-1

• 13 • .

NASA Technical Memorandum		
NASA TM-86553		
		· · · · · · · · · · · · · · · · · · ·
	SHORT BEAM SHEAR S GRAPHITE/EPOXY	AL ENVIRONMENTS ON THE STRENGTH OF FILAMENT WOU
	(Center Director's Disc	eretionary Fund Final Report)
	By B. G. Penn and J. Space Science Laborator Materials and Processes Science and Engineering	M. Clemons ry and Laboratory g Directorate
	July 1986	:
(NASA-TM-86553) E ENVIRONMENTS ON TH STRENGTH OF FILAME Center Director's Report (NASA) 14	FFECTS OF EXTERNAL E SHORT EFAM SHEAR NT WOUND GRAPHITE/EPOXY Discretionary Fund Final P CSCL 11	N86-32528 Unclas D'G3/24 44072
1		· .

George C. Marshall Space Flight Center

	TECHNIC	AL REPORT STANDARD TITLE PAGE
1. REPORT NO.	2. GOVERNMENT ACCESSION NO.	3. RECIPIENT'S CATALOG NO.
<u>NASA TM -86553</u>]	
4. TITLE AND SUBTITLE Effects of E	xternal Environments on the	5. REPORT DATE
Short Beam Shear Strength of	Filament Wound Graphite/	July 1986
Epoxy (Center Director's Disc	retionary Fund Final Report)	6. PERFORMING ORGANIZATION CODE
7. AUTHOR(S)		8. PERFORMING ORGANIZATION REPORT #
B. G. Penn and J. M. Clemon	S*	
9. PERFORMING ORGANIZATION NAME AND AD	DRESS	10. WORK UNIT, NO.
George C. Marshall Space Flig	ht Center	11. CONTRACT OR GRANT NO.
Marshall Space Flight Center,	Alabama 35812	
		13, TYPE OF REPORT & PERIOD COVERED
12. SPONSORING AGENCY NAME AND ADDRESS	· · · · · · · · · · · · · · · · · · ·	
		Technical Memorandum
National Aeronautics and Space	e Administration	
Washington, D.C. 20546		14. SPONSORING AGENCY CODE
15. SUPPLEMENTARY NOTES		
Prepared by Space Science La	boratory and *Materials and P	rocesses Laboratory,
Science and Engineering Direc	torate.	
16. ABSTRACT		
Filament wound graphite	/epoxy samples were immersed	in seawater, deionized
water, and toluene at room ter	mperature and 80°C for 5, 15,	and 43 days, and in
methanol at room temperature	for 15 and 43 days. The per-	cent weight gains and
short beam shear strengths we	ere determined after environme	ental exposure. Samples
immersed in deionized water a	nd seawater had higher percer	nt weight gains than
those immersed in toluene at r	oom temperature and 80°C. 7	The percent weight gains
for samples immersed in metha	nol at room temperature were	comparable to those of
deionized water and seawater	immersed samples. A comparis	son of percent decreases

in short beam shear strengths could not be made due to a large scatter in data. This may indicate defects in samples due to machining or variations in material properties due to processing.

This research was sponsored by the Center Director's Discretionary Fund Project (No. 84-5, "Effects of External Environments on the Failure Mode and Mechanical Properties of an Epoxy and Graphite/Epoxy Composite System").

17. KEY WORDS Composite materials, environm graphite/epoxy composite, sea deionized water, short beam s strength, filament wound case	ental effects, water, shear	18. DISTRIBUTION STAT	d – Unlimited	
19. SECURITY CLASSIF, (of this report)	20. SECURITY CLASS	IF. (of this page)	21. NO. OF PAGES	22. PRICE
Unclassified	Unclassi	fied	13	NTIS

TABLE OF CONTENTS

	Page
INTRODUCTION	1
EXPERIMENTAL	1
Materials Short Beam Shear Strength Machining of Short Beam Shear Specimens Environmental Testing	1 2 2 2
RESULTS AND DISCUSSION	2
Percent Weight Gains in the Liquid Environments	2 2
CONCLUSION	3
REFERENCES	4

