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INTRODUCTION

This report covers progress during two six-month reporting periods:

1) August 1984 - February 1984, 2) March 1985 - July 1985. During these

periods substantial progress has been made in three areas.

In the rule-based modeling area, Mike Lewis' Ph.D. work is nearing

completion. This report includes two papers related to identification

and significance testing of rule-based models, and a third paper on an

application to CDTI data.

In the area of operator aiding, Wan Yoon's Ph.D. research is

focusing on aiding operators in novel failure situations. Chris Mitchell

has developed a discrete control modeling approach to aiding PLANT

operators. Finally, Bill Rouse and Nancy Morris have developed a set of

guidelines for implementing automation.

The third area of progress is the flight simulator hardware and

software. While this development effort has taken much more time than

originally envisioned, the hardware will be complete within two months

and initial simulation software will then be integrated and tested.

SIGNIFICANCE TESTING OF RULE-BASED MODELS

The appended article by Lewis and Hammer describes how to test the

significance of rules in rule-based models. The danger in rule-based

model building is that the overall model may fit the data well but that

individual rules may not contribute to this fit. The article explains

several relatively easy methods for testing rule fit.

IDENTIFICATION OF RULE-BASED MODELS

The Human Factors and IEEE SMC conference papers on rule

identification included with this report recapitulate much of the work in



the re-analysis of CDTI data [Palmer 1983] contained in our last report.

Attention over the interim has largely focused on significance testing in

the identification process. The SMC paper concentrates on methodological

difficulties inherent in employing logical generalization and points out

some of the strengths of alternate approaches.

The possibility of developing significance tests for logical

generalization remains a paramount advantage over the top-down

approaches. The Monte Carlo procedure described in the SMC and Human

Factors papers proved effective but inefficient. Running in the

background at low priority it has taken about 10 minutes per iteration.

One thousand iterations are used. The working paper on representation

describes well formed formulas in VLl which might be used in deriving a

closed form significance test. If attainable it would avoid the

inefficiencies of repeated search by generating counts of rules

directly.

The primary effort in rule identification is now being directed

toward the PLANT [Morris 1983] data. Preliminary identification of rules

has indicated a lack of stationarity associated with shifts in operator

goals and phases of operation. This result is not unexpected as task

constraints led KARL [Knaeuper 1983], a production system model of the

operator, to employ explicit state->state rules to achieve such

transitions.

Since these shifts are unobservable, state vectors will be augmented

with an oracle variable encoding shifts KARL "would have made". Shifts

in phase dictated by a discrete control model of PLANT [Mitchell 1984]

will also be employed in a parallel effort.



AIDING THE OPERATOR DURING NOVEL FAULT DIAGNOSIS

An aid containing a qualitative device model and designed to

counteract human decision-making biases is being investigated. This aid

is designed to be used during novel failures, which are defined as

failures that are not covered by the operator's training or procedures.

The remainder of this section covers the qualitative model, decision

aiding, and the applicability of the aid. Further details are in an

appended paper.

A qualitative model [deKleer and Brown, Davis, Forbus] represents a

physical device as a network of components and connections. Each

component and connection can have several discrete states . The behavior

of a component (in terms of connection flows such as current) is governed

by rules. Component state transition is also governed by transition

rules. A solution to a diagnostic problem is an assignment of states to

components and connections that explains the observed symptoms and obeys

physics as described by the rules. The qualitative model is included in

the aid to assist the human in reasoning about the physical device.

The aid also is designed to counteract some human decision making

biases. This aiding takes a number of forms. Working memory is

augmented with the display of hypotheses and data. The human tendency to

forget or overlook is counteracted by the aid's mechanistic reasoning.

Applicability

The applicability of the kind of aid is whenever a novel failure

occurs. In commercial aviation, such failures are relatively rare. They

would seem to be more common in process control and space flight. The

most applicable area would seem to be commercial space loads. Because



most of these are one shot, non-life threatening tasks, the operator's

training will be limited than on the operation of spacecraft itself. The

economic consequences are high for an improperly diagnosed payload

problem.

