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PART I

THE TWO DIMENSIONAL PROBLEM (GRID) USING

THE FFT-CONJUGATE GRADIENT METHOD



ABSTRACT

In some applications, the wires used to construct the

grids are plated over with highly conducting materials such as

gold or silver. In those cases, depending on the frequency of

operation, the coating may not be thick enough to prevent

currents from flowing in the substrate. The conjugate gradient

method, in conjunction with the fast Fourier transform is

employed to solve the problem of scattering from such rectangular

grids. An internal impedance is utilized to account for the

effects of the substrate conductivity on the induced current

densities. Calculated values of the reflection coefficient and

induced currents for different coating thicknesses, angles of

incidence and polarizations are presented and discussed.
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INTRODUCTION

The subject of reflection and transmission of plane

electromagnetic waves from grids made of perfectly conducting

wires, or wires with finite conductivity has been studied by a

number of investigators [1-5]. In some applications, such as,

mesh deployable antennas, the mesh wires are made of molybdenum

substrate coated with a highly conductive material. Depending on

the frequency of operation, the depth of penetration for the

incident wave can be larger than the coating thickness. In these

cases, the electric field will penetrate in the substrate. The

effects of the resistivity of the substrate on the reflection

coefficient and induced currents are the aims of this study.

The FFT-conjugate gradient method [6-12] is used to solve for

the induced currents on the conducting strips of the grid. An

internal impedance is used to account for any losses due to the

finite conductivities of both the substrate material and the

coating material. This impedance is a function of a) coating

thickness, b) frequency of operation, c) conductivity of coating

material, and c) conductivity of substrate material.

In this work, results for single infinite grids are given as

a function of the substrate conductivity, coating thickness, and

polarization of the incident wave. The effects of the substrate

material on the reflection coefficient and induced currents are
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also discussed for different angles of incidence. This study can

easily be extented to the problem of any number of cascaded

grids. In the case of cascaded grids, there is an interference

action [13] which is usually extremely sensitive to the losses of

the wires, which in this particular case it would primarily be

due to the finite conductivity of the substrate conductivity.
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2.CURRENT DENSITY FORMULATION

The magnetic field H due to an electric current density J

is given by :

_^ .V x A (x,y,z)
H(x,y) = (2.1)

-» •* -*
where A is the associated magnetic vector potential. A and J

are related by the free space Green's function

A A
exp(-jk . r)

4 TT r

as follows:

A(?) •= ftj G(?,r') . J(r') (2.2)

From this the electric field intensity E can be derived from

Maxwell's equations and expressed as:

^_ _., VV- A*"(x,y,z)
Es(x,y,z) = -j GJ A(x,y,z) + (2.3)

jco/xfe

For planar structures we set the z-component of the magnetic

vector A* equal to zero. Now upon expanding equation (2.3) in

cartesian coordinates we obtain, for z=0:
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,x,y)=
jcoe 62

6x 6

02

Ox ON
G.J

G. J

(2.4)

Considering the periodicity of the two dimensional strucuture

shown in Figure (2.1) (planar structure), and taking the Fourier

trasform of equation (2.4) lead to :

Es( a , B )=v mn Kmn

k 2-
o mn mn

mn mn k 2- Ro M inn

G J

(2.5)
where the sign (~) denotes the Fourier trasformed quantity.

a and (3 represent the Floquet coefficients which are
mn Kmn

defined as:

a = 2 TI m/a - k sin# sin0mn o ^

)3 = 2 TT n/c -2 m/a cotfl -k^ sin# sin0

and

mn

G{ a ,v mn' )=-j/2 (k - a' J/ o mn flP mn

is the Fourier trasform of Green's function, and J , J are thex y
->s

unknown current densities .Notice that the spectrum of E . is

discrete^ that is, it exists for discrete values of amn and

0 .Note, also, that the convolution problem is avoided and instead
mn

of dealing with an integro differential equation we only
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have to consider algebraic equations. Taking the inverse Fourier

trasform of equation (2.5) yields:

E°(x,y)= -
jcoez_

mn

k 2 2
K — ryo u mn

G. J

? 2
- a B k - ftmn ̂  mn o H mn

.exp [ j ( Q: x+ j3 y) ]
mn mn (2.6)

To enforce the boundary condition over the surface of all

metallic regions we require that the total tangential electric

field should satisfy the condition :

E(x,y) =0 (2.7)

where E is the incident electric field and E is the scattered

~*selectric field. Substituting for the value of E from equation

(2.7) into equation (2.6) yields:

mn

, 2 2
ko - a mn mn

mn

(2.8)

Equation (2.8) can be recognized as the inverse discrete

Fourier transform which can be performed via the fast Fourier
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transform (FFT). Equation (2.8) could now be written in an

operator form as:

-E1= Z J (2.9)
mn mn ^

where Z is the product of G, the Floquet modes and the inversemn

Fourier transform.

A solution of the above equation will yield the unknown

current densities J and J from which the reflected and

transmitted fields can be obtained and hence the reflection and

transmission coefficients could be calculated.

Now, one way to solve for J and J is to use the conjugatex y

gradient method [12]. To guarantee a convergent scheme, equation

(2.9) has to be properly modified. To do that, multiply both
*

sides of equation (2.9) by Z (i.e. the conjugate transpose of

Z ) to obtain:mn

* -H * ->•
-Z E = Z Z J (2.10)mn mn mn

*
where the product Z Z is a Hermitian matrix and thereforemn mn

positive definite. Now the conjugate gradient method can be

applied directly to equation (2.10).
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3.1 EQUIVALENT RADIUS PRINCIPLE AND INTERNAL IMPEDANCE

The strip analysis can be used to determine the scattering

characteristics from a mesh of cylindrical wires by employing the

"equivalent radius principle" concept. This is accomplished by

replacing the non-circular cross section of a metallic strip with

a circular wire whose radius is the "equivalent radius" of the

non-circular cross section as shown in Figure (3.1). Butler[14]

has shown that the equivalent radius of a narrow conducting strip

is one fourth of its width i.e

aeq =a/4

where a is the equivalent radius of a cylindrical wire, and a

is the width of a thin metallic strip.

Fig. 3.1 Equivalent radius of a strip
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For the case where the wires are coated (See Figure 3.2)

the necessary boundary condition that must be satisfied is :

~ES = Zinfc I (3.1)

instead of E +E =0 , where I is the current in the wires and

Z. . is the internal impedance of the wire. For coated wires

Zint is 9iven by f15^ :

(1+j) [sinh(t1d) + (
R
s2

/Rsl) cosh(fcid)J

Z. = R . (3.2)int si

b [cosh(t1d) + (
R
s2/

R
si

) sinh(t;Ld)]

where t, = ( 1+j) -\ / TTf JJL, a, and (3.3)

j)-i/t=(l+j)-i7Tf /i 0 (3.4)

d=coating thickness

°2 (3<5)

/!,= permeability of coating

<J, = conductivity of. coating

/̂ 2= permeability of substrate

Q~= conductivity of substrate
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x

COATING

Fig. 3.2 Mesh geometry for coated wires
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This expression for z^nt can now be used in equation (2.9)i.e.

= Zint X = (Zint A)

since J=I/A where A is the surface area of the wire. This leads

to :

E = -E + Zinfc J (3.7)

Replacing this expression for E in equation (2.6) yields :s

E + Z. . J = Z orint mn

-E = (Z -2. . ) J = B J (3.8)
mn int

Now equation (3.8) can be solved for J using the conjugate

gradient algorithm. Rather than form the matrix (Z -'L. )mn int

explicitly, one can apply the conjugate gradient method using the

algorithm given on the next page.

In Figures 3.3 and 3.4, and internal impedance with a ratio

of R o/R i=0'34 and 1.6 are shown, respectively [15]. These

figures are important, because they show that Zint will not be

that of the coating material alone, despite the fact that the

ratio of the coating thickness to the skin depth is greater than

one.
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mn - Zint

-<0) = z* -(0) _=* -(0)
v mn int

ERRF = r(0)

The equations for the n iteration are :

a
n

z* ^(n) -T. .mn int
-(n)

mn - . ,int

(3.9)

ERRF (n+1)=ERRF(n)- mn . hint

z P(n)-T. ,mn v int

7* -Mn+1> =7* ^(n+1^Z mn r " Z int r

mn int

2

2

mn
.=*,

int n

END OF DO LOOP
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In the current algorithm, if this ratio is less than the

number four, equation (3.2) is calculated. On the other hand,

if the ratio is greater than the number four, Z. is due to

the coating material only, and it is given by [16] :

Zm V^eq*

Z. . = 3.10)
int ~ T / . _ \

where

is the intrinsic impedance of the metal. 7 is equal to

1/2
(i LL co( <j + i to 6 )) and I and In are the modified" m m m o i

Bessel functions. At high frequencies the ratio I /I-^ is

approximately equal to one. Thus, any uneccessary computations

are avoided by evaluating equation (3.10) instead of equations

(3. 2), (3. 3), (3. 4), and (3.5).

3.2 SOLUTION OF APERTURE FIELDS

To solve for the aperture fields (See Figure 3.5), the

incident H field is expressed in terms of the electric field E in

the aperture region by :
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-»i 2j
H =

mn

'mn
. 2 2
ko - a mn

- amn

G( a , fl ) Ec

mn P mn

. e x p [ j ( a m n x +

(3.11)

h-BB

Fig. 3.5 Sampling for the Aperture fields.

For a complete derivation of equation (3.11) see [17]
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4. REFLECTION COEFFICIENTS

The transmission and reflection coefficients are the

quantities of most importance in characterizing the properties of

a mesh. In order to define those coefficients for both

polarizations, transverse electric (TE) and transverse magnetic

(TM), it is necessary to first define the incident and scattered

fields. For TE polarization, the incident fields are :

EX = EQ sin(-0 ) ; Ey = EQ cos0

E cos0 cos0 E sin0 cos9
x. T? ' y T)

where E is the amplitude of the incident electric field and

1/2
*? = (&o/6o ) is tne free space wave impedance. For TM

polarization, the incident fields are given by :

E = E cos9 cos0 ; E
V
=E cos# sin0

E sin(0 -7T/2) E cos(0 -7T/2)
H = — - H

7?

According to Wait and Hill [ 4 ] , when the spacing between

adjacent wires of the mesh is less than A/2, only the ox

J components contibute to the scattered field. JQOX
 anc<

Jooy are the zero~mode current density components. The

rectangular components of the scattered field, can be obtained
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from equation (2.6) as follows : Solve for J and substitute the

solution in equation (2.6) to obtain the E and E componentsx y

of the scattered field. Once these components are found the

reflection (amplitude) coefficient becomes :

^2R = E S /(E2x x ' x

R = E S /(E2y y ' x
E

(4.1)

(4.2)

If the total power reflection coefficient R is desired then the

following expression can be used :

Real J /Es x ~H£

I
A

z ds

unit cell

REAL E1 x H1

unit cell

(-z) ds

(4.3)

~HS is the scattered magnetic field derived from Es by making use

of Maxwell's equations.

Moreover, if the total power transmission coefficient, T, is to

be computed, one can employ the formula below :

Real <
;

, aperture

la x Ha.(-z) dA

(4.4)

x H1. (-z) dAReal

aperture

where lsa is the aperture electric field and Ha is the aperture

magnetic field.
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5. RESULTS

A number of cases were examined to check the reflection

coefficients and induced current densities as functions of wave

polarization, angle of incidenece, wire spacing, coating

thickness, and substrate conductivity. Since no other

theoretical or experimental data currently exist, only results

obtained via this new algorithm are presented herein.

Figure (5.1) depicts the change in the reflection

coefficient (amplitude) as the thickness of the coating material

changes. In this case, the substrate conductivity is 50 S/m and
Q

the coating conductivity is 10 S/m. As expected, the thinner the

coating material is the deeper the fields will penetrate and

hence more losses should be expected in the strips. That means

that the amplitude of the reflection coefficient will decrease.

This figure also shows that when the thickness of the coating

material is large the losses are mainly due to the finite

conductivity of this coating material. On the other hand, at

small coating thicknesses the losses will be primarily due to the

substrate conductivity. Figure (5.2) depicts the behavior of the

reflection coefficient for two different angles of incidence as

the substrate conductivity is varied. The thickness and

conductivity of the coating material are kept constant. From

this figure one can see that as the conductivity of the substrate

gets larger the reflection coefficient increases. This is an
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anticipated result since the losses in the strips decrease by

incresing the conductivity of the substrate.

