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ABSTRACT

The comparative computational efficiencies of the finite
element (FEM), boundary element (BEM), and hybrid boundary
element-finite element (HBFEM) analysis techniques are evaluated
for representative bounded domain "interior" and unbounded domain
"exterior” probiems in elastostatics. Computational efficiency
is carefully defined in this study as the computer time required
to attain a specified level of solution accuracy. The study
found the FEM superior to the BEM for the interior problem, while
the reverse was true for the exterior problem. The hybradg
analysis technique was found to be comparable or superior to both
the FEM and BEM for both the interior and exterior problems.




INTRODUCT ION

The overall purpose of the research described in this report
is the investigation of the feasibility and advantages of . :
incorporating boundary element analysis techniques into a finite
element environment and, ultimately, into the NASTRAN finite
element code. The expected benefits from combining boundary
element and finite element analysis techniques include: (a) more
effective analyses, both in terms of computational efficiency and
numerical accuracy; and (b) simpler analysis preparation,
especially in an interactive computer graphics modeling
environment where boundary elements can conveniently be used to
discretize just the surfaces of complex three-dimensional
geometries.

The past year’s effort has focused on two areas: (a) the
definition of the modifications required to incorporate a
boundary element formulation into a conventional finite element
context; and (b) the quantitative evaluation of the relative
computational efficiencies of the pure boundary element, finite
element, and hybrid boundary element-finite element analysis
methods.

BACKGROUND

All numerical methods for stress analysis problems are based
upon approximations that transform the underlying differential
equations for equilibrium and strain compatibility into a set of
simultaneous algebraic equations amenable to solution on a
computer., The nature of this approximation forms the principal
distinction between the two common numerical techniques used
today, the finite element and boundary element methods. Iin the
finite element method (FEM), the assumed displacement fields
within each subregion or "element" of the problem domain form the
basis of the approximation; the entire problem domain (including
the boundaries) must be discretized into eiements to obtain a
solution. In the boundary element method (BEM), on the other
hand, the approximation is based on simplified assumed variations
of the prescribed conditions along each segment of the boundary
contour; therefore, only the problem boundaries need be
discretized. Discretizing only the boundaries instead of the
entire problem domain reduces the effective dimension of the
analysis problem by one order. For example, a three-dimensional
geometry, which would be analyzed using three-dimensional volume
eiements in the FEM, can be analyzed using two-dimensional
surface elements in the BEM. ‘ '

This difference in the underlying approximation "philosophy"
gives each method an inherent set of advantages and limitations.
The major advantages of the finite element method are:

(1) a long history of development and application and an
associated accumulation of knowledge and experience;



(2) the ability to model complex geometries, material behavior,
geometric nonlinearities,. and loading conditions;

(3) a "convenient" set of equations to solve; the equations are
usually narrowly banded and symmetric and consequently have
relatively small machine storage and computation
requirements.

The countervailing limitations include:

(1) a very large number of equations to solve (particularly for
three-dimensional problems) since the entire problem domain
must be discretized;

(2) the inability to model infinite domain problems without
resorting to artificial truncation of the problem geometry;

(3) difficulty in obtaining accurate solutions to problems
involving singularities.

In contrast, the principal advantages of the boundary element
are:

(1) a relatively small system of equations to solve, since only
the problem boundary is discretized;

(2) improved. accuracy within the domain at points away'from the
boundary approximations;

(3) the direct incorporation of infinite domain boundary
conditions;

(4) the ability to obtain accurate solutions to problems
involving singularities. ’

The principal limitations of the boundary element method include:

(1) difficulty in incorporating nonlinear material behavior,
material inhomogeneity, and/or dynamic effects,

(2) an "inconvenient" set of equations to solve (the coefficient
matrix is usually unsymmetric and fully populated);

(3) a large computational effort for assembling the system
coefficient matrices.

which numerical method is best for any specific problem is
often unclear. Conventional wisdom based on the generat
qualitative merits listed above suggests that the finite element
method is more _suited to finite domains and/or problems involving
nonlinear behavior while the boundary element method is most
effective for infinite domains and linear behavior. Often the
best approach is of a mixed or hybrid nature that takes optimal

advantage of the particular characteristics of each (ZienkKiewicz,
Kelly, and Bettess, 1977; Kelly, Mustoe, and ZienkKiewicz, 1979;



Brady and wassyng, 1981). Figure 1 illustrates typical problems
that may profit from a hybrid boundary element-finite element
discretization. .

