure at the exit region shows that if

the exit oil pressure were raised to be equal to, or even greater than, the gas

pressure, there would be little change in the pressure profile except in the

immediate vicinity of the exit zone. The film thickness in the contact zone

would be virtually unaffected. This indicates that the ambient pressure differ-

ence has little effect on the film thickness or the flow rate since the flow is

completely dominated by viscous forces. Thus, the seal could be made to provide

a film thickness in either direction by adding a chamfer on the reverse side.

Such chamfers, which were recommended and tested as part of the Automotive Stir-

ling Engine Program, have been shown to be effective in providing lubrication

without excessive leakage in either direction.
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APPENDIX B

COMPUTER PROGRAM "RING"

The computer program RING which has been used throughout the report is listed

herein. It is written in IBM FORTRAN 77 (VS), and uses an IMSL subroutine

ZSCNT. A FORTRAN IV Listing of ZSCNT and its subroutines is also included for

completeness. The FORTRAN listings are preceded with an input description, an

output description, and sample inputs and outputs.
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B.I INPUT DESCRIPTION

All input variables are on a namelist (NAMELIST/INPUTS/). Symbols in the left

column denote the FORTRAN names of the namelist variables. Symbols appearing

on the right correspond to the nomenclature given at the beginning of the

report.

Input Variable Definitions

STRING A character string of up to 60 characters to identify job

IDIM Type of input

0 - Dimensionless (default value)

1 - Dimensional (any consistent set of units)

Dimensional Inputs (used only if IDIM = 1)

NI Frequency (Hz), f

SI Stroke (L), s

CI Clearance (L), c

ELI Bearing length (L), L

EL1I Length of nonbearing portion of ring (L), LI

El Length over which po acts (L), e

RI Shaft radius (L), R

TI Ring thickness (L), t

ClI Initial taper, 6 (defaults to 0)

POI Preload pressure (F/L2), p0

PFI Reservoir pressure (F/L ), pf

RMUI Lubricant viscosity (FT/L2), U

EMOD Ring modulus of elasticity (F/L2), E

POIS Ring Poisson's Ratio, V

Nondimensional Inputs

AL a

BET 8

EPS £
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ELI LI

Cl 6L/C (defaults to 0) .

PO Po

PF Pf

ELOS L/s for starvation calculation (defaults to 0)

NDX A vector of length 3 containing number of increments for

Runge-Kutta integration

NDX(l) = Number of increments i n l - e < 5 < ! (defaults to 40)

NDX(2) = Number of increments i n O < 5 < l - e (defaults to 25)

NDX(3) = Number of increments in -Li < £ < 0 (defaults to 25)

NDP A vector of length (3) containing number of points at which

pressures etc. are saved for printout. NDX(i) should be inte-

gral multiples of NDP(i). (Defaults are NDP(l) = 10, NDP(2) =

25, NDP(3) = 25.)

ICAV Flag calculation of cavitation (backstroke)

0 - No cavitation (negative pressures allowed)

2 - Cavitation included, no negative pressures (default value)

IPR Print Flag

0 - Short output (default value)

1 - Longer output (print pressure profile etc.)

NMAX Maximum iterations for secant method solution (default is 10)

NSIG Number of significant digits in accuracy of solution using

secant method (default is 4)

XF A vector of length (2) containing initial guesses for forward

stroke secant solution

XF(1) = Initial guess for h at £ = 1

XF(2) = Initial guess for dh/dC at
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If XF(1) and XF(2) are both set equal to 0, the program will

attempt to find its own initial guesses. In subsequent runs,

values determined from the previous run are used unless

explicitly specified.

XB

for XF.

A vector length (2) containing initial guesses for h and dh/d5

for reverse stroke secant solution. Same rules apply to XB as
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B.2 OUTPUT DESCRIPTION

The output starts with a listing of the inputs which are defined in D.I.

Dimensional inputs are listed only if IDIM - 1. All outputs are dimension-

less.

The Elastic Solution refers to the deflection of the ring when hydrodynamic

forces are not present. If the ring is unc Lamp led, h(l) > 0, one line of

output is given for the Elastic Solution. If the ring is clamped, h(l) < 0,

two lines of output are given. The first line refers to the ring deflection

relative to an imaginary shaft that would occur if the shaft were not present

(the negative value of h noting the interference). The second line of output

includes the effect of the interference force exerted by the shaft on the ring

at 5 = 1 when h(l) = 0.

Thw Pumping Flow Solution and Back Flow Solution refer to forward and reverse

strokes respectively. They will contain one line of output each at IPR = 0 or

multiple outputs if IPR = 1.

The following table relates the output caption with the symbols for variables

as defined in the nomenclature for the elastic, pumping flow and back flow

solution.
' ' !''•

Output Caption Algebraic Symbol

x 5
H h

H1

H"

H1" d3h/d$3

PRES p

FORCE F

The final output listed under flows relates to dimensionless flow and cavita

tion output and are given as follows:
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Output Caption Algebraic Symbol

PUMPING Kp (Forward Stroke)

BACK KR (Reverse Stroke)

XCAV 5C

NET FLOW Kp - KR

STARVED NET FLOW Kp eff - KR
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B.3 SAMPLE INPUT AND OUTPUT

The sample input and output contained herein correspond to three solutions for

a babbitt pumping ring with loading pressures, po, of 3.45, 5.17 and 6.89 MPa

(500, 750 and 1000 psi). A full printout (IPR = 1) was requested at po = 3.45

MPa (500 psi). It should be noted that the ring is predicted to be clamped

during the backstroke at p0 - 6.89 MPa (1000 psi).
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FILE: RING INPUT Al MTI FRI 06/17/83 13:31:29

&INPUTS
STRING='BABBIT RING A-l-A-1 P0=500 COMPLETE OUTPUT (IPR=1)'
IDIM=1, NI =35., SI = 2., C1I =0.,
CI =.5E-3, RMUI =.885E-5, ELI =.267, - POI =500.,
PFI =0., El =.115, EL1I =.238, RI=.375,
TI =.047, EMOD =7.5E6, " POIS =.36,
XF=0.,0., XB=0.,0., .IPR=1,
&END
&INPUTS PO1=750.,STRING ='BABBIT RING A-l-A-l" P0=750*,IPR=0,&END
&INPUTS PO1=1000..STRING ='BABBIT RING A-l-A-1 P0=1000',&END
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* PUMPING RING ANALYSIS PROGRAM *

INPUTS

STRING = BABBIT RING A-l-A-1

DIMENSIONAL INPUTS

P0=500 COMPLETE OUTPUT (IPR=1)

ELI
El
C1I
SI
RMUI

POI
EMOD

0.267000000+00; EL1I
0.115000000+00; CI
0.000000000+00; TI
0.200000000+01; RI
0.88500000D-05; NI

= 0.298000000+00;
= 0.50000000D-03;
= 0.47000000D-01;
= 0.375000000+00;
= 0.35000000D+02;

0.500000000+03; PFI = 0.000000000+00;
0.750000000+07; POIS = 0.360000000+00;

'(it'fc&ic'itic'tf'tcitit'ic'ic'&ic'ic'ft'fc'&'tdf'fr'i

IDIM
AL
EPS
ELI
STARV

NDX
NDP

i;
0.660856540-02; BET
0.430711610+00; PO
0.111610490+01; PF
0.320419660+00; Cl

= 0.715354540+01;
= 0.629761630-01;
= 0.000000000+00;
= 0.000000000+00;

40,
10,

25,
25,

25;
25;

NMAX = 10; NSIG =
IPR 1; ICAV =
XF = 0.000000+00
XB = 0.000000+00

4;
2;
0.000000+00
0.000000+00

'f̂ dt'rf'fe'tt'rdC'̂ f'fC'fCfrfC'if'iff'rtif'frtf'if

*-»*-̂ -iHr*-iHr*«**̂

OUTPUTS
•»•&••* ft ft ft ft ft ft ft ft'ft-fr ft fr » A * ft ft ft ****

* ELASTIC SOLUTION *

X H H1

1.0000 0.48845 -0.67281
H"

0.00000
H'"

0.00000
PRES

0.00000
FORCE
0.00000

* PUMPING FLOW SOLUTION *

1.0000
0.9914
0.9742
0.9569
0.9397
.9225
.9052

0.8880
0.8708
0.8536
0.8363
0.8191
0.8019

0,
0,

H

0.81814
0.82413
0.83611
0.84809
0.86006
0.87201
0.88393
0.89582
0.90764
0.91940
0.93108
0.94265
0.95411

Hf

-0.69559
-0.69558
-0.69548
-0.69510
-0.69429
-0.69294
-0.69093
-0.68819
-0.68464
-0.68022
-0.67488
-0.66859
-0.66132

-0

H"

0.00000
0.00147
0.01254
0.03304
0.06149
0.09655
0.13710

18216
0.23092
0.28270
0.33695
0.39324
0.45126

H"1

0.00000
0.33645
0.93187
1.43418
1.85487
20463
49334
73019
92369
08173

3.21161
3.32008
3,41339

PRES

0.00000
0.00375
0.01074
0.01709
0.02285
0.02805
0.03274
0.03695
0.04071
0.04405
0.04701
0.04960
0.05186

124



0.7846
0.7674
0.7502
0.7330
0.71.57
0.6985
0.6813
0.6640
0.6468
0.6296
0.6124
0.5951
0.5779
0.5693
0.5579
0.5351
0.5124
0.4896
0.4668
0.4440
0.4213
0.3985
0.3757
0.3530
0.3302
0.3074
0.2846
0.2619
0.2391
0.2163
0.1936
0.1708
0.1480
0.1252
0.1025
0.0797
0.0569
0.0342
0.0114
-0.0000

X

1.0000
0.9914
0.9742
0.9569
0.9397
0.9225
0.9052
0.8880
0.8708
0.8536
0.8363

0.96543
0.97660
0.98761
0.99842
1.00903
1.01941
1.02954
1.03941
1.04899
1.05825
1.06719
1.07577
1.08396
1.08791
1.09297
1.10249
1.11120
1.11904
1.12600
1.13206
1.13721
1.14146
1.14481
1.14728
1.14891
1.14972
1.14975
1.14905
1.14766
1.14564
1.14303
1.13990
1.13630
1.13228
1.12791
1.12324
1.11833
1.11322
1.10798
1.10532

H

0.48845
0.49424
0.50584
0.51743
0.52902
0.54062
0.55223
0.56384
0.57546
0.58710
0.59875

-0.65304
-0.64371
-0.63333
-0.62186
-0.60927
-0.59555
-0.58066
-0.56456
-0.54720
-0.52854
-0.50853
-0.48709
-0.46415
-0.45209
-0.43555
-0.40062
-0.36370
-0.32532
-0.28598
-0.24614
-0.20622
-0.16663
-0.12772
-0.08982
-0.05323
-0.01821
0.01500
0.04623
0.07529
0.10206
0.12643
0.14833
0.16772
0.18459
0.19894
0.21083
0.22034
0.22755
0.23262
0.23439

* BACK FLOW

H1

-0.67281
-0.67281
-0.67284
-0.67292
-0.67309
-0.67338
-0.67378
-0.67431
-0.67495
-0.67570
-0.67652

-0.51080
-0.57175
-0.63406
-0.69781
-0.76311
-0.83016
-0.89921
-0.97058
-1.04464
-1.12178
-1.20247
-1.28718
-1.37644
-1.42295
-1.48207
-1.58150
-1.65702
-1.71003
-1.74199
-1.75435
-1.74861
-1.72623
-1.68871
-1.63751
-1.57408
-1.49988
-1.41633
-1.32484
-1.22678
-1.12353
-1.01643
-0.90681
-0.79599
-0.68524
-0.57586
-0.46912
-0.36627
-0.26857
-0.17726
-0.13439

SOLUTION *

H"

0.00000
0.00033
0.00279
0.00721
0.01307
0.01985
0.02703
0.03409
0.04050
0.04575
0.04931

3.49729
3.57709
3.65768
3.74354
3.83880
3.94719
4.07216
4.21679
4.38389
4.57598
4.79530
5.04382
5.32328
5.47508
4.91228
3.83132
2.81167
1.85497
0.96235
0.13448
-0.62831
-1.32603
-1.95894
-2.52748
-3.03230
-3.47412
-3.85377
-4.17212
-4.43005
-4.62844
-4.76813
-4.84992
-4.87453
-4.84260
-4.75471
-4.61129
-4.41272
-4.15924
-3.85102
-3.67640

H"1

0.00000
-0.07580
-0.20473
-0.30344
-0.37193
-0.41019
-0.41820
-0.39595
-0.34341
-0.26055
-0.14735

0.05380
0.05545
0.05682
0.05793
0.05881
0.05946
0.05990
0.06015
0.06021
0.06011
0.05984
0.05943
0.05887
0.05855
0.05807
0.05695
0.05564
0.05416
0.05252
0.05073
0.04881
0.04676
0.04461
0.04236
0.04001
0.03759
0.03509
0.03252
0.02989
0.02721
0.02448
0.02171
0.01890
0.01606
0.01319
0.01029
0.00737
0.00443
0.00148
0.00000

PRES

0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
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0.8191
0.8019
0.7846
0.7674
0.7502
0.7330
0.7157
0.6985
0.6813
0.6640
0.6468
0.6296
0.6124
0.5951
0.5779
0.5693
0.5579
0.5351
0.5124
0.4896
0.4668
0.4440
0.4213
0.3985
0.3757
0.3530
0.3302
0.3074
0.2846
0.2619
0.2391
0.2163
0.1936
0.1708
0.1480
0.1252
0.1025
0.0797
0.0569
0.0342
0.0114
-0.0000

0.61041
0.62209
0.63378
0.64548
0.65720
0.66892
0.68065
0.69237
0.70407
0.71575
0.72740
0.73899
0.75051
0.76195
0.77327
0.77889
0.78625
0.80075
0.81490
0.82865
0.84196
0.85481
0.86716
0.87899
0.89028
0.90103
0.91123
0.92087
0.92995
0.93849
0.94649
0.95395
0.96089
0.96732
0.97326
0.97873
0.98374
0.98831
0.99246
0.99621
0.99958
1.00113

-0.67738
-0.67825
-0.67906
-0.67976
-0.68028
-0.68054
-0.68045
-0.67992
-0.67883
-0.67708
-0.67454
-0.67107
-0.66654
-0.66079
-0.65366
-0.64953
-0.64346
-0.62936
-0.61297
-0.59464
-0.57467
-0.55337
-0.53101
-0.50783
-0.48406
-0.45991
-0.43556
-0.41118
-0.38693
-0.36293
-0.33930
-0.31614
-0.29355
-0.27160
-0.25036
-0.22987
-0.21018
-0.19132
-0.17332
-0.15620
-0.13996
-0.13218

0.05065
0.04926
0.04461
0.03617
0.02343
0.00584
-0.01711
-0.04595
-0.08120
-0.12340
-0.17307
-0. 23072
-0.29689
-0.37208
-0.45682
-0.50292
-0.56341
-0.67194

' -0.76483
-0.84320
-0.90812
-0.96063
-1.00175
-1.03244
-1.05364
-1.06622
-1.07103
-1.06887
-1.06050
-1.04663
-1.02793
-1.00503
-0.97851
-0.94892
-0.91676
-0.88250
-0.84657
-0.80936
-0.77123
-0.73251
-0.69348
-0.67394

-0.00376
0.17025
0.37472
0.60970
0.87520
1.17126
1.49788
1.85507
2.24279
2.66099
3.10961
3.58851
4.09756
4.63653
5.20518
5.50054
5.12594
4.41448
3.75238
3.13837
2.57100
2.04872
1.56985
1.13265
0.73528
0.37590
0.05260
-0.23653
-0.49338
-0.71988
-0.91790
-1.08929
-1.23587
-1.35941
-1.46164
-1.54421
-1.60875
-1.65679
-1.68981
-1.70922
-1.71637
-1.71575

0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000

* FLOWS *

PUMPING
0.106219D+01

BACK XCAV NET FLOW STARVED NET FLOW
0.488604D+00 0.999770D+00 0.573582D+00 0.296125D+00
************̂
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* PUMPING RING ANALYSIS PROGRAM *

INPUTS
********** ft'A-A ft ft-̂ *ftft**ft»*************************̂

STRING = BABBIT RING A-l-A-1 P0=750
** ft ft A **** * ft******* *ft ** ft1* ft it U ft ft-*******************************************

DIMENSIONAL INPUTS

ELI = 0.267000000+00; EL1I
El = 0.115000000+00; CI
C1I = 0.000000000+00; TI
SI = 0.200000000+01; RI
RMUI = 0.885000000-05; NI

= 0.298000000+00;
= 0.500000000-03;
= 0.470000000-01;
= 0.375000000+00;
= 0.350000000+02;

POI = 0.750000000+03; PFI = 0.000000000+00;
EMOD = 0.750000000+07; POIS = 0. 360000000+00;
******* ft A fl"A"A-A ft**** ftA'AAft'ftftftftftAftftaAAftfe ft "*a** ft * A'************* ft ftft
IDIM =1;

= 0.71535454D+01;
= 0.94464244D-01;
= O.OOOOOOOOD+00;
= O.OOOOOOOOD+00;

AL
EPS
ELI

= 0.66085654D-02; BET
= 0.43071161D+00; PO
= 0.11161049D+01; PF

STARV = 0.32041966D+00; Cl

NDX
NDP =

NMAX =
IPR =
XF
XB

40,
10,

25, 25;
25, 25;

10; NSIG =
0; ICAV =
0.81814D+00
0.48845D+00

4;
2;
-0.695590+00
-0.672810+00

******** A ft A'A *** A ft Aft ft ****************************************************

OUTPUTS
******************ftA*A*ft************************************************

H H1

* ELASTIC SOLUTION *

H1 PRES
1.0000 0.23267 -1.00922 0.00000 0.00000 0.00000

* PUMPING FLOW SOLUTION *

X H H' H" H'"

1.0000 0.71873 -0.93560 0.00000 0.00000

FORCE
0.00000

PRES

0.00000

* BACK FLOW SOLUTION *

X

1.0000

H

0.23267

H1

-1.00922

H"

0.00000

H'"

0.00000

PRES

0.00000

PUMPING
0.100210D+01

BACK
0.232747D+00

* FLOWS *

XCAV
0.999927D+00

NET FLOW STARVED NET FLOW
0.769350D+00 0. 3299150+00
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* PUMPING RING ANALYSIS PROGRAM *

DIMENSIONAL INPUTS

INPUTS
&&*$r&&&&&&&*!rit*it̂ tt'rC'£?'{ff'ti'rff't?'tc'tt'f

STRING = BABBIT RING A-l-A-1 P0=1000
-**-ft*̂ ^

= 0.29800000D+00;
= 0.50000000D-03;
= 0.47000000D-01;
= 0.37500000D+00;
= 0.35000000D+02?