A DISCRETE CONTROL MODEL OF PLANT

The appended working paper by Chris Mitchell develops a discrete

control model of the PLANT process control simulation and discusses the

potential use of the model as a basis for a new human-computer interface

for PLANT.

GUIDELINES FOR IMPLEMENTING AUTOMATION

The appended paper by Bill Rouse and Nancy Morris summarizes recent

efforts to understand how people perceive automation and the influence of

these perceptions on acceptance of automation. A set of eight guidelines

are proposed as a possible means of enhancing acceptance.

FLIGHT SIMULATOR HARDWARE AND SOFTWARE

The hardware is scheduled for completion by September 15, 1985. The

following have been completed.
1. Wiring to the sensors
2. Pedestal has been reinstalled.
3. Keyboards are mounted in the pedestal.
4. The CRT's have all been tested and mounted.
5. A force feel system with trim for the elevators was designed

and installed.

Progress on the software is as follows.
1. An engine display program has been completed.
2. A very simple flight instrument display has been completed.
3. The existing simulation has been revised to run under UNIX.

The hardware changes that remain are:
1. Cooling fans must be installed for the CRT's.
2. The glare shield must be installed.
3. Some metal panels must be added to shroud CRT's and otherwise

close up the cockpit.



The software that remains to be done can be categorized as follows.
1. Modifying the simulation to accept inputs from the A/D

converter.
2. Modifying the simulation program to drive different, multiple

displays for the instruments.
3. Integration - simply making sure that everything is connected

and works the way it is supposed to.

The completion of the above will demonstrate that the simulator will

work.

The simulator has come along at a much slower rate than anticipated.

We did not initially realize the complexity of the project. As

compensation, the final cost of the simulator will be a small fraction of

the cost of a new one.
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Programs for machine learning and systems for logical induc-

tion such as that of Carnap share certain characteristics:

A language, L, consisting of a vocabulary of predicates

and connectives is defined for describing a set of

observations. Induction is achieved by identifying

generalized statements (wff's) describing the observa-

tions. In this paper these statements will be referred

to as "rules".

As relations among predicates are restricted to legal con-

nectives (usually: &, V, ~), inductive inference, based on

the coincidence of predicates rather than the correlation of

values, results. This distinction is basic to the proolem

of inference since relations are identified between logical

phrases and their consequents rather than between individual

"variables".

In machine learning and other applications of inductive

logic this usually reduces to a discriminant procedure.

Predicates are divided into a group describing the observa-

tions and a class of mutually exclusive discriminant predi-

cates one of which is designated as the positive case, '+',

while the others are treated as negative cases. When used

to describe behavioral 'rules', phrases describing the

stimuli which are accompanied by a particular response are

discriminated from all others.

While Carnap's system, based on degrees of confirmation,

allows rules to describe negative instances, machine



learning programs typically inspect only valid rules to res-

trict search.

If this logical generalization is to be used to form

inferences from actual observations the relationship between

the data and its population must be considered. The primary

threat to validity in the identification of rules through

combinatorial coincidence lies in the ability of such pro-

cedures to identify apparent consistencies (in the sample)

where none exist (in the population). This occurs because

the generalization procedure can examine the data in so many

ways that it is possible to discover a relationsnip that is

only due to chance. To guage our confidence in a particular

rule, it is necessary to find some benchmark with which it

can be referenced. A logical choice is the situation in

which there is no relation between observation descriptions

and their classification as '+' or '-,' then any pairing of

observation descriptions and discriminant classifications

would be equally likely (principle of indifference). If

there are N observations and k of these observations are

classified as '+' then there are N!/(N-k)!k! distinct map-

pings from the observation descriptions to the responses.

These mappings will be referred to as instantiations.

The rub here is that the possible instantiations need

to be expressed in terms of the rules which would be identi-

fied rather than the mappings of observation descriptions to

responses, themselves.



The GENERAL PROBLEM

Constraints:

1- The syntax of language, L, which defines the ways in which

predicates & connectives can be combined to form rules (wff's)

2- The set of observation descriptions which determines the

discriminations which can be made

3- The number of observations classified '+'

The Problem:

Devise a method for determining the relative frequency over

instantiations with which a rule of equal or greater gen-

erality would be identified. Generality, here, is defined

as the number of observations described by a rule.