PREVIOUS STUDIES

) Many investigations into the relative efficiencies of finite
element and boundary element methods have been conducted over the
past several years. Most of these studies have been largely
qualitative, although a few have provided comparative numerical
results and associated costs.

Bettess (1980) considered the simple problem of a square
plate discretized using boundary element or finite element meshes
having the same node densities along the boundaries. Bettess
counted the number of calculations required to solve the systems
of-equations for each method and concluded that the
"dimensionality " advantage of boundary elements over finite
elements is "more apparent than real"™ and that the BEM is
computationally cheaper only for problems with a very lJarge
number of degrees of freedom, Bettess” arguments are
inconclusive, however, in that the computation counts in his
study include only the equation solution step; the computations
required to formulate the coefficient matrices were not
considered. The more serious limitation of Bettess” study,
however, is that his comparisons of the two methods were not made
at the same level of solution accuracy.

Beer (1983) performed a3 more realistic comparison of
boundary element, finite element, and hybrid analyses by
considering the problem of a two-dimensional mine opening--i.e.,
an "exterior” problem in boundary element terminology. Al though
solution accuracy was not controlled explticitly, the results for
selected stresses and displacements varied by less than 2/ among

all analyses. Beer found that the boundary element, finite
element, and hybrid analyses for this problem all required about
the same magnitude of computer time (within +107/). He also noted

that the finite element analysis required over three times the
input data needed for the boundary element case.

Radaj, Mohrmann, and Schilberth performed a study similar to
Beer‘s for two-dimensionsal "interior” problems typical of those
encountered in industry. They found that a finite element
analysis may require several times the CPU time needed for a
boundary element analysis of comparable accuracy. They also
commented on the large expenditure of time for meshing and input
preparation in the finite element method as compared to the
boundary element .analysis: "It is exactly this difference in
expenditure, which is quite obvious atthough it is hard to
measure accurately, that is responsible for the boundary element
method being more economical for practical appltication in
industry. "



- e

-

Mukherjee and Morjaria (1984) investigated the twin issues
of computational efficiency and accuracy for the solution of
Laplace’s equation with mixed boundary conditions in a two-
dimensional square domain. Solution accuracy was defined as the.
mean square error of the computed solution variable and its
derivatives evaluated at the node points in the finite element
analysis and at the corresponding domain locations in the
boundary element solution. They observed that "for the same
level of discretization, the BEM results are more accurate than
the FEM". If the solution is required only on the boundaries and
at a few interior points, they concluded that the BEM requires
less computational effort than the FEM; if the solution is
required throughout the domain, the FEM is most efficient.

Mukher jee and Morjaria also note that problem symmetry favors the
BEM because the symmetry boundaries need not be discretized.

Hume, Brown, and Deen (1985) performed a study similar to
Mukher jee and Morjaria“s for the case of Laplace’s equation in a
domain with a moving boundary (a formulation encountered in
surface wave/solidification/capiltltary front problems). There
comparisons were all made at the same solution accuracy, defined
as the RMS error in the solution variable along the moving
boundary. They concluded that the FEM was computationally more
efficient for bounded interior problems except when very high
solution accuracy is desired. For unbounded problems, the
boundary element formulation incorporating the problem symmetry
conditions was found to be the most efficient.

in reviewing these previous investigations, i1t is clear that
there is littie consensus regarding which analysis method is most
efficient for any given problem category. For interior problems,

the Radaj, Mohrmann, and Schilberth and the Mukherjee and
Morjaria studies found the BEM more effective than the FEM while
the Hume, Brown and Deen and the Bettess studies concluded just
the opposite. For exterior problems (which conventional wisdom
claims should be most advantageous for the BEM), Hume, Brown, and
Deen found that the BEM was more effective than the FEM while
Beer found that the two analysis methods were roughly comparable.
There is general agreement that the BEM requires considerably
less effort for input preparation than does the FEM.