ELI
El
C1I
SI
RMUI

0.26700000D+00; EL1I
0.11500000D+00; CI
O.OOOOOOOOD+00; TI
0.20000000D+01; RI
0.88500000D-05; NI

POI = 0.10000000D+04; PFI = O.OOOOOOOOD+00;
EMOD = 0.75000000D+07; POIS = 0.36000000D+00;
ft^fraaaftafraa^ttfrfrftaftftttfrTt-frfrVH^^******^******^

IDIM - 1;
AL

EPS
ELI
STARV

NDX
NDP

NMAX
I PR
XF
XB
JU •*••*• «fa«IU.J

= 0.66085654D-02; BET
= 0.43071161D+00; PO
= 0.11161049D+01; PF
= 0.32041966D+00; Cl

= 40, 25, 25;
10, 25, 25;

10; NSIG = 4;
= 0; ICAV = 2;

0.71873D+00 -0.
0.23267D+00 -0.

= 0.71535454D+01;
= 0.12595233D+00;
= O.OOOOOOOOD+00;
= O.OOOOOOOOD+00;

93560D+00
10092D+01
•JfJ~*t+~t~J~J~*~A.J~̂ .̂ ~f~̂ ~J~J-J.̂ i~J.J*J.J~J*J~J~J~J.'J~̂ '~'J+Jft

*********************

OUTPUTS
wxwwKwwwwwxwwwwww«w«ww«wwx«wwTrwwwwwwwwwwwwwwwwwwwwwwwwwTrw'KTr ixp-sr isfw-K'K>r>f'jr iic-x-5r-xp

* ELASTIC SOLUTION *

X
1.0000
1.0000

H
-0.02310

0.00000

H'
-1.34562
-1.28833

0
0

H"
.00000
.00000

H"'
0.00000

-0.70479
0
0

PRES
.00000
.00000

FORCE
0.00000
0.00065

* PUMPING FLOW SOLUTION *

X < H H' H" H"' PRES

1.0000 0.63082 -1.13187 0.00000 0.00000 0.00000

* BACK FLOW SOLUTION *

X
1.0000

H
0.00000

H'
-1.28833

H"
0.00000

H"'
-0.70479

PRES
0.00000

FORCE
0.00065

PUMPING
0.929129D+00

* FLOWS *

BACK XCAV NET FLOW STARVED NET FLOW
O.OOOOOOD+00 0.100000D+01 0.929129D+00 0.333707D+00
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B.4 FORTRAN LISTING

FILE: RING FORTRAN L4 MTI MON 01/20/86 14:39:26 PAGE 1 OF 38

c§ vs

CNOTE:
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C

PROGRAM RING

XLAM=.739*ELOS**-.585 IS NOW BUILT INTO PROGRAM

FUNCTION - PUMPING RING ANALYSIS PROGRAM

RESTRICTIONS - STEADY-STATE ANALYSIS ONLY

REMARKS - VS FORTRAN (FORTRAN 77)
IMPLICIT DOUBLE PRECISION REAL*8

EXTERNAL REFERENCES -
FORTRAN ROUTINES

DATAN
IMSL ROUTINES

ZSCNT ; SOLVES THE SYSTEM OF NON-LINEAR
EQUATIONS ; LISTING PROVIDED HEREIN BY
PERMISSION OF IMSL.

USER ROUTINES
AIN ; COMPUTE INVERSE OF 2X2 MATRIX
AMU ; MULTIPLY 2 2X2 MATRICES
CALCD ; CALCULATE ELASTIC INFLUENCE

COEFFICIENTS C,D
CHECK ; FOR MULTIPLE RUNS CHECK INPUTS

FOR RECALCULATION OF C,D
CONST ; CALCULATE SLIDER BEARING PRESSURE

CONSTANTS
CONST2 ; SAME AS ABOVE
DFN1 ; DERIVATIVE FUNCTION USED BY RUK
DFN2 ; " " " " "
DFN3 ; " " " " "
ELAS ; DETERMINE ELASTIC SOLUTION

(NO HYDRODYNAMICS)

RIN00010
RIN00020
-RIN00030
RIN00040
RINOOOSO
RIN00060
RIN00070
RINOOOSO
RIN00090
RIN00100
RIN00110
RIN00120
RIN00130
RIN00140
RIN00150
RIN00160
RIN00170
RIN00180

. RIN00190
RIN00200
RIN00210
RIN00220
RIN00230
RIN00240
RIN00250
RIN00260
RIN00270
RIN00280
RIN00290
RIN00300
RIN00310
RIN00320
RIN00330
RIN00340
RIN00350

ERRMSG ; PRINT ERROR MESSAGE IF *ZSCNT* NOTRIN00360
CONVERGED

EVAL ; DEFINE NON-LINEAR SYSTEM IN H AND H
TO BE SOLVED BY *ZSCNT*

P ? PRESSURE FUNCTION
PRT ; CONVERT FROM W TO H AND PRINT
PRTOUT ; PRINT OUT RESULTS
RUK ; RUNGE-KUTTA

INPUT/OUTPUT:
UNIT DESCRIPTION
4 TERMINAL I/O
5 INPUT FILE IN NAMELIST FORMAT
6 OUTPUT FILE

INPUT VARIABLE DEFINITIONS
* NOTE : (D) INDICATES VARIABLE HAS A DEFAULT VALUE

NAME DESCRIPTION
NAMELIST /INPUTS/

RIN00370
'RIN00380
RIN00390
RIN00400
RIN00410
RIN00420
RIN00430
RIN00440
RIN00450
RIN00460
RIN00470
RIN00480
RIN00490
RIN00500
RIN00510
RINOOS20
RIN00530
RIN00540
RIN00550
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c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
G
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

c

STRING
IDIM (D)

CHARACTER STRING TO IDENTIFY JOB (MAX. 60 CHARS.)
TYPE OF INPUT
0 - DIMENSIONLESS
1 - DIMENSIONAL (ANY CONSISTENT SET OF UNITS)

DIMENSIONAL INPUTS (NOTE: UO=2.*NI*SI)

NI
SI
CI

. . ELI
EL1I
El
RI
TI
C1I (D)
POI
PFI
RMUI
EMOO
POIS

FREQUENCY (HZ)
STROKE (L)
CLEARANCE (L)
BEARING LENGTH (L)
LENGTH OF NON-BEARING PORTION OF RING (L)
LENGTH FROM END OF BEARING PRELOADED WITH POI (L)
RING RADIUS (L)
RING THICKNESS (L) .
BEARING SLOPE
PRELOAD PRESSURE (F/L**2)
RESERVOIR PRESSURE (F/L**2)
LUBRICANT VISCOSITY (FT/L**2)
RING MODULUS OF ELASTICITY (F/L**2)
RING POISSON'S RATIO

NON-DIMENSIONAL INPUTS

AL
BET
EPS
ELI
ELOS (D)
XLAM (D)

- Cl (D)
PO
PF

NDX(3) (D)
NDP(3) (D)

ICAV (D)

IPR (D)

NMAX (D)
NSIG (D)

XF(2)
XB(2)

(TI*RI)**2/(12*ELI**4*(1.-POIS)**2))
(T*RMUI*UO*RI**2*ELI)/(CI**3*TI*EMOD)
LENGTH FROM END OF PRELOAD PO (El /ELI)
LENGTH OF NON-BEARING PORTION OF RING (EL1I/ELI)

RIN00560
RIN00570
RIN00580
RIN00590
RIN00600
RIN00610
RIN00620
RIN00630
RIN00640
RIN00650
RIN00660
RIN00670
RIN00680
RIN00690
RIN00700
RIN00710
RIN00720
RIN00730
RIN00740
RIN00750
RIN00760
RIN00770
RIN00780
RIN00790
RIN00800
RIN00810
RIN00820
RIN00830
RIN00840

L/S LAND TO STROKE RATIO FOR STARVATION CALCULATIONRIN00850
MULTIPLIES ELOS FOR INCREASED STARVATION
SLOPE OF BEARING
PRELOAD PRESSURE (CI**2/(6*RMUI*UO*ELI))*POI
RESERVOIR PRESSURE (CI**2/(6*RMUI*UO*ELI))*PFI

DELTA X INCREMENTS FOR RUK
ti ii ii it it

FLAG FOR CALCULATION OF CAVITATION (BACK STROKE)
0 - NO CAVITATION (NEC. PRESSURES ALLOWED)
1 - CAVITATION (NO NEC. PRESSURES)
2 - FIND ITS OWN SOLUTION
PRINT FLAG
0 - SHORT OUTPUT
1 - LONGER OUTPUT (PRINT PRESSURE PROFILE)

MAX. ITERATIONS FOR *ZSCNT*
NO. OF SIGNIFICANT DIGITS IN ACCURACY
OF SOLUTION USING *ZSCNT*
INITIAL GUESS FOR H AND H' FOR FORWARD STROKE
INITIAL GUESS FOR H AND H1 FOR BACKWARD STROKE

IMPLICIT REAL*8 (A-H,0-Z)

RIN00860
RIN00870
RIN00880
RIN00890
RIN00900
RIN00910
RIN00920
RIN00930
RIN00940
RIN00950
RIN00960
RIN00970
RIN00980
RIN00990
RIN01000
RIN01010
RIN01020
RIN01030
RIN01040
RIN01050
RIN01060
RIN01070

RIN01090
RIN01100
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C
C
C

C
C
C

C
C
C

2001
C

COMMON/BDIM /CI,ELI,CON1,IDIM
COMMON/BPAR /AL,BET,PO,EPS,PF
COMMON/BCD /XLOC(IOO),C(100),D(100),NDX(3),NDP(3),DX(3),DP(3)
COMMON/BCOEFF/RK,RC,R1,R2,XCAV,ICAV
COMMON/BINT /IELAS,IBACK,IPR
COMMON/BLAST /X1LAST,X2LAST,F1LAST,F2LAST
COMMON/BELAS /FORCE,HELAS,H1ELAS,H2ELAS,H3ELAS,W1(4),W2(4)
COMMON/BPROF /Cl
COMMON/BFLAG /IFLAG,IPLOAD

DIMENSION PAR(1),XX(2),XF(2),XB(2),WK(68)
REAL*8 NFLOW,NI
CHARACTER*60 STRING
LOGICAL RECALC
EXTERNAL EVAL,EVAL3,EVAL4 •
NAMELIST /INPUTS/

DIMENSIONAL INPUTS '

•«• STRING, NI, SI, C1I,CI,RMUI, ELI, POI,PFI, El, EL1I,RI,TI,EMOD,POIS

NON-DIMENSIONAL INPUTS

•••, BET, PO, EPS, AL, ELI, ELOS ,XLAM,
+NDX,NDP,PF,NMAX,IPR,NSIG,ICAV,XF,XB,C1,IDIM

PI=4.*DATAN(1.DO)

DEFAULTS

IDIM=0 • - . . ' . - . .
ELOS=0.
XLAM=1.
C1I=0.
Cl=0.
NDX(1)=40
NDX(2)=25
NDX(3)=25
NDP(1)=10
NDP(2)=25
NDP(3)=25
NMAX=10
NSIG=4
ICAV=2
IPR=0

IRUN=0
READ(05,INPUTS,END=2000)

IRUN=IRUN+1
WRITE(6,'("1* PUMPING RING ANALYSIS PROGRAM *",/)')
WRITE(6,'(" INPUTS")')
WRITE(6,'(1X,72("*"))')
WRITE(6,'(" STRING = ",A60)') STRING
WRITE(6,'(1X,72("*"))1)

131

RING 1110
RIN01120
RIN01130
RIN01140
RIN01150
RIN01160
RIN01170
RIN01180
RIN01190
RIN01200
RIN01210
RIN01220
RIN01230
RIN01240
RIN01250
RIN01260
RIN01270
RIN01280
RIN01290
RIN01300
RIN01310
RIN01320
RIN01330
RING1340
RIN01350
RIN01360
RIN01370
RING1380
RIN01390
RIN01400
RIN01410
RIN01420
RIN01430
RIN01440
RIN01450
RIN01460
RIN01470
RING1480
RIN01490
RIN01SOO
RIN01510
RIN01520
RIN01530
RIN01540
RIN01550
RIN01560
RIN01570
RIN01580
RIN01590
RING1600
RIN01610
RIN01620
RIN01630
RIN01640
RIN01650
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IF(IDIM.NE.O)THEN
WRITE(6,'(" DIMENSIONAL INPUTS",/)')
WRITE(6,'(" ELI =",E15.8,"; EL1I

+ELI,EL1I
WRITE(6,'(" El ="
WRITE(6,'(" C1I ="

SI

= ",E15.8,"• ' '

,E15.8,

CI
TI

RI
NI

= ",E15.8,"
= ",E15.8,"

_l 1 rfie a I I
— ,Cilj • 0 ,
_l 1 CM e a II
— ,£•! J .0 ,

= ",E15.8,"; PFI = ",E15.8,"

3,"; POIS = ",E15.8,' '

WRITE(6,'(''
WRITE(6,'(" RMUI

+RMUI.NI
WRITE(6,'(" ")'
WRITE(6,'(" POI

+POI,PFI
WRITE(6,'(" EMOD

+EMOD,POIS
WRITE(6,'(1X,72("*"))')
UO=2.*NI*SI
CON1=6.*RMUI*UO*ELI/CI**2
ELOS=ELI/SI
AL=(TI*(RI+TI*.5))**2/12./ELI**4/(1 .-POIS**2)
BET=CON1*(RI+TI*.5)**2/CI/TI/EMOD
EPS=EI/ELI
EL1=EL1I/ELI
C1=C1I/CI*ELI
PO=POI/CON1
PF=PFI/CON1

END IF
IF(ELOS.GT.1.D-5)XLAM=.739/ELOS**.585

RIN01660
RIN01670

, / , RIN01680
RIN01690

;")')EI,CIRIN01700
';")') RIN01710

RIN01720
)')SI,RIRIN01730
)') RIN01740

RIN01750
RIN01760

)') RIN01770
RIN01780

)') RIN01790
RIN01800
RIN01810
RIN01820
RIN01830
RIN01840
RIN01850
RIN01860
RIN01870
RIN01880
RIN01890
RIN01900
RIN01910
RIN01920
RIN01930

, i i

. i i>

t« A n*.~\ T *^ «_iv^ fc* f\ <Û u I

WRITE(6,'(" IDIM =",12,"; ')')IDIM
WRITE(6,'(" AL =",E15.8, ' ; BET =",E15.8,'
WRITE(6,'(" EPS =",E15.8, '; PO =",E15.8,'
WRITE(6,'(" ELI =",E15.8, '; PF =",E15.8,'
WRITE(6,'(" STARV =",E15.8, '; Cl =",E15.8,'
WRITE(6,'(" ")')
WRITE(6,'(" NDX =" ,15, " , " ,15, " , " ,15, " ; " )
WRITE(6,'(" NDP =",I5,",",I5,",",I5,";")
WRITE(6,'(" ")')
WRITE(6,'(" NMAX =",I5,";NSIG =",15,";")'
WRITE(6,'(" IPR =",15,"; ICAV =",15,";")'
WRITE(6,'(" XF =",2E15.5)')XF(1),XF(2)
WRITE(6,'(" XB =" ,2E15.5)')XB(1),XB(2)
WRITE(6,'(1X,72( "*"),/)')
WRITE(6,'C' OUTPUTS'1)')
WRITE(6,'(1X,72("*"))')

IFLAG=0
IF(0. . LT.EPS.AND.EPS. LT. 1. )THEN

IFLAG=1
DX( 1 )=EL1/FLOAT(NDX( 1 ) )
DP( 1 )=EL1/FLOAT(NDP( 1 ) )
DX(2)=(1.-EPS)/FLOAT(NDX(2))
DP(2)=(1.-EPS)/FLOAT(NDP(2))
DX(3)=EPS/FLOAT(NDX(3))
DP(3)=EPS/FLOAT(NDP(3))

1O^

';")')AL,BET
';")')EPS,PO
';' ')')EL1,PF
';")')STARV,C1

')NDX
')NDP

)NMAX,NSIG
) IPR, ICAV

LX J. 1« U X J T V*

RIN01950
RIN01960
RIN01970
RIN01980
RIN01990
RIN02000
RIN02010
RIN02020
RIN02030
RIN02040
RIN02050
RIN02060
RIN02070
RIN02080
RIN02090
RIN02100
RIN02110
RIN02120
RIN02130
RIN02140
RIN02150
RIN02160
RIN02170
RIN02180
RIN0219Q
RIN02200
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C
C
C

C
C
C

C
C
C

ELSE IF(EPS.EQ.1.)THEN
IFLAG=2
DX(1)=EL1/FLOAT(NDX(1))
DP(1)<=EL1/FLOAT(NDP(D)
DX(2)=1./FLOAT(NDX(2))
DP(2)=1./FLOAT(NDP(2))
DX(3)=0.
DP(3)=0.

