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CHAPTER I

INTRODUCTION

An approximate but sufficiently accurate high frequency solution is developed

in this study for the problem of electromagnetic (EM) plane wave scattering by

an open-ended, perfectly-conducting, semi-infinite hollow rectangular waveguide

(or duct) with a thin, uniform layer of lossy or absorbing material on its inner

wall, and with a planar termination inside. This high frequency solution is based

on a combination of the uniform geometrical theory of diffraction (UTD) [l] ray

technique with the aperture integration (AI) method. The UTD is a modification of

Keller's geometrical theory of diffraction (GTD) [2] such that it remains valid even

within the transition regions adjacent to the shadow boundaries associated with

the discontinuities of the geometrical optics incident and reflected rays. Basically,

the reflected fields in the present UTD analysis are characterized by a Fresnel

reflection coefficient that is associated with the problem of plane wave reflection

from a uniform layer of dielectric/ferrite coated perfectly-conducting surface of

infinite extent. Likewise, the diffracted fields here are characterized by a uniform

diffraction coefficient that is associated with the problem of plane wave diffraction

by the edge of a perfectly-conducting half-plane which is coated on one side by

a uniform layer of dielectric/ferrite material. The total field scattered by the

semi-infinite waveguide consists firstly of the fields scattered from the edges of

the aperture at the open end, and secondly of the fields which are coupled into

1



the waveguide from the exterior and then reflected from the interior termination

to radiate out of the open end. The first contribution to the scattered field can

be found directly via the UTD ray method; whereas, the second contribution is

found via the AI method which employs rays to describe the fields in the aperture

that arrive there after reflecting from the interior termination. The approximate

ray method of analysis in combination with AI is selected here because of its

conceptual simplicity and efficiency. It is assumed in the present study that the

direction of the incident plane wave and the direction of observation lie well inside

the forward half space that exists on the other side of the half space which contains

the semi-infinite waveguide geometry. Also, the medium exterior to the waveguide

is assumed to be free space.

While the problems of EM scattering and radiation by perfectly-conducting

semi-infinite, open-ended parallel plate, rectangular and circular waveguides have

been analyzed in the past using a variety of techniques, e.g. the Wiener-Hopf

method (for the semi-infinite parallel plate and circular waveguides) [3], the mode

matching precedure [4,5,6], a hybrid combination of ray and modal techniques

[7], etc., there does not appear to be much work done on the EM scattering and

radiation by semi-infinite perfectly-conducting waveguides with an absorber (di-

electric/ferrite material) coating on its inner walls. Besides the present work, the

only other related study which is available in the open literature (or as a report)

appears to be that conducted by Lee et al. [8]; the latter deals with the plane

wave scattering by a perfectly-conducting semi-infinite circular waveguide with an

absorber coating on its inner wall. A purely modal description is used for the fields

inside the waveguide in [8]; this is in contrast to the present work which employs

rays to do the same. As in the present approach, the one in [8] also employs the

AI method to find the fields radiated from the interior of the waveguide; however,



the field in the aperture, which is required in the AI calculation, is expressed in

terms of modes in [8] rather than in terms of rays as done here, obviously because

the work in [8] employs a modal description for the interior fields.'

In addition to developing a high frequency solution for the three dimensional

(3-D) problem of the scattering by a semi-infinite rectangular waveguide, a high

frequency solution for the less difficult but useful problem of the EM scattering by

a two dimensional (2-D), semi-infinite parallel plate waveguide with an absorber

coating on the inner walls is also developed as a first step. In the case of the

simpler semi-infinite 2-D parallel plate geometry excited by an EM plane wave

as shown in Figure 1, it is initially assumed that a uniform surface impedance

boundary condition exists on the inner walls. The impedance boundary condition

in this problem serves to model a thin layer of lossy dielectric/ferrite coating on the

otherwise perfectly-conducting interior waveguide walls. The reason for initially

choosing this simpler parallel plate problem with an impedance boundary condition

on the interior walls was to examine the accuracy and efficiency of an approximate

ray method of analysis while retaining the essential features of the absorber coated

rectangular duct geometry but without the added complexity of the latter.