PURPOSE OF PRESENT STUDY

The failure of previous comparisons of finite element and
boundary element analyses to yield a consensus regarding their
relative merits is due in part to differences in the problems
analyzed (e.g., elastostatics vs. potential problems). To a
l1arger degree, however, these comparisons have been flawed by the
inadequate consideration and control of solution accuracy. The
BEM is generally more accurate than the FEM at the same level of
discretization for a given problem (Mukherjee, 1982). This
higher accuracy compensates to some extent for the greater
computational effort per equation required in the boundary
element method.



The purpose of the present study is to compare the
computational efficiency of the finite element and boundary
element methods at equivalent solution accuracy. This comparison
is performed for interior and exterior two-dimensional
elastostatic problems. In addition, the relative efficiency of
the hybrid boundary element-finite element method (HBFEM) will be
evaluated. At this point, very little is Known regarding the
performance of the hybrid analysis method. '

MODEL PROBLEMS

The model problems selected for the comparison studies
satisfy two major criteria: (a) existence of an analytical
solution for evaluating the accuracy of the numerical solutions;
and (b) geometry suited to simple discretization without the
introduction of complications such as mesh gradation, zoning,
etc.

The mode! problem for the bounded domain or "interior
problem" case is a solid cylinder subjected to compressive normal
pressures applied over finite arcs at opposite ends of the
cylinder diameter (Figure 2a) This problem corresponds to the
standard split cylinder tension test, The cylinder is assumed to
be homogeneous, isotropic, and linear elastic. The analytic
solution to this problem is expressed in series form (see Jaeger
and Cook, 1976):

2m-2 2

o =2aP 2P o I {(1-Q -3 &) ) sin 2ma cos 2me (1a)
r m b R m” "R
m=1
® 2m-2 2
_ 2aP 2P T - 1, r ; (1b)
0 = -4 I (R {1-Q +m)(R) } sin 2ma cos 2mé
m=1
®© 2m 2m-2
_2 5 in 2mo s (1)
Te= 7 m§1{(R) ® } sin2masin2mé

in which P is the radial pressure, a i85 the angle defining the
arc segment along which the pressure is applied, R is the radius
of the cylinder, and (r,8) are the polar coordinates of any
point.

The radial! displacements u at at the boundary of the
cylinder r=R for plane strain conditions are given as:
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in which k= (3 - 4v) and X and G are Lame’s constants.

The mode)l problem for the unbounded domain or "exterior
problem"” case is a8 circular cavity in an infinite domain

subjected to a uniform internal pressure (see Figure 2b). The
material surrounding the cavity is assumed to be homogeneous,
isotropic, and ltinearly elastic material. The analytical

solution to this problem can be expressed as follows (see, e.g.,
Poulos and Davis, 1974):

2
- R _
Or =P (;) (33)
3 R, 2
06 = -P (-r—) (3b)
Tre = 0 (3¢)

in which P is the applied internal pressure, R is the radius of
the cavity, and r is the radial distance to the point of
interest.

The radial displacements for plane strain conditions are
given by: .

(RS ILY:

- E T (4)

in which E and v are the elastic constants for the material
surrounding the cavity.



Typical boundary element, finite element, and hybrid FE-BE

meshes for the interior and exterior problems are illustrated in
Figure 3. Note that the hybrid mesh is the same as the boundary
element mesh--i.e., it contains no finite elements.

Nevertheless, the hybrid analysis is expected to give results
different from the pure boundary element analysis because of
differences in the underlying formulation, as described in more
detail! in the next section.

A common difficulty in finite element analyses of infinite
domain "exterior"™ problems is that the mesh must be finite in
size,. The finite element mesh for the exterior problem (Figure
3c) is truncated at a distance of six radii from the center of
the cylindrical cavity consistent with the modeling guidelines

suggested by Kulhawy (1974). This mesh truncation introduces
"modeling"” errors in addition to the inherent finite eliement
approximation errors. For a fair evaluation of the finite

element analysis for the exterior problem, the numerical results
should therefore be compared not to the infinite domain
analytical solution (Eqs. 3 and 4) but to the "constrained thick-
walled cylinder" problem illustrated in Figure 4, The analytica!l
sotlution for these conditions can be easily derived:

A
OI‘ = P [—2+ B] (58)
T
A
o, = P [ + 8] (5b)
T
= 5
Trg 0 (5¢)

in which a is the internal radius, b is the external radius, andgd:

2,2
A2 b"(1 - 2v) (5d)
2 2
a” + B7(1-2v)
B = (1..J% (5e)
a
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The corresponding radial displacements for plane strain
conditions are given as:

u p ) [-A + Brz(l-Zv)] (6)

= Er (1 -v

NUMER ICAL FORMULATIONS

The finite element algorithm is based on the standard
virtual displacement formulation (see, e.g., Bathe and wWilson,
19786) . The well-kKnown matrix form of finite element equations
1S

[K} Ul = ({F] (7)

in which [K] is the global stiffness matrix, (U] is the nodal
displacements vector, and {F} is the nodal force vector. Four-
node quadrilateral isoparametric elements with linear
interpolation were used throughout this study.

The boundary element formulation employed in this study s
based on the weighted residual procedure described by Brebbia -
(Brebbia, 1978; Brebbia and walker, 1980; Brebbia, Telles, and
worbel, 1984; this formulation is often referred to as the
"direct BEM formulation®" in the literature). The matrix form of
the BEM for elastostatics problems in the absence of body forces
IS given as: :

[H) (U] = [G] (P} (8)

in which [H] and [G] are the boundary element influence
coefficient matrices, {U) is the nodal displacements vector, and
{P)} is the nodal tractions vector. For a general mixed boundary
value problem, some elements of {U} and {P] will be prescribed
boundary conditions. Eq. (8) can then be rearranged such that
all unknown boundary quantities appear on the left side of the
equation and al) prescribed boundary conditions on the right:

[A} (X1 = (Y] : (9)

in which (X} is the vector of unknown boundary traction and
displacement quantities, [A] is the matrix of influence
coefficients corresponding to the entries in {X]}, and {Y} is the
product of the vector of prescribed boundary quantities
premultipltied by the matrix of corresponding influence
coefficients. Two-noded boundary elements with linear
interpolation functions for boundary displacements and tractions
were used throughout this study.



in the hybrid finite element-boundary element formulation,
the boundary element region is treated as a "super" finite .
element that can be incorporated into the standard finite element
global stiffness matrix. Consider a problem discretized in part
by finite elements and in part by boundary elements as shown in
Figure 5, Rearranging £q. (8) for the boundary element domain
gives:

[G]’1 [H) (U} = (P} (10)

The nodal traction vector {P] can be converted to an equivalent
nodal force vector {F}] through use of the transformation matrix
[M) (Brebbia, Telles, and Worbel, 1984):

[F) = [M) (P) (11)
Multiplying both sides of Eq. (10) by [M]):
(M) (63 [H] (U} = [M) (P} = (F} (12)

Defining:

(K, ) = [M) (61! W) (13)

Eq. (12) can then be expressed as:

[KB ] (Ul = (F) (14)
Eq. (14) is in a form similar to the standard finite element
formulation given by Eq. (7). However, [Kg ] is not in general
symmetric and thus cannot be solved using the symmetric equation
solvers found in standard finite element codes. Symmetry can be
imposed on Eq. (14) through the procedures suggested by Brebbia,
Telles, and Worbel (1984):

(Kps ) = ([Kg ) + (K 1) /2 (15)

or

(K ] ( M) [G]'1 [H] + ( [M] [G]'1 (k13 )Ty /2 (16)
in which [KBS ] is the symmetric equivalent stiffness matrix for
the boundary element region. This equivalent stiffness matrix
can be assembled into the FEM stiffness matrix using standard
procedures. Assuming that similar interpolation functions are
used for both the boundary elements and finite elements along the
interface, displacement compatibility is ensured.

All boundary element analyses of the model probliems were
performed using the computer program listed in Brebbia, Telles,
and wWorbel (1984). Standard Gauss elimination procedures were
used to solve the full, unsymmetric equations in the boundary

element analyses. The computer program code CBFE (Coupled
Boundary-Finite Element method) was developed to perform aill



finite element and hybrid analyses for the model problems. CBFE
is based on the simple finite element program STAP described in
Bathe and Wilson (1976). For the banded and symmetric equatiormns
encountered in the finite element and hybrid analyses, the
specialized Gauss elimination "skyline" equation solver COLSOL
(Bathe and Wilson, 1976) was employed. All computations were
performed on the Sperry 1100/92 mainframe computer system at the
University of Maryland Computer Science Center.

