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INTRODUCTION

Landsat thematic mapper (TM) data are being used to refine and

validate a stochastic spatial computer model to be applied to coastal

resource management problems in Louisiana. Two major aspects of the

research are:

1. The measurement of area of land (or emergent vegetation) and water
and the length of the interface between land and water in TM imagery
of selected coastal wetlands (sample marshes) and;

2. The comparison of spatial patterns of land and water in the sample
marshes of the imagery to that in marshes simulated by the computer
model.

Two research teams are involved in the project. The first is at the

Southeast Fisheries Center of the National Marine Fisheries Service in

Miami (Miami Unit of the Beaufort, North Carolina, laboratory). .The-- -

second is at Louisiana State University's Center for Wetland Resources

and Center for Energy Studies in Baton Rouge.

The primary activity of the NMFS team during the first year of the

project has been to develop and test parameters to use in comparing

spatial patterns. An exploration of several parameters devised for use

in this project were discussed in the first semiannual progress report.

The potential use of a published autocorrelation statistic will be

analyzed in the present report. Activity at LSU during the first nine

months of the project (the project started three months later at LSU than

at NMFS) has involved selecting imagery of sample marshes, preparing the

selected images for analysis, evaluating techniques for use in classifying

land and water pixels in the imagery, and testing the accuracy of the

image processing software in measuring length of the land-water interface

on digital maps in which land and water are clearly distinguished.



First, we will present the NMFS work with the autocorrelation statistics,

then the LSU work with the model.

NMFS ACTIVITIES

A stochastic spatial simulation model was developed by Browder et

al. (1985a) to determine the theoretical relationship between the length

of the interface between land and water and the loss of marshland through

conversion of land to water. To validate this model, we plan to compare

model-simulated patterns of land and water with those of actual marshes,

as interpreted from thematic mapper imagery. We are investigating the

measurement of spatial autocorrelation as a means of comparing the

simulated patterns with the imagery.

Starting with solid land, the model simulates the disintegration o* .

the marsh one pixel at a time until nothing is left but open water. The

specific pixel that converts from land to water at each iteration is

determined by a probability function linked to a random-number generator.

Weighting-factor coefficients in the probability function can be adjusted

to affect the probability that a given pixel will disintegrate at the

next iteration according to its initial location in the marsh relative to

the main water body (weighting factor G) and according to the number of

sides on which it is bordered by water (weighting factor W). Weighting

factors affect the pattern of land and water in the simulated marsh at

its various stages of disintegration.

A spatial map possesses the property of autocorrelation if it

contains values that exhibit an organized pattern. Such an organization

may arise if the value assigned to a location is to some extent influenced

by values assigned to neighboring locations. Without influence from

other than random processes, a spatial map lacks spatial autocorrelation.



Since weighting factors determine the degree of influence of neighboring

locations, it seems likely that they determine the degree of autocor-

relation in the resulting land-water pattern. Measuring autocorrelation

in actual marshes might, therefore, allow us to approximate the spatial

patterns of the actual marshes with model simulations, if we can determine

the relationship between an autocorrelation measure and the weighting

factors of the model.

Various measures of spatial autocorrelation in the plane and their

corresponding random variables have been defined (Cliff and Ord 1981,

Upton and Fingleton 1985). Approximate tests of significance for system-

atic variation in spatial patterns can be performed by evaluating these

variables as standard normal deviates. In the present study, which uses
•_ •

binary (0,1) spatial data from a simulation model, the general cross-

product statistic, R, and the corresponding random variables, the expected

value of R, E(R), and the variance of R, var(R), were used to assess the

spatial organization of simulated patterns produced by weighting factors

ranging from W=0 to W=76 with G=W (set 1) and, alternatively, G=0 for all

W (set 2). Various sensitivity tests were performed to examine the

regularity of the behavior of these variables. Results of our analysis

show how the cross-product statistic and its corresponding random variables

change with weighting factor and with the overall size of the spatial

sample (number of pixels), its configuration (columns/rows), and the

level of disintegration (water pixels as a percentage of total pixels).

We applied curve-fitting techniques to the autocorrelation data from

the sensitivity tests' to formulate regression equations that predict R

under different combinations of conditions. These equations, when more

fully developed, will serve as a conduit between the analyzed imagery and



model simulations. The autocorrelative properties of specific wetland

areas will first be determined and then channeled into the predictive

equations to determine how weighting factors should be set. Spatial

patterns possessing approximately the same degree of autocorrelation as

the actual TM spatial patterns can then be simulated. More refined

comparisons between the actual and simulated marsh can then be made to

ensure that the two are indeed similar. Comparisons to be made include

frequency distribution of pixels by water-body size, frequency distri-

bution of water pixels by numbers of sides bordered by water, and per-

centage of water pixels with distance from the main water body (Browder

et al. 1985b).

Assigning weighting factors to actual marshes via the above pro-

cedure will allow us to place these marshes on theoretical trajectories

of change in land-water interface, as determined by model-simulations of

marsh disintegration. If we can find several sample marshes in different

stages of disintegration that fit on the same theoretical trajectory of

change, then we can compare the actual interface to the theoretical

interface at each disintegration stage. Conformity of actual to simulated

change in interface will not only validate the model, but will also allow

us to predict the rate and direction of future change in interface in

each of the sample marshes with respect to rate of marsh disintegration.

Description of the Experiments

A new version of the model was written in Fortran 77 and implemented

on a 32-bit Burroughs 6800 mini computer. Two more algorithms were

added. The first calculated the expected value and variance of the

general cross-product statistic for spatial matrices of various sizes,

configurations, and levels of disintegration. The second determined the



general cross-product statistic of land-water pattern in 30 simulated

marshes disintegrated to the same level and produced by the same weight-

ing factors. For later comparisons, the mean and variance of R were

calculated for these 30 replications.

Test of the Random Number Generator

The model utilized the Burrough's mixed congruential random-number

generator. In order to determine the quality of the random-number

generator for generating random sequences, we tested uniformity with the

chi-square goodness-of-fit test (Fishman 1973). We collected 65,541

random numbers on a run and divided the unit interval into 4,096 equal

subintervals so that, according to the hypothesis of uniformity, the

probability that a number fell into a particular interval was 1/4,096, " .

and the expected number of observations in a particular interval was

about 16. On this binary machine, the choice of 4,096 (4,096 = 212)

allowed us to test the 12 most significant bits. Table 1 shows the

results for 10 independent executions. The largest chi-square value

occurred on execution 7, and, since the normalized deviate of this value

is less than the point on the cumulative normal curve corresponding to

probability 0.05, we accepted the hypothesis of uniformity of each of the

10 executions at the 0.05 level.

As a further test of the integrity of the random-number generator, a

runs-up-and-down test was employed to determine whether a sequence of 30

general cross-product statistics was generated by a random process. A

two-sided test was set up with the alpha risk controlled at 0.01. Table

2 shows the results for 10 independent executions. For each of the

executions, the test statistic, which is a count of the number of changes

of direction between consecutive numbers in a sequence, did not exceed



the cutoff points on the normal curve. We, therefore, concluded that the

sequence was generated by a random process.

The General Cross-product Statistic

The general cross-product statistic is given by equation (1):

R= ziVijTij (1)

W.. is a proximity value with W.. = 1 if locations in the spatial matrix
13 ij

are contiguous and W. . = 0 otherwise. Y. . = (x. - x.)2, where x^^ and x

are the observed values at locations i and j. In our case these values

also are either 1 or 0.

Equations (2) and (3) give the expected value and variance of R.