Figure (5.3) exhibits a similar behavior in the case of

thansverse magnetic polarization for angles 0=60 and 0=0. By

comparing Figures (5.2) and (5.3), one can make the additional

observation that for TM polarization the reflection coefficient

does not change as drastically as in the TE polarization case.

Table (5.1) shows that if the substrate conductivity is 10 S/m
Q

and the coating conductivity 10 S/m , the change in the

reflection coefficient is not very much. The fact that the

reflection coefficient for 9=0 is larger than the reflection
o

coefficient for 0=70 is due to the general behavior of

conducting grids ( a =*» , or finite) and not due to the coated

material. In Table (5.2) the reflection coefficient is calculated

f\ O O
for TM polarization at 6=0 and 0=70. Note that the substrate

conductivity is much smaller than the conductivity of the the

coating material.This difference is basically the reason for

having a noticable change in the reflection coefficient at small

coating thicknesses.

Next, the current densities were calculated to study their

behavior as we vary the substrate conductivity and the angle of

incidence . Figures (5.4) and (5.5) depict the behavior of

the copolar component of the current density J , for a grid with

wide strips. The current densities do not really change very

drastically when the substrate conductivity is changed. The
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TABLE 5.1. Reflection coefficients for a cell of a=0.25\
O

and a strip width of 0.005^ ,with 0=0 and

0=70°, respectively. a ^o4.=10 S/m and
COcl t.

a H=^ S/m. TE polarization case with a

sampling rate of 32x32 samples

Thickness Reflection Reflection

of coating coefficient coefficient

in X 9 =0° 9 =70°

10*"3 0.6073501 0.9077239

10"4 0.6073501 0.9077239

10~5 0.6086803 0.9076653

10"6 0.6066462 0.9077298

10"7 0.6063545 0.9064933

10"8 0.6060203 0.9045778

10"9 0.6028293 0.9045168

10"10 0.6022630 0.9045149
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Table 5.2. Reflection coefficients for TM incidence and a

square cell of a=0.25^.The strip width is 0.005^

a =108 S/m and a w=10
2 S/m. Thecoat sub

sampling rate is 16x16 samples.

Thickness Reflection Reflection

of coating coefficient coefficient

in & =°° 0=70°

10~3 0.7405149 0.4434715

10~4 0.7405149 0.4434715

10~5 0.7405282 0.4434533

10~6 0.7405004 0.4434442

10~7 0.7385695 0.4423161

10~8 0.7225416 0.4307751

10~9 0.6665412 0.3766584

10~10 0.6449590 0.3511487
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general behavior, though, of the current density on the

strip,i.e. J is large at the edges and it dips at the center,

is still maintained.

Finally, the reflection coefficients of the structure shown in

Figure (5.6) were studied , since this structure generates a

cross polarized component. Tables (5.3) and (5.4) show that for

both polarizations, TM and TE, the changes in the thickness of

the coating material do not correspond to any drastic changes in

the amplitude of the reflection coefficient. This is an

interesting observation since the actual weaved mesh used for

deployable antennas resembles this last structure more than the

rectangular periodic structure. In both of these tables the wave

was normally incident on the periodic structure . The substrate

conductivity was a =10 S/m and the conductivity of the coating
9

material was a=10 S/m.
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FIG. 5.6 DIFFERENT PERIODIC STRUCTURE
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TABLE 5.3 Reflection coefficients for a cell of a=b=0.55

and a strip width of 0.005X with 0=70° and
o 9

0=80 , respectively, a .. = 10 S/m, and
COcl t.

a h=10 S/m. A TM polarization case with

a sampling rate of 32x32 samples is used.

Thickness Reflection Reflection

of coating coefficient coefficient

in > 9 = 70° 9 = 80°

copolar crosspolar copolar crosspolar

10~5 0.3372 0.1074 0.3169 0.0517

10~7 0.3370 0.1074 0.3169 0.0517

10~8 0.3368 0.1072 0.3166 0.0516

10~9 0.3338 0.1051 0.3136 0.0508

10~10 0.3273 0.1023 0.3073 0.0498
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TABLE 5.4 Reflection coefficients for a cell of a=b=0.55

and a strip width of 0.005^ » with 0=70° and

0 =80 , respectively.O t
=1°9 s/m and

a , =10 S/m. A TE polarization and a sampling

rate of 32x32 samples is used.

Thickness Reflection Reflection

of coating coefficient coefficient

in X 0=70° 0=80°

copolar crosspolar copolar crosspolar

10~5 0.28756 0.10101 0.30488 0.05212

10~7 0.28755 0.10103 0.30493 0.05235

10~8 0.28726 0.10083 0.30462 0.05210

10~9 0.28441 0.09671 0.30171 0.05151

10~10 0.27840 0.09805 0.29547 0.05064
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6. CONCLUSIONS AND RECOMMENDATIONS

An algorithm was developed which can solve the problem of

electromagnetic scattering from meshes made of coated wires. The

algorithm solves for the reflection coefficients and the induced

current densities. A variety of grids were checked as functions

of polarization, angle of incidence , coating thickness coating

conductivity, and substrate conductivity. Generally, it was found

that when the difference in conductivity between the coating

material and the substrate material is large the algorithm is

very sensitive to the losses due to the finite substrate

material. Also, when the thickness of the coating material

becomes small compared to the depth of penetration the losses are

primarily due to the substrate material. On the other hand, if

this thickness is comparable or larger than the depth of

penetration the losses are determined by the finite conductivity

of the coating material. Moreover, it was observed that for non

rectangular structures the amplitude of the reflection material

does not change very much even at small coating thicknesses.

This algorithm could be extended to more complicated

structures such as the skew-symmetric grids and cascaded grids.
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8. LISTING OF THE FFT-CG METHOD FOR THIN STRIPS

C ****CONJUGATE GRADIENT METHOD *****
C **** SOLVES FOR THE CURRENT DENSITIES **»
C **** MINIMIZATION IN THE RANGE ****

COMPLEX CONE. CZERO, CXMN, CREFX, CREFY, CRET. CREF. ZINT, GUESS. Tl.
. SINHH, COSHH, CTT, CTF
COMPLEX YC32. 32>/lO24*(0. 0, 0. O)/
COMPLEX X<32. 32)/lO24»(O. 0, O. O)/
COMPLEX G(32. 32>/1024*(0. 0,0. O)/
COMPLEX XU(32, 32>/1024*(0. 0, 0. O)/
COMPLEX YU(32, 32)/1024*(0. 0, 0. O)/
COMPLEX RX(32, 32>/1024*(O. 0, 0. O)/
COMPLEX RY(32, 32)/1024*(O. 0. 0. O)/
COMPLEX J, HXI,HYI,CWK(32), F10
COMPLEX DY(32, 32>/1024*(O. 0. 0. O)/
COMPLEX DX(32, 32)/1024*(0. 0, 0. O)/
COMPLEX TX<32, 32)/1024*(0. 0.0. O)/
COMPLEX .TY(32. 32 )/1024* (O. 0. 0. O)/
REAL K, K2.RWKO42)

C22

C
C
C

DIMENSION
CROSC32)
REAL U(32)/32*0. O/
REAL V(32, 32)/lO24*0. O/
OPEN (10, FILE='FASTDATA
open (11, f i le='fastout'
WRITE<*,*> 'INPUT AA.BB
READdQ, *) AA, BB,CC,DD
FORMAT(8E10. 4)
F=2. 998E+8

**** IOPT=0 FOR A
**** IOPT=1 FOR A

IWK(342). RR(250), CH(25O>, AMP<32). RINDEX(32),

'. STATUS='OLD'>
status='new')
CC.DD, F.ERR'

RECTANGULAR MESH *******
PARALLEL GRID **********

IX=32
IOPT=0
IFdOPT. GT. 0) CC=1. 500E-HS
IFdOPT. GT. O) DD=1. 500E+15
W R I T E d l , * ) AA, BB.CC.DD

C . 'DD= '.F15. 8, 'ERR= ' .F15.B)
WRITE(*,*)F

C44 FORMATCO'.' FREQ = ', E10. 4)
WRITEdl.*) 'INPUT PHI, THI.PSI'
READdO, *> PHI.THI.PSI
WRITEdl,*) PHI.THI.PSI

C55 FORMAT( 'O' . ' PHI= '.F10. 1, ' THETA= ',F10. 1,' PSI= '.F10. 1)
C *** ITM--1 FOR TM POLARIZATION ******

READdO,*) ITM
WRITEdl,*) 'INPUT ITM=0 FOR TE POLAR. OR ITM=1 FOR TM POL'
WRITEdl,*) ITM
WRITEdl,*) 'INPUT CONDUCTIVITY OF COATING'
READdO,*) SIGMA1
WRITEdl, «) SIGMA1
WRITEdl,*) 'INPUT CONDUCTIVITY OF SUBSTRATE'
READdO.*) SIGMA2
WRITEdl, *) SIGMA2
WRITEdl,*) 'THICKNESS OF COATING ?'
READdO,*) THICKNESS
WRITEdl,*) THICKNESS

C *** READ THE NUMBER OF ITERATIONS ****
READdO,*) NOI
WRITEdl,*) 'NUMBER OF ITERATIONS'
WRITEdl , *> NOI
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C&6 FORMAT(I 3)
PI=3. 141593
PI2=PI/2.
TPI=6. 283185
CV=2. 997956E+8
UU=4. E-7*PI
RTD=57. 29578
EP=8. B54E-12
ETA=SQRT(UU/EP>
J=CMPLX(O. O. 1. 0)
ITER = 0
CONE=CMPLX<1. 0, O. 0)
CZERO=CMPLX<O. O, 0. O)
W=TPI*F

C *** COMPUTE INTERNAL IMPEDANCE OF STRIP ****
C

Tl = (1. O, 1. 0>*SQRT(PI*F*UU*SIGMA1)
RS1=SQRT(PI*F*UU/SIGMA1)
RS2=SGRT<PI*F*UU/SIGMA2>
SKIND1=1./SQRT(PI*F*UU*SIGMA1>
RATIO=THICKNESS/SKIND1
IF(RATIO. GE. 4. 0) THEN
ZINT=(1. 0, 1. O)*SQRT<PI*F*UU/SIGMA1>

ELSE
ZINT=(1. 0, 1. O>*<SINHHCT1*TH1CKNESS)-KRS2/RS1)*COSHH<T1*THICKNESS>
ZINT=ZINT*RSl/< COSHH(T1*THICKNESS) + <RS2/RS1>*SINHH <T1*THICKNESS»
END IF
WRITEC*,*) RATIO, ZINT, RSI, RS2, Tl, THICKNESS* SKIND1
ALAMB=CV/F
AA=AA/ALAMB
BB=BB/ALAMB
CC=CC/ALAMB
DD=DD/ALAMB

C »»* DETERMINE SAMPLING POINTS THAT CORRESPOND TO THE
C CONDUCTING REGIONS AND THE APERATURE *#***«**#

NX=IFIX(BB/AA*FLOAT(IX)*2. )/4#2
NY=IFIX(DD/CC*FLOAT(IX>*2. )/4*2
NXl--(IX-NX)/2-H
NX2=NXl-«-NX-l
NYl=(IX-NY)/2 -H
NY2=NY1+NY-1
WRITE(11< *) NX, NX1, NX2, NY, NY1, NY2
K=TPI/ALAMB
K2=K**2
STSPK=SIN(THI/RTD)*SIN(PHI/RTD)#K
STCPK=SIN(THI/R TD)*COS(PHI/RTD > *K
CPS=COS(PSI/RTD)/BIN(PSI/RTD)

70 CONTINUE
C *»* CALCULATE FLOOUET MODES ******

DO 100 M=l,IX
IF (M. GT. IX/2-H ) GOTO 75
U(M)=TPI *(M-l)/AA-STCPK
GOTO 80

75 UCM) = TPI*(M-IX-1)/AA-STCPK
80 CONTINUE

DO 90 N=l,IX
IF(M. GT. IX/2+1. AND. N. GT. IX/2-H) GOTO 84
IF(M. GT. IX/2+1) GO TO 83
IF(N. GT. IX/2-H) GOTO Bl
V(M, N)=TPI*(N-1 )/CC-TPI»(M-l)/AA*CPS-STSPK
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GOTO 85
V(M, N)=TPI*(N-I X-l) /CC-TPI*(M-l)/AA*CPS-STSPK
GOTO 85
V(M.N)=TPI«(N-1 )/CC-TPI*(M-IX-l)/AA#CPS-STSPK
GOTO 85
V(M/ N)=TPI*(N-1X-l)/CC-TPI*(M-IX-1)/AA*CPS-STSPK
IF(K2. GE. U(M)**2+V(M, N)*«2) G(M,N>=-J*SQRT<K2-(U<M>**2