SOLUTION ERROR DEFINITION

Numetical solution errors for stresses and displacements are
defined in terms of Euclidean error norms as follows:

M M
e = [ I (o. -E.)z/ 232]1/2 (17a)
o] . i 1 . 1
i=] i=1
M M 1/2
e,= [ (ui-ai)z/ T Ei] / (17b)
i=1 i=1
in which Eo and E, @re the error norms for stresses and
displacements, respectively; 9; and Ui are the numerical stress
and displacement solution at a specific point i, and 3i and ui
are the corresponding analytical values for the stress and
displacement at point 1. The summations are carried out over a

representative sample of M solution points.

For the interior problem, the M sample points for the stress
error norm calculations were distributed at equally spaced
intervals along the horizontal and vertical diameters of the
cross-section (Figure 63). In the finite element analyses, these
sample point locations were adjusted to coincide with the
location of the nearest element integration point (Figure 6b).
Since the analytical solution for the interior problem gives
displacements only at r=R, all M sample points for the
displacement error norm calcultation were equailly spaced around
the circumferential boundary.

For the exterior problem, the M sample points were
distributed a3t equally spaced intervals along a radial ltine for
both the stress and displacement error norm computations (Figure
Ta) . As in the interior problem, these sample point locations
were adjusted for the finite element analyses to coincide with
the nearest element integration point (Figure Tb).

As mentioned eartier, the finite etement mesh for the
exterior problem is truncated at a distance of six times of

10



cavity radius. This mesh truncation introduces an additionatl
*model ing®” error in the analysis; in other words, the finite
element model! does not correspond to the actual problem of 23 .
cavity in an infinite domain, In order to eliminate this

model ing error, the analytical “s$8lution for the constrained
thick-walled cylinder was used in the computations of the error
norms for the finite element analyses.

The cost of a numerical analysis in its broadest sense
includes data preparation (preprocessing) time, execution CPU
time, and postprocessing time. Human }abor time and machine
storage demands must also be considered. Many of these cost
components are difficult to quantify precisely. In this study,
only the CPU time required for forming and solving the system of
equations is considered. Note that the CPU time required for
calculation of stresses iS not included in these comparisons.

RESULTS

The model interior and exterior problems were analyzed using
the finite element, boundary element, and hybrid analysis methods
for several meshes representing a range of discretization

refinement. Mesh refinement is defined as the total number of
elements, N. For the boundary element and hybrid analysis
meshes, all elements lie along the boundary and are of equal
length. For the finite element meshes, the elements are all
approximately equidimensional, Symmetry conditions were not
incorporated in any of the meshes (e.g., the full cylinder was

analyzed in the interior problem).

Solution Convergence

Solution accuracy as a function of number of elements for
the interior model problem is shown in Figure 8. As would Dbe
expected, all solutions converge toward the exact result with
increasing N. However, the rates of convergence vary among the
different numerical methods. For the same level of
discretization (i.e., the same number of etements), the hybrid
analysis method is the most accurate, followed by the BEM and FEM
analyses, respectively. ;

Solution accuracy for the exterior problem is plotted in
Figure 9, Both the BEM and hybrid analyses converge with
increasing N toward the analytical values. The FEM results do
not converge toward the analytical values for a cavity in an
infinite domain as the number of elements increases, Instead,
the numerical results slowly and asymptotically approach an error
of approximately 87, which represents is the result of the
truncated mesh required for the exterior problem. The comparison
of the FEM results with the constrained thick-walled cylinder
analytical values gives better agreement, although the rate of
convergence 1s still extremely slow. The hybrid analysis method
is again the most accurate at any given degree of discretization.

11
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Computational Efficiency

The CPU time required to obtain a given level of solution
accuracy for the interior problem is given in Figures 10 and 41
for stresses and displacements, respectively. Defining
computational efficiency as the CPU time required to obtain a
specified level of solution accuracy, it is clear from the
results in Figures 10 and 11 that the FEM is more efficient than
the BEM for calculation of both stresses and displacements for
the interior problem. For example, at the five percent streéss
error level the CPU time required for the BEM is 4 to 5 times
greater than for the FEM. This trend is even more clear for the

displacement calculations (Figure 11). The hybrid analysis is
more computationally efficient than both the BEM and FEM for
stress calculations. It is also significantly better than the

BEM for dgisplacement calculations, although less effective than
the FEM.

