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SUMMARY 

A method is developed for sensitivity analysis and optimization of 

nodal point locations in connection with vibration reduction. A straight­

forward derivation of the expression for the derivative of nodal locations 

is given, and the role of the derivative in assessing design trends is 

demonstrated. An optimization process is developed which uses added lumped 

masses on the structure as design variables to move the node to a 

preselected location - for example where low response amplitude is required 

or to a pOint which makes the mode shape nearly orthogonal to the force 

distribution, thereby minimizing the generalized force. The optimization 

formulation leads to values for added masses that adjust a nodal location 

while minimizing the total amount of added mass required to do so. As an 

example, the node of the second mode of a cantilever box beam is relocated 

to coincide with the centroid of a prescribed force distribution, thereby 

reducing the generalized force substantially without adding excessive mass. 

A comparison with an optimization formulation that directly minimizes the 

generalized force indicates that nodal placement gives essentially a minimum 

generalized force when the node is appropriately placed. 

INTRODUCTION 

The current trend in engineering design of aircraft and spacecraft is 

to incorporate in an integrated manner, various design requirements and to 

do so at an early stage in the design process (refs. 1,2). Incorporation 

of vibration design requirements is one example of this. The conventional 

approach of meeting vibration requirements has been to "fix" a design for 

vibration, sometimes after a serious problem has been detected. Technology 

advances are leading to more complicated aircraft and spacecraft with higher 



speed and performance requirements and, therefore, it is more important to 

include vibration requirements early in the design process. 

In helicopter rotor blade and fuselage design, stringent requirements 

on ride comfort, stability, fatigue life of structural components, and 

stable locations for electronic equipment and weapons lead to design 

constraints on vibration levels (refs. 3-5). Some of the methods previously 

used to control structural vibration in rotor blades include pendulum 

absorbers (ref. 6), active isolation devices (ref. 1), additional damping 

(refs. 5, 8), vibration absorbers which create "anti-resonances" (refs. 9, 

10), and tuning masses to place frequencies away from driving frequencies 

(refs. 5, 11-14). Efforts to incorporate the above concepts for vibration 

reduction in systematic optimization techniques are described in references 

10, 15-19. References 20, 21 contains surveys of applications of 

optimization methods for vibration control of helicopters. 

Recently, the concept of "modal shaping" has been proposed as a method 

to reduce structural vibration, especially in helicopters (refs. 3, 4). In 

this method, vibration modes of rotor blades are altered through structural 

modification to make them nearly orthogonal to the air load distribution -

thus reducing the generalized (modal) force. This paper deals with the 

concept of nodal point placement which is related to modal shaping and 

consists of modifying the mass distribution of a structure to place the node 

of a mode at a desirable location. Typical candidates for nodal point 

placement are locations where low response amplitude is required such as 

pilot or passenger seats, locations of sensitive electronic equipment, 

weapon platforms or engine mounts. Nodal point placement also has the 

potential for reducing overall response by placing a node at a strategic 

location of a force distribution to reduce the generalized force. 
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The objectives of this paper are to develop and demonstrate the concept 

of nodal point placement and develop a mathematical optimization procedure 

based on this concept to reduce vibration. An important ingredient in the 

optimization procedure is the derivative of the nodal point location with 

respect to a design variable. This derivative quantifies the sensitivity of 

a nodal location to a change in a design variable and is referred to as a 

sensitivity derivative. The sensitivity derivative of the nodal location is 

derived in this paper. The equation involves the derivative of the 

vibration mode with respect to the design variable and the slope of the mode 

shape at the nodal point and is easily implemented in a vibration analysis 

program using available or easily-computed quantities. Analytical results 

are presented for the sensitivity derivatives for a beam model of a rotor 

blade and compared with finite differences for an independent check. The 

sensitivity derivatives have been employed in an optimization procedure for 

placing a node at a specified location by varying the sizes of lumped masses 

while minimizing the. sum of these masses. Optimization results are shown 

for placement of a node at a prescribed location on the beam model. 

SENSITIVITY DERIVATIVE OF NODAL POINT LOCATION 

. The modal deflection normal to the length of a one-dimensional 

structure is denoted u(x,v) and represented by the solid line in figure 

1.The deflection and the nodal point location denoted by x (v) are both np 

functions of a design variable, v, and when the design variable is 

perturbed, the deflection shape changes to the shape shown by the dashed 

line. The derivative of the nodal location with respect to a design 

variable gives information on how design changes affect nodal point 

. location~ and thus vibration response. As will be seen later in this paper, 
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the sensitivity derivative is an important ingredient in optimization of 

nodal locations. 