81

83

84
85

IF(K2. LT. U(M)**2+V<M, N)*#2) G(M, N)=-SGRT<U<M)**2+V(M, N)**2-K2>
*CONE

90 CONTINUE
100 CONTINUE

IFdTM. GT. 0) GOTO 110
C *** INCIDENT FIELDS FOR TE POLARIZATION *#**

EXI = SIN(-PHI/RTD)
EYI = C O S ( P H I / R T D )
HXI=COS<PHI/RTD )*CO3(THI/RTD)/ETA
HYI=SIN(PHI/RTD)*COS(THI/RTD)/ETA
EF=1. O
GOTO 120

C *** INCIDENT FIELDS FOR TM POLORIZATION «***
11O EXI=COS(PHI/RTD)*COS(THI/RTD)

EYI=SIN(-PHI/RTD)*COS(THI/RTD)
HYI=SIN(PHI/RTD-PI2)/ETA
HXI=COS(PHI/RTD-PI2)/ETA
ET=1. 0*COS(THI/RTD)

12O CONTINUE
C**** CALCULATE THE RESIDUAL VECTORS RX AND RY #***
C
333 DO 20O M=l, IX

DO 19O N=l,IX
RX(M, N>=EXI+X(M, N)
RYCM, N)=EYI+YCM,N>
IF(M. GE. NX1. AND. M. LE. NX2. AND. N. GE. NY1. AND. N. LE. NY2)

. RX(M,N)=CZERO
IF<M. GE. NX1. AND. M. LE. NX2. AND. N. GE. NY1. AND. N. LE. NY2)

. RY(M, N)=CZEHO
ERROR=ERROR+RX< M, N)*CONJG(RX<M, N)>+RY(M, N)«CONJG(RY(M, N))
IFdTER. EQ. 0) F5=F5+RX(K, N)*CONJG(RX (M, N)MRY<M. N)*CONJG(RY(M, N) )
DX(M,N)=RX(M,N>
DY(M, N)=RY(M, N)
CONTINUE
CONTINUE

190
200
C

Z TO
«•«*****

»**«*

C***#* MULTIPLY THE RESIDUALS BY THE CONJG. TRANS. OF
C FIND THE DIRECTION VECTORS DX AND DY
C *«*# FIND THE FOURIER TRANSFORM OF THE RESIDUALS
C

CALL FFT3D(DX, I X, IX, IX, IX, 1, 69. IWK, RWK. CWK)
CALL FFT3DCDY, I X, IX, IX, IX, 1, 69, IWK, RWK. CWK)
DO 220 M=l. IX
DO 21O N=l. IX
CXMN=DX(M,N)
DX(M.N) = (CONJ5(G(M, N)-V(M. N)**2/G(M. N))*DX<M, N>-
. CONJG(V(M,N)*U(M)/G(M,N))#DY(M, N))/CONJG(J*W*EP)/2.
DY(M, N)s(CONJG<-V(M,N)*U<M)/G(M, N))*CXMN+
. CONJG(G(M,N)-U(M)»*2/G(M,N))*DY(M,N))/CONJG(J#W*EP>/2.

210 CONTINUE
220 CONTINUE
C
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C»**

IX. IX. 1. -69, INK, RWK, CWK)
IX, IX, 1, -69, IWK, RWK, CWK)
TX AND TY **«*

350
36O
C****
365

CALL FFT3D(DX, IX. IX,
CALL FFT3D(DY, I X, IX.
STORE DX AND DY IN
DO 360 M=l, IX
DO 350 N=l. IX
DX(M, N)=DX(M, N)-RXCM. N)*CONJG(ZINT)
DY(M, N)=DY(M, N)-RY(M,N)*CONJG(ZINT)
IF(M. GE. NX1. AND. M. LE. NX2. AND. N. GE. NY1.

. DX(M, N) = CZERO
IF(«. GE. NX1. AND. M. LE. NX2. AND. N. GE. NY1.

. DY(M, N)=CZERO
TY(M, N)=DY(M, N)
TX<r., N)=DX(M, N)
F3=F3+CONJG(DX(M,N)>*DX(M,N)+CONJG(DY(M, N))*DY(M, N)
CONTINUE
CONTINUE
THE ITERATIVE PROCESS STARTS NOW !!!!! **#

I X, IX, IX, IX, 1, 69, IWK, RWK, CWK)
I X, IX, IX, IX,

AND. N. LE. NY2)

AND. N. LE. NY2)

1, 69, IWK, RWK, CWK)

37O
40O

CALL FFT3D(TX
CALL FFT3D(TY
DO 400 MSli IX
DO 37O N=l. IX
CXMN=TX(M, N)
TX(M, N) = ( (G(M, N)-V(M,N)**2/G(M, N))*TX(M, N)-<U(M)*V(M, N)/G(M, N)
*TY(M, N) )/(J*W*EP)/2.

TY(M, N) = (-U(M)*V(M,N)/G(M,N)«CXMN+(G(M, N)-U(M)**2/G(M, N))
*TY(M, N) )/(J*W*EP)/2.

CONTINUE
CONTINUE

IX, 1, -69, IWK, RWK, CWK)
IX, 1, -69, IWK, RWK, CWK)

CALL FFT3DCTX, IX, IX, IX
CALL FFT3DCTY, IX, IX, IX
Fl=0. 0
DO 410 M=l, IX
DO 410 N=l, IX
TXCM,N)=TX(M, N)-DX(M, N)*ZINT
TY(M,N)=TY(M, N)-DY(M, N)*ZINT
IF(M. GE. NX1. AND. M. LE. NX2. AND. N. GE. NY1. AND. N. LE. NY2)

. TX(M,N)=CZERO
IF(M. GE. NX1. AND. M. LE. NX2. AND. N. GE. NY1. AND. N. LE. NY2)

. TY(M, N)=CZERO
41O F1=F1+CONJG(TX(M, N) )*TX(M,N)+CONJG(TY<M, N))*TY<M. N)
C *** CALCULATE THE FACTOR AN **#

ITER=ITER+1
AN=F3/F1
CH(ITER)=SQRT(abs(error)>/SQRT(F5)

C **« CALCULATE THE ERROR ***
ERRDR=ERROR-(F3#*2/F1)

C »*« UPDATE THE VALUES FOR X AND Y ***
DO 560 M=l, IX
DO 550 N=l. IX
X<M, N)=X(M, N)+AN«DX(M, N)
Y<M, N)=Y(n. N)-t-AN*DY(M, N)

55O CONTINUE
560 CONTINUE
C »*** FIND A NEW ESTIMATE FOR THE RESIDUAL VECTORS RX AND RY ***

DO 5BO M=l, IX
DO 570 N=l, IX
RX(M, N>=RX(«, N )-AN#TX <M, N)
RY(M.N)=RY(M, N)-AN*TY(M, N)
TX(M, N)=RX(M, N)
TY(M, N)=RY(M, N)
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57O CONTINUE
580 CONTINUE

RR<ITER)=FLOAT<ITER)
WRITEC*.*) CH<ITER), RR<ITER)

C*****MULTIPLY TX AND TY BY THE CONJG. TRANS. OF THE MATRIX Z **
CALL FFT3D(TX, I X, IX, IX. IX, 1, 69, IWK, RWK. CWK)
CALL FFT3D(TY, I X. IX, IX, IX, 1, 69, IWK, RWK, CWK)
DO 600 h=l.IX
DO 590 N=l,IX
CXMN=TX(M,N)
TX(M, N) = ( CONJG (G(M. N)-V(M, N)**2/G<M, N) )*TX(M, N)-
. CONJG(V(M,N)*U<K)/G(K, N))#TY<M, N))/CONJG(J*W*EP)/2.
TY(M, N) = (CONJG(-V(M. N)*U<M)/G(M, N)>*CXMN+
. CONJG(G(M,N)-U(M)**2/G(M, N))*TY(M, N))/CONJG(J*W*EP>/2.

590 CONTINUE
6OO CONTINUE

CALL FFT3D(TX, I X, IX, IX, IX. 1. -69, IWK, RWK, CWK)
CALL FFT3DCTY, I X, IX, IX, IX, 1, -69, IWK, RWK, CWK)
F2=F3

C F3=F3/400.
C IF(CH( ITER). LT. 0.30) F3=0. O

F3=0. O
DO 644 M=l, IX
DO 644 N=l, IX
TX(M, N)=TX(M, N)-RX(M, N)*CONJG(ZINT)
TY(M. N)=TY<M, N)-RY(M, N)*CONJG(ZINT)
IF(«. GE. NX1. AND. M. LE. NX2. AND. N. GE. NY1. AND. N. LE. NY2)

. TX(M,N)=CZERO
IF<M. GE. NX1. AND. M. LE. NX2. AND. N. GE. WY1. AND. N. LE. NY2)

. TY(M,N)=CZERO
F3=F3+CONJG(TX(M,N))*TX(M, N)+CONJG(TY(M, N))*TY(M, N)

644 CONTINUE
C ***« CALCULATE THE FACTOR BN ***#

BN=(F3/F2)
C *»*** UPDATE THE DIRECTION VECTORS DX AND DY *****
C

DO 664 M=l,IX
DO 654 N=l,IX
DX(M, N)«TX(M, N)+BN*DX(M, N)
DY<M, N)aTY(M, N) -t-BN*DY(M, N)
TX(M,N)=DX<M, N)
TY(M, N)=DY(M, N)

654 CONTINUE
664 CONTINUE
C **** GO FOR ANOTHER ITERATION IF YOU WANT ****

IF (ITER. GT. NOD GO TO BOO
GO TO 365

BOO DO 820 1=1,IX
AMP<I)=CA3SCY(I.16))
RINDEX(I) = (FLOAT<I-IX/2)-. 5)/IX*AA*l. 045
WRITEC*,*) AMP(I),RINDEX(I)

82O CONTINUE
WRITEdl,*) ITER
CALL FFT3D(X, IX , IX- IX, I X, 1, 69, IWK, RWK, CWK)
CALL FFT3D(Y, I X , I X, I X, I X. 1, 69, IWK, RWK, CWK)
DO 840 M=l. IX
DO 830 N=l. IX
CXMN=X(M, N)
X(M, N) = ((G<M, N)-V(K, N)*«a/G<M, N))*X(M, N)-(U<M)*V<M, N)/G(M, N)
.*Y<M, N))/(J*W*EP)/2.
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Y<M, N) = ( -U(M>*V(«,N) /G(M, N)«CXMN+(G<M. N>-U(M)**2/G<M. N)
.*Y(M. N))/(J*W*EP)/2.

830 CONTINUE
B40 CONTINUE
C ***« CALCULATE REFLECTION COEFFICIENTS

CREFX=Xd, 1)/FLOAT(IX)**2
CREFY=Yd,1>/FLDAT(IX>**2
CREF=CREFX*SIN C-PHI/RTD)+CREFY*COS(PHI/RTD)
CRET=CREFX*COS<PHI/RTD)+CREFY*SIN<PHI/RTD>
IFdTM. G T . O ) GO TO 85O

C
C **#* TE POLARIZATION #***
C»* THIS IS THE CO-POLARIZED COMPONENT ****

REFF=CABS(CREF/EF)
CTF=1-CREF
TFF=CABS(CTF)

C *** THIS IS THE CROSS-POLARIZED COMPONENT ***
REFT=CABS < CRET/EF)
WRITEdl, *) 'CREF.CRET, REFF, REFT, TFF '
WRITEdl,*) CREF, CRET, REFF, REFT, TFF

B5O CONTINUE
C *»* TM POLARIZATION ***
C *** THE CO-POLARIZED COMPONENT **

RETT=CABS(CRET/ET)
CTT=1-CRET
TTT=CABS(CTT)

C **** THE CROSS-POLARIZED COMPONENT***
RETF=CABS(CREF/ET)
WRITEdl, *) 'CRET, CREF, RETT, RETF, TTT '
WRITEdl, *> CRET, CREF, RETT, RETF, TTT

90O STOP
END

C
C

COMPLEX FUNCTION SINHH(X)
COMPLEX X
SINHH=0. 5*(CEXP(X)-CEXP(-X))
END

C
C

COMPLEX FUNCTION COSHH(X)
COMPLEX X
COSHH=O. 5*(CEXP ( X )-t-CEXP (-X ) )
END



PART II

THE ONE DIMENSIONAL PROBLEM (GRATING)USING

THE SECANT-CORRECTOR SPECTRAL ITERATION APPROACH

(MASTER'S THESIS BY ROBERT MIDDELVEEN)



ABSTRACT

The secant method is applied to an iterative algorithm

of electromagnetic scattering from planar surfaces with

periodic structure. The theory of convergent solutions for

iterative techniques is discussed and examined. The Secant

method is applied to the spectral iteration approach to

accelerate and assure convergence of the basic iterative

scheme. The derivation of the method as applied to surfaces

containing parallel thin wire gratings, is presented/ and the

conditions for achieving convergence are explored. This new

method is also applied to gratings made of coated wires. The

reflection characteristics of the grating as a function of

wire spacing, wire conductivity/ and polarization of the

incident field are computed/ and the results are compared

with those of previous works. Suggestions and recommen-

dations for applying the method to more complicated struc-

tures are also included.
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I. INTRODUCTION

Scattering from periodic structures such as grids or

gratings has been of particular interest in the field of

electromagnetics for many years. The field distribution

about the structure caused by a plane incident wave/ the

induced current densities in the wires/ and the reflection

coefficient are the most important parameters used in

designing grids and gratings.