PRECEDING PAGE BLANK NOT PILMED

LIST OF TABLES

- -

Table	Title	Page
1.	Composition of Seawater Salt Mixture According to Manufacturer	5
2.	Short Beam Shear Strength After 5 Days of Environmental Exposure	6
3.	Short Beam Shear Strength After 15 Days of Environmental Exposure	7
4.	Short Beam Shear Strength After 43 Days of Environmental Exposure	8
5.	Short Beam Shear Strength After Immersion in Methanol at Room Temperature	9

TECHNICAL MEMORANDUM

EFFECTS OF EXTERNAL ENVIRONMENTS ON THE SHORT BEAM SHEAR STRENGTH OF FILAMENT WOUND GRAPHITE/EPOXY

(Center Director's Discretionary Fund Final Report)

INTRODUCTION

Structural components fabricated from fiber reinforced polymers are finding wide applications in automobiles, commercial and military aircraft, and space systems because of their high strength, high stiffness, and low weight. In order to take advantage of these excellent properties, the effects of external environments during usage on the mechanical properties of composite materials need to be understood. This is especially true when material failure due to exposure to external environments can result in loss of life, injury, or high financial losses.

The effects of temperature, moisture, and various organic liquids on the mechanical properties of epoxy resin reinforced with graphite [1-7] have been studied. Degradation of mechanical properties most likely occurs due to debonding of the fiber and matrix and/or cracking of the matrix.

Short beam shear and flexural strength measurements have been used to examine the effect of environments on the mechanical properties of composite materials. For example, Rege and Lakkad [8] examined the effect of salt water and distilled water on carbon and graphite reinforced epoxy. Degradation in salt water was found to be more severe for the composite systems that were studied. Joshi [9] measured the short beam shear strengths of unidirectional carbon/epoxy samples immersed in boiling water. The shear strengths were found to decrease with an increase in the amount of absorbed moisture.

The purpose of this paper is to report preliminary results of a study directed at determining the effects of seawater, deionized water, methanol, and toluene on the short beam shear strengths of filament wound graphite/epoxy systems used in the Space Shuttle.

EXPERIMENTAL

Materials

The dry seawater salt mixture was purchased from Lake Product Co., St. Louis, Missouri. The composition of this mixture is shown in Table 1. The seawater was prepared by dissolving 41.95 g of salt mixture in 1000 ml of water as specified by the supplier.

The SRB-Filament Wound Case (FWC) segments were fabricated using an epoxy system composed of a mixture of Bisphenol A epoxy and 1,4 butanediol epoxy. The curing agent was a blend of methylene dianiline and m-phenylene diamine. The reinforcement was graphite fibers manufactured by Hercules and designated as A S4W-12K.

Short Beam Shear Strength

The interlaminar shear strength was measured in accordance with ASTM-D 2344-76 short beam shear procedure. An Instron machine with a crosshead speed of 0.05 in./min was used. The size of the transverse specimens was $1.5 \ge 0.25 \ge 0.25$ in.

Machining of Short Beam Shear Specimens

Large pieces of specimens were cut from actual segments of the SRB-FWC and machined to dimensions of $1.5 \times 0.25 \times 0.25$ in. This was carried out by cutting the large pieces of segment into 1.5-in. vertical strips. Each of these were then cut in the horizontal direction to give pieces having a length of 1.5 in. and width of 0.25 in. Samples with a thickness of 0.25 in. were prepared by cutting the necessary amount from the two remaining uncut faces. The machining process is illustrated in Figure 1.

Environmental Testing

Samples machined to dimensions of $1.5 \ge 0.25 \ge 0.25$ in. as described were immersed in deionized water, seawater, or toluene at room temperature and 80°C for 5, 15, and 43 days. In addition, samples were immersed in methanol at room temperature for the specified lengths of time. Control samples were also prepared and heated for the required amounts of time in a desicator placed in an oven. After environmental exposure the samples were subjected to percent weight gain determination and short beam shear strength measurements.

RESULTS AND DISCUSSION

Percent Weight Gains in the Liquid Environments

The percent weight gains for filament wound graphite/epoxy samples immersed in deionized water, seawater, and toluene at room temperature and 80°C for 5, 15, and 43 days are summarized in Tables 2 through 4. The highest values were obtained for deionized water and seawater which had percent weight gain values ranging from 0.58 to 1.7 and 0.48 to 1.7, respectively. In comparison, the percent weight gain values ranged from 0.28 to 0.59 for toluene. Based on these results, deionized water and seawater are expected to degrade mechanical properties more than toluene.