ELSE IF(1..LT.EPS.AND.EPS.LT.EL1+1)THEN
IFLAG=3
DX(1)=(ELH-1.-EPS)/FLOAT(NDX(1))
DP(1)=(EL1+1.-EPS)/FLOAT(NDP(1))
DX(2)=(EPS-1.)/FLOAT(NDX(2))
DP(2)=(EPS-1.)/FLOAT(NDP(2))
DX(3)=1./FLOAT(NDX(3))
DP(3)=1./FLOAT(NDP(3))

ELSE IF(EPS.EQ.1.+EL1)THEN
IFLAG=4
DX(1)=EL1/FLOAT(NDX(D)
DP(1)=EL1/FLOAT(NDP(D)
DX(2)=1./FLOAT(NDX(2))
DP(2)=1./FLOAT(NDP(2))
DX(3)=0.
DP(3)=0.

END IF
IF(IFLAG.EQ.O)STOP

CALL CHECK(AL,BET,EPS,EL1,NDX,NDP,IRUN,RECALC)
IF(RECALC)THEN ,

IF(IFLAG.LE.2)THEN
CALL CALCD

ELSE IF(IFLAG.EQ.3)THEN
CALL CALCD3

ELSE IF(IFLAG.EQ.4)THEN
CALL CALCD4

END IF
ELSE

WRITE(6,'(20X," * NOTE: C,D NOT RECALCULATED ! *")')
END IF

ELASTIC ANALYSIS

WRITE(6,'(" ",72( "-"))')
WRITE(6,'(26X," * ELASTIC SOLUTION *",/)')
CALL ELAS

STEADY STATE ANALYSIS

IELAS=0

FORWARD FLOW SOLUTION

IBACK=0
WRITE(6,'(" ",72<"-"))')
WRITE(6,'(23X," * PUMPING FLOW SOLUTION *",/)')

RIN02210
RIN02220
RIN02230
RIN02240
RIN02250
RIN02260
RIN02270
RIN02280
RIN02290
RIN02300
RIN02310
RIN02320
RIN02330
RIN02340
RIN02350
RIN02360
RIN02370
RIN02380
RIN02390
RIN02400
RIN02410
RIN02420
RIN02430
RIN02440
RIN02450
RIN02460
RIN02470
RIN02480
RIN02490
RIN02500
RIN02510
RIN02520
RIN02530
RIN02540
RIN02550
RIN02560
RIN02570
RIN02580
RIN02590
RIN02600
RIN02610
RIN02620
RIN02630
RIN02640
RIN02650
RIN02660
RIN02670
RIN02680
RIN02690
RIN02700
RIN02710
RIN02720
RIN02730
RIN02740
RIN02750

133
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C
C
C

IF(XF(1)**2+XF(2)**2.LT.1.D-5)THEN
XX(1)=1.-HELAS+.01
XX(2)=C1-H1ELAS+.01

ELSE
. XX(1)=1.-XF(1)
XX(2)=C1-XF(2)

END IF
IF(IFLAG.LE.2)THEN . . .

CALL ZSCNT(EVAL,NSIG,2\NMAX,PAR,XX,FNORM,WK,IER)
ELSE IF(IFLAG.EQ.3)THEN

CALL ZSCNT(EVAL3,NSIG,2,NMAX,PAR,XX,FNORM,WK,IER)
ELSE IF(IFLAG.EQ.4)THEN

CALL ZSCNT(EVAL4,NSIG,2,NMAX,PAR,XX,FNORM,WK,IER)
END IF
IF(IER.NE.O)CALL ERRMSG
CALL PRTOUT(XX)

XF(2)=C1-XX(2)
FFLOW=RK

BACK FLOW SOLUTION,

IBACK=1
WRITE(6,'(" ",72("-"))')
WRITE(6,'(25X," * BACK FLOW SOLUTION *",/)')
IF(XB(1)**2+XB(2)**2.LT.1.D-5)THEN

XX(1)=1.-HELAS
XX(2)=C1-H1ELAS

ELSE
XX(1)=1.-XB(1)
XX(2)=C1-XB(2)

END IF .. ;
BFLOW=0.
IF(FORCE.LT.1.D-8)THEN

IF(IFLAG.LE.2)THEN .
CALL ZSCNT(EVAL,NSIG,2,NMAX,PAR,XX,FNORM,WK,IER)

. ELSE IF(IFLAG.EQ.3)THEN
CALL ZSCNT(EVAL3,NSIG,2,NMAX,PAR,XX,FNORM,WK,IER)

ELSE IF(IFLAG.EQ.4)THEN
CALL ZSCNT(EVAL4,NSIG,2,NMAX,PAR,XX,FNORM,WK,IER)

END IF
IF(IER.NE.O)CALL ERRMSG
BFLOW=RK

END IF
CALL PRTOUT(XX)
XB(1)=1.-XX(1)
XB(2)=C1-XX(2)

WRITE<6,'(" ",
3000 CONTINUE

NFLOW=FFLOW-BFLOW
WRITE(6,'(32X,"* FLOWS *",/)')
WRITE(6,'(5X, " PUMPING" ,10X, " BACK" ,1IX, "XCAV1',9X
+ , "NET FLOW", 3X," STARVED NET FLOW")1)
SFLOW=NFLOW

.RIN02760
RIN02770
RIN02780
RIN02790
RIN02800
RIN02810
RIN02820
RIN02830
RIN02840
RIN02850
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RIN02870
RIN02880
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2000

c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

HSTV=XB(1)
DHSTV=XB(2)

IF(IBACK.EQ. LAND. FORCE. GT.1.D-8)THEN
XCAV=1. .
HSTV=HELAS
DHSTV=H1ELAS
END IF

IF(XCAV.GT.l.D-6. AND. XCAV.LT.l. 000001 )SFLOW=FFLOW*(1.+
+2 .*ELOS*XLAM*XCAV**2*DHSTV/ ( 2 .*HSTV-DHSTV*( 2 .-XCAV) ) )-BFLOW
WRITE(6, ' (5E15.6) ' )FFLOW,BFLOW
+ ,XCAV,NFLOW,SFLOW
WRITE(6,'(1X,72("*"),/)')
GOTO 2001
CALL EXIT
END

SUBROUTINE AIN(A,B)

FUNCTION - CALCULATE INVERSE OF 2X2 MATRIX

RESTRICTIONS

REMARKS

EXTERNAL REFERENCES - NONE

ARGUMENT DEFINITION:
NAME DESCRIPTION
A INPUT MATRIX
B OUTPUT MATRIX (INVERSE OF A)

•

IMPLICIT REAL*8 (A-H,0-Z) ,
DIMENSION A(2,2),B(2,2) . .
D=A(1,1)*A(2,2)-A(2,1)*A(1,2)
B(1,1)=A(2,2)/D
B(2,2)=A(1,1)/D
B(1,2)=-A(1,2)/D
B(2,1)=-A(2,1)/D
RETURN
END . ..

RIN03310
RIN03320
RIN03330
RIN03340
RIN03350
RIN03360
RIN03370
RIN03380
RIN03390
RIN03400
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c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

SUBROUTINE AMU(A,B,C)

FUNCTION - PERFORM MATRIX

RESTRICTIONS

REMARKS

EXTERNAL REFERENCES - NONE

ARGUMENT DEFINITION:
NAME DESCRIPTION
A INPUT MATRIX
B INPUT MATRIX
C OUTPUT MATRIX (C=AXB)

IMPLICIT REAL*8 (A-H,0-Z)
DIMENSION A(2,2),B(2,2),C(2,2)
C(1,1)-A(1,1)*B(1,1)+A(1,2)*B(2,1)
C(2,1)=A(2,1)*B(1,1)+A(2,2)*B(2,1)
C(1,2)=A(1.,1)*B(1,2)+A(1,2)*B(2,2)
C(2,2)=A(2,1)*B(1,2)+A(2,2)*B(2,2)
RETURN
END

RIN03740

RIN03760
RIN03770

MULTIPICATION OF 2X2 MATRIX RIN03780
RIN03790
RIN03800
RIN03810
RIN03820
RIN03830
RIN03840
RIN03850
RIN03860
RIN03870
RIN03880
RIN03890
RIN03900
RIN03910
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c
c
c
c
c
c
c
c
c
c
c
c
c
c

c

'

100

SUBROUTINE CALCD

FUNCTION - CALCULATE INFLUENCE COEFFICIENTS C,D
FOR H AND H' AT PSI=1

RESTRICTIONS - FOR MULTIPLE RUNS, ONLY COMPUTED WHEN
CERTAIN PARAMETERS CHANGE. ALWAYS
COMPUTED AT LEAST ONCE.

REMARKS - NOTE VARIABLES PASSED IN COMMON

EXTERNAL REFERENCES - AIN,AMU,RUK

IMPLICIT REAL*8 (A-H,0-Z)
COMMON/BCD /XLOC(IOO) ,C(100) ,D(100) ,NDX(3) ,NDP(3) ,DX(3) ,DP(3)
COMMON/BELAS /FORCE, HELAS, H1ELAS, H2ELAS, H3ELAS, Wl(4) ,W2(4)
COMMON/BPAR /AL, BET,PO,EPS,PF,S,U,DT
COMMON/BFLAG /IFLAG,IPLOAD
DIMENSION YO(4),YT(4),DJ(4),CKJ(4,4)
DIMENSION XLEN(3)
DIMENSION Al( 2, 2,100 ),A2( 2, 2, 100)
DIMENSION 81(2,2,100), 82(2,2,100)
DIMENSION A1I(2,2),AT(2,2)
EXTERNAL DFN1

XLEN(1)=DX(1)*NDX(1)
XLEN(2)=DX(2)*NDX(2)
XLEN(3)=DX(3)*NDX(3)
EL1=XLEN(1)
Y0(l)=0.
Y0(2)=0.
Y0(3)=l.
Y0(4)=0.
CALL RUK(DX(1),XLEN(1),-EL1,XNN,YO,YO,4,DFN1,YT,DJ,CKJ,4)
CALL RUK(DX(2)/2.,DP(2)/2.,XNN,XNN,YO,YO,4,DFN1,YT,DJ,CKJ,4)
XLOC(1)=XNN
A1(1,1,1)=YO(1)
A1(2,1,1)=YO(2)
A2(1,1,1)=YO(3)
A2(2,1,1)=YO(4)
DO 100 I=2,NDP(2)
CALL RUK(DX(2),DP(2),XNN,XNN,YO,YO,4,DFN1,YT,DJ,CKJ,4)
XLOC(I)=XNN
A1(1,1,I)=YO(1)
A1(2,1,I)=YO(2)
A2(1,1,I)=YO(3)
A2(2,1,I)=YO(4)
CALL RUK(DX(2)/2.,DP(2)/2.,XNN,XNN,YO,YO,4,DFN1,YT,DJ,CKJ,4)
IF(IFLAG.EQ.2)GOTO 111
CALL RUK(DX(3)/2.,DP(3)/2.,XNN,XNN,YO,YO,4,DFN1,YT,DJ,CKJ,4)
XLOC(NDP(2)-»-l)=XNN

137
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101

111

200

201

112

A1(1,1,NDP(2)+1)=YO(1)
A1(2,1,NDP(2)+1)=YO(2)
A2(1,1,NDP(2)+1)=YO(3)
A2(2,1,NDP(2)-H)=YO(4)
DO 101 I=2,NDP(3)
CALL RUK(DX(3),DP(3),XNN,XNN,YO,YO,4,DFN1,YT,DJ,CKJ,4) .
XLOC(NDP(2)+I)=XNN
A1(1,1,NDP(2)+I)=YO(1)
A1(2,1,NDP(2)+I)=YO(2)
A2(1,1,NDP(2)+I)=YO<3)
A2(2,1,NDP(2)+I)=YO(4)
CALL RUK(DX(3)/2.,DP(3)/2.,XNN,XNN,YO,YO,4,DFN1,YT,DJ,CKJ,4)
W1(1)=YO(1)
W1(2)=YO(2)
W1(3)=YO(3)
W1(4)=YO(4) ,

Y0(l)=0.
Y0(2)=0.
Y0(3)=0.
Y0(4)=l.
CALL RUK(DX(1),XLEN(1),-EL1,XNN,YO,YO,4,DFN1,YT,DJ,CKJ,4)
CALL RUK(DX(2)/2.,DP(2)/2.,XNN,XNN,YO,YO,4,DFN1,YT,DJ,CKJ,4)

A1(2,2,,1)»YO(2)
A2(1,2,1)=YO(3)
A2(2,2,1)=YO(4)
DO 200 I=2,NDP(2)
CALL RUK(DX(2),DP(2),XNN,XNN,YO,YO,4,DFN1,YT,DJ,CKJ,4)

A1(2,2,I)=YO(2)
A2(1,2,I)=YO(3)
A2(2,2,I)=YO(4)
CALL RUK(DX(2)/2.,DP(2)/2.,XNN,XNN,YO,YO,4,DFN1,YT,DJ,CKJ,4)
IF(IFLAG.E.Q.2)GOTO 112
CALL RUK(DX(3)/2.,DP(3)/2.,XNN,XNN,YO,YO,4,DFN1,YT,DJ,CKJ,4)
A1(1,2,NDP(2)+1)=YO(1)
A1(2,2,NDP(2)+1)=YO(2)
A2(1,2,NDP(2)+1)=YO(3) . -
A2(2,2,NDP(2)+1)=YO(4)
DO 201 I=2,NDP(3)
CALL RUK(DX(3),DP(3),XNN,XNN,YO,YO,4,DFN1,YT,DJ,CKJ,4)
A1(1,2,NDP(2)-H)=YO(1)
A1(2,2,NDP(2)+I)=YO(2)
A2(1,2,NDP(2)-H)=YO(3)
A2(2,2,NDP(2)-H)=YO(4)
CALL RUK(DX(3)/2.,DP(3)/2.,XNN,XNN,YO,YO,4,DFN1,YT,DJ,CKJ,4)
W2(1)=YO(1)
W2(2)=YO(2)
W2(3)=YO(3)
W2(4)=YO(4) i

Y0(l)=l.
Y0(2)=0.
Y0(3)=0.

RIN04570
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Y0(4)=0. RIN05120
XNN=1. RIN05130
IF(IFLAG.EQ.2)GOTO 113 RIN05140
CALL RUK(-DX(3)/2.,-DP(3)/2.,XNN,XNN,YO,YO,4,DF'Nl,YT,DJ,CKJ,4) RIN05150
B1(1,1,NDP(2)+NDP(3))=YO(1) RIN05160
B1(2,1,NDP(2)+NDP(3))=YO(2) RIN05170
B2(1,1,NDP(2)+NDP(3))=YO(3) RIN05180
B2(2,1,NDP(2)+NDP(3»=YO(4) RIN05190
DO 300 II=2,NDP(3) RIN05200
I=NDP(2)+NDP(3)-II+1 RIN05210
CALL RUK(-DX(3),-DP(3),XNN,XNN,YO,YO,4,DFN1,YT,DJ,CKJ,4) RIN05220
B1(1,1,I)=YO(1) RIN05230
B1(2,1,I)=YO(2) RIN05240
B2(1,1,I)=YO(3) RIN05250

300 B2(2,1,I)=YO(4) RIN05260
CALL RUK(-DX(3)/2.,-DP(3)/2.,XNN,XNN,YO,YO,4,DFNl,YT,DJ,CKJ,4) RIN05270

113 CALL RUK(-DX(2)/2.,-DP(2)/2.,XNN,XNN,YO,YO,4,DFNl,YT,DJ,CKJ,4) RIN05280
B1(1,1,NDP(2))=YO(1) RIN05290
B1(2,1,NDP(2))=YO(2) RIN05300
B2(1,1,NDP(2))=YO(3) RIN05310
B2(2,1,NDP(2))=YO<4) RIN05320
DO 301 II=2,NDP(2) RIN05330
I=NDP(2)-II+1 RIN05340
CALL RUK(-DX(2),-DP(2),XNN,XNN,YO,YO,4,DFN1,YT,DJ,CKJ,4) RIN05350
Bl(i,l,I)=YO(l) RIN05360
B1(2,1,I)=YO(2) RIN05370
B2(1,1,I)=YO(3) RIN05380.