The objective of this thesis is to model the problem of

electromagnetic wave scattering from a grating and compute

the current density and reflection coefficient. Grids are

important because they can be used as reflecting surfaces

instead of solid metal surfaces/ especially for modeling

light-weight antennas for space applications. Moreover/ by

making use of the frequency dependence of these structures/

they can be applied to filtering from the microwave to the

optical wave regions.

Many different methods have evolved for solving the

problem of electromagnetic scattering from such structures.

The most popular approach, the method of moments/ usually

requires large amounts of computer memory when applied to

periodic structures. Another technique/ the spectral-

iteration technique (S.I.T.) developed by Tsao and Mitra [1]



circumvents this memory requirement/ but suffers from

convergence problems. For example/ if the separation of

adjacent wires/ or strips is less than two wavelengths/ then

the S.I.T method will not converge.

Brand [2] applied a corrective scheme that assured the

convergence of the basic iterative equation for any wire

spacing. This method/ however/ depends on the evaluation of

numerical derivatives to generate a series of convergent

iterations. In some cases the computation of the derivative

can be so critical that the new corrective scheme fails to

converge. This thesis presents an alternative/ derivative-

free technique which always converges for any spacing of

adjacent wires/ polarization of incident wave/ and angle of

incidence of the incoming wave.

Another alternative method for solving scattering

problems is the Fast Fourier transform-conjugate gradient

method (FFT-C.G.) developed by Chistodoulou [3], This

technique can be used to solve for either the strip currents

or the electric field separately. Results obtained using

this method are compared with those obtained using the new

algorithm.

Also included in this thesis is a study of electro-

magnetic scattering from gratings made of coated wires. An

internal impedance is used which takes into consideration



the effects of the substrate on the induced currents and

reflection coefficient. This approach is particularly useful

for space applications where a highly conductive coating is

used in conjunction with a light substrate. Usually the

electrical characteristics of the substrate are unimportant.

For certain frequency ranges/ however/ the electrical fields

and currents penetrate both coating and substrate so that

the properties of both materials become important in the

calculation of fields and currents.



II. DERIVATION OF THE ORIGINAL ITERATIVE SCHEME

A model is presented here that can determine the

electric field and current density along the surface of a

unit cell illustrated in Figure 1.

First/ the electric field arising from a magnetic

current is given by:

¥ = -(!/€ ) 7 X F [1]

where F is the vector magnetic potential caused by the

ficticious magnetic current source K/ and e is the permit-

tivity of the medium. The sources .here will all be

considered as harmonic/ so that ~E and TT fields will be

phasor quantities. The vector potential F/ can be derived

from K by making use of the free-space Greens function G~.

The vector potential is a convolution of IT and G~/ given by

F= / "cCF/F1) 1T(F) dF1 [2]

where the free-space Greens function is defined by:

G = (1/47T |F| ) f Exp(-j k"-r~ ) [3]

The dyadic is denoted by T. The two vectors F and k are

illustrated in Figure 1. Returning to equation I/ the

magnetic field intensity as a function of magnetic vector
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potential can be derived from Maxwell's equations and

applying the Lorentz gauge condition ( see Appendix B ).

H" = -jW€ F + (1/jWJl ) V ( V ' ~) -' [4]

Where ft is the permeability of the medium/ and (J is the

angular frequency. Referring to Figure 1, there can be no

magnetic current in the z direction because the planar

structure is limited to the x-y plane. Therefore no

component of the magnetic vector potential can exist in the

z direction. Also because the stucture is located in the

plane z = O/ G will be a function of x and y only. If the

medium is allowed to be that of free space, then the

permeability and permittivity will remain constant and are

given by fl0 and €0 respectively. The propagation constant

for this medium is defined by:

k =(4) V^o«0 [5]

Equation 4 can now be expanded in the Cartesian coordinate

system as follows:

r s = i / j ^ o f k 2 F + aF Y + aF\
ax~ay aV2

2 > — ~\
+ A i? \ a IO "ir I =V I

-A -^T JX / J' I
\7 >3 \r £i -Jy

The subscript s in this equation signifies that this is the

scattered field. The scattered field is caused by the

incident field generating the magnetic currents in equation

6. These currents in turn produce the scattered fields. The

total IT field can be found by adding the incident and



scattered fields. In vector notation equation 6 is expressed

as:

H
= l/jw/i.

a/axay

k2
0+a2/ay

[7]

Equation 2 is now substituted into equation 7. Taking the

Fourier Transform of equation 7, the convolution of G and IT

in the space domain becomes a multiplication in the Fourier

domain. The transformed scattered magnetic intensity is

given by:

Hs =
i * ai k0 - pmn

The tilde symbol is used to denote the transform of the

[8]

variable in the Fourier domain. The parameters amn and

/?nm are referred to as the Floquet modes and they are

defined as follows/ reference [2]:

Ofmn = 27Tm/a - k0 sin# cos 0 [9]

Ann = 27rn/c - (27rm/a) cot£ - k0 sin^ sin<f> [10]

Their values depend upon the cell geometry of the planar

surface being studied. The angles Q, <f>, and Q are shown

in Figure 1. The number of sampling points across the unit

cell in the x and y direction are given by m and n

respectively. The Floquet modes allow for the effects of

coupling between the conducting regions of the planar

surface. The Fourier Transform of Green's function is given

by:

-0»T -p*mn) [11]
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If the Inverse Fourier Transform is applied again to

equation 8/ the scattered field in the space domain will be

given by:

Hs =
mn

'mn 'mn

~ctmnPmn ^o Pmn

G K ExP(j[Ofmnx +y9mny]) [12]

By using the equivalence theorem and applying the

appropriate boundary conditions to the scattered H field at

z = 0, the total tangential H field .can be solved in terms

of the transformed electric field in the aperture as:

S ̂ .
G E Ex P ( j [ a m n x +£mny]) [13]Htinc= -2/J

mn
~ko+ Pmn "C'mn&nn

To include the contribution of the H field along the

conducting strip, the current densities have t-o be added to

equation 12 to yield, reference [2]:

Trc'(J) =
mn

°mn £,mn

~ <*mn

G E" [14]

Exp(j[0mnx

Because the current density can only be present on the

conducting strips, the truncation operator Trc and its

complement are introduced. These are defined by:

Tcr [ ] =
X(r) for r in the aperture

Tcr'[ x(F)

0

0

for r" in the conducting region
[15]

for r in the aperture

X(r) for T in the conducting region
[16]



In equation 14, direct solution for the electric field is

not possible since both the strip current and electric field

are unknown. For this reason Tsao and Mittra [4] developed

an iterative equation to solve for both the electric field

and the strip current. Returning to equation 14, the

following simplification is made:

*mn _
[17]

Ann
G2 =

With this substitution, and th'e fact that the tangential

field is present only in the aperture and the current

density exists only along the conductor, equation 14 can be

written as:

Trc'(J) = Trc'(IT . + 2/j(*>̂ 0 F
l[~j F (Trc [E~. ] ) ] ) [18]tine *• t

Similarly the tangential electric field can be derived from

equation 14:

lft = F"1 [(ff1? (J0»//o /2[Trc'[j"] - 1Ttinc])] [19]

This electric field represents the field across the entire

cell. The field is also valid on the conducting strip

because the truncation operation is performed on this field

in equation 18. Equation 18 is substituted into equation 19

yielding the basic form of the iterative equation in terms

of the electric field.

El., = F'1 [G","1 F (j<J//0/2 [Trc
1 ( H". . + 2/jo>/*0 F"

1

T.I ^ tine

[f2 F (Trc [Ê  ])]) - 1Ttinc ])] [20]
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Brand [2] imposed his corrective technique on this

equation. As an alternative to Brand's correction, the

secant technique can also be applied to equation "20. This

technique will eliminate the convergence problems caused by

the unavailability of an analytic derivative.



III. THE SOLUTION OF FIXED POINT PROBLEMS VIA
ITERATION FUNCTIONS

General Theory of Iterative Functions

Iterative functions are often constructed to solve

equations of the following form:

f(x) = 0 [21]

and F(~) = 0 [22]

Equation 21 represents a single variable complex function.

In equation 22/ both the function and argument are vector

quantities whose elements can be complex. If these

functions are of a very complex nature/ a direct solution

may not be available. However/ a solution of arbitrary

precision may be obtained using iterative techniques. These

techniques make use of equations 21 or 22 to construct

iterative functions of the form:

G(X~i) [24]

Equation 23 is a single variable function and equation 24 is

the vector equivalent.

Solutions of f(x)=0

The iterative process consists of starting with an

initial guess x0 / and inserting this value in equation 23 to

11
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obtain a new iterate x,. The process is repeated until

xi+1= x.£ + e where e is an allowable error. If x*= x.+1= x.^ /

then x* is called the fixed point or the best -numerical

solution of equation 23. The fixed point of g(x) is a root

of f(x). There are two conditions required to assure a

convergent solution:

1) On a closed region containing the solution x/ g(x)

should be continuous.

2) For any arbitrary points s and t in this region the

following condition must be met:

|g(s) - g(t)| < p |s - t| [25]

0< p< 1

These conditions imply that g(x) must be dif f erentiable

over the interval of interest and that the magnitude of its

derivative must be less than unity. Froberg [4] has an in-

depth proof of this statement. If the above conditions hold

then g(x) is said to be a contraction/ and the iterative

process will eventually produce a fixed point x* The

graphical description of the iteration process is

illustrated in Figure 2. The fixed point x* is obtained by

finding the intersection of y = x and y = g(x). The first

four iterations are included beginning with the initial

guess denoted x0 .
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To illustrate the iterative process, consider the

following equation:

0 = f(x) = x1* + llx3 + 35.5x2 + 57x1+ 31.5 ' [26]

This equation contains roots at -1, -7, -1.5-J1.5 and

-1.5+J1.5. It is desired to find these roots using an

iterative process. An obvious choice for g(x) is obtained by

solving equation 26 for x1.

g(x) = (-l/57)(xU + llx3 + 35.5x2 + 31.5) [27]

The derivative of this function is:

g'(x) = (-l/57)(4x3 + 33x2 + 71x) [28]

The values of this derivative at the different roots are:

g1(-1) = 0.7368 [29]

g1(-7) = 4.4211 [30]

g'(-1.5-J1.5) = 1.4193 Exp(-JO.1865) [31]

g1(-1.5+J1.5) = 1.4193 Exp(j0.1865) [32]

Note that f(x) and g(x) are both continuous over the entire

complex plane but that the derivative of g(x) is less than

unity only in the interval about the root at x = -1. With an

appropriate initial guess g(x) should therefore converge to

the fixed point x*= -1. The first 20 iterations, generated

by equation 27, when x0 = 2 are tabulated in Table 1. It

should be mentioned that this choice of g(x) cannot be used

to find the other roots, and for an inappropriate initial

guess the iterative process may diverge altogether.

Fortunately, there are other techniques which can be applied
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TABLE 1

EXAMPLE OF ITERATIVE EQUATION DERIVED FROM f(x).
CONVERGENT ABOUT THE REGION x = -1.0

I terat ion

0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19

-4.868421
-2.901527
-2.325328
-2.006732
-1.785657
-1.618081
-1.485960
-1.380177
-1.295302
-1.227566
-1.174003
-1.132097
-1.099659
-1.074794
-1.055895
-1.041630
-1.030925
-1.022926
-1.016970
-1.012546

f ( x ) = xU + llx3 + 35.5x2 -i-57x +31.5

g(x) = ̂  ( xu + llx3 + 35.5x2 + 31.5 )
57
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to this problem to assure convergence and increase the

convergence rate.