E(R) = S T /n(n-l) (2)o o

var(R)- (3)

2 2
(S2 - 2St) (T2 - 2TO + (S0 + St -S2) (T0 + Tt -T2)

where

So = Z. 2. W£j (i«)i 8X = ^. 2. (Wtj + W...)2 (i«); S2 = Z. (W.o

W. = Z. W. .; W . = Z. W . . ; n(2) = n(n-l); n(3) = n(n-l)(n-2); n(4)
10 3 13 01 3 31

n(n-l)(a-2)(n-3)



Sensitivity Tests

One set of replicates of simulated patterns was generated by setting

the G weighting factor (initial adjacency to main water body) equal to

the W weighting factor (adjacency to water), and a second set was generated

by setting the G weighting factor at zero. The first situation assumes

that the marsh is bordered on one side by water and on the other three

sides by land. The second assumes that the marsh is bordered on all four

sides by land. Marshes that lie somewhat inland from the main water body

probably fall somewhere in between these two extremes.

Matrices were constructed that contained 1,000, 800, 600, 400, 200,

and 100 pixels each. For each of these matrix sizes, R-mean was calcu-

lated for all combinations of levels of disintegration (0.1, 0.2, 0.3,

0.4, 0.5) and weighting factors (set 1: 0,0; 4,4; 8,8; 12,12; 24,24;

76,76; set 2: 0,0; 4,0; 8,0; 12,0; 24,0; 76,0). The results from set 1

in appendix Tables 1-6 and those from set 2 in appendix Tables 7-12 show

R-mean and sample variance and the corresponding random variables, E(R)

and var(R).

According to the Z-test statistic, the R-means generated from

weighting factors set at zero were not significantly different from the

corresponding E(R) (alpha = 0.05), indicating the absence of autocorrela-

tion. R-means for spatial patterns simulated with weighting factors set

at 4,4 or 4,0 or greater were significantly different from E(R) (alpha =

0.001), demonstrating that weighting factors cause autocorrelation in the

spatial patterns of land and water simulated by the model and that the

autocorrelation caused by the weighting factor can be detected as a

difference between the R-mean and E(R).



The sample variances of R-means generated with weighting factors set

at zero appeared considerably different from var(R), but only three out

of the 34 sample variances in appendix Tables 7-12 were significantly

different according to the chi-square test statistic

2
X2 = (n-1) S (4)

Z
o

from Beaver and Hendenhall (1971).

Figures 1-12 show how R-mean changes as a function of weighting

factors and level of disintegration for each matrix size in each of the

sets. R-mean decreased with increasing weighting factor and varied with

matrix size and level of disintegration. Plots of R-mean for each of the

sets reveal separate curves for each level of disintegration—a family of

curves that has the following characteristics: (1) R-means that decline

rapidly with increased weighting factors in the low range of weighting

factors but more gradually in the higher range of weighting factors; and

(2) R-mean values that are lower at lower levels of disintegration and

decline more gradually in the lower range of weighting factor than do

those at higher disintegration levels.

The cross-product statistic and its random variants vary similarly

with level of disintegration on both sides of disintegration level 0.5.

This can best be seen in Figure 13, a plot of E(R) with level. The

plotted values are shown in Table 3. Table 4 shows that var(R) varies

similarly with level. Tables 5 and 6 show R-means and sample variance

for 1,000-pixel marshes produced by set-1 weighting factors at levels of
t

disintegration from 0.1 through 0.9. E(R)'s for 1,000-pixel marshes at

the nine levels of disintegration are also shown. Both R-mean and E(R)



are almost identical for levels 0.6 and 0.4, levels 0.7 and 0.3 levels

0.8 and 0.2, and levels 0.9 and 0.1.

The cross-product statistic and its random variants increase linearly

with marsh size; however, the relationship is slightly confounded by the

effects of configuration (the ratio of rows to columns). Figure 14 shows

linear relationships between E(R) and marsh size when configuration is

held constant at 1, 2, and 4. There are three distinct lines that do not

have exactly the same slope. The relationship of var(R) to marsh size

differs similarly with configuration (Figure 15). A straight-line

relationship is obtained even when configuration is not held constant;

however, it might be difficult to use such a relationship predictively to

extrapolate E(R) for matrix sizes beyond the range of the data. That

configuration affects E(R) is further demonstrated in Table 7, which

shows E(R) at the 0.5 level of disintegration for pairs of matrices

having the same number of pixels but different configurations. Paired

matrices are 10 x 2n and 20 x n; n = 5, 10, 20, 30, 40, or 50. Of the

six pairs of matrices, only the 10 x 20 (ratio 0.5) matrix and 20 x 10

(ratio 2.0) matrix have the same E(R). Apparently inverse configurations

are identical as far as E(R) is concerned. The values plotted in Figure

14 and 15 were taken from Tables 7 and 8.

Predictive Equations

A curve-fitting technique was used to develop equations for the

relationship of R to weighting factor and the effect of level of dis-

integration. The data inputs were R-mean values for a 1,000-pixel (20 x

50) matrix produced with set-1 weighting factors. The equations are as

follows:



R = l/(a + b Iog10 W) (5)

a = c + d L + e L2 (6)

b = f + g L + h L2 (7)

where R = cross-product statistic, W = weighting factor (coded), L =

level of disintegration, a and b are functions of level of disintegration,

and c through h are regression coefficients in the equations for a and b,

quantified as follows for a 1,000-pixel (20 x 50) matrix:

c = 1.758037 x 10"

d = -5.364542 x 10*

e = 5.429313 x 10*

f = 7.737475 x 10*

g = -1.921002 x 10"
_5

h = 1.947964 x 10

The goodness-of-fit was 0.99 for the first equation, 0.94 for the second,

and 0.95 for the third. Thus we have demonstrated that a general equation

exists that will describe the general cross-product statistic of land-

water patterns in simulated marshes as a function of weighting factor and

level of disintegration. When equation (5) is solved for W, as follows:

W = antiloglo {[1/(R b)] - a/b} (8)

we have an equation that, with the calculated coefficients, allows us to

determine W (and G = W) for any R from a pixel of any size and configura-

tion for which the coefficient c through h have been calculated. (The

coefficients c through h given above apply only to a 1000-pixel matrix

with a configuration of 2.5.)

10



Equipment limitations may prevent us from obtaining the R-mean

values with which to calculate c through h coefficients for marshes the

size of sample marshes from the imagery. It should, however, be possible

to convert the R of an imagery marsh to that of a smaller-sized marsh.

That R, along with c to h coefficients calculated from R-mean values of a

marsh of the same size and configuration, could then be used to determine

the best weighting factors for simulating the patterns of land and water

in the imagery marsh. The effect of configuration makes it necessary for

us to calculate, for the simulated marshes, R-mean values having the same

configuration as the sample marshes of the imagery.

LSU ACTIVITIES

Two image processing facilities were utilized for this phase of the .

project, the Florida Department of Natural Resources Bureau of Marine

Research in St. Petersburg and the Fisheries Image Processing System

(FIPS) maintained by the NMFS in Slidell, Louisiana. Both facilities

utilize the Earth Resources Laboratory Applications Software (ELAS)

(Graham et al. 1984) developed by NASA to analyze remotely sensed digital

data.

The TM data acquired for the project represented the only relatively

cloud-free images available covering southeast Louisiana during the

preferred period from November through February. The Landsat overflight

occurred on 2 December 1984 (scene ID: 50276-16022), and the image

encompasses most of the Mississippi Deltaic Plain.

Quads 1 and 2 of each of the seven TM bands were converted to an

ELAS format and joined into a single data file using the ELAS modules

TIPS and JTIPS (Graham et al. 1984).