301 B2(2,1,I)=YO(4) RIN05390
C - RIN05400

Y0(l)=0. RIN05410
Y0(2)=l. RIN05420

• Y0(3)=0. RIN05430
Y0(4)=0. RIN05440
XNN*1. RIN05450
IF(IFLAG.EQ.2)GOTO 114 RIN05460
CALL RUK(-DX(3)/2.,-DP(3)/2.,XNN,XNN,YO,YO,4,DFNl,YT,DJ,CKJ,^) RIN05470
B1(1,2,NDP(2)+NDP(3))=YO(1) RIN05480
B1(2,2,NDP(2)+NDP(3))=YO(2) RIN05490
B2(1,2,NDP(2)+NDP(3))=YO(3) RIN05500
B2(2,2,NDP(2)+NDP(3))=YO(4) RIN05510
DO 400 II=2,NDP(3) RIN05520
I=NDP(2)+NDP(3)-II+1 RIN05530
CALL RUK(-DX(3),-DP(3),XNN,XNN,YO,YO,4,DFN1,YT,DJ,CKJ,4) RIN05540
B1(1,2,I)=YO(1) ' RIN05550
B1(2,2,I)=YO(2) . . ' RIN05560
B2(1,2,I)=YO(3) RIN05570

400 B2(2,2,I)=YO(4) RIN05580
CALL RUK(-DX(3)/2.,-DP(3)/2.,XNN,XNN,YO,YO,4,DFNl,YT,DJ,CKJ,4) RIN05590

114 CALL RUK(-DX(2)/2.,-DP(2)/2.,XNN,XNN,YO,YO,4,DFNl,YT,DJ,CKJ,4) RIN05600
B1(1,2,NDP(2))=YO(1) ' RIN05610
81(2,2,NDP(2))=YO(2) RIN05620
B2(1,2,NDP(2))=YO(3) RIN05630
B2(2,2,NDP(2))=YO(4) RIN05640
DO 401 II=2,NDP(2) RIN05650
I=NDP(2)-II+1 RIN05660
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CALL RUK(-DX(2),-DP(2),XNN,XNN,YO,YO,4,DFN1,YT,DJ,CKJ,4)

401
C

21

500

22

501
C

B1(2,2,I)=YO(2)
B2(1,2,I)=YO(3)
B2(2,2,I)=YO(4)

DO 500 I=1,NDP(2)
CALL AIN(A1(1,1,I),A1I)
CALL AMU(A2(1,1,I),A1I,AT)'
CALL AMU(AT,B1(1,1,I),A1(1,1,I))
DO 21 11=1,2
DO 21 JJ=1,2
AT(II,JJ)=B2(II,JJ,I)-A1(II,JJ,I)
CALL AIN(AT,B2( 1,1,1))
C(I)=B2(1,2,I)/AL*DP(2)
D(I)=B2(2,2,I)/AL*DP(2)
CONTINUE
IF(IFLAG.EQ.2)RETURN
INDEX1=NDP(2)+1
INDEX2=NDP( 2 )+NDP( 3 )
DO 501 I=INDEX1,INDEX2
CALL AIN(A1(1,1,I),A1I)
CALL AMU(A2(1,1,I),A1I,AT)
CALL AMU(AT,B1(1,1,I),A1(1,1,I))
DO 22 11=1,2
DO 22 JJ=1,2
AT(II,JJ)=B2(II,JJ,I)-A1(II,JJ,I)
CALL AIN(AT,B2( 1,1,1))
C(I)=B2(1,2,I)/AL*DP(3)
D(I)=B2(2,2,I)/AL*DP(3)
CONTINUE

RETURN
END

RIN05670
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c
c
c
c
c
c
c
c
c
c
c
c
c
c

c

100

SUBROUTINE CALCD3

FUNCTION - CALCULATE INFLUENCE COEFFICIENTS C,D
FOR H AND H1 AT PSI=1

RESTRICTIONS - FOR MULTIPLE RUNS, ONLY COMPUTED WHEN
CERTAIN PARAMETERS CHANGE. ALWAYS
COMPUTED AT LEAST ONCE.

REMARKS - NOTE VARIABLES PASSED IN COMMON

EXTERNAL REFERENCES - AIN,AMU,RUK

IMPLICIT REAL*8 (A-H,0-Z)
COMMON/BCD /XLOC(IOO) ,C(100) ,D(100) ,NDX(3) ,NDP(3) ,DX(3) ,DP(3)
COMMON/BELAS /FORCE, HELAS, H1ELAS, H2ELAS, H3ELAS, Wl(4) ,W2(4)
COMMON/ BPAR / AL , BET , PO , EPS , PF , S , U , DT
COMMON/BFLAG /IFLAG,IPLOAD
DIMENSION YO(4),YT(4),DJ(4),CKJ(4,4)
DIMENSION XLEN(3)
DIMENSION A1(2,2,100),A2(2,2,100)
DIMENSION 81(2, 2, 100), 82(2, 2, 100)
DIMENSION A1I(2,2),AT(2,2)
EXTERNAL DFN1

XLEN(1)=DX(1)*NDX(1)
XLEN(2)=DX(2)*NDX(2)
XLEN(3)=DX(3)*NDX(3)
EL1=XLEN(1)+XLEN(2)
Y0(l)=0.
Y0(2)=0.
Y0(3)=l.
Y0(4)=0.
CALL RUK(DX(1),XLEN(1),-EL1,XNN,YO,YO,4,DFN1,YT,DJ,CKJ,4)
CALL RUK(DX(2)/2.,DP(2)/2.,XNN,XNN,YO,YO,4,DFN1,YT,DJ,CKJ,4)
XLOC(1)=XNN
A1(1,1,1)=YO(1)
A1(2,1,1)=YO(2)
A2(1,1,1)=YO(3)
A2(2,1,1)=YO(4)
DO 100 I=2,NDP(2)
CALL RUK(DX(2),DP(2),XNN,XNN,YO,YO,4,DFN1,YT,DJ,CKJ,4)
XLOC(I)=XNN
A1(1,1,T)=YO(1)
A1(2,1,I)=YO(2)
A2(1,1,I)=YO(3)
A2(2,1,I)=YO(4)
CALL RUK(DX(2)/2.,DP(2)/2.,XNN,XNN,YO,YO,4,DFN1,YT,DJ,CKJ,4)
CALL RUK(DX(3)/2.,DP(3)/2.,XNN,XNN,YO,YO,4,DFN1,YT,DJ,CKJ,4)
XLOC(NDP(2)+1)=XNN
A1(1,1,NDP(2)+1)=YO(1)

141
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101

200

201

A1(2,1,NDP(2)+1)=YO(2)
A2(1,1,NDP(2)+1)=YO(3)
A2(2,1,NDP(2)+1)=YO(4) ,
D O 1 0 1 I=2,NDP(3) ; . . . . . '
CALL RUK(DX(3),DP(3),XNN,XNN,YO,YO,4,DFN1,YT,DJ,CKJ,4)
XLOC(NDP(2)+I)=XNN
A1(1,1,NDP(2)+I)=YO(1)
A1(2,1,NDP(2)+I)=YO(2) , lt .
A2(1,1,NDP(2)+I)=YO(3) '
A2(2,1,NDP(2)-H)=YO(4)
CALL RUK(DX(3)/2.,DP(3)/2.,XNN,XNN,YO,YO,4,DFN1,YT,DJ,CKJ,4)
W1(1)=YO(1)
W1(2)=YO(2) . . . . .
W1(3)=YO(3)
W1(4)=YO(4)

Y0(l)=0.
Y0(2)=0.
Y0(3)=0.
Y0(4)=l.
CALL RUK(DX(1),XLEN(1),-EL1,XNN,YO,YO,4,DFN1,YT,DJ,CKJ,4)
CALL RUK(DX(2)/2.,DP(2)/2.,XNN,XNN,YO,YO,4,DFNl,YTfDJ,CKJ,4)

A1(2,2,1)=YO(2)
A2(1,2,1)=YO(3)
A2(2,2,1)=YO(4)
DO 200 I=2,NDP(2)
CALL RUK(DX(2),DP(2),XNN,XNN,YO,YO,4,DFN1,YT,DJ,CKJ,4)

A1(2,2,I)=YO(2)
A2(1,2,I)=YO(3)
A2(2,2,I)=YO(4) . .. .
CALL RUK(DX(2)/2.,DP(2)/2.,XNN,XNN,Yb,Y6,4,DFNl,YT,DJ,CKJ,4)
CALL RUK(DX(3)/2.,DP(3)/2.,XNN,XNN,YO,YO,4,DFN1,YT,DJ,CKJ,4)
A1(1,2,NDP(2)+1)=YO(1)
A1(2,2,NDP(2)+1)=YO(2)
A2(1,2,NDP(2)+1)=YO(3)
A2(2,2,NDP(2)+1)=YO(4)
DO 201 I=2,NDP(3)
CALL RUK(DX(3),DP(3),XNN,XNN,YO,YO,4,DFN1,YT,DJ,CKJ,4)
A1(1,2,NDP(2)+I)=YO(1)
A1(2,2,NDP(2)-H)=YO(2)
A2(1,2,NDP(2)+I)=YO(3)
A2(2,2,NDP(2)+I)=YO(4) .
CALL RUK(DX(3)/2.,DP(3)/2.,XNN,XNN,YO,YO,4,DFN1,YT,DJ,CKJ,4)
W2(1)=YO(1)
W2(2)=YO(2)
W2(3)=YO(3)
W2(4)=YO(4)

Y0(l)=l.
Y0(2)=0. • : .
Y0(3)=0.
Y0(4)=0.
XNN=1.

RIN06560
RIN06570
RIN06580
RIN06590
RIN06600
RIN06610
RIN06620
RIN06630
RIN06640
RIN06650
RIN06660
RIN06670
RIN06680
RIN06690
RIN06700
RIN06710
RIN06720
RIN06730
RIN06740
RIN06750
RIN06760
RIN06770
RIN06780
RIN06790
RIN06800
RIN06810
RIN06820
RIN06830
RIN06840
RIN06850
RIN06860
RIN06870
RIN06880
RIN06890
RIN06900
RINO6910
RIN06920
RIN06930
RIN06940
RIN06950
RIN06960
RIN06970
RIN06980
RIN06990
RIN07000
RIN07010
RIN07020
RIN07030
RIN07040
RIN07050
RIN07060
RIN07070
RIN07080
RIN07090
RIN07100
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300

301
C

400

114

CALL RUK(-DX(3)/2.,-DP(3)/2.,XNN,XNN,YO,YO,4,DFNl,YT,DJ,CKJ,4)
B1(1,1,NDP(2)+NDP(3))=YO(1)
B1(2,1,NDP(2)+NDP(3))=YO(2)
B2(1,1,NDP(2)+NDP(3))=YO(3)
B2(2,1,NDP(2)+NDP(3))=YO(4)
DO 300 II=2,NDP(3)
I=NDP(2)+NDP(3)-II+1
CALL RUK(-DX(3),-DP(3),XNN,XNN,YO,YO,4,DFN1,YT,DJ,CKJ,4)

B1(2,1,I)=YO(2)
B2(1,1,I)=YO(3)
82(2,1,I)=YO(4)
CALL RUK(-DX(3)/2.,-DP(3)/2.,XNN,XNN,YO,YO,4,DFNl,YT,DJ,CKJ,4)
CALL RUK(-DX(2)/2,,-DP(2)/2.,XNN,XNN,YO,YO,4,DFNl,YT,DJ,CKJ,4)
B1(1,1,NDP(2))=YO(1)
B1(2,1,NDP(2))=YO(2)
B2(1,1,NDP(2))=YO(3)
B2(2,1,NDP(2))=YO(4)
DO 301 II=2,NDP(2)
I=NDP(2)-II+1
CALL RUK(-DX(2),-DP(2),XNN,XNN,YO,YO,4,DFN1,YT,DJ,CKJ,4)

B1(2,1,I)=YO(2)
B2(1,1,I)=YO(3)
B2(2,1,I)=YO(4)

Y0(l)=0.
Y0(2)=l.
Y0(3)=0.
Y0(4)=0.
XNN=1.
CALL RUK(-DX(3)/2.,-DP(3)/2.,XNN,XNN,YO,YO,4,DFNl,YT,DJ,CKJ,4)
B1(1,2,NDP(2)+NDP(3))=YO(1)
B1(2,2,NDP(2)+NDP(3))=YO(2)
B2(1,2,MDP(2)+NDP(3))=YO(3)
B2(2,2,MDP(2)+NDP(3))=YO(4)
DO 400 II=2,NDP(3)
I=NDP(2)+NDP(3)-II-H
CALL RUK(-DX(3),-DP(3),XNN,XNN,YO,YO,4,DFN1,YT,DJ,CKJ,4)

B1(2,2,I)=YO(2) '̂  v

B2(1,2,I)=YO(3) :' -
B2(2,2,I)=YO(4) =;

CALL RUK(-DX(3)/2.,-DP(3)/2.,XNN,XNN,YO,YO,4,DFNl,YT,DJ,CKJ,4)
CALL RUK(-DX(2)/2.,-DP(2)/2.,XNN,XNN,YO,YO,4,DFNl,YT,DJ,CKJ,4)
B1(1,2,NDP(2))=YO(1)
B1(2,2,NDP(2))=YO(2)
B2(1,2,NDP(2))=YO(3)
B2(2,2,NDP(2))=YO(4)
DO 401 II=2,NDP(2)
I=NDP(2)-II+1
CALL RUK(-DX(2),-DP(2),XNN,XNN,YO,YO,4,DFN1,YT,DJ,CKJ,4)

143

B1(2,2,I)=YO(2)
B2(1,2,I)=YO(3)

RIN07110
RIN07120
RIN07130
RIN07140
RIN07150
RIN07160
RIN07170
RIN07180
RIN07190
RIN07200
RIN07210
RIN07220
RIN07230
RIN07240
RIN07250
RIN07260
RIN07270
RIN07280
RIN07290
RIN07300
RIN07310
RIN07320
RIN07330
RIN07340
RIN07350
RIN07360
RIN07370
RIN07380
RIN07390
RIN07400
RIN07410
RIN07420
RIN07430
RIN07440
RIN07450
RIN07460
RIN07470
RIN07480
RIN07490
RIN07500
RIN07510
RIN07520
RIN07530
RIN07540
RIN07550
RIN07560
RIN07570
RIN07580
RIN07590
RIN07600
RIN07610
RIN07620
RIN07630
RIN07640
RIN07650
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401
C

21

500

22

501
C

B2(2,2,I)=YO(4)

DO 500 I=1,NDP(2)
CALL AIN(A1(1,1,I),A1I)
CALL AMU(A2(1,1,I),A1I,AT)
CALL AMU(AT,B1(1,1,I),A1(1,1,I))
DO 21 11=1,2
DO 21 JJ=1,2
AT(II,JJ)=B2(II,JJ,I)-A1(II,JJ,I)
CALL AIN(AT,B2(1,1,I))
C(I)=B2(1,2,I)/AL*DP(2)
D(I)=B2(2,2,I)/AL*DP(2)
CONTINUE
INDEX1=NDP(2)+1
INDEX2=NDP(2)+NDP(3)
DO 501 I=INDEX1,INDEX2
CALL AIN(A1(1,1,I),A1I)
CALL AMU(A2(1,1,I),A1I,AT)
CALL AMU(AT,B1(1,1,I),A1(1,1,D)
DO 22 11=1,2
DO 22 JJ=1,2
AT(II,JJ)=B2(II,JJ,I)-A1(II,JJ,I)
CALL AIN(AT,B2(1,1,I))
C(I)=B2(1,2,I)/AL*DP(3)
D(I)=B2(2,2,I)/AL*DP(3)
CONTINUE

RETURN
END

RIN07660
RIN07670
RIN07680
RIN07690
RIN07700
RIN07710
RIN07720
RIN07730
RIN07740
RIN07750
RIN07760
RIN07770
RIN07780
RIN07790
RIN07800
RIN07810
RIN07820
RIN07830
RIN07840
RIN07850
RIN07860
RIN07870
RIN07880
RIN07890
RIN07900
RIN07910
RIN07920
RIN07930
RIN07940
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c
c
c
c
c
c
c
c
c
c
c
c
c
c

c

100

SUBROUTINE CALCD4

FUNCTION - CALCULATE INFLUENCE COEFFICIENTS C,D
FOR H AND H' AT PSI=1

RESTRICTIONS - FOR MULTIPLE RUNS, ONLY COMPUTED WHEN
CERTAIN PARAMETERS CHANGE. ALWAYS
COMPUTED AT LEAST ONCE.