Techniques to Accelerate and Assure Convergence

The techniques used to resolve these problems involve

the synthesis of a better iterative function than the

example illustrated in equation 27. These methods involve

the use of derivatives of the function f(x) and the

knowledge of previous iterates stored in memory.

One of the techniques that can be used to find all the

roots of equation 26 is the Newton-Raphsom method. The new

iterative function synthesized with this technique involves

the use of derivatives of f(x) and is written in the

following form:

g(Xi) = x± - f(xi)/f
t(xi) [33]

This new iterative function has a derivative with a

magnitude that is always less than unity over the complex

plane if f(x) and f'(x) are well-behaved functions. The

problem encountered with the previous sample iteration

function is no longer present and equation 33 can now be

used to solve for the missing roots. Table 2 lists the first

10 iterations of the solutions to the real roots of equation

26. From this table it can be seen that the rate of

convergence has also been increased. This acceleration is to
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TABLE 2

EXAMPLE OF THE NEWTON-RAPHSON I.F. APPLIED TO f(x) TO
ACCELERATE CONVERGENCE AND FIND ADDITIONAL ROOTS

Iteration (i)

= 2.0 = -10.0

0 0.921488
1 0.117348
2 -0.470798
3 -0.846059
4 -0.985979
5 -0.999888
6 -1.000000
7 -1.000000
8 -1.000000
9 -1.000000

-8.513304
-7.575745
-7.121042
-7.006845
-7.000025
-7.000000
-7.000003
-7.000003
-7.000002
-7.000000

f(x) = llx3 + 35.5x2 + 57x + 31.5

g(Xi) = Xi - f(x±)/f'
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be expected as more information about f(x) is used in the

formulation of new iterations. The technique is also valid

for complex valued functions. The first 10 iterations

solving for the complex root are shown in Table 3. A

graphical illustration of this technique is depicted in

Figure 3. The first three iterations are shown beginning

with the initial guess x0. The fixed point is denoted by

x* . Note that the true tangent is used to calculate the

next iterate.

The Newton-Raphson method is universally known and is

the most popular and useful iterative function.

Occasionally, when an analytic derivative is not available/

one can be approximated by perturbing the original function

by a small increment/ denoted by del (4). However/ the error

introduced using this method may be critical. If del is too

large/ the approximation will not be valid at the desired

point. Figure 4 shows how the numeric derivative will

contain a large error if the function is changing too

rapidly with x. If del is too small the approximation is

limited by the precision of the numerical operation.

The secant method does not depend on the evaluation of

any numerical derivative. The secant iterative function is

defined by:

( x ) - f ( x _ )] [34]
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TABLE 3

EXAMPLE OF COMPLEX VALUED NEWTON-RAPHSON I.F. APPLIED TO
f(x) TO ACCELERATE CONVERGENCE AND FIND COMPLEX .ROOTS

Iteration (i)

-4.000000

g(xi) real

J4.000000

g(x^) imaginary

0
1
2
3
4
5
6
7
8
9

-3.485554
-2.896810
-2.228628
-1.583420
-1.152799
-1.370047
-1.495772
-1.500129
-1.500000
-1.499999

-2.714932
-1.753410
-1.196201
-1.059435
-1.751122
-1.506637
-1.483877
-1.500248
-1.500001
-1.500000

f(x) = llx3 + 35.5x2 + 57x + 31.5

g(Xi) = x - f(Xi)/f'
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This method is based on a similar geometry as that of the

Newton-Raphson method. Figure 5 shows that sequential

iterates are used to estimate the tangent. This method tends

to converge more slowly but always locks in to the fixed

point. The previous method/ when the derivative was

approximated numerically/ occasionally oscillated about a

point in the vicinity of the solution. The first 10

iterations of the solutions for the real roots of the sample

function are shown in Table 4. The first 10 iterations

solving for the complex root are shown in Table 5. As with

the Newton-Raphson method/ the secant method converges much

more rapidly than the original iterative function given by

equation 27 because more information is being used. In

addition/ convergence is assured for all roots.

Formulation of the Problem

The preceeding example was concerned with single valued

complex functions/ such as those described by equation 1. In

some useful applications/ however/ the domain and range of

the function are vector quantities such as those described

by equation 22. Such is the case with the original iterative

function derived by Tsao and Mittra [1]. This function (see

chapter II) is repeated below for convenience:
~ i

¥ti= F'
1! (f~F ( .JĜ 0/2 [ Trc'( H"- 2/jCJ#0 F"

1 [20]
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TABLE 4

EXAMPLE OF THE SECANT I.F. APPLIED TO f(x) TO ACCELERATE
CONVERGENCE AND FIND ADDITIONAL ROOTS

Iteration (i)

x_!= 3.0
x = 2.0

x-i= -11.0
x0 = -10.0

0
1
2
3
4
5
6
7
8
9

1.230089
0.587572
0.068331
-0.351034
-0.671497
-0.881845
-0.977097
-0.998424
-0.999980
-1.000000

-8.808706
-8.044291
-7.486720
-7.169444
-7.034141
-7.002733
-7.000047
-7.000005
-6.999999
-7.000000

f(x) = + llx3 + 35.5x2 + 57x + 31.5
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TABLE 5

EXAMPLE OF COMPLEX VALUED SECANT I.F. APPLIED TO
f(x) TO ACCELERATE CONVERGENCE AND FIND COMPLEX -ROOTS

x0 =
5.000000 +
4.000000 +

J5.000000
J4.000000

Iteration (i) g(x.) real g(x. ) imaginary

0
1
2
3
4
5
6
7
8
9

-3.827079
-3.365816
-2.940393
-2.441053
-1.956624
-1.482012
-0.944583
-1.845381
-1.660885
-1.567421

-3.051936
-2.280450
-1.648176
-1.230939
-1.021398
-1.010186
-1.453021
-1.300908
-1.734051
-1.431206

f(x) = x4 + llx3 + 35. 5x2 + 57x + 31.5

- f(x±)[( f(xi)
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To simplify the above expression/ the left side of the

equation 20 is defined as an operator of the electric field

vector.

E. = LI( E.^) [35]

The iterative equation described by equation 20 does not

always converge to a solution for the electric field. This

is analogous to the convergence problems encountered with

the sample iterative function/ equation 27. Specifically/

equation 20 was found only to converge for very large wire

spacings. There are two equivalent techniques to alleviate

this problem. Brand [2] chose to relax equation 20 using the

following equation:

ei = 12(§"i-l) = R 6i-l + ( ! ~ R ) V^i-i } [36]

where 1 and e are the individual elements of the L" and E"

vectors resectivly and

R = 11'(1') / ( 11'(1') - 1 ) [37]

It is in equation 36 that problems with convergence emerge.

This equation requires the derivative of L . Because an

analytic derivative is not available/ an approximate

derivative is defined by:

!'(!•)= l(E+A ) - KB") [38]
A

It was this approximation that was often found to be

inadequate. Because of intrinsic differences between the IBM

and VAX computers and their compilers/ Brand's results could

not be duplicated on the VAX due to the limitations in

precision when approximating the derivative.
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An alternative approach was taken here/ by defining a

new equivalent vector function/ which has as its root the

solution of the electric field. This new function is defined

by:

F (I") = 1̂ (1") - E" [39]

The Newton-Raphson and Secant techniques can be applied

directly to equation 39. The vector F is called the residue

vector and has a value proportional to the remaining error

in the electric field. Table 6 compares the value of this

vector after 10 iterations for the S.I.T. with the

contraction and secant correctors applied. It can be seen

that the secant method produces a much smaller residue. The

Newton-Raphson method can be applied to equation 39 as

shown below:

12(E) = e - f (I") / f'd") [40]

where f represents an individual element of ~. Equations 36

and 40 are mathematically identical. Brand [2] included a

formal proof repeated in Appendix C showing this

equivalence. The Newton-Raphson iterative function produced

results virtually identical to Brand's original model.

Convergence problems persisted for certain input parameters

such as low angles of incidence and small wire spacings.

The secant method can be applied to equation 14 in the

following fashion:
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TABLE 6

COMPARISON OF RESIDUE VECTORS

Array
Element

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32

S.I.T.
(Real) (Imaginary)

0.003697
0.003874
0.003956
0.004024
0.004069
0.004109
0.004139
0.004166
0.004168
0.004204
0.004218
0.004230
0.004238
0.004244
0.004247
0.004249
0.004247
0.004244
0.004238
0.004230
0.004218
0.004204
0.004186
0.004166
0.004139
0.004109
0.004069
0.004024
0.003956
0.003874
0.003697
0.003328

0.004007
0.002393
0.001639
0.001026
0.000608
0.000244
-.000029
-.000273
-.000459
-.000625
-.000749
-.000857
-.000930
-.000989
-.001018
-.001033
-.001018
-.000989
-.000930
-.000857
-.000749
-.000625
-.000459
-.000273
-.000029
0.000244
0.000608
0.001026
0.001639
0.002393
0.004007
0.007377

S.C.S
(Real)

-.00000054
-.00000024
0.00000703
-.00000775
-.00000519
-.00000465
-.00000477
-.00000471
-.00000477
-.00000477
-.00000477
-.00000483
-.00000471
-.00000477
-.00000477
-.00000471
-.00000471
-.00000471
-.00000483
-.00000477
-.00000477
-.00000471
-.00000471
-.00000471
-.00000471
-.00000477
-.00000519
-.00000781
0.00000703
-.00000024
-.00000060
0.00000649

.1.
( Imaginary )

0.00000182
-.00000909
-.00001219
-.00000885
-.00000742
-.00000682
-.00000659
-.00000641
-.00000635
-.00000632
-.00000626
-.00000626
-.00000626
-.00000620
-.00000626
-.00000626
-.00000626
-.00000626
-.00000620
-.00000608
-.00000620
-.00000620
-.00000629
-.00000641
-.00000656
-.00000679
-.00000739
-.00000888
-.00001213
-.00000909
0.00000188
-.00001098
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!3
(Ei'Ei-l ) = 6i- f(Ei)(ei- ei_i ) /

 f(E"i)-f(Ei_i ) [41]

where 1 is an individual element of the vector produced by

operator L"_.

Although the vector and single valued iterative

functions appear to be constructed in identical fashion,

there are important differences regarding the number of

solutions and the conditions necessary to assure

convergence. The vector operator L is called a contraction

operator in a particular domain if it satisfies the

following condition:

d2[L(!T),L(7)] p d2[Tf/~] [42]

The magnitude of p is always less than unity and T7 and V are

any two vectors in the domain. The operator d2referred to in

equation 42 is the distance function and is defined by:
_ — r n 2 1 1/2

d2(U,V) = £ K- Vil [43]

Li=l J

If L is a contraction throughout a given domain, then from

any starting point within that domain, there will be one and

only one fixed point defined by:

Tj*= L(~*) [44]

The formal proof and a discussion of vector spaces is

provided by Stakgold [5].

Brand [2] proves with mathematical rigor that the

Newton-Raphson iterative equation, given infinite numerical

precision, will always converge to the fixed point.
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Restrictions are imposed that are even more stringent than

those of equation 42. It is shown that the Newton-Raphson

method complies with these new conditions. Given that the

Secant method is an approximation of the Newton-Raphson

method/ it is intuitive that this method should also force

convergence upon the original iterative scheme devised by

Tsao and Mitra. In fact Traub [6] shows that the order of

the iterative function for the secant method is 1.62 as

compared with 2 for the Newton-Raphson method. Any two

vectors in the domain of L can be chosen as the U and V of

equation 42. Brand [2] chose as his two vectors E and

"E" + A . To monitor the performance of the contraction of

the secant iterative function, E^and Ei+1 proved to be

convenient vectors. A contraction factor is defined below

for the secant method:

Con = d(L(EJ )/L(Ki_1 ) [45]
dCEi /eT^)

This factor was verified to comply with equation 17 when the

contraction process was taking place. Applying the secant

method, it was found that convergence was obtained for any

wire spacings, any polarization of the incident wave, and a

wide range of wire conductivity.



IV. THE INTERNAL IMPEDANCE OF THE WIRES IN THE GRATING

To account for the finite conductivity in coated wires/

the following boundary condition must be met:

Etinc+ Es = Z J £46]

where Z is the internal impedence of the conductor and I is

the current present in the conductor. It is now necessary to

derive an expression for the impeadance.