My Problem:

I am using a covering algorithm (Aq, Michalski 1973) to

identify pilot strategy (system of rules) in maneuvering to

avoid intruders. The Aq algorithm identifies rules in the

VL1 (Michalski1s terminology) language, a simplified prepo-

sitional logic. VL1 allows only one predicate per class of

predicates to be true in a particular instantiation. VL1

syntax allows only one place predicates. example:

black(bird). Disjunction is only allowed within classes of

predicates, example: black(bird) V blue(bird). Conjunc-

tion is only allowed between classes of predicates. exam-



pie: black(bird) & is-raven(bird).

For notational convenience Michalski defines a new

entity, a selector, to describe classes of predicates. A

selector names the predicate class and lists the predicates

involved in a disjunction, example: [color-bird=black V

blue]. Reaefined in terms of selectors, VL1 allows only

conjunction of selectors. Since generalization of the

observation descriptions is performed to discriminate the

'+' classification, this relationship is represented as An

example of a wff in VL1 is:

[x1=a V b] & [x2=d V e]-> F

This rule says that if the predicate evaluating true for

class x1 is a or b and class x2 is d or e then

F(observation) is true.

An advantage of VL1 for devising a significance test is

that this syntax is highly restrictive making the number of

possible rules to be considered relatively small. For exam-

ple a rule to cover the observation descriptions:

[x1=1J & [x2=1] & [x3=1J

[x1=1J & [x2=2] & [x3=1J

[x1=2] & [x2=1J & [x3=1]

MUST ALSO INCLUDE

[x1=2J & [x2=2] & [x3=1]

To produce a generalized conjunction of selectors

[x1=1 V 2] & [x2=1 V 2] & [x3=1]



I will refer to this syntactic property as a rectangularity

constraint.

Despite the simplicity of the VL1 language and its res-

trictive syntax there are a very large number of rules which

would be identified across the instantiations.

A Tentative Representation:

1- A Monte Carlo approach of repeatedly running the identifica-

tion program on randomly selected instantiations is inelegant.

It also unnecessarily expends resources on instantiations in

which rules, less general than those being tested are

identified.

2- A solution may be to ennumerate instantiations for which rules

as/or more general would be identified had the identification

program been run. Since only rules of substantial generality

should be objects of testing, reduction in generation should

be achieved. A threshold could be set so that the program

terminates after ennumerating > N instantiations corresponding

to a predetermined significance level, introducing further



economy.

Ennumerating Instantiations

The no relation benchmark corresponds to the distribu-

tion of the most general rule across instantiations. Since

for any particular rule to be identified all observations

must belong to the K observations in the '+' class, let k =

the number of observations covered by a particular rule.

Eq. 1

(N-k)!/(N-K)!(K-k)! is then the number of instantiations

in which that rule is valid.

Obtaining the set of possible rules of generality >=

that being tested must be considered. The notion of

discriminant equivalences will be introduced to accomplish

this.

Definition: Discrimination level- a particular predicate class

or conjunction of predicate classes. For example [x1=a,b....]

would be a selector for a predicate class,

[x1=a,b,...] & [x2=c,d....] would be a selector

for a conjunction of predicate classes.

Definition: Discriminant equivalence

Let M be a discrimination level. A discriminant equivalence, dq(M,i)

in level, M, is a set of observation descriptions

having identical predicate or conjunction of predicates



for the predicate or predicate classes of M.

Due to the syntax of VL1 (conjunction of selectors),

rules can only be formed at a single level if the degenerate

case of a selector specifying all members of a predicate

class is excluded. As a consequence any rule at level M

must either include or exclude all members of a dq(M.i) at

level M and the dq(M.i)'s at each level represent a complete

partitioning of the observation descriptions. As a conse-

quence:

1- discriminations made by any rule at level, M. may be

represented as a conjunction of dq(M,i)'s at level M.

2- All discriminations among observations in VL1 are covered

if all levels are represented in this way

Since knowing the number of observation descriptions

described by a rule allows the ennumeration of instantia-

tions for which it is valid. (Eq.1). this provides a basis

for forming and counting rules in accordance to generality

across instantiations.