The percent weight gains of samples immersed in methanol at room temperature are presented in Table 5. The percent weight gain values are 1.3 and 2.7 for 15 days and 43 days, respectively. This preliminary data indicate that methanol might have a significant effect on the degradation of mechanical properties since its percent weight gains are comparable to those of seawater and deionized water. This phenomenon will be further investigated in future projects.

Analysis of Environmental Effects on the Short Beam Shear Strength

The effects on the short beam shear strengths of immersion in seawater, deionized water and toluene at room temperature and 80°C for 5, 15, and 43 days are summarized in Tables 2 through 4. Moreover, the effects of immersion in methanol for 15 and 43 days at room temperature are presented in Table 5. The standard deviation values, which range from 179 to 615 for the controls and immersed samples, are too high and variable for determining the quantitative effects of the liquids on the short beam shear strengths. This trend in standard deviation values might be due to machining defects or variations in the properties of the composite samples. These prospective causes will be thoroughly examined in future programs.

CONCLUSION

Graphite/epoxy samples machined from large segments, which were fabricated by the same process that will be used to make the SRB FWC, were immersed in deionized water, seawater, and toluene at room temperature and 80°C for 5, 15, and 43 days, and in methanol at room temperature for 15 and 43 days. The percent weight gains for samples immersed in toluene was less than those of samples immersed in deionized water and seawater. The percent weight gains for methanol exposed samples were comparable to those of seawater and deionized water immersed samples which suggest that the effects of alcohols and other polar liquid on the mechanical properties of this composite system should be further investigated.

A comparison of the percent decreases in short beam shear strengths was not attempted due to the wide data scatter and the small number of samples tested. The scatter in data might indicate the presence of defects in samples resulting from machining operations or there might have been variations in the properties of the filament wound segment. This investigation will continue using this study as a basis.

REFERENCES

- 1. Browning, C. E., Husman, G. E., and Whitney, J. M.: Moisture Effects in Epoxy Matrix Composites. In Composite Materials: Testing and Design (Fourth Conference), ASTM STP 617, American Society for Testing, 1976, pp. 481-496.
- 2. Springer, G. S., Ed.: Environmental Effects on Composite Materials. Technomic Publishing Co., Inc., Westport, CT, 1981.
- 3. Browning, C. E.: Effects of Moisture on the Properties of High Performance Structural Resins and Composites. Proc. 28th Ann. Tech. Conf. Reinf. Plast./ Com. Inst., SPI, 1973, Sec. 15A.
- Hertz, J.: Investigation Into the High-Temperature Strength Degradation of Fiber-Reinforced Composites During Ambient Aging. Tech. Rept. GDCA-D 6B71-00403, Contract No. NAS8-27435, 1972.
- 5. Shen, D., and Springer, G. S.: J. Composite Materials, Vol. 11, 1977, p. 2.
- 6. Gillat, O., and Broutman, L. J.: Effects of External Stress on Moisture Diffusion and Degradation in a Graphite-Reinforced Epoxy Laminate. In Advanced Composite Materials-Environmental Effects, ASTM STP 658, J. R. Vinson, Ed., American Society for Testing and Materials, 1978, pp. 61-83.
- 7. Browning, C. E.: Polym. Eng. Sci., Vol. 18, No. 1, 1978, p. 16.
- 8. Rege, S. K. and Lakkad, S. C.: Fibre Science and Technology, Vol. 19, 1983, pp. 317-321.
- 9. Joshi, O. K.: Composites, Vol. 14, No. 3, 1983, pp. 196-200.

Figure 1. Machining of specimens for short beam shear strength measurements. Cutting of 1.5 in. dimension (a), 0.25 in. width (b), and 0.25 in. thickness (c).