At very high frequencies the impedance of a solid wire

can be obtained using the impedance formulas for a semi-

infinite plane solid. At a sufficiently high frequency the

curvature of the wire becomes unimportant. This occurs when

the skin depth for the conductor becomes small compared with

the radius. The wire may then be considered a plane solid

with infinite depth and a width equal to its circumference.

The internal impedance of the wire for this case is given

by:

Z = Z / 27T r [47]s

where Z is the impedance of the plane solid/ and 2n r is
S

the circumference of the wire. Z is then measured in Ohms

per unit length. Z for a good conductor is given by

31
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Zs = (1 + j) = Rs(l + j) [48]
06

where a is the conductivity of the conductor in Siemens, &

is the skin depth in meters and RS is the surface

resistivity in ohms per square. The skin depth, 6 , is:

d = 1 [49]

where f is the frequency, and y. is the permeability of the

conductor. The surface resistivity therefore becomes:

RS = 1 = ^KtH/0 [50]

Although the actual mesh structures of interest are

made of small round wires, the algorithm used to estimate

the characteristics of this mesh apply only to a planar

structure of negligible thickness. Therefore the conductors

have to be modeled as conducting strips. For scattering

problems this modeling is done using the concept of

equivalent radius. The wire of radius r can be replaced by a

strip of width w, where r is given by:

r = 0.25w [51]

The final expression for the impedance of the wire using

equations 47, 48, and 51 is given by:

Z = 2R«(1 + j) [52]
7T W

Finally the mesh is usually not made of solid wire but a

coated material. In this way full advantage can be taken of

both the mechanical characteristics of the substrate and the

electrical characteristics of the coating. If currents and



= (I + j) = (1 + j) / TTf/^ [54]
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fields are able to penetrate both materials/ then the wire

impedance will no longer be predicted by equation 51. A more

accurate measure of impedance/ [7] derived in Appendix C/ is

given by:

Z = 2 R« (1 + j)[ sinh(T1d) + (Rg?/Ro1 )cosh(T1d) ] [53]
^~w [ cosh(Tjd)

where,

d is the thickness of the coating in meters, and Rg^ and

are the surface resistivities of the surface and the sub-

strate respectively. For very small values of coating

thickness, equation 53 reduces to the impedance of a wire

made of only the substrate. For large values of thickness

the wire appears as if it is made entirely of the coated

material. For intermediate values of thickness the resis-

tive and reactive parts of the impedance are no longer equal

in magnitude. Figures 6 and 7 show the wire impedance/

normalized with respect to that of the coating material/ for

varying ratios of thickness to the skin depth of the

coating. Figure 6 corresponds to a solder coating on a

copper substrate, with Rg2 /Rgi = 0.34. Figure 7 corresponds

to a silver coating on a brass substrate/ with
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V. RESULTS

First the fields and currents/ as calculated by the

secant method/ will be examined and compared with other

published results. There are two sources of published

results with which the new algorithim is compared. Brand [2]

used the spectral domain approach with the contraction

factor denoted by S.I.T, and Chistodoulou [3] used the the

fast Fourier transform-conjugate gradient method denoted by

FFT-C.G.

An important parameter that needs to be mentioned at

this point is the number of sampling points required to

represent the physical situation. For very thin wires a

greater number of sampling points will produce more accurate

results because there will be less quantitization error of

the strip width. The position in the cell at which each

sample is taken can effect the results. In addition/ the

greater the number of sampling points the slower the

contraction process will be.

Table 7 shows a comparison of the three methods for a

grating of very thin wires. For each case the current

density of the wire was computed. All cases were examined

36



TABLE 7

COMPARISON OF CURRENT DENSITIES

37

W FFT-C.G. S.I.T. S.C.S. I .

0.55
0.25
0.125
0.100

0.005
0.005
0.005
0.002

0.02664928
0.05155611
0.07172995
0.07545375

0.02770429
0.05183827
0.07114100
0.07521373

0.020257652
0.040708277
0.061060846
0.066166893



38

with the incident field normal to the plane and the E field

parallel to the wires. There were 32 sampling points for

each unit cell with one point laying on the strip. The

results of these methods are in good agreement. Any of these

methods can be used to predict the current density on a

strip for different wire spacing and wire thickness.

Figure 8 illustrates the current density across a wide

strip. Sixteen sampling points lie on both the strip and

the aperature. The incident field generating this current is

again normal and copolar. The current density is seen to be

very large at the edges of the strip. This result shows that

the new algorithim can predict edge effects.

Table 8 shows a comparison of the electric fields

across the entire cell as predicted by the three methods. It

should be mentioned that the FFT-C.G. method does not

actually compute the field across the strip region/ it is

assumed zero because the conductivity of the strips is very

large. There are again 32 sampling points with two points

lying on the strip. Note that the electric field located on

the strip is predicted to be much lower for the S.C.S.I,

method than for the S.I.T. For perfectly conducting strips,

low field values on the strip indicate that the boundary

condition E" . + IT = 0 is satisfied. This condition
tine s

could always be used as an accuracy-check.
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TABLE 8

COMPARISON OF THE ELECTRIC FIELD IN A UNIT CELL

CELL POINT

-0.129126310
-0.120795548
-0.112464786
-0.104134083
-0.095803320
-0.087472617
-0.079141915
-0.070811152
-0.062480479
-0.054149747
-0.045819018
-0.037488285
-0.029157557
-0.020826824
-0.012496091
-0.004165362
0.004165362
0.012496091
0.020826824
0.029157557
0.037488285
0.045819018
0.054149747
0.062480479
0.070811152
0.079141915
0.087472618
0.095803320
0.104174083
0.112464786
0.120795548
0.129126310

S.I.T.

0.182258561E-1
0.384013295
0.560089946
0.661797166
0.738476992
0.796682596
0.844159245
0.882627010
0.914659142
0.940926552
0.962553382
0.979851842
0.993371725
1.00326443
1.00979042
1.01301479
1.01301575
1.00979042
1.00326347
0.993371725
0.979854842
0.962553859
0.940926552
0.914659023
0.882627010
0.844159365
0.796682477
0.738476753
0.661787643
0.560090780
0.384014010
0.182278380E-1

FFT-C.G.

0.000000000
0.377430677
0.556849957
0.660458642
0.738587141
0.797879934
0.846264482
0.885471702
0.918128848
0.944895148
0.966925740
0.984547973
0.998328090
1.00839138
1.01503468
1.01830196
1.01831055
1.01503181
1.00839233
0.998323321
0.984559417
0.966914829
0.944902539
0.918127894
0.885474324
0.846258521
0.797884822
0.738585949
0.660460711
0.556844115
0.377436161
0.000000000

S. C.S.I.

4.8894606E-5
0.3747891
0.5529166
0.6556744
0.7332161
0.7919211
0.8399065
0.8787327
0.9110555
0.9375529
0.9593651
0.9768083
0.9904386
1.000410
1.006989
1.010238
1.010238
1.006989
1.000410
0.9904386
0.9768084
0.9593652
0.9375528
0.9110555
0.8787327
0.8399065
0.7919205
0.7332161
0.6556743
0.5529164
0.3747890
4.8571634E-5
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Figure 9 shows the electric field across a unit cell

with a large strip size. The electric field magnitude along

the strip is seen to be very small. The shape of the

electric field is in good agreement with results published

by Brand [2].

Next/ the reflection coefficent predicted using the

secant method is compared with FFT-C.G and S.I.T. methods.

In addition/ comparisons are made with results published by

Wait [8]. The reflection coefficient for cell widths less

than one-half wavelength is equal to the first element in

the transformed electric field vector/ i.e./ the first mode.

r = E~00= =?0- Etinc t55]

For these cell widths only one propogating mode will be

present so that only one array element is needed. These

narrow cell widths are important because when the wire

spacings become 0.5 wavelengths or smaller/ the planar

surface begins to resemble a solid reflector.

In Table 9 the magnitude of the reflection coefficient

for different values of wire spacing for normal incidence

and wire radius of 1/600 wavelengths is compared with other

methods. As expected/ the grating begins to appear as a

solid reflecting surface as the wire spacing becomes small.

All three methods are in very good agreement.
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TABLE 9

COMPARISON OF REFLECTION COEFFICIENTS
FOR DIFFERENT WIRE SPACINGS

SPACING

0.125
0.10
0.06
0.05
0.02
0.01

FFT-C.G.

0.844
0.888
0.954
0.967
0.994
0.999

S. C.S.I.

0.844
0.892
0.971
0.985
0.999
1.000

S.I.T

0.843
0.885
0.960
0.969
0.994
0.999
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Figure 10 depicts the changes in the reflection coef-

ficient for cell widths of 1/2, 1/4, and 1/8 wavelengths as

0 is varied from 0 to 90 degrees. The wire radius remains

constant at 1/600 wavelength. The angle <f> remains constant

at zero degrees corresponding to TE polarization of the

electric field. These results are in good agreement with

results published by Wait [8} and Brand [2].

Figure 11 illustrates the behavior of the reflection

coefficient when the angle <f> is held constant at 90

degrees. The cell width is held constant at 1/4 wavelength

while 0 is varied from 0 to 90 degrees. The wire radius is

again 1/600 wavelength. For this angle of <f> it is observed

that there exists a region of maximum transmission at 0

equal to approximately 67 degrees. This is analogous to the

Brewster angle associated with dialectric materials.

The effects of the substrate conductivity of coated

wires on the reflection coefficient were studied next. In

Figure 12 the conductivity of the coating was held constant
D

at 5(10 ) Siemens while the substrate remained constant at

50 Siemens. The top curve corresponds to a very thick

coating so that the conductivity of the strips is equal to

the conductivity of the coating alone. The lower curve

corresponds to a very thin coating so that the conductivity

of the strip is greatly reduced. The complete set of curves

illustrate the effects of varying the coating thickness. It
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can be seen that as the thickness of the coating becomes

smaller/ the incident field penetrates deeper into the sub-

strate. Since the substrate is of lower conductivity than

the coating/ it is expected to have more current losses in

the wire and hence a lower reflection coefficient is

obtained.

Figures 13, 14, 15 and 16 depict the effects of the

substrate alone. The conductivity of the coating is held

constant at 10 Siemens while the substrate is allowed to
g

vary from 10 to 10 Siemens. Note that the x axis cor-

responding to the substrate conductivity has a log scale for

each case. When the angle of incidence is perpendicular to

the plane, the substrate is seen to have the most pronounced

effect as shown in figures 13 and 14. The reflection coef-

ficient increases as expected with an increase in strip

conductivity. As the angle of the incident wave becomes much

lower in'relation to the plane, the reflection coefficient

remains more constant as the substrate conductivity changes

as shown in figures 15 and 16. An interesting phenomenon

appeared when <f> and Q were set equal to 90 and 70 res-

pectively. These particular values of <f> and 9 are

analogous to the Brewster angle of dialectrics. At this

angle, the grating no longer behaves entirely as predicted

for a reflecting surface. As the overall strip conductivity

increases, the reflection coefficient drops slightly. At



49

•X.

<c-

_ b

O
o

>
•H
iJ

•D
C
O
u
0)
.u
(0

4J
CO
XI
D
to

0)

O

CO
JJ
t)
0)
l«-l
M-l

Q)
Vj
D
tr>



•:-«

in

50

•H
4-1
U

C
O
u

(0
kJ
4J
to
.0
D

(U
JC
4J

u~.
•••••

o
(0
4-1
u
0)

V4-I
U-l
ta

0)

cn
•H
b



51

4J
•H
>
•H
4J
U
D

C
O

0)

m
4J
CO

CQ
4J
O
0)

0)
jj
3

*"•"! CO •"*"• OC" s "̂ '̂"̂

•X- <K> •» Off •>:• <•>

•LN3IDIJJ30D

«v»

O>

*vn r'«
**••

«^



52

4-J
•H
>

u
D
T3
C
O
u
0)
4-)
m

~ b

o
o

D
in
0)
^
.u)

U".

«•*•*

to
4J
U
0)

ID
rH

01

3

1N3IDI.3.33OO



53

this angle the surface appears more as a dialectric material

with its permeability changing.

These results were all run on the VAX 11/750. For 32

sampling points with <f> equal to 0 degees and Q varying/

the secant method converged to the third decimal of the

reflection coefficient within 8 to 12 iterations. For very

low angles, B being greater than 88, more iterations are

needed. Convergence took 290 iterations when 6 was equal

89. There is also a correlation between the number of

iterations and the number of sampling points. Table 10 shows

that convergence is more difficult to obtain with a greater

number of sampling points.