We, however, are interested in counting instantiations

for which rules of >r generality than that being tested

would be identified. Since it is possible for a rule to be



valid yet not be the most general identifiable rule for a

particular instantiation, the ennumeration must be adjusted.

A rule of greater generality will be said to dominate a rule

of lesser generality for instantiations for which both are

valid. For example: any rule at the same level which

includes an additional dq(M-i) will dominate. Exampl-e:

[x1=1,2] & [x2=2] dominates [x1=2] & [x2=2], the dq(M.i)'s

in this instance are observation descriptions for which x1=1

& x2r2 and observation descriptions for which x1=2 & x2=2.

Between Level Dominance

Definition: Dominance set, Dq(L,M,i)

A dominance set, Dq(L,M.i), at level L of dq(M,i) at level M

is defined as the minimal set of dq(M,i)'s at level M that

contains all of the observation descriptions contained by

dq(M,i) and is of cardinality < K, the number of observa-

tions in the '+' class

Let N= number of observation descriptions

K= number of observations in class '+'

!dq(M,i)!=k

!Dq(L,M,i)!=k*

THEN

(N-k)!/(N-K)!(K-k)! - (N-k*)!/(N-K)!(N-k«)!



is the number of instantiations in which dq(M.i) is not

dominated by any rule from level M.

Minimal dominance rules at level, L, for rules at

level, M, (conjunctions of dq(M.i)'s) are then simply the

union of the corresponding Dq(L,M,i)'s at level L (with

additional dq(L,i)'s at level L included as required by rec-

tangularity constraints). Undominated instantiations can be

ennumerated in the same way as before.

To find the undominated instantiations of a rule across

all levels, however, requires consideration of co-dominance

and multiple dominances as well,

example:

A rule at level L is dominated by its corresponding minimal

dominance rule at level M. This rule may in term be dom-

inated by its own minimal dominance rule at level N... This

problem can be dealt with without recursion by considering

all unions for a set of minimal dominance rules (discarding

those > K) for the initial rule at level, L, and applying

the inclusion/exclusion principle.

To use this representation in deriving a significance

test for VL1 rules will require:

1- Some way to ennumerate instantiations for >= rules directly

for the dq(M,,i)'s and Dq(L,M,i)'s without recourse to actually



forming the rules (tagged generating functions?)

failing this

2- Some computationally cheap way to find the undominated

instantiations of a rule without having to consider

all unions of its minimal dominance rules
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Introduction

This task entailed the development of a model of the PLANT system

using the discrete control modeling techniques developed by Miller

(1985). Discrete control models attempt to represent in a mathematical

form how a human operator might decompose a complex system into simpler

parts and how s/he coordinates control actions and system configuration

so that acceptable overall system.performance is achieved. Basic

questions include knowledge representation, information flow, and

decision making in complex systems. The structure of the model is a

general hierarchical/heterarchical scheme which structurally accounts for

coordination and dynamic focus of attention. Mathematically, the

discrete control model is defined in terms of a network of finite state

systems.

The discrete control model can be thought of as a possible

representation of an operator's internal model of the system plus a

control structure which specifies how the model is used to solve the

decision problems which make up the control functions. Specifically, the

discrete control model accounts for how specific control actions are

selected from information about the controlled system, the environment,

and the context of the situation. The objective is to provide a

plausible and empirically testable accounting and, if possible,

explanation of control behavior.

Theoretical details and practical mechanics of discrete control

modeling are detailed in Miller (1985) and Mitchell (1980). The model

described below assumes most of this material as background.



Model Preliminaries

The first step in constructing a discrete control model is to

specify the lowest level of description, the output of the model and the

bottom nodes in the finite state network. Several discrete control

models have based their structure on configurations of system switches

(Miller, 1979; Mitchell, 1980). A model like this for PLANT, for

example, would utilize the configuration of valves and the flow of

resources (i.e., PI and PO) through the system. The initial model

development for PLANT in fact began at this point. As modeling

progressed, however, it became clear that the more interesting output of

a PLANT discrete control model was the operator commands which were

employed to configure and optimize PLANT. The commands available to the

operator are summarized in table 1.