11



The ELAS module STCI (Graham et al. 1984), a modified parallelepiped

classifier, was used to generate an unsupervised classification on the

basis of bands 2, 3, and 5. The STCI module creates a one-channel output

file with 256 classes that closely resembles a three-channel color

composite. We used the classified data to visually inspect the image for

cloud cover and to facilitate selection of the first group of sample

sites.

Clouds in the image were generally confined to upland areas and were

not expected to interfere with the selection of sample sites in brackish-

and salt-marsh areas. Selection of sample sites in fresh marshes,

however, may be a problem because of the orientation of the abandoned

delta lobes of the Mississippi River, limitations in the Landsat image's

coverage of the area, and occasional cloud cover.

Selection of the Study Sites

The first study sites were selected in a salt marsh located on the

Lafourche delta lobe, which was an actively prograding delta of the

Mississippi River within the last 2,000 years. The study site corresponds

to the area covered by five contiguous U.S. Geological Survey (USGS)

7.5-min. topographic quadrangles (Figure 16).

Historical trends in percentages of open water and shoreline lengths

were tabulated for each of the five quadrangles from U.S. Fish and

Wildlife Service (USFWS) habitat maps (Wicker et al. 1980). The maps are

stored in a digital data base maintained by USFWS as a part of the Map

Overlay and Statistical System (MOSS) (Lee 1984), a computerized spatial

information system used for a number of applications in coastal manage-

ment (Ader and Stayner 1982). The habitat maps are categorized according

to the classification system of Cowardin et al. (1979) for estuarine and

12



deepwater habitats and are based on manual interpretations of aerial

photographs taken in 1956 and 1978 (Wicker 1980).

An increase in the areal extent of water in the sample sites during

1956-78 was accompanied by a marked increase in shoreline length in three

of the five quadrangles (Table 9). Shoreline lengths in the Central

Isles Dernieres and Lake La Graisse decreased during the same period,

reflecting the effects of erosional processes on coastal barriers and

natural levee remnants adjacent to tributaries.

Evaluation of the Shoreline-Length Software

The ELAS module SLIN (Graham et al. 1984) is designed to measure the

interface length between two adjacent land covers in digital thematic

maps derived from remotely sensed data. The module was originally

developed to measure shoreline lengths in Landsat images of coastal

areas. The module utilizes the 3x3 moving-window technique and user-

specified parameters to (1) detect shoreline pixels within the window,

and (2) assign a numeric value to the center pixel on the basis of

configuration of the shoreline within the window. Each interface pixel

is assigned to one of 69 possible classes; two additional classes accom-

modate cases where all nine pixels in the mask are either land or water.

Thus SLIN creates a new image file containing land, water, and shoreline

pixels with class values ranging from 0 to 71. SLIN tabulates the

shoreline length by associating the number of pixels in the 69 interface

classes with 23 distance coefficients derived from multiples of diagonals

and half-sides of a square pixel. Dow and Pearson (1982) identified at

least three factors that can affect shoreline-length measurements made by

13



the SLIN module:

o map scale

o degree of reticulation in the shoreline

o method used to segment the image into land and water.

Since this study will rely heavily on shoreline-length information

derived from TM imagery, we devised an experiment to examine possible

sources of errors in the SLIN module's measurements. USFWS digital

habitat maps of the sample sites for the years 1956 and 1978 provided a

convenient and reliable source of data for the experiment.

MOSS commands were used to create two types of polygon maps for the

experiment, line maps consisting of shorelines only and maps with all of

the habitat classes aggregated into land and water. The second stage of

processing was undertaken in three steps. First, shoreline lengths were

tabulated from the shoreline map using the length command in MOSS (Lee

1984). Second, the land-water polygon maps were converted to 30-m grid

cells and reformatted for processing in ELAS. The final step consisted

of tabulating the shoreline length for each cell map using the SLIN

module. Thus, two measurements of shoreline length were available for

each map: (1) the "true" shoreline length determined from the polygon

map and (2) shoreline length derived from the 30-m-cell maps with the

SLIN module.

A preliminary analysis of the relationship between shoreline lengths

determined from the polygon maps and the 30-m-cell maps was conducted

using linear regression analysis. For this initial analysis, the slope

and intercept values of the line were estimated using ordinary least-

squares (Upton and Fingleton 1985). The coefficient of simple determina-

tion (r2) was 0.89. Although the sample size (n = 10) is relatively

14



small, the relationship seems to indicate that the 30-m-cell maps tend to

underestimate the true shoreline length (Figure 17). A plot of the

residuals revealed that the Dog Lake and Cocodrie quadrangles had more

variability than the other three areas. Both quadrangles have highly

reticulated shorelines and may be more difficult to measure accurately

with the SLIN modules than are the other three areas.

Future work on the experiment will include the selection of a second

group of study sites, which will provide additional observations for the

model. The relationship between map scale and shoreline lengths will

also be explored as a possible source of variation.

Image Processing for the Sample Sites

The ELAS modules PMGC and PMGE (Graham et al. 1984) were used to

rotate the section of the band-5 image containing the sample sites to a

Universal Transverse Mercator (UTM) north-south orientation for further

processing. Rotation of the image was necessary because most ELAS

modules require images to be projected in a UTM north-south orientation

for proper functioning. A total of 65 ground control points (GCP) were

selected from an interactive display of the band-5 image. UTM coordinates

of corresponding points were determined from USGS 7.5-min topographic

maps using an x-y digitizer. The image was rotated to a UTM north-south

orientation by (1) computing a least-squares transformation equation from

the GCP coordinates and (2) resampling the image using the technique of

bilinear interpolation. Root-mean-square errors for the 65 points ranged

from 8 to 208 m. with an average error of 52 m.

In spite of the great improvement in the ground resolution of TM

data versus the older multispectral scanner data, very few fixed land-

marks were available for use as GCPs. In the absence of fixed GCPs, the

15



alternative was to select relatively stable landmarks such as oil field

and pipeline canal intersections. The accuracy of GCPs selected in Lake

LaGraisse and the Central Isles Dernieres quadrangles, however, is highly

questionable. The GCPs available in these areas were primarily located

on the perimeters of coastal barriers and on shorelines around the

remains of natural levee systems. Erosion and other coastal processes

apparently altered the appearance of most landforms used for GCPs between

the time of the 1984 TM overflight and the most recent (mid-to-late-1970's)

USGS topographic maps available for the areas. As a result, GCPs selected

in the Lake La Graisse and Central Isles Dernieres quadrangles generally

had relatively high mapping errors, ranging from 100 to 200 m.

Two techniques for classifying the TM image into land and water were
*'.

originally proposed for the project (1) gray-level thresholding of an

image derived from ratioing the band-3 image, which represents the

visible red portion of the spectrum, with one of the three infrared bands

and (2) creating a land-water map from an unsupervised classification

derived from a subset of the TM bands.

Band-ratioing seemed to have a high potential for producing an image

with a sharp demarcation between the vegetated marsh surface and open-

water areas. Periodic noise in the images, however, was a problem.

Periodic noise in TM images has been described by other investigators

(e.g., Wrigley et al. 1985, Bernstein et al. 1984) and was visually

evident in open-water areas of bands 4, 5, and 7. Although the effect on

individual bands seemed to be minimal, the problem worsened when the

first ratioed image was generated from bands 3 and 5. This was expected,

since noise is seldom correlated between bands, and image-enhancement

techniques based on band ratios tend to enhance the uncorrelated content

16



of the two images (Moik 1980). Because techniques for removing periodic

noise were not available at either image-processing facility, we rejected

band ratios in favor of a simple technique based on gray-level thresh-

olding of one of the three infrared bands.