TABLE 10

SAMPLING POINTS VS. ITERATIONS REQUIRED

Sampling points

32
64
128
256
512

Iterations

8
8

16
14
20

The 32 sample points with 8 iterations require 5.25

seconds of CPU time while 512 sampling points with 20

iterations requires 38.58 seconds.



VI. SUMMARY, CONCLUSIONS, AND RECOMMENDATIONS

Brand's contractor corrector method failed to converge

on occasion for various input parameters when running on the

VAX computer. The reason for this failure was found to be

the error introduced by using a numeric estimate of the

derivative.

An alternative derivative-free method was developed to

insure the convergence of the spectral iteration approach as

applied to the electromagnetic scattering from gratings.

This method was derived by beginning first with the original

spectral-iterative equation to which no correction was made.

The general theory of iterative techniques was then covered.

Basic examples were presented illustrating how the secant

technique could be applied to solve single-valued complex

functions. Finally/ the secant method was applied to the

vector space used by the spectral-iteration equation.

Alternative methods for solving electromagnetic scattering

are always of interest because the criteria for obtaining

solutions become more stringent as the geometry of the

problem becomes more complex.

This new method was used to solve for the currents and

fields lying in the plane of the grating. The reflection

54
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coefficient was computed for cell widths under 1/2

wavelength. These results were compared with previously

published data and found to be in good agreement. '

The solution of scattering from a grating is a one-

dimensional application of the spectral iterative technique.

The cell geometry only changes along one axis of the plane

containing the grating. A grid would require a two-

dimensional application of the basic technique because the

geometry changes along both the x and y axis. The contractor

corrector has been applied to this two dimensional

configuration and failed to yield a convergent scheme.

Because the conditions necessary to assure convergence are

more stringent/ the error introduced by using a numeric

derivative could be the critical factor causing this

failure. The secant method has yet to be applied to this

type of problem and could possibly provide a method of

solution leading to convergence.

No spectral iterative method has as yet been applied to

geometries more complex than grids or gratings. For the one-

dimensional problem the cell could contain various strips of

varying size. The two-dimensional problem can be that of

virtually any repeating planar structure. This case is

important because surfaces approximating reflectors are not

usually a grid/ but a mesh structure which can have a very

complex geometry. The spectral iterative techniques are
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particularly well suited for these types of studies because

only the truncation operators are geometry dependent. It is

recommended that wire mesh geometries be studied to verify

that convergence will still take place and that the results

remain acceptable.



APPENDIX A

MAIN PROGRAM AND ASSOCIATED SUBROUTINES

The following program is written in FORTRAN 77 source

code. It should run on most FORTRAN compilers and has run

successfully on the VAX and IBM PC computers. This program

will solve for the electric field across the aperature of a

unit cell consisting of parallel wires. This unit cell is

the repeating section of an infinite grating. The program

will also solve for the current densities on the wires and

the reflection coefficient of the grating. The program is

presented in its interactive version/ with appropriate

prompts to request input data. This appendix consists of a

summary of variables/ subroutines and a program listing.

57
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Program Variables

Some variables and constants are self explanatory and are

not defined.

E(I) Electric field in the aperture

GUESS(I) Previous estimate of the electric field

FI(I) Current value of the residue function

FIM1(I) Previous value of the residue function

JC(I) Current density across the aperature

G(I) Transformed Green's function

EINC Incident electric field

HI Incident magnetic field

Z Internal impedance of the wires

CREF Reflection coefficient

CONVERGED Boolean indicator of convergence

K Propagation constant

CK_ Constants used in the original iterative eq.

RS1/RS2 Surface resistivities of coating and substrate

RATIO Ratio of coating thickness and skin depth

MAX Number of sampling points

ITER Running count of the number of iterations

CYCLES Maximum number of iterations allowed
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SINHH,COSHH

FNCTZ

XFORM

TRCOPR_

FFT

Subroutines and Functions

Complex hyperbolic sin and cosine for
a complex argument

The residual vector

Original transformation for the electric
field

Subroutines dependent upon cell geometry

Fast fourier transform



ORIGINAL PAGE 13
OF POOR QUALITY 60

START

Initialize:

Declare variables
Input data
Initialize constants

FNCT:-:
l

F = E - L( E
CALL XFORM

RETURN

Calculate incident electric
and magnetic fields

Calculate the internal impedance
of the coated wires ^^^

Calculate the sampling point
locations on the strips
and aperature

Calculate the Green's function
t r a n sform

Constuct the first 2 guesses of
the electric field

| Calculate F CALL FNCT2

/ Has covergence occured ?

NO

/ H a s c o n v e r g e n c e occured ?
NO

Perform next iterate of the
electric field

I S a v e the previous E field

r
STOP

XFORM

[Perform initial transformationI

1
Perform inverse transformation
of GE

, I
I Truncation operation T(CE)

1

Yes

y
_

[ Calculate F CALL FNCTZ

Yes

Perform inverse transformation
on T(GE)

I
Perform T(CE)/C and add B ~

Calculate the reflection
coefficient

Perform the inverse
transformation to obtain
the first iterated E field

RETURN

Print the reflection
coef ficient
Print the E field and current
values

Figure 17. Flow Chart.
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c **************** SECANT32.FOR
C
C SECANT METHOD APPLIED TO ASSURE CONVERGENCE
C
C OCTOBER 23,1983 BY ROBERT MIDDELVEEN
C
C DIMENSION ALL ARRAYS

COMPLEX E(32),FI(32),FIM1(32),JC(32),G(32)
COMPLEX RI,CREF,HI,EHOLD(32)
COMPLEX GUESS(32)
COMPLEX J,CK1(32),CK2(32),CK(32),Z,Tl,SINHH,COSHH
REAL K,K2,RSI,RS2,SKIND1,RATIO
INTEGER ITER,CYCLES
LOGICAL CONVERGED
COMMON RI,CREF,HI,EINC
COMMON JC,G,J,Z,CK
COMMON N,Nl,IW,MAX,W,UU,STH,DR,REF,B,ITER

C A = FLOQUET CELL DIMENSION
C B = STRIP SIZE

WRITE(*,*) ' ** ENTERING MAIN PROGRAM **'
WRITE(*,*) ' HOW MANY ITERATIONS DO YOU WISH TO PERFORM?1

READ (*,*) CYCLES
WRITE(*,*) ' INPUT FLOQUET CELL SIZE, STRIP SIZE '
WRITE(*,*) ' NORMALIZED IN WAVELENGTHS '
READ(*,*) A,B

C FREQ = FREQUENCY IN HZ
WRITE(*,*) ' INPUT FREQUENCY IN HZ1

READ(*,*) FREQ
C MAX = FFT SIZE = NUMBER OF SAMPLES PER CELL
C IW = LOG2(MAX) ', i.e. MAX = 2**IW

MAX=32
IW=5

C CIG = CONDUCTANCE OF THE STRIP
WRITE(*,*) ' INPUT CONDUCTANCE OF COATING IN SIEMANS1

READ(*,*) SIG1
WRITE(*,*) ' INPUT CONDUCTANCE OF SUBSTRATE IN SIEMANS1

READ(*,*) SIG2
WRITE(*,*) ' INPUT THE THICKNESS OF THE COATING IN METERS'
READ(*,*) THICKNESS

C TH = THETA ANGLE OF INCIDENCE
C PH = PHI ANGLE OF INCIDENCE

WRITE(*,*) ' INPUT THETA ANGLE, PHI ANGLE1

487 READ(*,*) TH,PH
C INITIALIZE ROUTINE CONSTANTS

PI=3.141593
TPI=2*PI
C=2.997956E8
UU=4.0E-7*PI
EP=8.854E-12
ETA=SQRT(UU/EP)
ITER=0
J=(0.0/1.0)
ALAMB=C/FREQ
RD=180.0/PI
DR=1.0/RD



62

CONVERGED=.FALSE.
C CALCULATE THE INCIDENT ELECTRIC AND MAGNETIC FIELD COMPONENTS
C FOR THE ELECTRIC FIELD PARALLEL TO THE WIRES, i.e. NO CROSS-
C POLARIZATION INCLUDED

IF (PH.LT.45.0) EINC =1.0
IF (PH.GE.45.0) EINC=COS(TH*DR)
IF (PH.LT.45.0) STH=0.0
IF (PH.GT.45.0) STH=TH
HI=1.0/ETA*(COS(TH*DR)+J*SIN(TH*DR))
IF(PH.LT.45.0) HI=1.0/ETA*COS(TH*DR)

C
C THIS SECTION COMPUTES THE INTERNAL IMPEDANCE FOR A COATED WIRE
C

Tl=(1.0,1.0)*SQRT(PI*FREQ*UU*SIGl)
RS1=SQRT(PI*FREQ*UU/SIG1)
RS2=SQRT(PI*FREQ*UU/SIG2)
SKIND1=1/SQRT(PI*FREQ*UU*SIG1)
RATIO=THICKNESS/SKIND1
IF(RATIO.GT.4.00)THEN
Z=SQRT(TPI*FREQ*UU/2.0/SIG1)*(1.0,1.0)/TPI/B

ELSE
Z=(1.0,1.0)*(SINHH(T1*THICKNESS)+(RS2/RS1)*COSHH(T1*THICKNESS)
Z=Z/(COSHH(T1*THICKNESS)+(RS2/RS1)*SINHH(T1*THICKNESS))
Z=Z*RS1/TPI/B

END IF
WRITE(*,15) RATIO,Z

15 FORMAT('-',' RATIO = ',F10.5,' Z = ( ',E10.2,' , ',E10.2,' )')
C
C
C
C CALCULATE THE NUMBER OF SAMPLES ON THE STRIP AND IN THE APERTURE

TAU=A-B
N=IFIX(TAU/A*FLOAT(MAX))
WRITE (*,*) 'N= ',N
N1=N+1
WRITE(*,30) A,B,TAU,FREQ,TH,N,MAX

30 FORMAT( '-ME10.5, ' ',1E10.5,' '/1E10.5, ' ',E10.3,1E10.4,2110)
IF(NI.GT.MAX) GOTO 998
K=TPI/ALAMB
K2=K*K
SK=K*SIN(TH*DR)*COS(PH*DR)
SSK=K*SIN(TH*DR)*SIN(PH*DR)
W-TPI*FREQ

C CALCULATE GREEN FUNCTION TRANSFORM
DO 40 I=1,MAX
IF(I.GT.MAX/2+1) GOTO 50
U=TPI*(I-1)/A-SK
GOTO 60

50 U=TPI*(I-MAX-1)/A-SK
60 U=U*U+SSK*SSK

IF(U.GE.K2) GOTO 70
G(I)=-J*SQRT(K2-U)
GOTO 44

70 G(I)=-SQRT(U-K2)
44 G(I)=G(I)-SSK*SSK/G(I)
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40 CONTINUE
C INITIAL E FIELD ESIMATE

DO 320 1=1,MAX
320 E(I)=(1.0,0.0)

CALL TRCOPR(E,N1)
DO 321 1=1,MAX

321 GUESS(I)=E(I)+(0.1,0.0)
C NOTE ITERATIVE FORM USED IN THIS PROGRAM IS X=AX+B
C CALCULATE B PORTION OF ITERATIVE EQUATION

DO 110 1=1,MAX
110 CK1(I)=HI*J*W*UU

CALL FFT(CK1,IW)
DO 120 I=N1,MAX

120 CK2(I)=HI*W*UU/J
DO 140 1=1,N

140 CK2(I)=(0.0,0.0)
CALL FFT(CK2,IW)
DO 130 1=1,MAX

130 CK(I)=(CK1(I)+CK2(I))/G(I)
C
C THE FOLLOWING SECTION IMPLEMENTS THE SECANT METHOD
C

WRITE(*,*)'SECANT ALGORITHM APPLIED1

81 CONTINUE
ITER=ITER+1
DO 357 1=1,MAX

FIM1(I)=GUESS(I)
EHOLD(I)=E(I)

357 CONTINUE
CALL FNCTZ(FI,MAX,CONVERGED)
IF (CONVERGED) GOTO 259
CALL FNCTZ(FIM1,MAX,CONVERGED)
IF (ITER.GT.CYCLES.OR.CONVERGED) GOTO 259
DO 358 1=1,MAX
E(I)=E(I)-FI(I)*((E(I)-GUESS(I))/(FI(I)-FIM1(I)))

358 CONTINUE
DO 359 1=1,MAX
GUESS(I)=EHOLD(I)

359 CONTINUE
GOTO 81

C
C
C
C THE SECANT METHOD ENDS HERE
C
C
C
259 CONTINUE
C
C

WRITE(*,*)' HIT 'RETURN" TO CONTINUE1

READ(*,*)
OPEN(10,FILE='SEC32OUT',STATUS='NEW')
WRITE(*,*) ' ELECTRIC FIELD MAGNITUDE1
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WRITE(10,*) ' ELECTRIC FIELD MAGNITUDE1