Using operator commands as the lowest level finite state nodes of

the discrete control network, the model attempts to explain an operator's

choice of commands based on system state and current operator function or

procedure. The model is normative in that it is constructed using both

the rules of the system as specified in PLANT documentation and the

procedures provided to PLANT operators (Morris, 1983). Such a model

could be used to "explain" operator behavior, that is, to justify and

contextualize a sequence of operator actions based on goals and

objectives. In addition, a normative discrete control model may be

useful in designing an adaptive user interface that is responsive to user

needs. Additional details on applications of the PLANT discrete control

model follow the presentation of the model itself.



ovI,J Open the valve between tanks I and J

cvI,J Close the valve between tanks I and J

ocK Open one valve per tank in column K

ccK Close one valve per tank in column K

otl Open all valves from tank I

ctl Close all valves from tank I

piN Set input per input tank to N units

poN Set output per output tank to N units

skN Skip N iterations; the system will be
updated N times before the display is
updated

fll.J Check the flow from tank I to tank J

afl Check all flows from tank I

rvI.J Repair the valve between tanks I and J

rpl Repair the pump associated with tank I

rtl Repair the rupture of tank I

rs Repair the PLANT safety system

st System trip; close all valves and stop
all input and output

Table 1. PLANT Operator Commands



The PLANT Control Network

At the highest level, there are four major operator control

functions for PLANT. As depicted in figure 1, the first control function

that an operator engages in is system start-up. Once this set of

activities is completed the operator unconditionally transitions to the

function of steady-state management. For PLANT, steady-state management

is a monitoring and fault detection state. In this state, the operator

is essentially a supervisory controller, watching a fairly autonomous

system operate within the boundaries specified by the system

configuration.

From steady-state management, an operator can, under certain

conditions, transition to a more active control function. If a fault is

suspected or if the system is approaching an out-of-control condition,

the operator engages is fault identification or emergency management. On

the other hand, while engaged in steady-state management the operator may

notice the evolution of one or more symptoms which suggest the need for

proc'eduralized manual control.

Figure 1 and the associated footnotes depict these transitions.

Several conventions are used in this figure. The heavy black arc between

the startup node and the steady-state management node is used to denote

an unconditional transition. This convention will be used both in figure

1 and in subsequent figures. Conditional arcs are those that denote

state transitions which occur only when enabling conditions are met. For

example, steady-state management shifts to operational control when one

of the conditions calling for a procedure are met.



PLANT — Control Overview

Figure 1
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Control Overview Notes & Symbols

1. The heavy black arrow from start-up to steady-state management denotes
an automatic or unconditional transition, i.e., once the start-up
control function terminates there is an automatic transition to the
steady-state management function. Moreover, as the figure suggests, the
start-up function is performed exactly once for the control session.

2. Control shifts from start-up to steady-state management and then to
fault identification and emergency management when a fault or
operational problem is suspected.

© fault suspected due to
- random tank check
- drop in resources
- insufficient number of system trips
- unmanageable number of system trips

or (ij '• symptoms are present which call for the use of
procedure i, i = 2,3,4,5,6

3. Control shifts from operational problem solving to steady-state
management when system is reconfigured at a minimum stabilization
(E_j) will be further specified in the operational control function.

A. (si) indicates an operator-initiated system trip.



The conditional arcs at this level of the network are straight-

forward. ConditionfE )is an enabling condition which is true when the

system state requires the use of a prespecified procedure. Condi tionUil'J

is a minimum level of system stabilization; this condition is set to true

at the completion of each procedure in operational control. ConditionMM

is true when a system fault is suspected during routine management or if

the number of system trips is so excessive as to make the operator feel

that PLANT is in an out-of-control condition. Finally, condition

indicates that the operator initiated a system trip.

The structure of discrete control models is both hierarchic and

heterarchic. The portion of the model depicted in figure 1 is at the

highest level of the hierarchy and depicts the somewhat heterarchic

activities that take place at this level. For the PLANT model, the next

level of detail explores particular activities or subfunctions within

each of the major control activities previously described. Figures 2-9

constitute the remainder of the model.