A rigorous representation for the fields inside the waveguide region is usually

given in terms of a modal expansion. It is noted, of course, that at high frequen-

cies where the width of the parallel plate waveguide becomes large in terms of the

wavelength, one "generally" requires many modes to represent the fields within

the waveguide. In addition, for waveguides with lossy walls, the determination of

eigenvalues which characterize the modal sets becomes difficult and inefficient. On

the other hand, one may anticipate that the ray procedure can become more effi-

cient if the impedance surface is lossy as is true for inlets with absorber coating on

the inner walls. In order to study the utility and relative efficiencies of the ray and



f*

/ / / i / / / / / / / / f t

Figure 1: Coupling and scattering of electromagnetic plane wave by an
open-ended semi-infinite parallel plate waveguide with inner impedance walls and

perfectly-conducting outer walls.
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Figure 2: Infinitely long (in ±z) parallel plate waveguide excited by an interior
line source.



modal approaches for describing the fields within the lossy walled parallel plate

waveguide region, it became necessary to study a second problem directly related

to the first one in Figure 1. The configuration of the second problem consists of an

interior line source exciting a parallel plate waveguide with an impedance boundary

condition on its inner walls as shown in Figure 2. It is important to note that the

geometry in Figure 2 is infinitely long; whereas, that in Figure 1 is semi-infinite.

An exact modal solution can be obtained for this source-excited infinite waveguide

problem in Figure 2 in terms of a waveguide Green's function [7,9]. Basically, an

integral representation for the waveguide Green's function is developed in which

the fields interior to the waveguide are proportional to the Green's function. A

formal modal expansion for the waveguide fields is readily obtained via an applica-

tion of the Cauchy residue theorem to the above mentioned integral representation.

Due to the surface impedance boundary condition, the modal eigenvalues cannot

be determined analytically and must therefore have to be determined numerically

in this problem from the resonant denominator of the integrand (pertaining to the

integral representation of the waveguide Green's function). Once the roots of the

resonant denominator are found numerically, the modal (eigenfunction) expansion

for the interior impedance walled parallel plate waveguide Green's function can

also be computed numerically. Furthermore, an asymptotic approximation of the

integral representation for the waveguide Green's function (after the resonant de-

nominator is expressed as a geometric series) yields the approximate ray solution

for the fields inside the waveguide. The latter ray solution is the one which is

of major interest in this study. Some of the dominant ray paths in the ray solu-

tion for this problem in Figure 2 are shown in Figure 3. In the ray method, the

field from a source point to an observation point propagates along ray paths that

obey the rules of geometrical optics. Some of the advantages of the purely ray



Figure 3: Dominant ray paths for the problem in Figure 2.

approach are as follows. The ray solution provides some physical insight into the

scattering mechanisms particularly in connection with the coupling of the fields

from the exterior to the interior regions in the case of the semi-infinite waveguide

configuration, as well as into the effect of the wall impedance on the fields in the

interior waveguide region. Also, the ray solution does not require one to evalu-

ate the eigenvalues which are essential for the construction of the modal solution.

This eigenvalue equation must be solved numerically for different impedance values

and for each mode, thereby making the modal approach far more cumbersome as

compared to the ray approach. Furthermore, it has been found from a numerical

study of the modal and ray solutions that, in general, the ray solution converges

much faster than the modal solution for the case of interest, namely, when the

wall surface impedance is lossy; furthermore, it has also been found in this work

that, in general, the rate of convergence of the modal solution does not improve

significantly even with the presence of loss in the wall surface impedance.

After establishing the usefulness of the ray representation inside the line source

excited, impedance walled infinitely long parallel plate waveguide (see Figure 2) in

Chapter II, the EM plane scattering by the semi-infinite parallel plate waveguide



geometry of Figure 1, with perfectly-conducting outer walls and with an impedance

boundary condition on its inner walls, is then analyzed in Chapter III. In Chapter

III, the UTD is employed to calculate the contribution to the field scattered by the

edges of the aperture at the open end, and it is also used to provide a description

for the field coupled into the waveguide region. The latter ray field propagates

within the waveguide and undergoes reflection at the interior termination to arrive

back at the aperture and radiate into the exterior region. The radiation is found by

integrating that reflected ray field over the aperture using a physical optics (PO)

type approximation in the AI method. Next, the impedance boundary condition on

interior walls is relaxed, and the above solution is extended to provide a more ac-

curate analysis, also in Chapter III, which accounts for the presence of an absorber

coating with finite thickness. The latter analysis sets the stage for the analysis of

the main problem of interest in this work, namely that of the EM scattering by

a 3-D perfectly-conducting, open-ended semi-infinite rectangular waveguide with

an absorber coating on its inner walls as discussed in Chapter IV. Numerical re-

sults are presented and discussed in each chapter. Finally, a summary and some

conclusions are presented in Chapter V.

It is found that, in general, the ray solution converges faster than the modal

solution for the case of interest, namely, when the interior wall coating is lossy.