DO 261 1=1,MAX
BINDEX=FLOAT(I-1)/FLOAT(MAX-1)*A
WRITE(10,*) ' ',BINDEX,' ',CABS(E(I))
WRITE(*,*) ' ','BINDEX = ',BINDEX,' !E! = ',CABS(E(I))

261 CONTINUE
WRITE(*,*)' HIT "RETURN" TO CONTINUE1

READ (*,*)
WRITE(*,*) ' STRIP CURRENT1

WRITE(10,*) ' STRIP CURRENT1

DO 262 I=N1,MAX
BINDEX=FLOAT(1-1)/FLOAT(MAX-1)*A
WRITE(10,*)' '/BINDEX,1 ' ,CABS(JC(I))
WRITE(*,*)' ','BINDEX = ',BINDEX,' !JC! = ',CABS(JC(I))

262 CONTINUE
C
C

W R I T E ( * , 2 6 0 )
2 6 0 F O R M A T ( ' - ' , 1 0 X , ' T I M E L Y E X I T 1 )

GOTO 9999
998 W R I T E ( * , 9 9 )
9 9 F O R M A T t 1 - ' , ' E R R O R I N N 1 )
9999 STOP

END
C
C
C
C THIS SUBROUTINE PRODUCES THE VECTOR WE WANT TO ZERO
C
C
C

SUBROUTINE FNCTZ(E,MAX,CONVERGED)
COMPLEX E(32),HOLD(32)
LOGICAL CONVERGED
DO 1234 1=1,MAX
HOLD(I)=-E(I)

1234 CONTINUE
CALL XFORM(E,CONVERGED)
DO 1235 1=1,MAX
E(I)=E(I)+HOLD(I)

1235 CONTINUE
RETURN
END

C
C
C
C THIS SUBROUTINE IMPLEMENTS THE TRANSFORMATION ON THE E FIELD
C
C
C

SUBROUTINE XFORM(E,CONVERGED)
COMPLEX E(32),G(32),JC(32),CK(32)
COMPLEX RI,CREF,HI,J,Z
REAL REF,REFM1,REFM2
LOGICAL CONVERGED
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COMMON RI,CREF,HI,EINC
COMMON JC,G,J,Z,CK
COMMON N,N1,IW,MAX,W,UU,STH,DR,REF,B,ITER

C CALCULATE FIELD ON STRIP DUE TO FINITE CONDUCTIVITY
CALL TRCOPR3(E,JC,N1,MAX,Z,B)

C START BY PERFORMING THE INITIAL TRANSFORMATION
CALL FFT(E,IW)
DO 100 1=1, MAX

100 E(I)=CONJG(E(I)*G(I) )
C PERFORM INVERSE TRANSFORM OF (G*E)

CALL FFT(E,IW)
C PERFORM THE TRUNCATION OPERATION T(G*E)

CALL TRCOPRC(E,N)
CALL TRCOPR4 ( E , JC , Nl , MAX , J , W , UU , HI )

C PERFORM INVERSE TRANSFORMATION ON T(G*E)
CALL FFT(E,IW)

C PERFORM T(G*E)/G AND ADD CONSTANT "B".
DO 170 1=1, MAX

170 CONTINUE
C
C
C
C CALCULATE REFLECTION COEFFICIENT

TOL=0.0001
REFM2=REFM1
REFM1=REF
RI=J*SIN(STH*DR)/COS(STH*DR)
CREF=(E(1)/MAX+EINC)+J*SIN(STH*DR)*ABS(1.0-ABS(E(1)/MAX+EINC)
CREF=CREF/(COS(STH*DR)+J*SIN(STH*DR) )
REF=CABS(CREF)
IF (ABS(REF-REFMl) . LT. TOL . AND. ABS ( REF-REFM2 ) .LT.TOL) THEN
WRITE(*,*)' ITER= ',ITER,' REF= ',REF,' CREF= ',CREF
CONVERGED=.TRUE.

END IF
C
C

DO 171 1=1, MAX
E(I)=CONJG(E(I) )/MAX

171 CONTINUE
C PERFORM INVERSE TRANSFORMATION TO OBTAIN FIRST ITERATED
C ELECTRIC FIELD

CALL FFT(E,IW)
DO 200 1=1, MAX

200 E(I)=CONJG(E(I) )
RETURN
END

C
C
C

SUBROUTINE TRCOPR(E,N)
COMPLEX E(32)
DO 400 I=N,32
E(I)=(0. 0,0.0)

400 CONTINUE
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RETURN
END

C
C
C

SUBROUTINE TRCOPRC(E,N)
COMPLEX E(32)
DO 401 1=1,N
E(I)=(0.0,0.0)

401 CONTINUE
RETURN
END

C
C
C

SUBROUTINE TRCOPR3(E,JC,Nl,MAX,Z,B)
COMPLEX E(32),JC(32),Z
DO 402 I=N1,MAX
E(I)=-JC(I)*Z*B

402 CONTINUE
RETURN
END

C
C
C

SUBROUTINE TRCOPR4(E,JC,Nl,MAX,J,W,UU,HI)
COMPLEX E(32),JC(32),J,HI
DO 403 I=N1,MAX
E(I)=CONJG(E(I))/MAX

C CALCULATE THE CURRENT DENSITY ON THE STRIP
JC(I)=E(I)*J/W/UU-HI

403 CONTINUE
RETURN
END

C
C
C

SUBROUTINE FFT(A,M)
C THIS IS THE FFT SUBROUTINE CALLED FOR FROM THE MAIN PROGRAM

COMPLEX A(32)/U,W,T
N=2**M
NV2=N/2
NMl=N-l
J = l
DO 7 1=1,NM1
IF(I.GE.J) GOTO 5
T=A(J)
A(J)=A(I)
A(I)=T

5 K=NV2
6 IF(K.GE.J) GOTO 7

J=J-K
K=K/2
GOTO 6

7 J=J+K
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PI=3.141592653589793
DO 20 L=1,M
LE=2**L
LEl=LE/2
U=(l.0,0.0)
W=CMPLX(COS(PI/LEI) ,SIN(PI/LE1))
DO 20 J=1,LE1
DO 10 I=J/N,LE
IP=I+LE1
T=A(IP)*U
A(IP)=A(I)-T

10 A(I)=A(I)+T
20 U=U*W

RETURN
END

C
C
C

COMPLEX FUNCTION SINHH(X)
COMPLEX X
SINHH=0.5*(CEXP(X)-CEXP{-X))
END

C
C
C

COMPLEX FUNCTION COSHH(X)
COMPLEX X
COSHH=0.5*(CEXP(X)+CEXP(-X))
END



APPENDIX B

The purpose of this appendix is to solve for the

magnetic field intensity as a function of magnetic vector

potential/ this derivation is included in reference 7. Given

equation I/ it is desired to derive equation 4. For this

derivation all sources will be considered sinusoidal/ IF and

H" will be phasor quantities and the sinusoidal steady state

versions of Maxwell's equations will be used along with

three vector identities. Considering IT and B* as arbitrary

vectors and C as an arbitrary scalar:

7 X ( A" + If ) = 7x1 + 7 X B " [56]

7 X 7 C = 0 [57]

7 X 7 X ~ = 7 ( 7-~) - P2~ [58]

Starting with the relation of electric and magnetic fields

given by maxwell's equation:

. 7 X TT = JW€ f [59]

Equation I/ repeated below,

E = -l/€ ( 7 X "F ) [1]

is substituted in equation 59 becoming:

7x1" + j W ( 7 X F" ) = 0 [60]

Making use of identity 56 this can be written as:

7 X ( "H + j WF~ ) = 0 [61]

68
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Making use of identity 57 this can be written again as:

7 x ( H " + j u > F ) = 7 x (-70m ) [62]

The magnetic scalar potential is denoted by 0m in this

equation. From 62 the following implication can be made:

H" + j <4>~ = -P0n [63]

To specify *H completely from F~ it is necessary to find

the relation between 0m and F. Taking the curl of equation 1

results in:

7x1" = -l/€ 7 X P X ¥ [64]

Making use of identity 58 this can be written as:

7 x 1 " = -l/€ [V ( V-~) - 72<F ] [65]

To specify any vector both its curl and divergence must be

known. The curl of ~ is already defined in equation 1. To

specify the divergence of ~, the Lorentz gauge condition is

applied so that equation 65 is simplified. The divergence of

F is defined by:

V-T = -jW€//0m [66]

The scalar magnetic potential is now given in terms of

vector magnetic potential by:

0m= -1/JWJI6 ( 7-F~ ) [67]

This value can be substituted back into equatdon 62

resulting in eqation 4:

H" = -JWF" + l/jo>^€ V( V'~F ) [4]



APPENDIX C

The following proof is also found in the reference of

Brand [6]. It is a proof that the Newton-Raphson method is

identical to the contraction corrector method. The starting

point is the definition of the Newton-Raphson method.

f f y ^ / f l f y ) f f i f l 1t i x . ;/i v x. j LOO J

[69]

[70]

[71]

[72]

[73]

[74]

g(Xi) [75]

gUi) [76]

[77]

where it is desired that

and that equivalently

equation 68 can now be manipulated as follows:

j) ~ xj
) - I

g'(xT) - i

xi+1= g' (x.) x. - g(x.)
g'tx/)- 1

- i [ , Inly

gl( x. ) . l ^

i J
. r i / \ i i (

i \ q*(x-] - 1 g

["• g.(X.) ]X. + H _ g.(x.) -I

^ 1 L 1 J

xi+r

xi+r

x i+r

The optimum correction factor is defined by:

R = g'(x,) / [ g'(x,) - 1 ]
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So that equation 75 becomes the definition of the optimum

contraction corrector when the substitution stated in

equation 77 is made as follows:

= R x + ( 1 - R ). g( X) [78]



APPENDIX D

The solution for the internal impedance of the coated

conductor (refer to reference 2) is found by solving for the

distribution equations in both media and then matching at

the boundary between the two (see Figure 19). The solution

for either material/ assuming an electric field with only a

z component/ is of the following form:

i = i EXP(-x/«) EXP(-jx/6) [79]
Z \J

Figure 19 Coated Conductor

T
( 1 ) A*! 01

( 2 ) "2 °2

There can be no positive exponential for the substrate/

however/ because the current becomes zero for large values

of x. The current density for the substrate then becomes:

= C EXP(-T2 x) [80]

where T = (i + j) = (i + j)^ ?r
72
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The current density for the coating has both the positive

and negative exponetial:

izl = D EXPt-Tj x) + E EXP(+T1 x) " [81]

where 1-^ = (1 + j ) = (1 + j )J7r£f* a
6

It is more convenient to express this expression in terms of

the equivalent hyperbolic functions. Then i becomes:

izl = A SINH(T1 x) + B COSHfT-L x) [82]

The electric and magnetic fields now need to be matched

at the boundary. These fields can be found using the

following relations:

Ez = iz/<7 [83]

Hy =_!_ d(Ey) = <Td(E?) [84]
j(ĵ  dx T2 dx

Solving for the electric and magnetic fields yields:

Ez2 = £ EXP(-T2 x) [85]
°2

Ezl = _!( A SINHdj x) + B COSH^ x)) [86]

*1

Hy2 = -£ EXP(-T2 x) [87]
T2

Hyl = _!( A COSHlTj x) + B SINHdi X)) [88]

T!

The tangential electric and magnetic fields are continuous

across the boundaries/ yielding two equations and three

unknowns. Combining equations will obtain the ratio/ B/A:
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= Ez2' Hyl = Hy2 @ x = d [89]

B = -[SINHCTj d) + (T2 g./Tjg 2)COSH(T, d)] [90]
A [COSH( d) + (T <r /T<T )SINH(T d)]

The total current is obtained from the relationship:

7 = " X H" [91]

Solving fo J :

Jz = -Hy [92]

The impedance per square can be obtained from observing the

ratio of the electric field and the current density at x=0:

Z = E^ = -E = -B_T_i at x = 0 [93]
Jz Hy A ai

Using equation 90 and substituting for Tl and T2 yields the

ratio of the internal impedance to the surface resistivity

of the coating.

£ = (1 + j)[SINH(T1 d) + (Rg2/R3l)COSH(T1 d)] [94]
Rsl [COSH(T^ d) + (Rg2/Rsl
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