Gray-level thresholding of remotely sensed infrared images is a

relatively simple technique used to segment images of coastal areas into

land and water. Determining the threshold between two classes, however,

can be difficult in cases where the image is noisy or the valley between

the bimodal peaks in the gray-level histogram is relatively wide.

Techniques for selecting thresholds can be divided into two groups:

(1) interactive selection of a threshold based on a priori knowledge of

the area of interest and (2) empirical methods for improving the image
»•

histogram to facilitate the selection of a threshold (e.g., Kirby and

Rosenfield 1979; Pun 1981; Weszka and Rosenfield 1978).

Shoreline-length measurements taken from land-water images derived

from thresholded TM data can vary greatly depending upon where the

threshold is selected in the image histogram. This effect is illustrated

in Figure 18, which shows the relationship between threshold selection

and shoreline-length measurements taken with the SLIN module from the

band-5 image of the study sites. When water pixels were defined as

having a value of 5, the lowest threshold tested, or less, noisy pixels

in the open-water areas were classified as land and tended to increase

shoreline lengths. Shoreline length was minimal at a gray level of 7 but

increased steadily as the threshold moved upward to a value of 25;

between digital-count 25 and 50, shoreline lengths abruptly declined.

The actual threshold between land and water appears to fall in the range

between digital-count values 7 and 15 in the band-5 image.

17



We are continuing to evaluate the utility of various image-processing

techniques for segmenting the TM data into land-water images.

FUTURE ACTIVITIES

Our first activity in Miami during the third semiannual period will

be conversion of the model to the language C for implementation on our

AT&T Unix PC microcomputer. When this is accomplished, we will explore

the practical upper limits to the size of a marsh-matrix that can be

simulated, considering that we have to make numerous simulations with

different weighting factors and that each must have 30 replications.

At a meeting in Baton Rouge on Hay 30, we decided that sample

marshes from the imagery should be the size of one-quarter quadrangle. A

quadrangle is approximately 475 rows by 425 columns (in terms of pixels},

after the sides have been smoothed. The following table shows how a

matrix of approximately that size can be reduced to one-quarter size in

consecutive steps by dividing rows and columns by two each time.

Marsh
Matrix

1

2

3

4

5

Rows

464

232

116

58

29

Columns

416

208

104

52

26

Number of Row/Col. Ratio
Pixels Configuration

193,024

48,256

12,064

3,016

754

1.1154

1.1154

1.1154

1.1154

1.1154

We will attempt to simulate marshes the size of (2) above, which is

approximately the same size as the sample marshes of the imagery. If

that is not possible, we will try to simulate marshes of size (3) or (4)
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above. If that size is impractical, we already know that we can simulate

marshes of size (5).

If we are not able to simulate a marsh as large as that of the

sample marsh from the imagery, then we will translate the R measured on

the imagery to the equivalent R for a smaller marsh of the same configura-

tion, using the following equation.

Rm4 = (Rm2 E(R)m4)/E(R)m2 (9)

where R _ = cross-product statistic of the sample marsh from the imagery,
m2

R , = cross-product statistic of the smaller marsh E(R) _ = expected
m4 m*

value of the cross-product statistic of the sample marsh from the imagery,

and E(R) , = expected value of R of the smaller marsh. Preliminary

calculations suggest that the error involved in a conversion of this type

is small, provided the matrices have the same configuration.

Having determined which matrix is both practical to simulate on our

computer system and of the same configuration as that of sample marshes

from the imagery, we will run 30-replicate simulations to obtain R-means

for various weighting factors and levels of disintegration. The c

through h coefficients for our three equations for a family of curves

will be calculated from these R-means. Following the calculation of

these coefficients, we will determine the accuracy of the equations by

comparing Rs calculated from the equations to the R-means (from the

simulations) used to calculation the c through h coefficients.

If the simulated marshes are not the same size as the sample marshes

from the imagery, it will be necessary to evaluate the accuracy of our

method of converting an R value for a matrix one size to an equivalent R

value of a smaller matrix. We will do this by simulating marshes of a
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still smaller size than our selected simulation size and determining

R-means for the various weighting factors and levels. We will then

calculate, from the R for the larger marsh size, an equivalent R for the

smaller marsh size, which can then be checked against the R-mean from the

simulations.

Activities at LSU for the next semiannual period will center on

incorporating additional software into ELAS, testing the accuracy of the

software, comparing results from ELAS measurement methods to results of

measurement methods used on the simulated marshes, selecting and preparing

new quadrangles of imagery to include in the analysis, and performing

spatial-pattern parameter analysis on the imagery already selected.

Having set the size of sample marshes at one quarter of a quadrangle. We

will divide each selected quadrangle into quarters and analyze each

quarter.

Early in the new semiannual period, we will select additional

salt-marsh quadrangles from a delta lobe having geological history

different from that of the Lafourche lobe, which is represented by the

five quadrangles -already selected. Then we will georeference the new

areas and begin analyzing the 1956 and 1978 USFWS habitat maps for these

areas. The habitat-map data will be used to provide additional data

points for continued testing of the accuracy of SLIN for measuring

shoreline length.

Software modules for estimating spatial pattern parameters for

sample marshes from TM imagery have been prepared and are presently

stored on tape in Slidell, but have not yet been incorporated into ELAS.

This task will be given high priority in the coming semiannual period.
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Following implementation of these modules, ELAS will be used to collect

the following data on the first 20 sample marshes:

1. water area as percentage of the total area,

2. length of the land-water interface

3. maximum possible interface

4. cross-product statistic (R)

Later, the following additional statistics will have to be collected on

the same samples:

5. frequency distribution of pixels in terms of number of sides

adjacent to other water pixels

6. percent total pixels on each row from main water body that are

water pixels

7. frequency distribution of water bodies by size (number of

pixels)

8. frequency distribution of pixels by water-body size

The expected value of the cross-product statistic, E(R), for a marsh

the same size as the sample marsh will be calculated independently in

Miami. Although a module for the calculation of E(R) has been included

as one of the modules mentioned above, it is so time-consuming to execute

that it may not be practical to use it in the ELAS framework.

Once measurements 1-4 above have been completed for some sample

marshes, they will be sent to Miami so that the correct weighting factors

can be selected to simulate marshes with similar spatial patterns. The

patterns simulated will then be checked for similarity to the sample

marshes of the imagery by comparing parameters 5-8.

The SLIN module of ELAS measures interface length differently from

the way it is measured on the simulated marshes. Since in both cases
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interface length is expressed as a percentage of maximum possible inter-

face length, the different measurement methods may not cause a problem.

However, we need to ensure that the difference in measurement method does

not introduce errors into our comparisons of TM marsh images and simulated

marshes or that, if it does, we can correct for it. Therefore, we plan

to use SLIN to measure interface and maximum possible interface on

several simulated marshes for which we have also measured the two para-

meters by the more direct method employed on the simulations. Comparing

SLIN-generated values to the other values should allow us to quantify the

difference caused by measurement method, if any is present.

To apply the results of our study to natural resource problems, we

need to know how the scale of our measurement unit has affected our

measurements of shoreline length. During the next semiannual period, we

plan to examine the effect of scale on our data.

ACKNOWLEDGMENTS

We wish to thank the following persons and organizations for their

help on various aspects of the project: Ken Haddad, Florida Department

of Natural Resources, Bureau of Marine Research; Andrew Kemmerer and

Gerald Williamson, Mississippi Laboratories, National Marine Fisheries

Service; and Larry Handley, Jim Scurry, and Floyd Stayner, National

Coastal Ecosystems Team, U.S. Fish and Wildlife Service.