The formulation of the derivative of the nodal location is based on 

expanding the perturbed mode in a Taylor series about the nominal nodal 

point. Neglecting the higher order terms, we have the equation: 

u(x + dx ,v + dv) .. u(x ,v) + ~ul dx + ~ul dv np np np oX np oV . x ,v x ,v np np 

(1) 

The term on the left side of the equation and the first term on the right 

are displacements of the nodal points of the perturbed and nominal mode 

shapes; respectively which are zero. Since x = x (v), it follows that np np 

dx 
dx .. ~ dv. Therefore, from (1) np dv 

~~I dXnp x ,v np 
1 ( I 

dx ) au au np au 
+ - dv .. - -- + -I dv = 0 ov ax dv oV x ,v x ,v x ,v np np np 

(2) 

Noting that dv is arbitrary and solving for dXnp/dV leads to the formula for 

* the nodal point derivative 

dXnp [ ou/ov ] 
~ .. - au/ax x v 

np' 

r-----
Equation (3) is also applicable to nodal line movement in two-dimensional 
structures. If a nodal line is parallel to the y-aXis of a plate for 
example, then equation (3) gives the change in the x-location with respect 
to change in a design variable. For a nodal line parallel to the x-aXiS, 
equation (3) applies; provided x is replaced by y in the equation. For the 
general case where the nodal line is not parallel to the x or y direction, 
equation (3) gives the derivative of the location of a nodal line in a 
direction normal to the line. 
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The two ingredients in the formula are au/av, the derivative of the mode 

shape at the nodal point and au/ax, the slope of the mode shape at the nodal 

point. The value of au/ax is obtained from the nominal mode shape; and the 

value of dU/dV is obtained by Nelson's method (ref. 22) which will be 

described in the next section. 

IMPLEMENTATION OF SENSITIVITY ANALYSIS 

° GENERAL APPROACH 

The calculation of derivatives of nodal point locations has been 

implemenOted in a general purpose fini te element program (ref. 23). In a 

finite element analysis, the components of the vibration eigenvector are 

generally available only at the grid points of the model. Linear 

interpolation is used to locate the node between grid pOints. Once the node 

location is found, interpolation is used to obtain the slop~ of the mode 

shape au/ax at the node and the mode shape derivative au/av at the node. It 

is noted that the modal deflection u is a subset of the eigenvector $ and 

therefore the derivative dU/dV is a subset of the eigenvector derivative 

a$/ dV. 

NELSON'S METHOD FOR EIGENVECTOR DERIVATIVES 

A free-vibration problem with no damping, is governed by the following 

eigenvalue equation 

(K - AM) $ = 0 (4 ) 

In equation (4) K is the stiffness matrix, M is the mass matrix, $ is 

the eigenvector, and A is the eigenvalue equal to the square of the 

frequency. The eigenvector is normalized such that the generalized mass is 
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unity 

(5) 

By taking the derivative of equation (4) with respect to a design variable v 

the following equation emerges: 

(K - AM) dIP .. Q MIP - <!~ IP + A dM IP 
dv dv dv dv (6) 

Because this equation is singular a direct solution for ~! is not possible. 

However, the general solution to equation (6) is expressible in the 

following form: 

dIP 
dv = q + cIP 

where q is a particular solution found by setting one component of the 

eigenvector derivative equal to zero and deleting the corresponding row and 

column from equation (6) and solving for the remaining components. The 

constant c is found by taking the derivative of the normalization condition 

in equation (5) and substituting equation (1) into the resulting expression. 

(8) 

c = - (9) 

EXAMPLE PROBLEM 

The example problem used for the sensitivity analysis study is a 

cantilever beam representation of a rotor blade developed in reference 14 

and shown in figure 2. The beam in figure 2(a) is 193 inches (4.9 m) long 

and is modeled by 10 finite elements of equal length. The model contains 

both structural mass and lumped (non-structural) masses. The beam has a box 

cross section as shown in figure 2(b) and the material properties and cross 
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sectional dimensions are summarized in table 1. There are eight lumped 

masses at various locations along the length of the beam •. The values of the 

masses are the design variables in this study and their values and locations 

are shown in table 1. The values of the masses were generated in reference 

14 in an optimization procedure to minimize mass subject to frequency 

constraints and serve as nominal values for the current sensitivity study. 