Solution accuracy as a function of CPU time for the exterior
problem is plotted in Figure 12 for stress computations and
Figure 13 for displiacements. The errors attributable to the
truncated mesh in the FEM model are again quite evident. when
the FEM results are compared to the constrained thick-walled
cylinder solution the numerical results converge to the
analytical values. Nevertheless, the overall performance of the
FEM is still poor compared to the BEM. The hybrid analysis is
slightiy more efficient than the BEM except in the range of very
small solution errors.

From an overall viewpoint, the hybrid analysis seems to be
competitive with or superior to the FEM and BEM formulations for
both interior and exterior problems. This result is somewhat
surprising, since the hybrid method requires the most
calcultations of all three methods: it includes all of the
calculation steps in the BEM as well as the additional and
substantial computations needed to compute the .inverse of [G] and
to enforce symmetry of the stiffness matrix. Apparently, the
process of enforcing symmetry of the equivalent stiffness matrix
eliminates much of the approximation error in the pure BEM.
Specifically, the equivalent stiffness matrix in the hybrid
formulation is not symmetric because different classes of "trial™"
functions and "test" functions (to use Brebbia“s weighted
residual terminology) are used to form the underliying BEM
influence coefficients. However, lack of symmetry in the
stiffness matrix violates energy conservation principles and thus
represents a component of error in the approximation. The
procedure for enforcing symmetry of the hybrid method stiffness
matrix appears to'negate much of this error, producing a more

accurate solution.

12



e e

Solution Time Breakdown

The CPU time logs for various calculation phases in the FEM,
BEM, and HBFEM analyses are given in Table 1. The HBFEM requires
a large computational effort to obtain the equivalent stiffness
matrix because of the need to invert the [G] matrix. However,
this computational expenditure is partially compensated by the
smaller amount of CPU time required for the solution of equations
in the HBFEM as compared to the BEM and FEM analyses.

CONCLUS IONS
The performance of finite element, boundary element, and

hybrid boundary element-finite element solution algorithms has
been evaluated by comparing computation times at comparable

levels of solution accuracy. Typical but simple interior and
exterior problems were analyzed at varying levels of
discretization refinement. For the interior problem, the FEM was

found to be superior to the BEM; that is, the FEM required less
computation time to achieve solutions of comparable accuracy.

For the exterior problem, the BEM was more efficient than the
FEM. The hybrid boundary element-finite eltement method was
comparable or superior to both the BEM and FEM analyses for both
exterior and interior problems. This exceptional performance of
the hybrid method is attributed to a reduction in the
approximation error resulting from the enforcement of symmetry in
the equivalent stiffness matrix.

Even though input preparation requirements and results
calculation times were not considered in this study, our
experience confirms observations in the literature that the
boundary element method (and hybrid method) requires
significantly less time and effort for data preparation than does
the finite element method. Stress and displacement calculation
times for the boundary element and hybrid analysis methods were
also less than those in the finite element method as long as
results are needed only at a few selected points; the
computational effort required by the boundary element and hybrid
methods increases proportionally with the number of points at
which the solution is sought.
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Figure 2. Model problems: (a) interior problem
{b) exterior problem
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Figure 5. Hybrid boundary element-finite
element discretization
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for interior problem:

(a) boundary/hybrid element analysis
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no. od ’
ele.
caly 12 24 48
phase
FEM BEM |HBFEM | FEM BEM |HBFEM | FEM BEM HBFEM
Input
phase .06 .02 .10 .20 1 .03 .30 .58 .06 1.06
Cal.&assemb.|-
of G & H .19 .62 A 2.18
-1
.G H .079 .64 5.09
Cal.&assemb.
of M .002 .006 .017
MG~ 1y | 006 .025 .101
Eotal Tige A
o assemb. - :
K or A .10 .19 .311 .39 | .61 1.41 | 1.17 | 2.18 | 7.88
Time to solv.
equations | .02 .02 .00 .34 1] .15 .03 2.5511.17 ] 0.24
stress cal.| .07 | .92 | .91 .31/ 1.54] 1.53] 1.02] 2.07]1.75
Total sol. .25 1.15(1.32 ]1.24 }2.33 |3.27 |5.32 |5.48 ]10.93

Table 1. Time log for solution phases.