Start-Up Control

The start-up control function (figure 2) consists of three major

subfunctions. Initially, the operator opens the valves among the tanks

with a sequence of commands that completes the initial flow

configuration.

The conventions used in figures 2-11 include the use of elliptical

nodes for operator functions or actions and rectangular boxes for

commands. The distinction being made is one of activity versus

intention. The commands are activities undertaken to accomplish an

objective of a function.
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Start-Up Control Notes

1. Steady-state conditions: pi = po = 230

2. Tank deviation: inequality of tank heights within columns

3. Start-up production management: n = 50,100,150,200,210,220,230;
m = 5



Once the initial flow configuration is completed the operator

unconditionally transfers to a start-up production management function,

the function which increases input and output to a steady-state

condition. Each start-up production management task increases output

(PO), input (PI), and may skip (SK) one or more PLANT iterations. Once a

round is accomplished the operator checks to see if steady-state

conditions have been met, i.e., PI = PO = 230. If so, the start-up

function is concluded and the operator unconditionally transitions from

start-up control to steady-state management. If start-up conditions have

not been met, the operator transitions to a fault and configuration

monitoring subfunction, in which tank heights are scanned to ensure

levels are the same within columns and no valve has tripped. If a tank

deviation or valve trip has occurred the operator performs the

appropriate remedial action, i.e., opens the tripped valves or checks

flows to identify and fix the failed valve or pump. Once a fault or

valve trip has been identified the start-up control function concludes

and the operator transitions to the steady-state management function. If

after.checking tank levels and valves, no problems are detected the

operator again commences on another start-up production management

subfunction.

To summarize, the start-up control function terminates in one of two

ways. Typically, start-up control is completed when the operator has

configured PLANT into a minimally stable and optimal mode. If, however,

a fault is detected before start-up is complete, diagnostic and

compensation procedures are performed and the operator terminates

start-up control and engages in steady-state management.

10



Steady-State Management

Following the completion of start-up control, steady-state

management is the next high level control function undertaken (figure 3).

This control function has three major components: monitoring and fault

detection, configuration management, and production optimizaton.

Monitoring and fault detection is the central subfunction. An

operator may perform this function with visual scans of the PLANT

displays together with iteration skips (SK) or by actively testing tank

flows (AF,FL). The operator terminates this function to undertake

another steady-state management subfunction if one or more valves trip,

if a repair crew completion message arrives, or if configuration is

acceptable and production optimization is required. Configuration

management is the subfunction which keeps all valves open under normal

conditions and reopens valves after repair completion. Product

optimization entails one or more commands to balance and/or increase

input and output. This subfunction is pursued when the PLANT is stable

and production is less than the specified goal, i.e., PO = PI = 230.

Operator control remains in the steady-state management function,

alternating among its subfunctions, until some problem arises. Operator

control leaves the steady-state management function when a problem

requiring either proceduralized control or fault detection occurs.

Operational Control

Operational control is an operator function which is, as compared to

steady-state management, proceduralized and low level; in this function,

the operator exercises a great deal of direct manipulation over the

system (figure 4). Depending on the symptoms, the operator engages in

11



PLANT - Steady-State Management

Figure 3
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Operational Control Notes

1. (STj indicates an operator-initiated system trip

2. (ij symptoms present which require use
-̂'̂  of procedure i, i = 2,. ..,6.

3. U5TJ) or ( iM conditions have been met which terminate the procedure,
control then shifts back to steady state management.

4. (EM system stabilized E' = T if (ST) or (i) for i = 2,3,4,5,6



one of the prespecified control procedures (see Morris, 1983) or in

reconfiguration after a system trip. When an operational control

procedure ends, operator control returns to steady-state management after

a minimum system stabilization point is reached.

The simplest subfunction in operational control is PLANT

reconfiguration after a system trip (figure 5). This simply consists of

reopening all valves. Once all valves are opened, operator function

transitions back to steady-state management. Input and output production

increases are handled by the product optimization subfunction of

steady-state management and are accompanied by fault detection and

monitoring.