Sensitivity studies are performed in which the derivative of the nodal 

location for the second mode is computed with respect to the lumped masses. 

RESULTS OF SENSITIVITY ANALYSIS 

Derivatives of the nodal point location for the second mode were 

calculated using equation (3). For an independent check on the 

implementation of equation (3), the derivatives were also calculated by 

finite differences. The finite difference derivatives in contrast to the 

analytical derivatives (equation 3) require a precise determination of the 

nodal location. The reason for this is that the quantities in equation (3), 

au/av and au/ax, vary slowly in the vicinity of the node. Conversely the 

finite difference method subtracts the nominal and perturbed node locations 

to calculate the derivative and even small errors in these values can lead 

to large errors in the derivatives. The finite difference calculations 

begin with an eigenvalue analysis for the nominal design variables. From 

examination of the eigenvector, the element containing the node is 

identified. The displacements and slopes at the end points of this element 

are extracted from the eigenvector and used to define a third order 

polynomial. The root of the polynomial that lies in the element is the 

nodal location. Next, the design variable is perturbed (by 0.1 percent) and 
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the process is repeated to find the perturbed nodal location. A forward 

finite difference formula is then used to calculate the derivative. 

The sensitivity results are shown in table 2. The two methods generally 

agreed within about two percent. Examination of table 2 shows both positive 

and negative values of the derivatives. A positive value indicates that an 

increase in the mass moves the nodal point to the right of the nominal 

location and a negative value indicates that an increase in mass moves the 

node to the left. The derivatives in table 2 show that increases in the 

masses at grid points 10 and 11 are the most effective ways (per unit mass) 

to move the node to the right. Similarly, decreases in the masses at grid 

points 10 and 11 or increases in the masses at grid points 6 and 7 have the 

largest effects (per unit mass) in moving the node to the left. 

OPTIMIZATION FORMULATION 

In this section, we will show how node locations are adjusted using 

mathematical optimization. The optimization problem is to place a node at a 

desired location by varying the magnitudes of lumped masses while minimizing 

the total lumped mass. CONMIN, a general-purpose optimization program, 

(ref. 24) is utilized as the optimizer. The formulation of the problem 

consists of defining an objective function (the quantity to be minimized); 

the constraints (limitations on the behavior of the model); and the design 

variables (the parameters of the model to be changed in order to find the 

optimum design). The optimizer requires derivatives of both the objective 

function and the constraints. The formulation for this problem is as 

follows: 

The objective function, f, is the sum of the lumped masses, i.e. 
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f (10) 

The constraint, g, which must be negative or zero for an acceptable design, 

expresses the requirement that the nodal point xnp be placed within a 

distance 6 from a desired location x that is, o 

g = Ix - x I - 15 ~ 0 (11) np 0 

The design variables consist of the sizes of the lumped masses. Constraints 

on the largest and smallest acceptable values of the design variables are 

required by the optimizer. These values are arbitrarily set. The 

derivatives of the objective function with respect to the design variables 

are 

of of 
avi = aMi 1 .0 i 1,2, ••• ,N (12) 

and the derivatives of the constraints are equal to positive or negative 

values of the nodal point sensitivity derivatives i.e. 

oX og ± np 
ov i" "av;- ( 13) 

calculated from equation (3). 

OPTIMIZATION PROCEDURE 

The sequence of operations in the optimization procedure is illustrated 

in figure 3. The overall procedure consists of two nested loops. Each pass 

through the outer loop is referred to as a cycle which involves a full 

analysis and a sensitivity calculation. The first computation is to 

generate the structural model of the beam, excluding the values of lumped 

masses. As the first step in the outer loop the lumped masses (the current 

" design variables) are inserted into the model. Next, the vibration analysis 
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is performed and the nodal location and the slope of the mode shape at the 

nodal point are found by interpolation of grid-point eigenvector 

displacements. The sensitivity analysis block includes calculating the 

vibration mode shape derivatives by Nelson's method and calculating the 

nodal point derivative from equation (3). The inner loop is contained in 

the optimizer block which consists of the optimization program of reference 

24 and an approximate analysis for calculating the objective function and 

the constraints (see ref. 25). The approximate equations are 

f=f +I:~AV (14) 
. 0 i dV i i 

g = g + 1: ~ A vi (15) 
o i dV i 

These equations give the change in the objective function from f to f and 
o 

the change in a constraint from g to g corresponding to a change in design 
o 

variables AVi~ To assure that the linear approximations in eqs. 14 and 15 

are valid, the size of AV i is limited to ten percent of vi. Use of these 

approximations saves computational time and effort in the inner loop where 

many evaluations of the objective function and constraints are required. 