REMARKS - NOTE VARIABLES PASSED IN COMMON

EXTERNAL REFERENCES - AIN,AMU,RUK

IMPLICIT REAL*8 (A-H,0-Z)
COMMON/BCD /XLOC( 100),C( 100) ,D( 100) ,NDX(3) ,NDP(3) ,DX(3) ,DP(3)
COMMON/BELAS /FORCE, HELAS, H1ELAS, H2ELAS, H3ELAS, Wl(4) ,W2(4)
COMMON/BPAR /AL,BET,PO,EPS,PF,S,U,DT
COMMON /BFLAG /IFLAG.IPLOAD
DIMENSION Y0(4) ,YT(4) ,DJ(4) ,CKJ(4,4)
DIMENSION XLEN(3)
DIMENSION A1(2,2,100),A2(2,2,100)
DIMENSION 81(2,2,100), 82(2,2,100)
DIMENSION A1I(2,2),AT(2,2)
EXTERNAL DFN1

XLEN(1)=DX(1)*NDX(1)
XLEN(2)=DX(2)*NDX(2)
XLEN(3)=DX(3)*NDX(3)
EL1=XLEN( 1 )
Y0(l)=0.
Y0(2)=0.
Y0(3)=l.
Y0(4)=0.
CALL RUK(DX(l)/2.,DP(l)/2.,-ELl,XNN,YO,YO,4,DFNl,YT,DJ,CKJ,4)
XLOC(1)=XNN
A1(1,1,1)=YO(1)
A1(2,1,1)=YO(2)
A2(1,1,1)=YO(3)
A2(2,1,1)=YO(4)
DO 100 I=2,NDP(1)
CALL RUK(DX(1),DP(1),XNN,XNN,YO,YO,4,DFN1,YT,DJ,CKJ,4)
XLOC(I)=XNN
A1(1,1,I)=YO(1)
A1(2,1,I)=YO(2)
A2(1,1,I)=YO(3)
A2(2,1,I)=YO(4)
CALL RUK(DX(1)/2.,DP(1)/2.,XNN,XNN,YO,YO,4,DFN1,YT,DJ,CKJ,4)
CALL RUK(DX(2)/2.,DP(2)/2.,XNN,XNN,YO,YO,4,DFN1,YT,DJ,CKJ,4)
XLOC(NDP(1)+1)=XNN
A1(1,1,NDP(1)-H)=YO(1)
A1(2,1,NDP(1)+1)=YO(2)

RIN07950

RIN07970
RIN07980
RIN07990
RIN08000
RIN08010
RIN08020
RIN08030
RIN08040
RIN08050
RIN08060
RIN08070
RIN08080
RIN08090
RIN08100

RIN08120
RIN08130
RIN08140
RIN08150
RIN08160
RIN08170
RIN08180
RIN08190
RIN08200
RIN08210
RIN08220
RIN08230
RIN08240
RIN08250
RIN08260
RIN08270
RIN08280
RIN08290
RIN08300
RIN08310
RIN08320
RIN08330
RIN08340
RIN08350
RIN08360
RIN08370
RIN08380
RIN08390
RIN08400
RIN08410
RIN08420
RIN08430
RIN08440
RIN08450
RIN08460
RIN08470
RIN08480
RIN08490

145



FILE: RING FORTRAN L4 MTI MON 01/20/86 14:39:26 PAGE 18 OF 38

A2(1,1,NDP(1)+1)=YO(3) RIN08500
A2(2,i,NDP(D + l)=YO(4) RIN08510

' DO 101 I=2,NDP(2) RIN08520
CALL RUK(DX(2).,DP(2),XNN,XNN,YO,YO,4,DFN1,YT,DJ,CKJ,4) • RIN08530
XLOC(NDP(1)+I)=XNN RIN08540
A1(1,1,NDP(1)+I)=YO(1) RIN08550
A1(2,1,NDP(1)+I)=YO(2) RIN08560
A2(1,1,NDP(D-H)=YO(3) RIN08570

101 A2(2,1,NDP(D+I)=YO(4) RIN08580
CALL RUK(DX(2)/2.,DP(2)/2.,XNN,XNN,YO,YO,4,DFN1,YT,DJ,CKJ,4) RIN08590
W1(1)=YO(1) RIN08600
W1(2)=YO(2) J RIN08610
W1(3)=YO(3) RIN08620
W1(4)=YO(4) RIN08630

C RIN08640
Y0(l)=0. RIN08650
Y0(2)=0. . RIN08660
Y0(3)=0. . RIN08670
Y0(4)=l. RIN08680
CALL RUK(DX(l)/2.,DP(l)/2.,-ELl,XNN,YO,YO,4,DFNl,YT,DJ,CKJ,4) RIN08690
A1(1,2,1)=YO(1) RIN08700
A1(2,2,1)=YO(2) RIN08710
A2(1,2,1)=YO(3) RIN08720
A2(2,2,1)=YO(4) RIN08730
DO 200 I=2,NDP(1) . RIN08740
CALL RUK(DX(1),DP(1),XNN,XNN,YO,YO,4,DFN1,YT,DJ,CKJ,4) RIN08750
A1(1,2,I)=YO(1) RIN08760
A1(2,2,I)=YO(2) RIN08770
A2(1,2,I)=YO(3) RIN08780

200 A2(2,2,I)-YO(4) . RIN08790
CALL RUK(DX(1)/2.,DP(1)/2.,XNN,XNN,YO,YO,4,DFN1,YT,DJ,CKJ,4) RIN08800
CALL RUK(DX(2)/2.,DP(2)/2.,XNN,XNN,YO,YO,4,DFN1,YT,DJ,CKJ,4) RIN08810
A1(1,2,NDP(1)-H)=YO(1) RIN08820
A1(2,2,NDP(1)*1)=YO(2) RIN08830
A2(1,2,NDP(1)+1)=YO(3) RIN08840
A2(2,2,NDP(1)+1)=YO(4) RIN08850
DO 201 I=2,NDP(2) RIN08860
CALL RUK(DX(2),DP(2),XNN,XNN,YO,YO,4,DFN1,YT,DJ,CKJ,4) RIN08870
A1(1,2,NDP(1)+I)=YO(1) RIN08880
A1(2,2,NDP(1)+I)=YO(2) RIN08890
A2(1,2,NDP(1)+I)=YO(3) RIN08900

201 A2(2,2,NDP(1)+I)=YO(4) RIN08910
CALL RUK(DX(2)/2.,DP(2)/2.,XNN,XNN,YO,YO,4,DFN1,YT,DJ,CKJ,4) RIN08920
W2(1)=YO(1) RIN08930
W2(2)=YO(2) . RIN08940
W2(3)=YO(3) RIN08950
W2(4)=YO(4). RIN08960

C RIN08970
Y0(l)=l. RIN08980
Y0(2)=0. RIN08990
Y0(3)=0. ' RIN09000
Y0(4)=0. RIN09010
XNN=1. RIN09020
CALL RUK(-DX(2)/2.,-DP(2)/2.,XNN,XNN,YO,YO,4,DFNl,YT,DJ,CKJ,4) ' RIN09030
B1(1,1,NDP(1)+NDP(2))=YO(1) RIN09040
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B1(2,1,NDP(1)+NDP(2))=YO(2) RIN09050
B2(1,1,NDP(1)+NDP(2))=YO(3) RIN09060
B2(2,1,NDP(1)+NDP(2))=YO(4) . RIN09070
DO 300 II=2,NDP(2) RIN09080
I=NDP(1)+NDP(2)-II+1 RIN09090
CALL RUK(-DX(2),-DP(2),XNN,XNN,YO,YO,4,DFN1,YT,DJ,CKJ,4) RIN09100
B1(1,1,I)=YO(1) . RIN09110
B1(2,1,I)=YO(2) RIN09120
B2(1,1,I)=YO(3) , RIN09130

300 B2(2,1,I)=YO(4) RIN09140
CALL RUK(-DX(2)/2.,-DP(2)/2.,XNN,XNN,YO,YO,4,DFNl,YT,DJ,CKJ,4) RIN09150
CALL RUK(-DX(l)/2.,-DP(l)/2.,XNN,XNN,YO,YO,4,DFNl,YT,DJ,CKJ,4) RIN09160
B1(1,1,NDP(1))=YO(1) RIN09170
B1(2,1,NDP(1))=YO(2) RIN09180
82(1,1,NDP(1))=YO(3) RIN09190
B2(2,1,NDP(1))=YO(4) RIN09200
DO 301 II=2,NDP(1) RIN09210
I=NDP(1)-II+1 RIN09220
CALL RUK(-DX(1),-DP(1),XNN,XNN,YO,YO,4,DFN1,YT,DJ,CKJ,4) RIN09230
B1(1,1,I)=YO(1) RIN09240
B1(2,1,I)=YO(2) . • - RIN09250
B2(1,1,I)=YO(3) RIN09260

301 B2(2,1,I)=YO(4) RIN09270
C RIN09280

Y0(l)=0. • - . - . - . RIN09290
Y0(2)=l. RIN09300
Y0(3)=0. RIN09310
Y0(4)=0. RIN09320
XNN=1. RIN09330
CALL RUK(-DX(2)/2.,-DP(2)/2.,XNN,XNNfYO,YO,4,DFNl,YT,DJ,CKJ,4) RIN09340
B1(1,2,NDP(1)+NDP(2))=YO(1) . RIN09350
B1(2,2,NDP(1)+NDP(2))=YO(2) RIN09360
B2(1,2,NDP(1)+NDP(2))=YO(3) RIN09370
B2(2,2,NDP(1)+NDP(2))=YO(4) RIN09380
DO 400 II=2,NDP(2) RIN09390
I=NDP(1)+NDP(2)-II-H RIN09400
CALL RUK(-DX(2),-DP(2),XNN,XNN,YO,YO,4,DFN1,YT,DJ,CKJ,4) RIN09410
B1(1,2,I)=YO(1) RIN09420
B1(2,2,I)=YO(2) RIN09430
B2(1,2,I)=YO(3) RIN09440

400 B2(2,2,I)=YO(4) RIN09450
CALL RUK(-DX(2)/2.,-DP(2)/2.,XNN,XNN,YO,YO,4,DFNl,YT,DJ,CKJ,4). .RIN09460
CALL RUK(-DX(l)/2.,-DP(l)/2.,XNN,XNN,YO,YO,4,DFNl,YT,DJ,CKJ,4) RIN09470
B1(1,2,NDP(1))=YO(1) RIN09480
B1(2,2,NDP(1))=YO(2) RIN09490
B2(1,2,NDP(1))=YO(3) RIN09500
B2(2,2,NDP(1))=YO(4) RIN09510
DO 401 II=2,NDP(1) RIN09520
I=NDP(1)-II+1 RIN09530
CALL RUK(-DX(1),-DP(1),XNN,XNN,YO,YO,4,DFN1,YT,DJ,CKJ,4) RIN09540
B1(1,2,I)=YO(1) RIN09550
B1(2,2,I)=YO(2) RIN09560
B2(1,2,I)=YO(3) RIN09570

401 B2(2,2,I)=YO(4) s RIN09580
C RIN09590
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21

500

22

501
C

DO 500 I=1,NDP(1)
CALL AIN(A1(1,1,I),A1I)
CALL AMU(A2(1,1,I),A1I,AT)
CALL AMU(AT,B1(1,1,I),A1(1,1,I))
DO 21 11=1,2
DO 21 JJ=1,2
AT(II,JJ)=B2(II,JJ,I)-A1(II,JJ,I)
CALL AIN(AT,B2(1,1,I))
C(I)=B2(1,2,I)/AL*DP(1)
D(I)=B2(2,2,I)/AL*DP(1)
CONTINUE
INDEX1=NDP(1)+1
INDEX2=NDP(1)+NDP(2)
DO 501 I=INDEX1,INDEX2
CALL AIN(A1(1,1,I),A1I)
CALL AMU(A2(1,1,I),A1I,AT)
CALL AMU(AT,B1(1,1,I),A1(1,1,I))
DO 22 11=1,2
DO 22 JJ=1,2
AT(II,JJ)=B2(II,JJ,I)-A1(II,JJ,I)
CALL AIN(AT,B2(1,1,I))
C(I)=B2(1,2,I)/AL*DP(2)
D(I)=B2(2,2,I)/AL*DP(2)
CONTINUE

RETURN
END

RIN09600
RIN09610
RIN09620
RIN09630
RIN09640
RIN09650
RIN09660
RIN09670
RIN09680
RIN09690
RIN09700
RIN09710
RIN09720
RIN09730
RIN09740
RIN09750
RIN09760
RIN09770
RIN09780
RIN09790
RIN09800
RIN09810
RIN09820
RIN09830
RIN09840
RIN09850
RIN09860
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SUBROUTINE CHECK(AL, BET, EPS, ELI ,NDX,NDP,IRUN, RECALC) RIN09870
L-» —
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

1

2

FUNCTION - CHECK INPUT VARIABLES FOR RECALCULATION
INFLUENCE COEFFICIENTS C,D

RESTRICTIONS - ONLY USED FOR MULTIPLE RUNS WITH IRUN.GE.2

REMARKS

EXTERNAL REFERENCES -

ARGUMENT DEFINITION:
NAME DESCRIPTION
AL,BET,... INPUT VARIABLES, ARE THEY CHANGED ?
RECALC LOGICAL VARIABLE, IF .TRUE., RECALCULATE C,D

IMPLICIT REAL*8 (A-H,0-Z)
COMMON/BOLD /ALOLD, BETOLD, EPSOLD, EL10LD, NDXOLD(3) ,NDPOLD(3)
DIMENSION NDX(3),NDP(3)
LOGICAL RECALC, TEMP
RECALC=.TRUE.
IF(IRUN.GT.1)THEN

TEMP=.TRUE.
TEMP=TEMP.AND.(AL .EQ. ALOLD)
TEMP=TEMP. AND. (EPS. EQ. EPSOLD). AND. ( ELI. EQ.EL10LD)
DO 1 1=1,3

TEMP=TEMP.AND. (NDX(I ) .EQ.NDXOLD( I ) )
TEMP=TEMP.AND.(NDP(I).EQ.NDPOLD(I))

CONTINUE
IF(TEMP)RECALC=. FALSE.

END IF
ALOLD =AL
EPSOLD=EPS
EL10LD=EL1
DO 2 1=1,3

NDXOLD(I)=NDX(I)
NDPOLD(I)=NDP(I)

CONTINUE
RETURN
END

-tiinuyoou
RIN09890
RIN09900
RIN09910
RIN09920
RIN09930
RIN09940
RIN09950
RIN09960
RIN09970
RIN09980
RIN09990
RIN10000
RIN10010
RIN10020
RIN10030
RIN10040
RIN10050
DTMI nn&nIxXW 1UUOU

RIN10070
RIN10080
RIN10090
RIN10100
RIN10110
RIN10120
RIN10130
RIN10140
RIN10150
RIN10160
RIN10170
RIN10180
RIN10190
RIN10200
RIN10210
RIN10220
RIN10230
RIN10240
RIN10250
RIN10260
RIN10270
RIN10280
RIN10290
RIN10300
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c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

••••»•••

SUBROUTINE CONST ( HO, H1,PF)

FUNCTION - CALCULATE CONSTANTS RK,RC,R1,R2,XCAV,ICAV
FOR SLIDER BEARIN PRESSURES

RESTRICTIONS -

REMARKS - CALLED BY SUBROUTINE EVAL
NOTE OTHER VARIABLES PASSED IN COMMON

EXTERNAL REFERENCES - DABS,DSQRT

ARGUMENT DEFINITION:
NAME DESCRIPTION
HO FILM THICKNESS AT PSI=0
HI FILM THICKNESS AT PSI=1
PF RESERVOIR PRESSURE

IMPLICIT REAL*8 (A-H,0-Z)
COMMON/BCOEFF/RK,RC,R1,R2,XCAV,ICAV
COMMON/BINT /IELAS,IBACK,IPR
RO=H1+HO
R1=HO
R2=H1-HO
IF(IBACK.EQ.O)THEN

RK=2.*HO*H1/RO*(1.-HO*H1*PF)
RC=1./RO*(1.+H1**2*PF)
XCAV=0 .