TABLE 1.	COMPOSITION O	F SEAWATER	\mathbf{SALT}	MIXTURE
	ACCORDING TO	MANUFACTU	RER	

Component	Percent Composition
NaCl	59.490
MgCl ₂	26.460
Na ₂ SO ₄	9.750
CaCl ₂	2.765
KCl	1.645
NaHCO 2	0.447
KBr	0.238
н _з во _з	0.071
SrCl ₂	0.095
NaF	0.007

i

·. ·

			·	Number o Samples Te	of ested
Environment	Property Measured	Room Temperature	80°C	Room Temperature	80°C
Deionized Water	Short Beam Shear Strength (psi)	5266	5200		
	Standard Deviation	345	510	4	4
	Percent Weight Gain	0.58	0.80		
Seawater	Short Beam Shear Strength (psi)	5671	4723		
	Standard Deviation	394	426	4	4
	Percent Weight Gain	. 0.48	0.58		
Toluene	Short Beam Shear Strength (psi)	5043	4472		
	Standard Deviation	544	382	Ŋ	ഹ
	Percent Weight Gain	0.28	0.32		
Control	Short Beam Shear Strength (psi)	5463	5192		
	Standard Deviation	352	481	4	4

0

0.21

Percent Weight Gain

TABLE 2. SHORT BEAM SHEAR STRENGTH AFTER 5 DAYS OF ENVIRONMENTAL EXPOSURE .

.

6

				Number of Samples Tes	ted
Environment	Property Measured	Room Temperature	80°C	Room Temperature	80°C
Deionized Water	Short Beam Shear Strength (psi)	5083	5222 199	и	~
	Percent Weight Gain	1.1	1.0	C	r
Seawater	Short Beam Shear Strength (psi)	5146	4868		
	Standard Deviation	348	477	4	4
	Percent Weight Gain	1.2	1.0		
Toluene	Short Beam Shear Strength (psi)	5628	4119		
	Standard Deviation	484	309	4	S
	Percent Weight Gain	0.47	0.50		
Control	Short Beam Shear Strength (psi)	5330	5248		
	Standard Deviation	186	519	4	5
	Percent Weight Gain	0.24	0		

SHORT BEAM SHEAR STRENGTH AFTER 15 DAYS OF ENVIRONMENTAL EXPOSURE

TABLE 3.

7

÷

• • •					Number of Samples Test	f ed
Environment	Property Measured	Rc Temp	oom erature	80°C	Room Temperature	80°C
Deionized Water	Short Beam Shear Strength (pa	si) 50	138	4929		
	Standard Deviation	48	2	179	ß	4
	Percent Weight Gain	1.	5	1.7		
Seawater	Short Beam Shear Strength (p	si) 62	83	5236		
	Standard Deviation	36	80	518	ß	3
	Percent Weight Gain	1.	43	1.7		
Toluene	Short Beam Shear Strength (ps	si) 51	.67	5310		
	Standard Deviation	38	2	300	4	4
	Percent Weight Gain	0.	59	0.52		
Control	Short Beam Shear Strength (ps	si) 51	.03	5103		
	Standard Deviation	31	5	615	5 2	ນ
	Percent Weight Gain	0	30	0		

:

TABLE 5.SHORT BEAM SHEAR STRENGTH AFTER IMMERSION
IN METHANOL AT ROOM TEMPERATURE

.

ŝ

Environment	Property Measured	15 Days	43 Days
Methanol	Short Beam Shear Strength (psi)	5210	4863
	Standard Deviation	446	215
	Percent Weight Gain	1.30	2.7
	Number of Samples Tested	5	3
Control	Short Beam Shear Strength (psi)	5330	5103
	Standard Deviation	186	315
	Percent Weight Gain	0.24	0.30
	Number of Samples Tested	4	5

APPROVAL

EFFECTS OF EXTERNAL ENVIRONMENTS ON THE SHORT BEAM SHEAR STRENGTH OF FILAMENT WOUND GRAPHITE/EPOXY

(Center Director's Discretionary Fund Final Report)

By B. G. Penn and J. M. Clemons

The information in this report has been reviewed for technical content. Review of any information concerning Department of Defense or nuclear energy activities or programs has been made by the MSFC Security Classification Officer. This report, in its entirety, has been determined to be unclassified.

É. T.m. db.e.g. - Hannson A. J. DESSLER

Director, Space Science Laboratory

☆U.S. GOVERNMENT PRINTING OFFICE 1986-631-058/20161

a