Development of these and other techniques and demonstration of their 

benefits are described in reference 26. Once the inner loop iterations have 

converged the next cycle of the outer loop begins using the current design 

variables as the new values of the lumped masses. These masses are then 

inserted in the structural model and the process continues until convergence 

of the outer loop is achieved. 
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NODAL PLACEMENT OPTIMIZATION 

The model used in the optimization procedure is shown in figure 4 and 

is the same beam structure described in figure 2 and table 1. The node for 

the second mode is to be placed within 0 a 1.0 inch (.0254 m) of 

x = 164 inches (4.16 m). The location x is chosen because it is the o 0 

* centroid of a representative air load distribution (fig. 5) given in 

reference 3 for a rotor blade. The design variables are the masses at 

joints 9, 10, and 11 having initial values of 5.21 Ibm (2.36 kg), 6.55 Ibm 

(2.97 kg), and 6.60 Ibm (2.99 kg) (from ref. 14) - a total of 18.36 pounds 

(8.32 kg), and the initial location of the node is 154.7 in (3.929 m). The 

upper and lower bounds on the design variables are arbitrarily set at 50. 

Ibm (23 kg) and 0.5 Ibm (.23 kg), respectively. 

The optimization procedure converged to the final design shown in table 

** 3, in which the masses were 0.5 Ibm (.23 kg), 3.70 (1.68 kg), and 20.25 Ibm 

(9.19 kg) - a total of 24.45 Ibm (11.10 kg), and the nodal point is located 

at 163 inches (4.140 m). The optimization history is shown in figure 6. 

The optimizer initially adds mass to bring the nodal point to within one 

inch of the desired location (fig. 6a). For the remainder of the cycles, as 

shown in figure 6b, the optimizer concentrates on minimizing the total mass 

by shifting mass among the three locations. Basically, mass was shifted 

from the two inboard locations to the tip where mass is most effective in 

moving the nodal point. For example, the mass at grid point 9 is reduced 

from 5.21 lbs (2.36 kg) to 0.5 lbs (.23 kg) while the tip mass is increased 

* As shown in Appendix B, placing the nodal point for the second mode of a 
beam at the centroid of the force distribution results in a near-minimum 
value of the corresponding generalized force • 

. ** Lower bound 
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from 6.6 Ibs (2.99 kg) to 20.25 Ibs (9.19 kg). Excessive addition of mass 

is avoided (only 6 additional pounds were needed) because of the 

effectiveness of relocating mass to the tip. 

EFFECT OF NODAL POINT PLACEMENT ON GENERALIZED FORCE 

One of the potential applications of nodal point placement is the 

reduction of overall vibration response by generalized force minimization. 

In this section, the generalized force from a design based on nodal point 

placement is compared with the true minimum obtained by a method which will 

now be described. 

FORMULATION OF GENERALIZED FORCE MINIMIZATION 

In this formulation the objective function is the generalized force 

given by 

where ~ is the eigenvector and F is a vector of the distributed force. The 

design variables are the same as those in the previous optimization example; 

i.e., lumped masses. In order for the comparison of designs to be valid, a 

constraint is imposed that the sum of the masses used as design variables be 

* less than or equal to M 24.45 Ibm (11.10 kg) - the mass that was required 

in the nodal point placement optimization. Therefore, the constraint is 

N 
g = E 

i=1 

The derivative of the objective function is 

(11) 

where the eigenvector derivative a~/avi is obtained by Nelson's method. The 

derivative of the constraint is given by 
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ag ag 
av i = aM i = 1. 0 i 1,2, ••• ,N (19 ) 

This optimization formulation was used to minimize the generalized 

force for the steady state air load distribution in figure 5. 

COMPARISON OF DESIGNS 

The results of this study are summarized in table 4, in which the 

design variables, total mass, generalized force, and nodal point locations 

are shown for three designs: the initial deSign, the final design from node 

placement, and the final design from the direct minimization of the 

generalized force. The node placement procedure is very effective in 

minimizing the generalized force - giving 10.8 lbf (48.04 N), compared to 

10.0 lbf (44.48 N) from the direct method when both were started at a design 

with a generalized force of 20.8 lbf (92.52 N). The direct minimization 

procedure, while not dealing directly with the nodal location nevertheless 

places the node essentially at the same point as the node placement design: 

163.8 inches (4.161 m) vs. 163.0 inches (4.140 m). 