ELSE IF(IBACK.EQ.1)THEN
ALF=H1*(-R2)*PF
RK=H1*( 1 .+ALF+DSQRT(DABS(ALF**2+2.*ALF+1 .E-7 ) ) )
IF(DABS(R2).GT.1.D-10)THEN

XCAV=(RK-H1)/R2+1.
ELSE

XCAV=1.0
END IF
IF((RK.LE.HO.AND.ICAV.NE".O).OR.ICAV.EQ.I)THEN

RC=l./2./RK
•ELSE

, RK=2.*HO*H1/RO*(1.+HO*H1*PF)
' RC=1./RO*(1.-H1**2*PF) '

END IF
END IF
RETURN
END
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SUBROUTINE CONST2(HO,H1,PF)

REMARKS - SEE CONST

IMPLICIT REAL*8 (A-H,0-Z)
COMMON/BCD /XLOC(100),C(100) ,D(100),NDX(3),NDP(3),DX(3) ,DP(3)
COMMON/BCOEFF/RK,RC,R1,R2,XCAV,ICAV
COMMON/ BINT /IELAS,IBACK,IPR
RO=H1+HO
R1=HO
R2=H1-HO
CTEMP=(-1 )**( IBACK+1 )
RK=2.*HO*H1/RO*(1.+CTEMP*HO*H1*PF)
RC=1 . /R0*( 1 .-CTEMP*H1**2*PF )
XCAV=0.
IF(IBACK.EQ.1)THEN

IF(IPR.EQ.1)WRITE(4,*)' '
PMIN=100.
DO 10 I=1,NDP(2)+NDP(3)

IF(IPR.EQ.1)WRITE(4,*)P(XLOC(D)
PMIN=DMIN1(PMIN,P(XLOC(I)))

CONTINUE
IF(PMIN.GE.O.DO)RETURN
H11=H1-HO
XCAV=0.5
HCAV=H1+H11*(XCAV-1.)
ICOUNT=0
ICOUNT=ICOUNT+1
HCVOLD=HCAV
FHCAV=PF+1 . /Hll*(-l . /Hl+HCAV/2 . /Hl**2+l . /2 . /HCAV)
F1HCAV=1 . /Hll*( 1 . 12 . /Hl**2-l . /2 . /HCAV**2 )
HCAV=HCAV-FHCAV/ F 1HCAV
XCAV=(HCAV-H1)/H11+1.
IF(IPR.EQ.1)WRITE(4,*)XCAV
IF(ICOUNT.LT.10.AND.DABS(HCAV-HCVOLD).GT.1.D-7)GOTO 20
RK=HCAV
RC=l./2./HCAV

END IF
RETURN
END
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SUBROUTINE DFN1(X,Y,D)

FUNCTION - DERIVATIVE ROUTINE USED BY RUK
(NO HYDRODYNAMICS)

RESTRICTIONS

REMARKS - NOTE VARIABLES PASSED IN COMMON

EXTERNAL REFERENCES -

ARGUMENT DEFINITION:
NAME DESCRIPTION
X VALUE OF X FOR DERIVATIVES
Y VALUES OF INDEPENDENT VARIABLES
D VALUES OF DERIVATIVES

IMPLICIT REAL*8 (A-H,0-Z)
DIMENSION Y(4),D(4)
COMMON/BPAR /AL,BET,PO,EPS,PF,S,U,DT
D(1)=Y(2)
D(2)=Y(3)
D(3)=Y(4)
D(4)=-Y(1)/AL
RETURN
END

RIN11240
_— — __— DTM1 1 9<»n
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SUBROUTINE DFN2(X,Y,D)

FUNCTION - DERIVATIVE ROUTINE USED BY RUK
(HYDRODYNAMICS INCLUDED)

RESTRICTIONS

REMARKS - NOTE VARIABLES PASSED IN COMMON

EXTERNAL REFERENCES - P

ARGUMENT DEFINITION:
NAME DESCRIPTION
X VALUE OF X FOR DERIVATIVES
Y VALUES OF INDEPENDENT VARIABLES
D VALUES OF DERIVATIVES

IMPLICIT REAL*8 (A-H,0-Z)
DIMENSION Y(4),D(4)
COMMON/BPAR /AL,BET,PO,EPS,PF,S,U,DT
COMMON /BFLAG /IFLAG,IPLOAD
D(1)=Y(2)
D(2)=Y(3)
D(3)=Y(4)
H=0
IF(IPLOAD.EQ.1)H=PO
IF(X.GT.O.)H=H-P(X)
H=H*BET
D(4)=(H-Y(1))/AL
RETURN
END
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SUBROUTINE DFN3(X,Y,D)

FUNCTION - DERIVATIVE ROUTINE USED BY RUK
(HYDRODYNAMICS INCLUDED, NO PRELOAD PO)

. • ' . . • '
RESTRICTIONS ' -

REMARKS - NOTE VARIABLES PASSED IN COMMON

EXTERNAL REFERENCES - P

ARGUMENT DEFINITION:
NAME DESCRIPTION
X VALUE OF X FOR DERIVATIVES
Y VALUES OF INDEPENDENT VARIABLES
D VALUES OF DERIVATIVES

IMPLICIT REAL*8 (A-H,0-Z)
DIMENSION Y(4),D(4)
COMMON/BPAR /AL,BET,PO,EPS,PF,S,U,DT
COMMON/BINT /IELAS,IBACK,IPR
D(1)=Y(2)
D(2)=Y(3)
D(3)=Y(4)
H=BET*PO
D(4)=(H-Y(1))/AL
RETURN
END
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SUBROUTINE ELAS RIN12210
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1009

600

FUNCTION - DETERMINE ELASTIC SOLUTION
(NO HYDRODYNAMICS)
HELAS , HI ELAS , H2ELAS ,H3ELAS , FORCE

RESTRICTIONS
•

REMARKS - NOTE VARIABLES PASSED IN COMMON

EXTERNAL REFERENCES - NONE

IMPLICIT REAL*8 (A-H.O-Z)
DIMENSION Y0(4)
COMMON/ BPAR /AL,BET,PO,EPS,PF
COMMON/BCD /XLOC(IOO) ,C(100) ,D(100) ,NDX(3) ,NDP(3) ,DX(3) ,DP(3)
COMMON/BELAS /FORCE, HELAS, H1ELAS,H2ELAS, H3ELAS, Wl(4) ,W2(4)
COMMON/BFLAG /IFLAG,IPLOAD
Y0(l)=0.
Y0(2)=0.
Y0(3)=0.
Y0(4)=0.
WRITE(6,1009)
FORMAT(5X,1HX,8X,1HH,9X,2HH' ,7X,3HH' ' ,7X,4HH' ' ' ,6X,4HPRES
$,8X,5HFORCE)
IFUFLAG.EQ.DTHEN

IMIN=NDP(2)+1
IMAX=NDP(2)+NDP(3)

ELSE IF(IFLAG.EQ.2)THEN
IMIN=1
IMAX=NDP(2)

ELSE IF(IFLAG.EQ.3)THEN
IMIN=1
IMAX=NDP(2)+NDP(3)

ELSE IF(IFLAG.EQ.4)THEN
IMIN=1
IMAX=NDP(1)+NDP(2)

END IF
DO 600 I=IMIN,IMAX

YO(1)=YO(1)+C(I)
YO(2)=YO(2)+D(I)

CONTINUE
YO(1)=YO(1)*PO*BET
YO(2)=YO(2)*PO*BET
HELAS=1.-YO(1)
H1ELAS=-YO(2)
H2ELAS=-YO(3)
H3ELAS=-YO(4)
WRITE(6,'(F8.4,5F10.5,F13.5 )')!., HELAS, H1ELAS,H2ELAS,H3ELAS,0. ,0.
FORCE=O.DO
IF(YO(1).GT.1.)THEN

-KIWI^ZU
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CHI=YO(1)-1.0
Y0(l)=1.0
B=CHI/(W2(3)*W1(1)/W1(3)-W2(D)
A=-B*W2(3)/W1(3)
YO(2)=A*W1(2)+B*W2(2)+YO(2)
Y0(3)=0.
YO(4)=A*W1(4)+B*W2(4)
FORCE=YO(4)*AL/BET
HELAS=1.0-YO(1)
H1ELAS=-YO(2)
H2ELAS=-YO(3)
H3ELAS=-YO(4)
WRITE(6,'(F8.4,5F10.5,F13.5)')1.0,HELAS,H1ELAS,H2ELAS

$ ,H3ELAS,0., FORCE
END IF
RETURN
END

SUBROUTINE ERRMSG

FUNCTION - PRINT ERROR TERMS UPON EXIT FROM *ZSCNT*

RESTRICTIONS - CALLED ONLY IF IER.NE.O FROM *ZSCNT*
•

REMARKS - FINAL VALUES OF X AND F FROM EVAL
ARE PRINTED

INPUT/OUTPUT:
UNIT DESCRIPTION
4 TERMINAL OUTPUT
6 OUTPUT FILE

IMPLICIT REAL*8 (A-H,0-Z)
COMMON/BLAST /X1,X2,F1,F2
WRITE(4,'(8X,"W(1)",10X,"W(2)",10X,"F(1)",10X,"F(2)"
+ ,/)')
WRITE(4,'(1X,4(2X,E12.5))')X1,X2,F1,F2
WRITE(6,I(8X,"W(1)",10X,"W(2)",10X,"F(1)",10X,"F(2)"
+ )')
WRITE(6,'(1X,4(2X,E12.5))')X1,X2,F1,F2
RETURN
END
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SUBROUTINE EVAL(X,F,N,PAR)

FUNCTION - DEFINES EQUATIONS FOR H AND H1 WHICH ARE
SOLVED BY SECANT METHOD *ZSCNT*

RESTRICTIONS

REMARKS - NOTE VARIABLE PASSED IN COMMON

EXTERNAL REFERENCES - CONST

INPUT/OUTPUT:
UNIT DESCRIPTION

ARGUMENT DEFINITION:
NAME DESCRIPTION
X X(l) IS DISPLACEMENT AT 1

X(2) IS X1 AT 1
F EQUATIONS (2) FOR H AND H1

N NO. OF EQUATIONS (N=2)
PAR NOT USED

IMPLICIT REAL*8 (A-H,0-Z)
DIMENSION X(N),F(N),PAR(1)
COMMON/BPAR /AL,BET,PO,EPS,PF
COMMON/BCD /XLOC(100),C(100),D(100),NDX(3) ,NDP(3),DX(3) ,DP(3)
COMMON/BCOEFF/RK,RC,R1,R2,XCAV,ICAV
COMMON/BINT /IELAS,IBACK, IPR
COMMON/BLAST /X1LAST,X2LAST,F1LAST,F2LAST
COMMON/BPROF /Cl
COMMON/BFLAG /IFLAG.IPLOAD
H1=1.0-X(1)
H11=C1-X(2)
HO=H1-H11
CALL CONST(HO,H1,PF)
SUM1=X(1)
SUM2=X(2)
INDEX=0
CONTINUE
INDEX=INDEX+1
IF(IFLAG.EQ.1.AND.INDEX.GT.NDP(2)+NDP(3))GOTO 6
IF(IFLAG.EQ.2.AND.INDEX.GT.NDP(2))GOTO 6
IF(XLOC( INDEX). LT.DMIN1U. -EPS, XCAV))GOTO 5
IF(XLOC(INDEX).LT.XCAV)THEN

PRES=0
ELSE

PRES=P(XLOC( INDEX))
END IF
IF(XLOC( INDEX). GT.l. -EPS) PRES=PRES-PO
CONTINUE
SUM1=SUM1+C( INDEX )*PRES*BET
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SUM2=SUM2+D(INDEX)*PRES*BET RIN13760
GOTO 5 RIN13770

6 CONTINUE RIN13780
F(1)=SUM1 RIN13790
F(2)=SUM2 , RIN13800
X1LAST=X(1) r • •-• RIN13810
X2LAST=X(2) RIN13820
F1LAST=F(1) RIN13830
F2LAST=F(2) RIN13840
RETURN . RIN13850
END . RIN13860
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SUBROUTINE EVAL3(X,F,N,PAR)

FUNCTION - DEFINES EQUATIONS FOR H AND H1 WHICH ARE
SOLVED BY SECANT METHOD *ZSCNT*

RESTRICTIONS

REMARKS - NOTE VARIABLE PASSED IN COMMON

EXTERNAL REFERENCES - CONST

INPUT/OUTPUT:
UNIT DESCRIPTION

ARGUMENT DEFINITION:
NAME DESCRIPTION
X X(l) IS DISPLACEMENT AT 1

X(2) IS X' AT 1
F EQUATIONS (2) FOR H AND H1

N NO. OF EQUATIONS (N=2)
PAR NOT USED

IMPLICIT REAL*8 (A-H,0-Z)
DIMENSION X(N),F(N),PAR(1)
COMMON/ BPAR /AL,BET,PO,EPS,PF
COMMON/BCD /XLOC(100),C(100) ,D(100),NDX(3),NDP(3),DX(3),DP(3)
COMMON/ BCOEFF/RK,RC,R1,R2,XCAV, I CAV
COMMON/BINT /IELAS,IBACK,IPR
COMMON/ BLAST /X1LAST,X2LAST,F1LAST,F2LAST
COMMON/ BPROF /Cl
COMMON/ BFLAG /IFLAG,IPLOAD
H1=1.0-X(1)
H11=C1-X(2)
HO=H1-H11
CALL CONST ( HO, H1,PF)
SUM1=X(1)
SUM2=X(2)
INDEX=0
CONTINUE
INDEX=INDEX+1
IF(INDEX.GT.NDP(2)+NDP(3))GOTO 6
IF(XLOC(INDEX).LT.DMIN1(1.-EPS,XCAV))GOTO 5
IF(XLOC( INDEX) .LT.XCAV)THEN

PRES=0
ELSE

PRES=P(XLOC( INDEX))
END IF
PRES=PRES-PO
CONTINUE
SUM1=SUM1+C(INDEX)*PRES*BET
SUM2=SUM2+D( INDEX)*PRES*BET
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GOTO 5 RIN14420
CONTINUE RIN14430
F(1)=SUM1 RIN14440
F(2)=SUM2 RIN14450
X1LAST=X(1) RIN14460
X2LAST=X(2) . RIN14470
F1LAST=F(1) RIN14480
F2LAST=F(2) RIN14490
RETURN RIN14500
END RIN14510
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SUBROUTINE EVAL4(X,F,N,PAR)

FUNCTION - DEFINES EQUATIONS FOR H AND H1 WHICH ARE
SOLVED BY SECANT METHOD *ZSCNT*

RESTRICTIONS

REMARKS - NOTE VARIABLE PASSED IN COMMON

EXTERNAL REFERENCES - CONST

INPUT/OUTPUT:
UNIT DESCRIPTION

ARGUMENT DEFINITION:
NAME DESCRIPTION
X X(l) IS DISPLACEMENT AT 1

X(2) IS X1 AT 1
F EQUATIONS (2) FOR H AND H1

N NO. OF EQUATIONS (N=2)
PAR NOT USED

IMPLICIT REAL*8 (A-H,0-Z)
DIMENSION X(N),F(N),PAR(1)
COMMON/ BPAR /AL,BET,PO,EPS,PF
COMMON/BCD /XLOC(100),C(100) ,D(100),NDX(3) ,NDP(3),DX(3) ,DP(3)
COMMON/BCOEFF/RK,RC,R1,R2,XCAV,ICAV
COMMON/BINT /IELAS,IBACK,IPR
COMMON/BLAST /X1LAST,X2LAST,F1LAST,F2LAST
COMMON/ BPROF /Cl
COMMON/ BFLAG /IFLAG,IPLOAD
H1=1.0-X(1)
H11=C1-X(2)
HO=H1-H11
CALL CONST(HO,H1,PF)
SUM1=X(1)
SUM2=X(2)
INDEX=0
CONTINUE
INDEX=INDEX+1
IF(INDEX.GT.NDP(1)+NDP(2))GOTO 6
IF(XLOC(INDEX).LT.DMIN1(1.-EPS,XCAV))GOTO 5 '
IF(XLOC( INDEX). LT.XCAV)THEN

PRES=0
ELSE

PRES=P(XLOC( INDEX))
END IF
PRES=PRES-PO
CONTINUE
SUM1=SUM1+C(INDEX)*PRES*BET
SUM2=SUM2+D( INDEX)*PRES*BET
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GOTO 5
CONTINUE
F(1)=SUM1
F(2)=SUM2
X1LAST=X(1)
X2LAST=X(2)
F1LAST=F(1)
F2LAST=F(2)
RETURN
END

FUNCTION P(PSI)

FUNCTION - RETURN HYDRODYNAMIC PRESSURE AT PSI

RESTRICTIONS

REMARKS - NOTE VARIABLES PASSED IN COMMON

EXTERNAL REFERENCES - DABS

ARGUMENT DEFINITION:
NAME DESCRIPTION
PSI ... VALUE OF X WHERE PRESSURE IS DESIRED

IMPLICIT REAL*8 (A-H,0-Z)
COMMON/BCOEFF/RK,RC,R1,R2,XCAV,ICAV
COMMON/BINT /IELAS,IBACK,IPR
H«R1+R2*PSI
HINV=1./H
P=0.
IF(PSI.GE.XCAV.AND.DABS(R2).GT.1.D-10)THEN

P=1./R2*(HINV*(-1.+RK/2.*HINV)+RC)
END IF
IF(IBACK.EQ.1)THEN

P=-P
END IF
RETURN
END
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SUBROUTINE PRT(X,Y, ITERM)

FUNCTION - USING DISPLACEMENTS, CONVERT TO FILM
THICKNESSES AND PRINT OUT

RESTRICTIONS

REMARKS

EXTERNAL REFERENCES - P

INPUT/OUTPUT:
UNIT DESCRIPTION
ITERM OUTPUT UNIT . . . . . .

ARGUMENT DEFINITION:
NAME DESCRIPTION
X DIMENSIONLESS LENGTH VARIABLE ,
Y DISPLACEMENT AND ITS DERIVATIVES
ITERM OUTPUT UNIT

IMPLICIT REAL*8 (A-H,0-Z) - : '''.''"
COMMON/BINT /IELAS,IBACK,IPR
COMMON/BPROF /Cl
DIMENSION Y(4) , t

H=1.-Y(1)+C1*(X-1.)
H1=C1-Y(2) ..,.',. , '.'.'.. . ,
H2=-Y(3) . . : . '"' :
H3=-Y(4) !. """
PRES=0 .
IF(IELAS.EQ.O.AND.X.GE.O.)PRES=P(X)
WRITE(ITERM,5)X,H,H1,H2,H3,PRES . .. : . ......
FORMAT(F10.4,5F12.5) ', • 1 T. "
RETURN
E N D . . . . . .
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SUBROUTINE PRTOUT(XX)

FUNCTION - PRINT FILM THICK., PRES., ETC.