22



REFERENCES

Ader, R. R., and F. Stayner. 1982. The role of the USFWS geographic
information system in coastal decision-making. Proceedings,
Auto-Carto 5. ACSM-ASP, pp. 1-12.

Beaver, R., and W. Mendenhall. 1971. Introduction to Probability and
Statistics, 3rd Edition. Belmont, Calif.: Wadsworth. 498 pp.

Bernstein, R., J. B. Lotspiech, J. H. Meyers, H. G. Kolsky, and R. D.
Lees. 1984. Analysis and processing of Landsat-4 sensor data using
advanced image-processing techniques and technologies. IEEE Trans-
actions on Geoscience and Remote Sensing, Vol. GE-22, pp. 192-221.

Browder, J. A., H. A. Bartley, and K. S. Davis. 1985a. A probabilistic
model of the relationship between marshland-water interface and
marsh disintegration. Ecological Modelling 29:245-260.

Browder, J. A., L. N. May, Jr., A. Rosenthal, R. H. Baumann, and
J. G. Gosselink. 1985b. First semi-annual progress report to NASA
on the TM project: Utilizing remote-sensing of thematic mapper data
to improve our understanding of estuarine processes and their
influence on the productivity of estuarine-dependent fisheries. -
National Marine Fisheries Service, Miami, Fla., and Louisiana State
University, Baton Rouge, La.

Cliff, A. D., and J. K. Ord. 1981. Spatial Processes: Models and
Applications. London: Pion. 261 pp.

Cowardin, L. M., V. Carter, F. C. Golet, and E. T. LaRoe. 1979. Class-
ification of wetlands and deepwater habitats of the United States.
U.S. Fish and Wildlife Service, Office of Biological Services,
Report No. FWS/OBS-79/31, 103 pp.

Dow, D. D. and R. W. Pearson. 1982. SLIN: a software program to
measure interface length. NASA Earth Resources Laboratory, NSTL,
Miss. Report No. 208. 19 pp.

Fishman, G. S. 1973. Concept and methods in discrete-event digital
simulation. New York: Wiley. 386 pp.

Graham, M. H., B. G. Junkin, M. T. Kalcic, R. W. Pearson, and
B. R. Seyfarth. 1984. ELAS: Earth Resources Laboratory applica-
tions software, Vol. II, ELAS user's guide. NASA Earth Resources
Laboratory, NSTL, Miss. 428 pp.

Kirby, R. L., and A. Rosenfeld. 1979. A note on the use of (gray level,
local average gray level) space as an aid in threshold selection.
IEEE Transactions on Systems, Man, and Cybernetics, Vol. SMC-9, No.
12, pp. 860-864.

23



Lee, J. E. (ed.). 1984. MOSS User's Manual. U.S. Fish and Wildlife
Service, Western Energy and Land Use Team, Ft. Collins, Colo.
443 pp.

Moik, J. G. 1980. Digital processing of remotely sensed images.
National Aeronautics and Space Administration Scientific and Technical
Information Branch, NASA SP-431. 330 pp.

Pun, T. 1981. Entropic thresholding, a new approach. Computer Graphics
and Image Processing 16:210-239.

Upton, G., and B. Fingleton. 1985. Spatial Data Analysis by Example.
Vol. 1. New York: Wiley. 410 pp.

Weszka, J. S., and A. Rosenfeld. 1978. Threshold evaluation techniques.
IEEE Transactions on Systems, Man, and Cybernetics, Vol. SMC-8, No.
8, pp. 622-629.

Wicker, K. M. 1980. Mississippi Deltaic Plain Region ecological
characterization: a habitat mapping study. A user's guide to the
habitat maps. U.S. Fish and Wildlife Service, Office of Biological
Services. FWS/OBS-79/07. 45 pp.

Wicker, K. M., J. B. Johnston, M. W. Young, and R. M. Rogers. 1980. The
Mississippi Deltaic Plain Region habitat mapping study. 464 maps.
U.S. Fish and Wildlife Service, Office of Biological Services.
FWS/OBS-79/07.
i

Wrigley, R. C., C. A. Hlavka, and D. H. Card. 1985. Evaluation of
thematic mapper interband registration and noise characteristics.
Photogrammetric Engineering and Remote Sensing 51:1417-1425.

24



Table 1. Results of a chi-square test of the randomness of a mixed
congruential random number generator on the Burroughs
6800.

Execution

1

2

3

4

5

6

7

8

9

10

Chi-square

4,085.88

4,137.37

4,105.87

4,121.87

4,095.37

3,956.01

4,157.24

4,048.13

4,148.00

4,051.25

Max Q1 = 1.54 < 1.96, therefore do not reject H0 at alpha = 0.05.



Table 2. Runs-up-and-down test for a mixed congruential
random number generator on the Burroughs 6800
compute r .

Execution

1

2

3

4

5

6

7

8

9

10

R u n s - u p - a n d - d o w n

16*

21*

18*

23*

22*

19*

19*

22*

18*

20*

^Conclude H0 -- the process is random at alpha = 0.1.



V.

Table 3 E(R) as a function of level and matrix size

Level
Matrix
Size
(2OxN>

.1 .2 .3 .4 .5 .6 .7 .8 .9
•<• ̂» ̂» ̂» ̂» ̂» ̂» •• ̂» ••• *• ̂••••̂ •̂^ ̂^ ^ VMW^B^ ̂̂ ^̂  V*M^B^ B̂̂ ^^aH.^_^B^M»^^B^<^^K^ ̂«M ov̂  «. M • ̂  ̂  ,j~ ̂«W^ ̂  ̂  ̂B «• ̂V ̂» ̂B •• ̂» ̂M

10O 63. £4 113.13 148.48 169.7O 176.77 169.7O 148.48 113.13 63.64

200 133.67 237.99 312.36 356.98 371.86 356.98 312.36 237.99 133.87

400 274.29 487.62 640.00 731.43 761.90 731.43 640.00 487.62 274.29

60O 414.69 737.23 967.61 11O5.84 1151.92 1105.84 967.61 737.23 414.69

800 555.09 986.83 1295.22 1480.25 1541.93 1480.25 1295.22 986.83 555.09

1000 695.50 1236.44 1622.82 1854.65 1931.90 1854.65 1622.82 1236/44 695.50



V..

Table 4 VAR(R) as a function of level and matrix size

Level
Matrix
Size
( 20xN )

.1 .2 .3 .4 .5 .6 .7 .8 .9

100 28.65 76.79 125.03 159.51 171.93 159.51 125. O3 76.79 28.65

200 57. 6O 16O. 23 264. 52 339. 49 366. 54 339. 49 264. 52 160. 23 57. 6O

400 113.07 324.85 542.47 699.58 756.37 699.58 542.47 324.85 113. 07

6OO 168.01 488.98 82O. 18 1O59. 68 1146.31 1059.68 820.18 488.98 168.01

800 222.83 652.99 1097.81 1419.79 1536.28 1419.79 1097.81 652.99 222.83

100O 277. BQ 816.95 1375.48 1779.91 1926.27 1779.91 1375.48 816.95 277.60



Table 5 E(R) as a function of level and R-roean as a function of level and
weighting factors for Matrix size » 1000 (2O rows, SO columns)

C(R)