CONCLUDING REMARKS 

This paper has described sensitivity analysis and optimization methods 

for adjusting mode shape nodal point locations with application to vibration 

reduction. The paper begins with a derivation of an expression for the 

derivative of the nodal location with respect to a design variable. 

Sensitivity analyses were performed on a demonstration problem which 

consisted of a box beam model of a helicopter rotor blade. In these 

analyses~ the derivatives of the nodal location for the second mode with 

respect to the magnitudes of lumped masses on the beam were calculated. It 
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was shown that these derivatives gave useful information on the effect of 

the masses on the node location and indicated which masses were most 

effective in moving the nodal point. Next, the paper described an 

optimization procedure to place a node at a prescribed location by adjusting 

the magnitudes of lumped masses while minimizing the sum of these masses. A 

general-purpose optimization program was used and the nodal point 

derivatives were a key ingredient in the procedure. This optimization 

procequre ~as then used in an example where the nodal pOint for the second 

mQde of a cantilever beam model of a rotor blade was placed at a location 

close to the centroid of a force distribution. This location was chosen as 

a result of a numerical study (described in an appendix) where it was shown 

that this choice for the nodal location gave a minimum generalized force. 

We ~ere successful in moving the node to the desired location requiring only 

six pounds of lumped mass on a 193-1nch (4.90 m) beam that weighed 117 

poupds (53.1 kg). 

Finally, to evaluate the potential for nodal placement to reduce 

vibration, the generalized force for the second mode was calculated and 

compared to the minimum generalized force obtained in this paper by a 

separate optimization procedure. It was found that the nodal placement 

procedure gave a generalized force which was very close to the minimum. 

The results in this paper suggest that adjusting the mode shapes of 

structures by relocating nodal points has potential for reducing both 

overall and local response levels in vibrating structures. 
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APPENDIX A: NOMENCLATURE 

width of box cross section 

constant used in Nelson's method (eq. 9) 

side wall thickness of box cross section (fig. 2) 

Young's modulus 

force vector 

objective function 

constraint function 

height of box cross section 

identity matrix 

stiffness matrix 

length of beam 

mass matrix 

lumped mass equal to ith design variable 

sum of design variables (mass) 

number of design variables 

particular solution in Nelson's method 

upper and lower wall thickness of box cross section 
(fig. 2) 

modal deflection 

design variable 

coordinate along one-dimensional structure 

nodal point location 

desired nodal point location 

allowable distance from desired nodal point location 

eigenvalue, square of frequency 

weight density 

eigenvector 

transpose of matrix 
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APPENDIX B - EFFECTIVENESS OF LOCATING NODE AT CENTROID OF FORCE 

DISTRIBUTION TO REDUCE GENERALIZED FORCE 

At an early stage in this work, a numerical study was performed to 

irtvestigate the effect on the generalized force of placing the nodal point 

of the second mode shape of a simply-supported beam at the centroid of a 

force distribution. Given the force distribution (fig. 7(a» with its 

centroid at 52 percent of the length of the beam, the generalized force ~TF 

was calculated for 11 arbitrary shape functions (fig. 7(b» having different 

nodal locations x which varied between 25 percent and 75 percent of the np 

beam length. As shown in figure 8, the smallest generalized force in fact 

occurs when the node is placed beween 50 and 55 percent of the beam length 

(essentially at the centroid of the force distribution). While this is not 

a proOf, it does show that the centroid of the force distribution is a good 

choice for the location of a nodal point to obtain a low value of 

generalized force. 
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TABLE 1. DETAILS OF FINITE-ELEMENT MODEL OF ROTOR BLADE 
(see figure 2) 

Material Properties and Cross-Sectional Dimensions 

Element. E .£. b h t -No. 