RESTRICTIONS

REMARKS - NOTE VARIABLES PASSED IN COMMON

EXTERNAL REFERENCES - DFN1,DFN2,DFN3,PRT,RUK

INPUT/OUTPUT:
UNIT DESCRIPTION
6 OUTPUT FILE

ARGUMENT DEFINITION:
NAME DESCRIPTION
XX(2) DISPLACEMENT, SLOPE OF DISPLACEMENT

IMPLICIT REAL*8 (A-H.O-Z)
COMMON/BINT /IELAS,IBACK,IPR
COMMON/BELAS /FORCE, HELAS, HlELAS, H2ELAS, H3ELAS, Wl(4) ,W2(4)
COMMON/BCD /XLOC(IOO) ,C(100),D(100),NDX(3) ,NDP(3) ,DX(3) ,DP(3)
COMMON/ BFLAG / I FLAG , I PLOAD
DIMENSION XX(2),YO(4),YT(4),DJ(4),CKJ(4,4)
EXTERNAL DFN 1 , DFN2 , DFN3

XNN=1.0
YO(1)=XX(D
YO(2)=XX(2)
Y0(3)=0.
Y0(4)=0.
IF(IBACK.EQ. LAND. FORCE. GT.1.D-8)THEN

WRITE(6,1009)
WRITE(6,'(F8.4,5F10.5,F13.5)')1.0, HELAS, HlELAS, H2ELAS

$ ,H3ELAS,0., FORCE
RETURN
ELSE

WRITE(6,1007)
IF(IPR.EQ.1)THEN

WRITE(6, '("<§")')
ELSE

WRITE(6,'(" ")')
END IF
CALL PRT(XNN,YO,6)

END IF
IF(IPR.EQ.1)THEN

IF(IFLAG.EQ.2.0R.IFLAG.EQ.4)GOTO 111
IPLOAD=1
CALL RUK(-DX(3)/2.,-DP(3)/2.,XNN,XNN,YO,YO,4,DFN2,YT,DJ,CKJ,4i),
CALL PRT(XNN,YO,6)
DO 9 JJ=2,NDP(3)
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J=NDP(3)+1-JJ RIN16430
CALL RUK(-DX(3),-DP(3),XNN,XNN,YO,YO,4,DFN2,YT,DJ,CKJ,4) RIN16440
CALL PRT(XNN,YO,6) RIN16450

9 CONTINUE RIN16460
CALL RUK(-DX(3)/2.,-DP(3)/2.,XNN,XNN,YO,YO,4,DFN2,YT,DJ,CKJ,4) RIN16470
CALL PRT(XNN,YO,6) RIN16480

111 CONTINUE RIN16490
IF(IFLAG.EQ.1)THEN RIN16500

IPLOAD=0 RIN16510
ELSE IF(IFLAG.EQ.2)THEN RIN16520

IPLOAD=1 RIN16530
ELSE IF(IFLAG.EQ.3)THEN RIN16540

IPLOAD=1 RIN16550
ELSE IF(IFLAG.EQ.4)THEN RIN16560

IPLOAD=1 RIN16570
END IF RIN16580
CALL RUK(-DX(2)/2.,-DP(2)/2.,XNN,XNN,YO,YO,4,DFN2,YT,DJ,CKJ,4) RIN16590
CALL PRT(XNN,YO,6) RIN16600
DO 8 JJ=2,NDP(2) RIN16610
J=NDP(2)+1-JJ RIN16620
CALL RUK(-DX(2),-DP(2),XNN,XNN,YO,YO,4,DFN2,YT,DJ,CKJ,4) RIN16630
CALL PRT(XNN,YO,6) RIN16640

8 CONTINUE RIN16650
CALL RUK(-DX(2)/2.,-DP(2)/2.,XNN,XNN,YO,YO,4,DFN2,YT,DJ,CKJ,4) RIN16660
CALL PRT(XNN,YO,6) RIN16670
IF(IFLAG.EQ.1.0R.IFLAG.EQ.2)THEN RIN16680

WRITE(6,'("(§'')') RIN16690
RETURN RIN16700

END IF RIN16710
DO 7 J=1,NDP(1) RIN16720
IF(IFLAG.EQ.4)THEN RIN16730

CALL RUK(-DX(1),-DP(1),XNN,XNN,YO,YO,4,DFN3,YT,DJ,CKJ,4) RIN16740
ELSE RIN16750

CALL RUK(-DX(1),-DP(1),XNN,XNN,YO,YO,4,DFN1,YT,DJ,CKJ,4) RIN16760
END IF RIN16770
CALL PRT(XNN,YO,6) RIN16780

7 CONTINUE RIN16790
END IF RIN16800
WRITE(6,'("<a")') RIN16810
RETURN RIN16820

C . RIN16830
1007 FORMAT(7X,1HX,10X,1HH,11X,2HH',9X,3HH'',9X,4HH''',8X,4HPRES) RIN16840
1009 FORMAT(5X,1HX,8X,1HH,9X,2HH',7X,3HH'',7X,4HH''',6X,4HPRES RIN16850

$,8X,5HFORCE) RIN16860
C RIN16870

END RIN16880
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SUBROUTINE RUK(DX,DP,XO,XN,YO,YN,NO,DFN,YT,D,CK,ID) RIN16890

C
c
c
c
c
c
c
c
c
c
c
c
c
c

9

'••.*.'
FUNCTION - RUNGE-KUTTA INTEGRATION

RESTRICTIONS
, • . • .- ' "' '.'

- REMARKS
i - • ',

EXTERNAL REFERENCES - DFN . .

ARGUMENT DEFINITION: '•
NAME DESCRIPTION ' •

- . • . . .

IMPLICIT REAL*8 (A-H,0-Z)
DIMENSION YO(ID),YN(ID),D(ID),YT(ID),CK(4,ID) "
N=DP/DX+.001
XN=XO
DO 2 J=1,NO

2 YN(J)=YO(J)
DO 5 1=1, N
CALL DFN(XN,YN,D)
DO 6 J=1,NO
CK(1,J)=D(J)*DX

6 YT(J)=YN(J)+CK(l,J)/2.
CALL DFN(XN+DX/2.,YT,D) :

DO 7 J=1,NO
CK(2,J)=D(J)*DX

7 YT(J)=YN(J)+CK(2,J)/2.
CALL DFN(XN+DX/2.,YT,D) '
DO 8 J=1,NO
CK(3,J)=D(J)*DX

8 YT(J)=YN(J)+CK(3,J)
CALL DFN(XN+DX,YT,.D) ,
DO 9 J=1,NO
CK(4,J)=D(J)*DX .
YN(J)=YN(J)+(CK(l,J)+2.*(CK(2,J)+CK(3,J))+CK(4,J))/6.
CONTINUE .

5 XN=XN+DX .
RETURN
END. " . ' . . ' .
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SUBROUTINE ZSCNT (FCN, NSIG.N, ITMAX, PAR, X, FNORM, WK, IER)
IMSL ROUTINE NAME - ZSCNT
THIS PROGRAM SHOULD BE COMPILED IN FORTRAN 4 (FORTHX)

COMPUTER - IBM/DOUBLE

LATEST REVISION - JUNE 1, 1980

PURPOSE - SOLVE A SYSTEM OF NONLINEAR EQUATIONS

USAGE - CALL ZSCNT (FCN, NSIG.N, ITMAX, PAR, X, FNORM,
WK.IER)

ARGUMENTS FCN - THE NAME OF A USER-SUPPLIED SUBROUTINE WHICH
EVALUATES THE SYSTEM OF EQUATIONS TO BE
SOLVED. FCN MUST BE DECLARED EXTERNAL IN
THE CALLING PROGRAM AND MUST HAVE THE
FOLLOWING FORM,
SUBROUTINE FCN(X,F,N,PAR)
DIMENSION X(N),F(N),PAR(1)
F(l)=
.

F(N)=
RETURN
END

GIVEN X(1)...X(N), FCN MUST EVALUATE THE
FUNCTIONS F(1)...F(N) WHICH ARE TO BE MADE
ZERO. X SHOULD NOT BE ALTERED BY FCN. THE
PARAMETERS IN VECTOR PAR (SEE ARGUMENT
PAR BELOW) MAY ALSO BE USED IN THE
CALCULATION OF F(l) .. .F(N) .

NSIG - THE NUMBER OF DIGITS OF ACCURACY DESIRED
IN THE COMPUTED ROOT (INPUT).

N - THE NUMBER OF EQUATIONS TO BE SOLVED AND
THE NUMBER OF UNKNOWNS (INPUT).

ITMAX - THE MAXIMUM ALLOWABLE NUMBER OF ITERATIONS
(INPUT).

PAR - PAR CONTAINS A PARAMETER SET WHICH IS
PASSED TO THE USER SUPPLIED FUNCTION FCN.
PAR MAY BE USED TO PASS ANY AUXILIARY
PARAMETERS NECESSARY FOR COMPUTATION OF
THE FUNCTION FCN. (INPUT)

X - A VECTOR OF LENGTH N. (INPUT/ OUTPUT) ON INPUT
X IS THE INITIAL APPROXIMATION TO THE ROOT.
ON OUTPUT, X IS THE BEST APPROXIMATION TO
THE ROOT FOUND BY ZSCNT.

FNORM - ON OUTPUT, FNORM IS EQUAL TO
F(l)**2+. . .F(N)**2 AT THE POINT X.

WK - WORK VECTOR OF LENGTH (N+l)*(3*N+8)
IER - ERROR PARAMETER. (OUTPUT)

TERMINAL ERROR
IER = 129 INDICATES THAT ZSCNT FAILED TO
CONVERGE WITHIN ITMAX ITERATIONS. THE
USER MAY INCREASE ITMAX OR TRY A NEW

ZSC00010
ZSC00020
ZSC00030
7crnnnAn£oL»UUUit U

ZSC00050
ZSC00060
ZSC00070
ZSC00080
ZSC00090
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INITIAL GUESS.
IER = 130 INDICATES THE ALGORITHM WAS
UNABLE TO IMPROVE ON THE RETURNED VALUE
OF X. THIS SITUATION ARISES WHEN THE
SOLUTION CANNOT BE DETERMINED TO NSIG
DIGITS DUE. TO ERRORS IN THE FUNCTION
VALUES. IT MAY ALSO INDICATE THAT THE
ROUTINE IS TRAPPED IN THE AREA OF A
LOCAL MINIMUM. THE USER MAY TRY A NEW
INITIAL GUESS.

-

PRECISION/HARDWARE - SINGLE AND DOUBLE/H32
- SINGLE/H36.H48.H60

REQD. IMSL ROUTINES - SINGLE/GGUBFS,LEQT2F,LUDATF,LUELMF,LUREFF,
UERSET,UERTST,UGETIO,ZSCNU

- DOUBLE/GGUBFS , LEQT2F , LUDATF , LUELMF , LUREFF ,
UERSET , UERTST , UGETIO , VXADD , VXMUL , VXSTO ,
ZSCNU

NOTATION - INFORMATION ON SPECIAL NOTATION AND
CONVENTIONS IS AVAILABLE IN THE MANUAL
INTRODUCTION OR THROUGH IMSL ROUTINE UHELP

COPYRIGHT - 1980 BY IMSL, INC. ALL RIGHTS RESERVED.

WARRANTY - IMSL WARRANTS ONLY THAT IMSL TESTING HAS BEEN
APPLIED TO THIS CODE. NO OTHER WARRANTY,
EXPRESSED OR IMPLIED, IS APPLICABLE.

SUBROUTINE ZSCNT (FCN, NSIG, N.ITMAX, PAR, X, FNORM, WK, IER) ;•
SPECIFICATIONS FOR ARGUMENTS

INTEGER ' IER, ITMAX,N, NSIG
DOUBLE PRECISION FNORM, PAR(l) ,WK(1) ,X(N)

SPECIFICATIONS FOR LOCAL VARIABLES
INTEGER I1,I2,I3,I4,I5,LNEW,LOLD,N1
EXTERNAL FCN

FIRST EXECUTABLE STATEMENT
N1=N+1
11 = N1*N1+1
12 = I1+N*N1
13 = I2+N1
14 = I3+N1
15 = I44-N1
CALL UERSET (0,LOLD) .
CALL ZSCNU(X,N, FCN, NSIG, N1,WK(1),WK(I1),WK(I2),WK(I3),WK(I4)
* ,WK(I5),ITMAX,PAR,IER)
CALL FCN(X,WK,N,PAR)
FNORM = O.ODO
DO 5 I = l.N

FNORM = FNORM + WK(I)*WK(I)
5 CONTINUE
CALL UERSET (LOLD.LNEW)
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IF (IER.EQ.O) GO TO 9005 ZSC01110
9000 CONTINUE ZSC01120

CALL UERTST(IER,6HZSCNT ) ZSC01130
9005 RETURN ZSC01140

END ZSC01150

FUNCTION GGUBFS (DSEED) ZSC01160
DOUBLE PRECISION DSEED ZSC01170
DOUBLE PRECISION D2P31M.D2P31 ZSC01180
DATA D2P31M/2147483647.DO/ ZSC01190
DATA D2P31 /2147483648.DO/ ZSC01200
DSEED = DMOD(16807.DO*DSEED,D2P31M) ZSC01210
GGUBFS = DSEED / D2P31 ZSC01220
RETURN . ZSC01230
END ZSC01240
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SUBROUTINE LEQT2F (A,M,N,IA,B,IDGT,WKAREA,IER) ZSC01250
DIMENSION A(IA,1),B(IA,1),WKAREA(1) . ZSC01260
DOUBLE PRECISION A,B,WKAREA,D1,D2,WA ZSC01270
IER=0 ZSC01280
JER=0 ZSC01290
j = N*N+1 . ZSC01300
K = J+N ~ ZSG01310
MM = K+N ZSC01320
KK = 0 ZSC01330
MM1 = MM-1 ZSC01340
JJ=1 ZSC01350
DO 5 L=1,N ZSC01360

DO 5 1=1,N ZSC01370
WKAREA(JJ)=A(I,L) ZSC01380
JJ=JJ+1 ZSC01390

5 CONTINUE ZSC01400
CALL LUDATF (WKAREA(l),A,N,N,IDGT,D1)D2,WKAREA(J),WKAREA(K), ZSC01410
1 WA.IER) ZSC01420
IF (IER.GT.128) GO TO 25 ZSC01430
IF (IDGT .EQ. 0 .OR. IER .NE. 0) KK = 1 ZSC01440
DO 15 I = 1,M ZSC01450

CAL'L LUELMF (A,B(I,I),WKAREA(J),N,N,WKAREA(MM)) zscoueo
IF (KK .NE. 0) ZSC01470

* CALL LUREFF (WKAREA(l),B(1,I),A,WKAREA(J),N,N,WKAREA(MM),IDGT, ZSC01480
* WKAREA(K),WKAREA(K),JER) ZSC01490

DO 10 11=1,N ZSC01500
B(II,I) = WKAREA(MM1+II) ZSC01510

10 CONTINUE ZSC01520
IF (JER.NE.O) GO TO 20 ZSC01530

15 CONTINUE ZSC01540
GO TO 25 ZSC01550

20 IER = 131 ZSC01560
25 JJ=1 ZSC01570

DO 30 J = 1,N ZSC01580
DO 30 I = 1,N ZSC01590

A(I,J)=WKAREA(JJ) ZSC01600
JJ=JJ+1 ZSC01610

30 CONTINUE - ZSC01620
IF (IER .EQ. 0) GO TO 9005 ZSC01630

9000 CONTINUE • ZSC01640
CALL UERTST (IER,6HLEQT2F) ZSC01650

9005 RETURN ZSC01660
' END ZSC01670
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SUBROUTINE LUDATF (A,LU,N,IA,IDGT,D1,D2,IPVT,EQUIL,WA,IER)
DIMENSION
DOUBLE PRECISION

v

DATA

A(IA,1),LU(IA,1),IPVT(1),EQUIL(1)
A,LU,D1,D2,EQUIL,WA,ZERO,ONE,FOUR,SIXTN,SIXTH,
RN,WREL,BIGA,BIG,P,SUM,AI,WI,T,TEST,Q
ZERO,ONE,FOUR,SIXTN,SIXTH/0.DO,1.DO,4.DO,

* 16.DO,.0625DO/
IER = 0
RN = N
WREL = ZERO
Dl = ONE
D2 = ZERO
BIGA = ZERO
DO 10 1=1,N

BIG = ZERO
DO 5 J=1,N

P = A(I,J)
LU(I,J) = P
P = DABS(P)
IF (P .GT. BIG) BIG = P

5 CONTINUE
IF (BIG .GT. BIGA) BIGA = BIG
IF (BIG .EQ. ZERO) GO TO 110
EQUIL(I) = ONE/BIG

10 CONTINUE
DO 105 J=1,N

JM1 = J-l
IF (JM1 .LT. 1) GO TO 40
DO 35 I=1,JM1

SUM = LU(I,J)
IM1 = 1-1
IF (IDGT .EQ. 0) GO TO 25
A-I = DABS (SUM)

= ZERO
(IM1 .LT. 1) GO TO 20
15 K=1,IM1
T ='LU(I,K)*LU(K,J)
SUM = SUM-T
WI = WH-DABS(T)

CONTINUE
LU(I,J) = SUM
WI = WI+DABS(SUM)
IF (AI .EQ. ZERO) AI = BIGA
TEST = WI/AI
IF (TEST .GT. WREL) WREL = TEST
GO TO 35
IF (IM1 .LT. 1) GO TO 35
DO 30 K=1,IM1

SUM = SUM-LU(I,K)*LU(K,J)
CONTINUE

SUM

WI
IF
DO

15

20

25

30
LU(I.J) =

35 CONTINUE
40 P = ZERO

DO 70 I=J,N
SUM = LU(I.J)
IF (IDGT .EQ. 0) GO TO 55
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.EQ. RN) GO TO 110
IMAX) GO TO 80

AI = DABS(SUM)
WI = ZERO
IF (JM1 .LT. 1) GO TO 50
DO 45 K=1,JM1

T = LU(I,K)*LU(K,J)
SUM = SUM-T
WI = WI+DABS(T)