Level

.1 .2 .3 .4 '.5 .6 .7 .8 .9
\

695.50 1236.44 1622.62 1854.65 1931.93 1854.65 1622.82 1236.44 695.50

R-mean

Level
Weights
W, G

.1 .2 .3 . 4 . 5 .6 .7 .8 .9

0,0 700.60 1243.6O 1619.80 1873. SO 1948.60 1665.40 1622.93 1236.46 694.53

4,4 554.93 918. OO 1144.93 1274.60 1298.10 1254.73 1101.53 856.60 515.13

6,6 503.66 808.8O 10O6.73 1097. SO 1145.7O 1104.60 988.46 767.53 475.46

12,12 469.00 746. 2O 9O8.00 1O28. 53 1O48. 7O 1O28. 40 900.13 721.73 449.00
_________________—__———————————___________.___________________—-._———————

24,24 4O1.73 638.93 774.47 679.53 896.60 856.00 766.66 620.30 382.86

76,76 302.06 473.93 590.53 635.66 654.06 642.86 580.33 455,33 291.46



Table 6 VAR(R) as a function of level and sample variance as a function of
level and weighting factors for Matrix size = 1000 (20 rows,
50 columns)

VAR(R)

Level

.1 .2 .3 .4 r .5 .6 .7 .8 .9

277.60 816.95 1375.48 1779.91 1926.27 1779.91 1375.48 816.95 277.60

Sample variance

Level
Weights
W,G

.1 .2 .3 .4 .5 .6 .7 .8 .9

0,0 232.54 883.97 1493.76 1114.18 1347.07 2203.13 1996.84 602.71 221.87

4,4 396.78 1223.73 1759.21 3010.93 2560.85 2790.99 2286.98 2011.81 1013.51

8,8 425.48 1124.04 2754.44 2313.39 3985.49 2748.25 4479.07 2238.34 1094.57

12,12 456.87 1851.10 2060.61 2884.95 3773.62 3990.46 4108.07 3071.65 1444.02

24,24 652.46 1517.41 3814.80 3541.75 3385.53 3678.80 4488.29 2788.60 2236.48

76,76 684.48 2410.87 3594.60 3073.83 6561.84 5353.72 5423.00 5127.40 2938.00



Table 7. Expected value, E(R), and variance, var(R), of the cross-product
statistic tor paired matrices of the same size (number of pixels) but
different configurations (ratios of rows to columns). (The ratio or its
inverse is given in parentheses above each value. ) All matrices
are disintegrated to the 0.5 level.

Matrix
Size

100
200
400
600
800

1,000

N

5
10
20
30
40
50

Rows
20 XN

176.77
371.86
761.90

1,151.92
1,541.93
1,931.93

E(R)
and Columns

(4)
(2)
(1)
(1.5)
(2)
(2.5)

10X2N

181.82
371.86
751.88

1,131.89
1,511.89
1,891.89

(1)
(2)
(4)
(6)
(8)

(10)

Matrix
Size

100
200
400
600
800

1,000

N

5
10
20
30
40
50

Rows
20 XN

171.93
366.54
756.37

1,146.31
1,536.28
1 ,926.27

var(R)
and Columns

(4)
(2)
(D
(1.5)
(2)
(2.5)

10X2N

176.68
366.54
746.48

1,126.46
1 ,506.45
1 ,886.44

0)
(2)
(4)
(6)
(8)
(10)



Table 8. Expected value, E(R), and variance, var(r), of the cross-
product statistic for matrices of (a) different sizes but the
same configuration (ratio of rows to columns or the inverse)
and (b) the same size but different configurations. All
matrices are disintegrated to the 0.5 level.

(a) E(R) and var(R) for matrices with a configuration of 1.0.

Rows and Columns

10X10
15X15
20X20
25X25
30 X 30

Matrix
Size

100
225
400
625
900

E(R)

181.82
421.87
761.90

1,201.92
1,741.94

var(R)

176.68
416.46
756.37

1,196.29
1,736.25

(b) Paired matrices of the same size but different configurations
(Configuration given in parentheses.)

Rows X Columns

5X200
10 X 100
20 X 50
25 X 40

Matrix
Size

1,000
1,000
1,000
1,000

E(R)

1,796.80
1,891.89
1,931.93
1 ,936.94

(40)
(10)
(2-5)
(1.6)

var(R)

1,791.88
1,886.44
1,926.27
1,931.25



Table 9. Changes In water area and shoreline length tabulated from USFWS habitat maps for each of the five quadrangles
comprising the study area, 1956-78.

a

Water
Percentage of total area

Quadrangle name

Grand Bayou Du Large

Dog Lake

Cocodrie

Lake La Graisse

Central Isles Dernleres

Totals

1956

61.8

39.1

51.6

93.9

76.8

64.7

1978

67.4

51.8

62.8

96.8

89.5

73.7

1956-78
change (%)

9.1

32.4

21.7

3.1

16.5

13.9

Shoreline
Length (km)

1956

542.4

879.0

540.1

154.0

383.1

2,498.6

1978

730.0

1,408.5

960.2

132.3

337.9

3,568.9

1956-78
change (%)

34.6

60.2

77.8

-14.1

-11.8

42.8

Includes USFWS habitat categories: E10WH (open water), E10W (leveed and impounded water bodies), E101WO (oil and gas
canals), E10WX (excavated open water), E1AB (aquatic beds), and E3FL (sand, shell, and mud flats).
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Figure 1. Plot of R-mean vs. weighting1 factors W and G
for a 1,000-pixel matrix at five levels of
disintegration.
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Figure 2. Plot of R-mean vs. weighting factors W and G
for an 800-pixel matrix at five levels of
dis integrat ion.
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Figure 3. Plot of R-mean vs. weighting factors W and G = W
for a 600-pixel matrix at five levels of
dis integrat ion.
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Figure 4. Plot of R-mean vs. weighting factors W and G
for a 400-pixel matrix at .five levels of
d i s i n t eg ra t i on .

= W



MATRIX SrZE-»-200 (20 ROWS, 10COLUMNS)

0,0 4,4 8,8 12,12 24,24

WEIGHTING FACTOR (W,G)

LEVEL'O.4
LEVEL -0.3
LEVEL-0.3

LEVEL-0.2

LEVEL-O.I

76,76

Figure 5. Plot of R-mean vs. weighting factors W and G
for a 200-pixel matrix at, five levels of
dis integrat ion.
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Figure 6. Plot of R-mean vs. weighting factors W and G = W
for a 100-pixel matrix a\ five levels of
disintegrat ion.
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Figure 7. Plot of R-mean vs. weighting factors W and G
for a 1,000-pixel matrix at five levels of
d i s in tegra t ion .
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Figure 8. Plot of R-mean vs. weighting factors W and G
for an 800-pixel matrix 'at five levels of
d is in tegra t ion .
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Figure 9. Plot of R-mean vs. weighting factors W and G
for a 600-pixel matrix at five levels of
d is in tegra t ion .
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Figure 10. Plot of R-mean vs. weighting factors W and G = 0
for a 400-pixel matrix at five levels of
d i s in tegra t ion .
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Figure 11. Plot of R-mean vs. weighting factors W and G
for a 200-pixel matrix at five levels of
d i s i n t e g r a t i o n .
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Figure 12. Plot of R-mean vs. weighting factors W and G = 0
for a 100-pixel matrix at five levels of
d is in tegra t ion .
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Figure 13. Plot of the expected value of the cross-product
statistic, E(R), vs. level of disintegration for
matrices of six different sizes (number of pixels).
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Figure 14. Plot of the expected value of the cross-product
statistic, E(R), vs. matrix size (number of pixels)
for matrices of the same configuration (ratio of
rows to columns or the inverse).
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Figure 15. Plot of the variance of the cross-product statistic,
var (R) , vs. ma t r i x size (number of pixels).
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Figure 16. Location of the sample sites in Southeastern Louisiana.
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Appendix Table 1 E(R) and VAR(R) as a function of level and R-roean and sample
variance as a function of level and weighting factors for
Matrix size = 1000 (20 rows, 50 columns)