The remaining procedures in the operational control function are

similar to those used by Morris (1983) to train PLANT controllers. The

symptoms that indicate a need for these procedures are summarized in

Appendix A. The PLANT discrete control model has structured the steps in

the procedures and, as a result, they are not quite isomorphic to those

used in operator training. One major difference betwen Morris1

procedures and the model's procedures are the termination points of the

procedures. The model's procedures terminate as soon as a minimal point

of system stabilization is reached; system optimization, input and output

increase for example, are completed as part of the steady-state

management function. The result of these changes in terms of operator

control activities, however, should be equivalent. The model's version

of these procedures is summarized below.

Procedure 2 addresses the problem arising when PLANT'S input column

tank levels are higher than those of the other columns (figure 6). This

procedure consists of three subfunctions: production limitation wherein,

depending on system symptoms, input and output are reduced; valve
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PLANT - Operational Control

Reconfigure System After Operator-Initiated System Trip
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PLANT - Operational Control

Procedure 2 BC Problem for Input Column

Figure 6
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PLANT-Operational Control Procedure 2 Notes

1. Rule IF any tank in Col. 1 > 90
THEN PI: = 0 & PO: = (0 - 25)
ELSE PI: = 50 & PO: = (50 - 75)

2. Rule IF tanks in Col. 2 and 3 continue
to drop and iteration = 10
THEN PO: = 0

PO > 0 AND less than ten iterations

2'). PO: = 0 OR iterations > 10



management which keeps tripped valves open; and output management which

monitors output and adjusts production to keep columns 2 and 3 fairly

balanced. The procedure concludes when columns 2 and 3 stabilize or if

production output is set to zero.

Procedure 3, a condition in which column 3 tank levels are too low,

also begins with a production curtailment function and unconditionally

transitions to a valve management state (figure 7). From there, the

operator monitors valve trips, input, and output until columns all

stabilize (i.e., columns 1 and 2 do not continue to increase and column

one does not continue to decrease) or until both input and output are set

to zero.

Procedure 4 addresses the problems of high tank levels in column 1

and low levels in column 3, problems which combine those of procedures 2

and 3 (figure 8). The steps required in procedure 4 are very simple;

first input is reduced, then output is reduced.

Procedures 5 and 6 (figures 9 and 10) address imbalances within

columns rather than the imbalance between columns addressed in procedures

2 through 4. Since within column imbalances are often due to system

faults, an initial concern is to examine the system for component

failures. Procedure 5 first limits input, then examines the high tank

for possible valve failure. Following failure detection, the operator

also limits output. Finally, the operator engages in a set of monitoring

and tuning activities to compensate for the imbalance and/or component

failures. Tripped valves are opened. If column 1 shows an excessive

imbalance among tanks, valves are temporarily closed. Similarly, if tank

levels in columns 2 and 3 continue to decrease over time, output is
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PLANT - Operational Control

Procedure 3: BC Problem

for Output Column

ELSE
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Figure 7



PLANT-Operational Control Procedure 3 Notes

1. PI: = (50 - 100); PO: = 50

2. IF Col. 3 < 5 then PO: = 0
ELSE IF Col. 3 < 10 then PO: = 25

3. IF Col. 1 or 2 increases over 5 iterations, PI: = (25 - 50):
IF frequent valve trips, PI: = 0

IF PI = PO = 0 or Col. 1 and 2 and 3 are stabilized



PLANT - Operational Control

Procedure 4: BC Problem for Input and Output

Figure 8

1 Rule: IF col. 1 > 90 then PI: = 0
ELSE PI: = 50

2 Rule: IF col. 3 < 5 then PO: = 0
ELSE PO: =50



Figure 9 PLANT - Operational Control

Procedure 5: WC Problem

for Input Column

1 Rule: IF Col. 1 tank > 90 then PI:
ELSE PI: =50
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3 Rule: PO: = (0 - 50)
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reduced. These activities continue until the system stabilizes or the

repair on the failed component is completed.