45 CONTINUE
LU(I,J) = SUM

50 WI = WI-t-DABS(SUM)
IF (AI .EQ. ZERO) AI = BIGA
TEST = WI/AI
IF (TEST .GT. WREL) WREL = TEST
GO TO 65

55 IF (JM1 .LT. 1) GO TO 65
DO 60 K=1,JM1

SUM = SUM-LU(I,K)*LU(K,J)
60 CONTINUE

LU(I,J) = SUM
65 Q = EQUIL(I)*DABS(SUM)

IF (P .GE. Q) GO TO 70
P = Q
IMAX = I

70 CONTINUE
IF (RN+P
IF (J .EQ.
Dl = -Dl
DO 75 K=1,N

P = LU(IMAX.K)
LU(IMAX,K) = LU(J,K)
LU(J,K) = P

75 CONTINUE
EQUIL(IMAX) = EQUIL(J)

80 IPVT(J) = IMAX
Dl = D1*LU(J,J)

85 IF (DABS(Dl) .LE.
Dl = D1*SIXTH
D2 = D2+FOUR
GO TO 85

90 IF (DABS(Dl)
Dl = D1*SIXTN
D2 = D2-FOUR
GO TO 90

95 CONTINUE
JP1 = J+l
IF (JP1 .GT. N) GO TO 105
P = LU(J,J)
DO 100 I=JP1,N

LU(I,J) = LU(I,J)/P
100 CONTINUE
105 CONTINUE

IF (IDGT .EQ. 0) GO TO 9005
P = 3-N+3
WA = P'-'-WREL
IF (WA+10.DO**(-IDGT) .NE. WA) GO TO 9005

ONE) GO TO 90

.GE. SIXTH) GO TO 95
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IER = 34
GO TO 9000

110 IER = 129
Dl = ZERO
D2 = ZERO

9000 CONTINUE
CALL UERTST(IER,6HLUDATF)

9005 RETURN
END

SUBROUTINE LUELMF (A,B,IPVT,N,IA,X)
DIMENSION A(IA,i:
DOUBLE PRECISION A,B,X,SUM
DO 5 1=1,N

5 X(I) = B(I)
IW = 0
DO 20 1=1,N

IP = IPVT(I)
SUM = X(IP)
X(IP) = X(I)
IF (IW .EQ. 0) GO TO 15
IM1 = 1-1
DO 10 J=IW,IM1

SUM = SUM-A(I,J)*X(J)
10 CONTINUE

GO TO 20
15 IF (SUM .NE. O.DO) IW = I
20 X(I) = SUM

DO 30 IB=1,N
I = N+l-IB
IP1 = 1+1
SUM = X(I)
IF (IP1 .GT. N) GO TO 30
DO 25 J=IP1,N

SUM = SUM-A(I,J)*X(J)
25 CONTINUE
30 X(I) = SUM/A(I,I)

RETURN
END
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SUBROUTINE LUREFF (A,B,UL,IPVT,N,IA,X,IDGT,RES,DX,IER)
DIMENSION A(IA,l)fUL(IA,l),B(l),X(l),RES(l),DX(l),
DIMENSION ACCXT(2)
DOUBLE PRECISION A,ACCXT,B,UL,X,RES,DX,ZERO,XNORM,DXNORM
DATA ITMAX/75/,ZERO/0.DO/
IER=0
XNORM = ZERO
DO 10 1=1, N.

XNORM = DMAX1(XNORM,DABS(X(I)))
10 CONTINUE

IF (XNORM .ME. ZERO) GO TO 20
IDGT = SO
GO TO 9005

20 DO 45 ITER=1,ITMAX
-DO 30 1=1,N

ACCXT(l) = O.ODO
ACCXT(2) = O.ODO

CALL VXADD(B(I),ACCXT)
DO 25 J=1,N

CALL VXMUL(-A(I,J),X(J),ACCXT)
25 CONTINUE

CALL VXSTO(ACCXT,RES(I))
30 CONTINUE

CALL LUELMF (UL,RES,IPVT,N,IA,DX)
DXNORM = ZERO
XNORM = ZERO
DO 35 1=1,N

X(I) = X(I) + DX(I)
DXNORM = DMAX1(DXNORM,DABS(DX(I)))
XNORM = DMAX1(XNORM,DABS(X(I)))

35 CONTINUE
IF (ITER .NE. 1) GO TO 40
IDGT = 50
IF (DXNORM .NE. ZERO) IDGT = -DLOG10(DXNORM/XNORM)

40 IF (XNORM+DXNORM .EQ. XNORM) GO TO 9005
45 CONTINUE

IER = 129
9000 CONTINUE

CALL UERTST(IER,6HLUREFF)
9005 RETURN

END

i SUBROUTINE UERSET (LEVEL,LEVOLD)
INTEGER LEVEL,LEVOLD
LEVOLD = LEVEL
CALL UERTST (LEVOLD,6HUERSET)
RETURN
END

ZSC03160
IPVT(1)ZSC03170
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SUBROUTINE UERTST (IER,NAME)
INTEGER IEQ
INTEGER*2 • • , NAME(3),NAMSET(3),NAMEQ(3)
DATA NAMSET/2HUE,2HRS,2HET/
DATA NAMEQ/2H ,2H ,2H /
DATA LEVEL/4/ , IEQDF/.0/ , IEQ/ 1H=/
IF (IER.GT.999) GO TO 25
IF (IER.LT..-32) GO TO 55
IF (IER.LE.128) GO TO 5
IF (LEVEL.LT.l) GO TO 30
CALL UGETIO(1,NIN,IOUNIT)
IF (IEQDF.EQ.1) WRITE(IOUNIT,35) IER,NAMEQ,IEQ,NAME
IF (IEQDF.EQ.O) WRITE(IOUNIT,35) IER,NAME
GO TO 30

5 IF (IER.LE,.64) GO TO 10
IF (LEVEL.LT.2.) GO TO 30
CALL UGETIO(1,NIN,IOUNIT)
IF (IEQDF.EQ.1) WRITE(IOUNIT,40) IER,NAMEQ,IEQ,NAME
IF (IEQDF.EQ.O) WRITE(IOUNIT,40) IER.NAME
GO TO 30

10 IF (IER.LE.32) GO TO 15
IF (LEVEL.LT.3) GO TO 30
CALL UGETIO(1,NIN,IOUNIT)
IF (IEQDF.EQ.1) WRITE(IOUNIT,45) IER,NAMEQ,IEQ,NAME
IF (IEQDF.EQ.O) WRITE(IOUNIT,45) IER,NAME
GO TO 30

15 CONTINUE
DO 20 1=1,3

IF (NAME(I).NE.NAMSET(I)) GO TO 25
20 CONTINUE

LEVOLD = LEVEL
LEVEL'= IER
IER = LEVOLD
IF (LEVEL.LT.O) LEVEL = 4
IF (LEVEL.GT.4) LEVEL = 4
GO TO 30

25 CONTINUE
IF (LEVEL.LT.4) GO TO 30
CALL UGETIO(1,NIN,IOUNIT)
IF (IEQDF.EQ.1) WRITE(IOUNIT,50) IER,NAMEQ,IEQ,NAME
IF (IEQDF.EQ.O) WRITE(IOUNIT,50) IER,NAME

30 IEQDF = 0
RETURN

35 FORMAT(19H *** TERMINAL ERROR,10X,7H(IER = ,13,
1 20H) FROM IMSL ROUTINE ,3A2,A1,3A2)

40 FORMAT(36H *** WARNING WITH FIX ERROR (IER = ,13,
1 20H) FROM IMSL ROUTINE ,3A2,A1,3A2)

45 FORMAT(18H *** WARNING ERROR,1IX,7H(IER = ,13,
1 20H) FROM IMSL ROUTINE ,3A2,A1,3A2)

50 FORMAT(20H *** UNDEFINED ERROR,9X,7H(IER = ,15,
1 - 20H) FROM IMSL ROUTINE ,3A2,A1,3A2)

55 IEQDF = 1
DO 60 1=1,3

60 NAMEQ(I) = NAME(I)
65 RETURN
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END

SUBROUTINE UGETIO(IOPT,NIN,NOUT)
INTEGER IOPT,NIN,NOUT
INTEGER NIND,NOUTD
DATA . NIND/5/.NOUTD/6/
IF (IOPT.EQ.3) GO TO 10
IF (IOPT.EQ..2) GO TO 5
IF (IOPT.NE.1) GO TO 9005
NIN = NIND
NOUT = NOUTD
GO TO 9005

5 NIND = NIN
GO TO 9005

10 NOUTD = NOUT
9005 RETURN

END

SUBROUTINE VXADD(A.ACC)
DOUBLE PRECISION A,ACC(2)
DOUBLE PRECISION X.Y.Z.ZZ
X = ACC(l)
Y = A
IF (DABS(ACC(1)).GE.DABS(A)) GO TO 1
X = A
Y = ACC(l)

1 Z = X+Y
ZZ = (X-Z)+Y
ZZ = ZZ+ACC(2)
ACC(l) = Z+ZZ
ACC(2) = (Z-ACC(1))+ZZ
RETURN
END
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LX(8),LI(4)

I/O/

SUBROUTINE VXMUL (A.B.ACC)
DOUBLE PRECISION A,B,ACC(2)
DOUBLE PRECISION X,HA,TA,HB,TB
INTEGER
LOGICAL*!
EQUIVALENCE
DATA
X = A
LI(4) = LX(5)
IX(2) = 0
I = (I/16)*16
LX(5) = LI(4)
HA=X
TA=A-HA
X = B
LI(4) = LX(5)
IX(2) = 0
I = (I/16)*16
LX(5) = LI(4)
HB = X
TB = B-HB
X = TA*TB
CALL VXADD(X,ACC)
X = HA'-TB
CALL VXADD(X.ACC)
X = TA-HB
CALL VXADD(X.ACC)
X = HA*HB
CALL VXADD(X.ACC)
RETURN
END

SUBROUTINE VXSTO (ACC.D)
DOUBLE PRECISION ACC(2),D
D = ACC(1)+ACC(2)
RETURN
END
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SUBROUTINE ZSCNU (X,N,FCN,NDIGIT,N1,A,Z,Y,XNORM,B,WK,
1 MAXIT,PAR,IER)
INTEGER IER,MAXIT,N,NDIGIT,N1
DOUBLE PRECISION A(N1, 1) ,B(1) ,PAR(1) ,WK(1) ,X(1) ,XNORM(1) ,

INTEGER

DOUBLE PRECISION

I,IBMAX,IBNORM,IDGT,IEVAL,ITER,J,JER,JI,JS,
MI, NRS, NSTART
BIG, BNORM, CFACT.DX, EPS, HALF, HLMAX,RACC, REPS,
RRX,RX,SFACT, SMALL, TEST, TN.TR
DSEED
SMALL/Z3410000000000000/

DOUBLE PRECISION
DATA
IER = 0
DSEED = 12345.ODO
CFACT = 0.99DO
BIG = 5.0D5
SFACT = 0.1DO
IBMAX = 50
NRS = 2
RACC - DMIN1(DMAX1(SMALL,10.0DO**(-NDIGIT)),0.1DO)
REPS = DSQRT(SMALL)
HLMAX = 3.ODO
ITER = 0
IEVAL = 0
NSTART = 0
IBNORM = 0
RX = l.ODO
RRX = O.ODO
EPS = O.ODO
DO 5 1=1,N

B(I) = O.DO
A(N1,I) = l.ODO
Z(I.Nl) = X(I)

5 CONTINUE
B(N1) = 1-DO
A(N1,N1) = l.ODO
JI = Nl
IEVAL = IEVAL+1
CALL FCN (Z(1,N1),A(1,N1),N,PAR)
BNORM = O.ODO
DO 10 1=1,N

BNORM = BNORM+A(I,N1)*A(I,N1)
10 CONTINUE

XNORM(Nl) = BNORM
15 IF (NSTART.EQ.NRS) EPS = EPS*10.ODO

IF (NSTART.EQ.O) EPS = DMINl(RX.REPS)
IF (EPS.GT.BIG) GO TO 120
NSTART = MOD(NSTART,NRS)+l
DO 30 J=1,N

DO 25 1=1,N
20 TR = (GGUBFS(DSEED)-0.5DO)*2.ODO

IF (DABS(TR).LT.O.IDO) GO TO 20
Z(I,J) = X(I)+DMAX1(DABS(X(I)),0.1DO)*TR*EPS

25 CONTINUE
IEVAL = IEVAL+1
CALL FCN (Z(1,J),A(1,J),N,PAR)
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30 CONTINUE
DO 35 J=1,N

XNORM(J) = O.DO
DO 35 1=1, N

XNORM(J) = XNORM(J)+A(I,J)*A(I,J)
35 CONTINUE
40 JI = Nl

JS = JI
DO 45 J=1,N

IF (XNORM(J).GT.XNORM(JS)) JS = J
IF (XNORM(J).LT.XNORM(JI)) JI = J

45 CONTINUE
IF (XNORM(JI).EQ.O.DO) GO TO 125
IF (XNORM(JI).GT.SFACT*BNORM) GO TO 50
BNORM = XNORM(JI)
IBNORM = ITER

50 IF ((ITER-IBNORM).GT.IBMAX) GO TO 120
ITER = ITER+1
IF (ITER.GE.MAXIT) GO TO 115
DO 55 MI=1,N1

. Y(MI) = B(MI)
55 CONTINUE

IDGT = 0
CALL LEQT2F (A, 1,N1,N1,Y,IDGT,WK, JER)
IF (JER.NE.O) GO TO 85
DO 65 1=1, N

DX = O.ODO
DO 60 J=1,N1

DX = DX + Y(J)*Z(I,J)
60 CONTINUE

X(I) = DX
65 CONTINUE

HALF = O.DO
70 IEVAL = IEVAL+1

CALL FCN (X,Y,N,PAR)
TN = O.DO
DO 75 1=1, N

TN = TN+Y(I)*Y(I)
75 CONTINUE

IF (TN.LT.XNORM(JS)) GO TO 95
HALF = HALF+l.DO
IF (HALF.GT.HLMAX) GO TO 85
DO 80 1=1 ,N •

X(I) = (X(I)+HALF*Z(I,JI))/(HALF+1.0DO)
80 CONTINUE

GO TO 70
85 IF (JI.EQ.N1) GO TO 15

XNORM(Nl) = XNORM(JI)
DO 90 1=1, N

90 CONTINUE
GO TO 15

95 IF ((HALF. NE. O.DO). OR. (ITER. EQ.l)) GO TO 105
RX = SMALL

ZSC05400
ZSC05410
ZSC05420
ZSC05430
ZSC05440
ZSC05450
ZSC05460
ZSC05470
ZSC05480
ZSC05490
ZSC05500
ZSC05510
ZSC05520
ZSC05530
ZSC05540
ZSC05550
ZSC05560
ZSC05570
ZSC05580
ZSC05590
ZSC05600
ZSC05610
ZSC05620
ZSC05630
ZSC05640
ZSC05650
ZSC05660
ZSC05670
ZSC05680
ZSC05690
ZSC05700
ZSC05710
ZSC05720
ZSC05730
ZSC05740
ZSC05750
ZSC05760
ZSC05770
ZSC05780
ZSC05790
ZSC05800
ZSC05810
ZSC05820
ZSC05830
ZSC05840
ZSC05850
ZSC05860
ZSC05870
ZSC05880
ZSC05890
ZSC05900
ZSC05910
ZSC05920
ZSC05930
ZSC05940

179



FILE: ZSCNT FORTRAN Al IMSL FRI 06/17/83 08:20:26 PAGE 14 OF 14

DO 100 1=1,N ZSC05950
RX = DMAX1(RX,DABS(X(I)-Z(I,JI))/DMAX1(DABS(X(I)),0.1DO)) ZSC05960

100 CONTINUE ZSC05970
RRX = DMAX1(-DLOG10(RX),O.ODO) ZSC05980
IF (RX.LE.RACC) GO TO 125 ZSC05990

105 IF (TN.LT.CFACT*XNORM(JI)) NSTART = 0 ZSC06000
XNORM(JS) = TN . ZSC06010
DO 110 1=1,N ZSC06020

Z(I,JS) = X(I) ZSC06030
A(I,JS) = Y(I) ZSC06040

110 CONTINUE ZSC06050
GO TO 40 ZSC06060

115 IER = 129 ZSC06070
GO TO 125 ZSC06080

120 IER = 130 i ZSC06090
125 DO 130 I=1,N ZSC06100

X(I) = Z(I,JI) ZSC06110
130 CONTINUE , ZSC06120

RETURN ZSC06130
END ZSC06140
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^^«Ĉej(iurff0100N*
-

oOMft

TTi90tk

11vl

X

tnuiu3oeIUnzSiPROJEC

§

ICHARGE

CAICU1ATI

1
9
0



••JL»5tiIi

<10•j-#/5if3&i1(?rO\<J$r.1

°f&
(X5acCjĵ
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TABLE D-2

QUALITATIVE SUMMARY OF COMPARISON

BETWEEN ANALYTICAL RESULTS AND TESTS

RING

Babbitt

Small C

Large C

Small R

Carbon Graphite

Rulon

^Qo THEO Qo EXP'

High po

2

3

2

2.5

2.5

Low p

1

1.5

0.5

3 - 2

2.5

(pfm THEO/Pfm EXP^

High PQ

2

1.5 - 0.5

2

1 - 2

1

Low p

1

0.7 - 0.2

1 - 0.3

1.5 - 4

1.5 - 0.5
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