. 1

E(R>

Level

.3 .4 .5 .1 .2

VAR(R)

Level

.3 .4 .5

£95.50 1236.44 1622.82 1854.65 1931.93 277.60 816.95 1375.48 1779.91 1926.27

Weights
W,G

. 1

R-mean

Level

.3

Sample variance

Level

.4 .5 .3 .4 .3

0,0

4,4

8,8

700.60 1243.60 1619.80 1873.50 1948.80 232.54 883.97 1493.76 1114.18 1347.07

554.93 918.00 1144.93 1274.60 1298.10 396.78 1223.73 1759.21 3010.93 2560.85

503.66 808.80 1006.73 1097.80 1145.70 425.48 1124.04 2754.44 2313.39 3985.49

12,12 469.00 746.20 908.00 1028.53 1048.70 456.87 1851.10 2060.61 2884.95 3773.62

24,24 401.73 638.93 774.47 879.53 896.60 652.46 1517.41 3814.80 3541.75 3385.53

76,76 302.06 473.93 590.53 635.86 654.06

•alpha risk < .001

684.48 2410.87 3594.60 3073.83 6561.84



Appendix Table 2 E(R) and VAR(R) as a function of level and R-raean and sample
variance as a function of level and weighting factors for
Matrix size » 800 (20 rows, 40 columns)

. 1

E(R)

Level

2 .3 .4 .5

359.09 986.83 1295.22 1480.25 1541.93

. 1 .2

VAR(R)

Level

.3 .4 .5

222.83 652.99 1097.81 1419.79 1536.28

Weights
W,G

0,0

. 1

R-mean

Level

.3 .4 .5

553.73 995.93 1288.33 1463.33 1553.73

Sample variance

Level

.3 .4 .5

178.26 414.60 1162.61 981.84 784.62

4,4

8,8

447.53 729.80 903.47 1014.40 1037.60 401.49 849.24 1928.03 1586.35 1617.04

396.40 646.73 800.93 914.93 922.33 595.49 671.68 1591.71 1673.67 2754.44

12,12 363.87 597.80 725.53 812.13 829.00 480.28 1270.96 2578.79 1764.16 4313.49

24,24 317.60 505.67 622.67 700.27 718.60 850.39 930.76 2058.82 1852.79 2190.23

76,76 252.40 390.73 471.27 520.80 526.47 617.77 2668.43 1604.42 2743.10 3841.57



Appendix Table 3 E(R) and VAR(R) as a function of level and R-mean and sample
variance as a function of level and weighting factors for
Matrix size c 600 (20 rows, 30 columns)

.1

414.69

Weights

. 1

0,0 418.27

4,4 331.93

8, 8 295. 67

12,12 274.80

24, 24 235. 60

E(R)

Level

.2 .3 .4 - .5
\

737.23 967.61 1105.84 1151.92

R-mean

Level

.2 .3 .4 .5

733.93 967.13 1106.67 1143.07

543.27 678.07 757.40 798.33

475.53 593.27 663.20 691.33

441.73 551.20 608.93 622.00

386.60 467.53 527.47 537.00

VAR(R)

Level

.1 .2 .3 .4

168. 01 488. 98 820. 18 1059. 68

Sample variance

Level

.1 .2 .3 .4

94.55 584.51 1391.46 1305.54

*

263. 17 690. 15 882. 80 1062. 29

306. 27 826. 47 1819. 09 1443. 28

585.93 1120.75 872.32 2243.00

: 421.84 958.56 1099.132290.75

.5

1146.31

.5

1051.42

1441.78

1475. 58

2706. IS

2043. 68

76,76 186.40 279.20 355.60 397.13 419.27 285.31 876.39 2407.00 2646.13 2311.50



V..

Appendix Table 4 E(R) and VAR(R) as a function of level and R-mean and aample
variance as a function of level and weighting factora for
Matrix size « 400 (20 rows, 20 columns)

.2

E(R)

Level

.3 .4 , .5

274.29 487.62 640.00 731.43 761.90

. 1 .2

VARCR)

Level

.3 .4 .5

113.07 324.85 542.47 699.58 756.37

Weight!
W,G

0,0

4,4

8,8

. 1

R-mean

Level

.3 .4 .5

Sample variance

Level

.2 .3 .4 .5

273.07 487.13 633.33 730.07 759.33 130.52 329.41 587.36 780.77 488.94

220.53 359.07 444.40 499.33 513.07 234.94 529.30 845.23 584.51 1458.26

193. a? 317.40 394.67 449.60 449.47 194.36 641.95 612.41 1129.99 1243.76

12,12 185.40 302.93 360.53 407.73 432.13 238.57 568.92 1570.73 780.77 1346.35

24,24 155.40 246.53 308.47 347.00 354.33 283.65 707.83 1325.51 1572.29 1627.34
i

76,76 123.67 178.40 222.20 254.40 277.27 289.31 1101.09 1121.41 1979.31 1420.95



Appendix Table 5 E(R) and VAR(R) as a function of level and R-mean and aample
variance as a function of level and weighting factor* for
Matrix size » 200 (20 rows, 10 columns)

. 1

133. 87

Weights
W,G

. 1

0,0 134.73

4, 4 105. 47

8, 8 97. 67

12, 12 89. 87

24, 24 80. 47

E(R)

Level

.2 .3 .4 * .5
\

237.99 312.36 356.98 371.86

R-mean

Level

.2 .3 .4 .5

239.80 311.93 356.40 373.27

175.87 216.13 251.80 253.20

157.67 196.60 215.53 226.67

141.60 182.27 201.53 199.60

120.20 150.13 165.87 174.47
i

VAR(R)

Level

.1 .2 .3 .4

57.60 160.23 264.52 339.49

Sample variance

Level

.1 .2 .3 .4

41.98 214.03 272.18 369.84

107.18 190.82 345.30 509.58

117.39 240.09 208.88 338.75

80.75 211.16 344.93 544.80

141.99 423.86 602.71 476.41

.5

366. 54

.5

267. 98

931.96

657. 49

740. 10

743. 32

76,76 61.07 87.93 112.80 132.93 125.27 124.08 575.04 437.33 680.89 914.04



Appendix Table 6 G<R) and VAR(R) aa a function of level and R-mean and sample
variance as a function of level and weighting factors for
Matrix size = 100 (20 rove, S columns)

.1 .2

E(R)

Level

.3 .4 . 1 .2

VAR(R)

Level

.3 .4 .5

63.64 113.13 148. 48 169. 70 176. 77

R-mean

Level
Weights
W f*

^m

. 1

0, 0 63. 67

4, 4 52. 47

8, 8 47. 60

12,12 42.53

24, 24 37. 00

76, 76 28. 67

.2

114.33 148

80. 00 105

76. 33 90

71.47 83

60. 80 72

43. 80 52

3 .4 .5

.07 170.93 177.87

.53 116.13 118.13

.60 100.07 101.67

. 20 92. 87 94. 47

. 13 78. 00 78. 47 '
i

. 60 58. 33 56. 67

28. 65 76. 79 125. 03159. 51 171.93

Sample variance

Level

.1 .2 .3

37. 88 69. 67 98. 60

44. 69 64. 20 158. 62

38.24 101.95 148.87

48.72 139.20 206.61

81.81 104.35 269.59

65. 63 218. 37 224. 81

.4

137. 58

197. 39

135. 97

288. 31

196. 56

307. 65

.5

170. 22

218.66

244. 69

339. 11

278. 05

287. 97



Appendix Table 7 C(R) and VAR(R) as a function of level and R-mean and sample
variance as a function of level and weighting factors for
Matrix size = 1000 (20 rows, 50 columns)