Procedure 6 begins with a failure detection and, if necessary,

compensation subfunction; then, a decision is made about whether

compensation is needed. If not the procedure is ended. If more

intervention is required, output is limited, flow to high output tanks is

restricted, and tripped valves are opened until tank heights in column 3

stabilize.

Fault Identification and Emergency Management

The final high level control function is fault identification and

emergency management (figure 11). This control function is always

reached from steady-state management and the transition occurs due either

to a suspected or detected fault or to a loss-of-control feeling on the

part of the operator.

The system trip subfunction is the least straightforward. The

option is invoked when the system is so unstable that the operator feels

a total loss of control. It might be argued that this procedure is never

really required or justified; a competent operator has less catastrophic

procedures available.

The rest of the subfunctions within the fault identification and

emergency management function address requirements for fault detection

and diagnosis. Repairs to valves and pumps are straightforward and are

likely to occur as a result of routine valve checks conducted in steady-

state management.

The procedure to detect and correct a tank rupture is not quite so

straightforward. The procedure may be invoked because the operator
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Figure 11 PLANT
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observes an unexplained drop in system resources. The search procedure

is laborious and may terminate in detecting a tank rupture, concluding
',

that there is no tank rupture, or stopping an uncompleted search to

undertake another control function.

The final fault identification subfunction is the identification and

repair of the PLANT safety system. This is a little used procedure and

is involved only when the operator has observed a critical number of

anomalous system-initiated occurrences.

Uses of the PLANT Discrete Control Model

This model has several potential applications. It can be used

either as an analysis tool to aid in understanding operator control

performance or as a design tool to create a dynamic human-computer

interface to control PLANT.

As an analysis tool, the model can be used to help explain operator

control actions given system state. Its normative but nondeterministic

form allows a great deal of flexibility in the sequence of control

actions that are permitted within a control function or even within a

subfunction. The structure is perhaps somewhat more people-oriented than

KARL (Knaeuper, 1983), in that procedures have a beginning and an end;

and once a procedure is initiated, it will not be preempted or terminated

until a completion point has been reached. KARL, exhibiting one of the

greatest strengths of computers, meticulously examines all system

variables, updates its statistics every iteration, and assesses, given

the new state, what it should be doing. As a result KARL could leave a

procedure before completion and/or hop from procedure to procedure.

People, given cognitive limitations, are much more likely, once beginning
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a procedure, to continue its steps to conclusion, almost disregarding

other symptoms arising in the intervening time. The discrete model has

similar characteristics.

Although subject data has not been compared to the discrete control

model, a logical next step in the model's validation is to compare it to

human performance and evaluate its explanatory power. The model should

have a high validity when compared to a "good" operator, i.e., one who

had good output and faithfully followed prescribed procedures. The model

should also be very helpful at identifying mismatches. The normative

nature of the model suggests that these mismatches are likely to be

operator mistakes.

As a design tool the discrete control model can be used to design an

information display system which selects out, aggregates, or prioritizes

system state information to facilitate the operator's control decisions

depending on current operator control function and system state. The

display system would have individual display pages that are tailored to

the needs of operator control functions or subfunctions, as specified by

the model. Used in this way, the discrete control model has potential

utility as the basis of an on-line interactive decision aid. One

strategy would be to let the operator specify the control function or

subfunction currently underway, and given that function, the aid could

prompt the operator with suggested next steps and activities as well as

provide the required pieces of information.

An aid such as this may avoid some of the problems that KARL

encountered when used as a human decision aid (Knaeuper and Morris,

1984). By allowing the operator to set the pace and having the program

act as an aid rather than an expert, some of the problems of a nagging
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on-line aid may be minimized. The interactive nature of an aid based on

a discrete control model gives human operators much more control over

the human-computer interface. This may be a desirable feature of an aid

because as long as the human has the responsibility, s/he probably ought

also to have the authority. The nondeterministic, heterarchic nature of

discrete control models ensures, and in fact requires, this type of

interface. The flexibility built into the interface requires that the

human specify where s/he is and what the intent is. Yet the hierarchic

structure of the model ensures that once the aid knows where the human

wants to be in the control heterarchy, the appropriate information or

procedural prompts can be provided.
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