0.490x10 7 (psi) .07 (lb/in 3
) 3.75 (in) 2.5 (in) .8 (in) 

3.378x10 10 (Pa) 1938.00 (kg/m 3 ) .0953 (m) .064 (m) .0203 (m) 

2-10 0.585x10 7 (psi) .07 (lb/in 3 ) 3.75 (in) 2.5 (in) .8 (in) 

4.033x10 1o (Pa) 1938.00 (kg/m 3 ) .0953 (m) .064 (m) .0203 (m) 

Values of Lumped Masses at Grid Points 

d 

.1 (in) 

.00254 (m) 

.1 (in) 

.00254 (m) 

Grid Pt. No. 3 4 6 7 8 9 10 11 

Mass lbm 3.04 1.67 6.40 7.46 10.75 5.21 6.55 6.60 
(kg) (1.38) (O~757) (2.90) (3;38) (4;88) (2.36) (2;97) (2;99) 
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* 

TABLE 2. COMPARISON OF ANALYTICAL AND FINITE DIFFERENCE DERIVATIVES 
OF NODAL POINT LOCATIONS FOR SECOND MODE OF CANTILEVER BEAM 
OF FIGURE 2 

dx 
~ 
dv 

Mass at 

* * Grid Point - Analytical Finite Difference 

3 - 0.0278 (- 0.156) .. 0.0277 (- 0.155) 

4 - 0.0881 (- 0.493) - 0.0880 (- 0.493) 

6 - 0.231 (- 1.29) - 0.230 (- 1 .29) 

7 - 0.237 (- 1.33) - 0.236 (- 1 .32) 

8 - 0.166 (- 0.930) - 0.165 (- 0.924) 

9 - 0.00380 (- 0.0213) - 0.00361 (- 0.0202) 

10 0.309 1.73) 0.309 1 .73) 

11 0.828 4.64) 0.826 ( 4.63) 

in/Ibm (em/kg) 
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M1 

M2 

M3 

* M 

Node 

TABLE 3. INITIAL VS. FINAL DESIGNS FOR NODAL POINT 
OPTIMIZATION (see figure 4) 
x 164.0 in. (4.166 m); 5 = 1.0 in. (.0254 m) o 

Initial Final 
Design Design 

Ibm at Grid Point 9 5.21 0.50 

(kg) (2.36) (0.23) 

Ibm at Grid Point 10 6.55 3.70 

(kg) (2.97) (1.68) 

Ibm at Grid Point 11 6.60 20.25 

(kg) (2.99) (9.19) 

Ibm 18.36 24.45 
(kg) (8~32) (11~10) 

Location x np (in. ) 154.7 163.0 

(m) (3.929 ) (4.140) 
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TABLE 4. FINAL DESIGNS, NODE LOCATIONS AND MODAL FORCES FROM 
NODE PLACEMENT VS. DIRECT FORCE MINIMIZATION 
- SECOND MODE OF CANTILEVER BEAM (see figure 2) 

PARAMETER DESIGN 

Initial Final From Final From 
Node Placement Direct 

Minimization 

Ml Ibm 5.21 0.50 0.50 

(kg) (2.36) (0.23) (0.23) 

M2 Ibm 6.55 3.70 1. 75 
.. 

(kg) (2.97) ( 1. 68) (0.79) 

M3 Ibm 6.60 20.25 22.20 

(kg) (2.99) (9.19) (10~07) 

* 18.36 24.45 24.45 M Ibm 
(kg) (8;32) (11~10) (11~10) 

Generalized 
Force lbf 20.8 10.8 10.0 

(N) (92~52) (48;04) (44~48) 

Node location 
xnp in. 154.7 163.0 163.8 

(m) (3.929 ) (4.140) (4.161) 
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Figure 1.- Nominal and perturbed mode shapes and nodal points 
for one-dimensional structure. 
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(a) Finite element model of rotor blade 
(10 equal elements of length 19.3 in. (.490 m)) 
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(b) Cross~sectional detail of rotor blade showing dimensions of box beam 

Figure 2.- Rotor blade model. 
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Figure 3.- Optimization procedure for nodal placement. 
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• Desired node location: x 0 = 164.0 in. (4. 166 m) 

• Allowable distance: 6 = 1. 0 in. L 0254 m) 

• Design variables: M1 M2 M3 

• Upper bounds on design variables: 50 Ib (23 kg) 

• lower bounds on design variables: 0.5 Ib t 23 kg) 

Figure 4.- Optimization problem specifications. 
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Figure 5.- Sketch of air load distribution for generalized force minimization study. 
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Figure 6.- Convergence of optimization procedure for nodal placement. 
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Figure 7.- Mode shape and force distribution used to study the effect 
of nodal location on generalized force (see Appendix B). 
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