. 1

695. 50

Weights

. 1

0, 0 700. 60

1
4, 0 562. 60

8,0 517.67

12,0 474.67

24, 0 426. 80

76, 0 328. 60

E(R>

Level

.2 .3 .4 .5

1236.44 1622.82 1854.65 1931.93

R-mean

Level

.2 .3 .4 .5

1243.60 1619.80 1873.50 1948.80

926.06 1147.47 1281.86 1305.86

822.66 1026.60 1123.33 1148.00

756.13 928.80 1043.66 1078.06

660. 33 829. 27 892. 60 895. 26 •
., _ _ _ i

516.13 614.60 658.33 703. 53

VAR(R)

Level

.1 .2 .3 .4

277.60 816.95 1375.48 1779.91

Sample variance

Level

.1 .2 .3 .4

232.54 883.97 1493.76 1114.18

524.79 1015.39 1898.78 2041.91

334.06 1301.99 2215.15 3016.32

476.41 1569.95 1420.21 2737.95

751.92 1462.76 2411.83 5818.03

1254.19 1465.77 3402.71 3182.71

.5

1926. 27

.5

1347.07

2486. 76

3278. 83

4019. 08

5526. 30

4303. 17

•alpha risk < .001



Appendix Table 8 E(R) and VAR(R) as a function of level and R-mean and sample
variance aa a function of level and weighting factora for
Matrix size * 800 (20 rows, 40 columns)

. 1

E(R)

Level

2 .3 .4 .5 .1 .2

VAR(R)

Level

.3 .4 .3

559.09 986.83 1295.22 1480.25 1541.93

R-mean

Level
Weights

.1 .2 .3 .4 .5

0,0 553.73 995.93 1288.33 1463.33 1553.73

4,0 456.33 747.27 927.33 1030.93 1041.60

8,0 404.60 658.80 825.93 903.33 912.13

12,0 373.80 614.07 760.93 841.87 862.93

24,0 329.20 536.87 674.40 714.20 734.53

222.83 652.99 1097.81 1419.79

Sample variance

Level

.1 .2 .3 .4

178.26 414.60 1162.61 981.84

298.07 672.19 1008.51 1311.94

346.03 975.68 1091.97 2004.76

679.35 1398.07 1488.45 2135.36

643.95 1143.91 1336.99 2846.00

1536. 28

.5

784. 62

2136. 27

2574. 80

1532. 00

2582. 79

76,0 272.13 415.00 478.53 552.13 552.13 519.85 1178.75 2048.13 2439.92 3186.04



Appendix Table 9 C(R) and VAR(R) as a function of level and R-mean and sample
variance aa a function of level and weighting factora for
Matrix alze « 600 (20 rows, 30 columns)

.1

414.69

Weights
W.G

. 1

0, 0 418. 27

4,0 338.13

E(R)

Level

.2 .3 .4 ", .5

737.23 967.61 1105.84 1151.92

R-mean

Level

.2 .3 .4 .5

733.93 967.13 1106.67 1143.07

552.27 681.47 757.60 768.53

VAR(R)

Level

.1 .2 .3 .4

168. 01 488. 98 820. 18 1059. 68

Sample variance

Level

.1 .2 .3 .4

94.55 584.51 1391.46 1305.54

208.03 811.84 1317.65 1274.46

.5

1146.31

.5

1051.42

1617.04

8,0 308.93 490.40 608.13 670.27 692.53 352.28 446.01 978.76 1571.51 2397.37

12,0 285.13 462.60 567.07 622.27 649.40 223.92 1135.28 1664.03 2000.36 1697.08

24,0 251.07 385.47 478.60 526.40 545.80 432.41 1043.78 1790.69 1919.40 2271.96

i —

76,0 185.87 300.67 376.73 415.27 422.73 552.63 667.10 1978.43 1654.42 2732.81



Appendlx Table 10 E(R> and VAR(R) as a function of level and R-mean and sample
variance as a function of level and weighting factors for
Matrix size = 400 (20 rows, 20 columns)

. 1 .2

E(R)

Level

.3 .4 .5

274.29 487.62 640.00 731.43 761.90

. 1 .2

VAR(R)

Level

.3 .4 .5

113.07 324.85 542.47 699.58 756.37

Weightj
W, G

0,0

. 1

R-mean

Level

.3 .4 .5

273.07 487.13 633.33 730.07 759.33

Sample variance

Level

.3 .4 .5

130.52 329.41 587.36 780.77 488.94

4,0

8,0

225.00 365.93 447.60 514.27 504.73 197.67 418.62 821.96 495.48 1316.93

204.81 322.60 392.87 442.73 460.53 308.69 552.16 1070.63 774.74 1101.09

12,0 189.07 298.67 374.80 408.93 420.53 284.98 689.12 576.93 1088.73 1495.28

24,0 174.00 263.27 318.13 369.40 3£8. 80 ,• 196.29 516.71 1014.14 1418.73 972.00

76,0 131.60 204.40 238.07 267.73 278.87 370.97 898.65 809.04 1236.84 900.42



Appendix Table 11 E(R) and VAR(R) as a function of level and R-mean and sample
variance as a function of level and weighting factors for
Matrix size * 200 (20 rows, 10 columns)

.1

133. 87

Weights

. 1

0,0 134.73

4,0 112.53

8, 0 99. 87

12,O 96.80

24, 0 85. 33

76, O 67. 20

E(R)

Level

.2 .3 .4 ", .5

237.99 312.36 356.98 371.86

R-mean

Level

.2 .3 .4 .5

239.80 311.93 356.40 373.27

180. 40 226.20 244. 07 248.27

158.47 190. 33 219.13 221.93

141.13 185.27 2O3. 13 197.60

127.53 157.67 179.27 171i93
_— __ __ _ _— __ _ _ _ i

102.87 119.60 133.40 128.73

VAR(R)

Level

.1 .2 .3 .4 .5

57.60 160.23 264.52 339.49 366.54

Sanple variance

Level

.1 .2 .3 .4 .5

41.98 214.03 272. IB 369.84 267.98

58.06 145.06 449.75 461.50 348.23
i

80.22 200.72 454.77 495.48 467.86

64. 2O 205.49 244.38 461.08 367.57

i

99.58 172.79 443.52 439.80 311.46

145.53 204.36 543.42 649.95 818. 02



Appendix Table 12 E(R) and VAR(R) as a function of level and R-roean and sample
variance as a function of level and weighting factors for
Matrix size = 1(2)0 (20 rows, 5 columns)

Weights

0,0

4,0

8,0

12,0

24,0

E(R)

Level

.1 .2 .3 .4 . 5

63.64 113.13 148.48 169.70 176.77

R-mean

Level

.1 .2 .3 .4 .5

63.67 114.33 148.07 170.93 177.87

51.53 85.40 104.53 118.07 119.73

48.20 73.13 93.27 104.67 105.87

43.73 71.40 90.27 94.93 95.27

41.00 62.27 70.80 75.27 74.67

VAR(R)

Level

.1 .2 .3 .4

28.65 76.79 125.03 159. SI

Sample variance

Level

.1 .2 .3 .4

37.88 69.67 98.60 137.58

34.80 95.70 189.73 212.59

60.32 103.55 180.90 172.79

26. 34 69. 34 242. 23 158. 13

47.09 151.76 139.89 348.96

.5

171.93

.5

170. 22

219.53

303. S3

449. 43

325. 85

76,0 35.07 47.20 59.60 65.20 61.40 48.72 99.00 289.31 372.87 818.02