Furthermore, it is also found in this work that, in general, the rate of convergence

of the modal solution does not improve significantly even with the presence of loss

in the wall coating. In addition, the level of the fields which are coupled into the

interior of the semi-infinite waveguide and then radiate from the open end, after

undergoing reflection at the interior termination, can be controlled by changing

the value of the absorber lining on the interior of the waveguide walls, as might be

expected. If these fields radiated from the open end are made sufficiently small,



the only other contribution to the total exterior scattered field, which comes from

the diffraction by the edges of the aperture at the open end, will then be dominant.

Various analytical details are given in Appendices A through F.

An e+Jut time dependence is assumed and suppressed in this analytical de-

velopment. In addition, a character with a bar (£"), with a cap (£) or with bold

type style (E) represents a vector quantity; also several abbreviations used in this

study are listed below.

EM : Electromagnetic

GTD : Geometrical Theory of Diffraction

UTD : Uniform Geometrical Theory of Diffraction

PTD : Physical Theory of Diffraction

GO : Geometrical Optics

PO : Physical Optics

2-D : Two Dimensional

3-D : Three Dimensional

G : Green's function

SDP : Steepest Descent Path

ISB : Incident Shadow Boundary

RSB : Reflection Shadow Boundary

AI : Aperture Integration

ECM : Equivalent Current Method

MSM : Multiple Scattering Method



CHAPTER II

ANALYSIS OF EXACT MODAL AND APPROXIMATE RAY

SOLUTIONS FOR AN INFINITELY LONG PARALLEL PLATE

WAVEGUIDE WITH AN IMPEDANCE BOUNDARY CONDITION

ON ITS INNER WALLS

2.1 Formulation of the problem

The problem of a line source excited two dimensional (2-D) parallel plate

waveguide of infinite extent with impedance walls is analyzed in this chapter. The

2-D time harmonic wave equation for the parallel plate Green's function G due to

a line source at x = x1 and z = z' in the waveguide geometry of Figure 2 is given

by

3*2 dz2
f c 2 1 G=-6(x-x ' )6 (z -z ' ) (2.1)

where k is the free-space wavenumber and 6(x) is the Dirac delta function. In

this 2-D problem, the EM fields can be simply related to the Green's function G

because one can scalarize the problem separating it into the TEy and TMy cases.

One notes that the magnetic field has only a y component for the TEy case and

likewise, the electric field has only a y component for the TMy case. Thus, let

H = yHy represent the magnetic field in the TEy case; likewise let E = yEy

represent the electric field in the TMy case. The excitation in the TEy case can

be a magnetic line source of strength M at (x',z'); likewise, an electric line source



of strength / at (i', z') generates the TMy fields. These line sources are of infinite

extent in the y direction. It can be shown that Hy = —jkYMG and Ey = —jkZIG

where Z (or y) is the free-space impedance (or admittance), provided G satisfies

the following boundary conditions:

— ± j k G = 0 as |z| -> oo (2.2)

— - jk ?/ G = 0 at x = 0 (2.3)
ox

— + jk fu G = 0 . at x = a (2.4)
ox

where

I2-5)
f°r TMy case

and Z\ u (or YI u) is the surface impedance (or admittance) at x = 0 and x = a

which is normalized to the free-space wave impedance (or admittance). The bound-

ary condition in Equation (2.2) is also known as the radiation condition and the

impedance boundary conditions for G given by Equation (2.3) and (2.4) are de-

rived in Appendix A in detail. Using separation of variables, the Green's func-

tion G(z, x'; 2, z') is represented in terms of the one dimensional Green's functions

Gx(x,z') and G2(z,z') as [7,9,10,11]

G(z,x';z,z') = --^ / Gz(x,x') - G2(z,z') dA2 (2.6)

where the integration contour C2o in the above equation encloses only the singu-

larities of G2. Solving Equation (2.1) for Gz subject to the boundary conditions

10



in Equations (2.3) and (2.4), Gx(x,x') is found to be:

(2-7)

where i< and i> denote the values of x which satisfy x < x' and z > x', respec-

tively and

R, = (2.8)

Ru = v^x ..»u e-j^Ax a (2Q)

In addition

Az + \2 = k2 (2.10)

Now £2(2,2') which satisfies the radiation condition given in Equation (2.2) for

\z\ —» cx> is likewise given by:

""' *''"- (2.11)

The one dimensionalGreen's functions Gx(x,x') and G2(z,z') given in Equations

in (2,7) and (2.11), respectively, are derived in detail in Appendix B.

Therefore, G'(z,i'; 2,2') becomes via Equations (2.6), (2.7) and (2.11), the

following:

1 A ( e JV^x < 4 .
u = — •

- R tRu)

11



~J* *>

2fcz (1 - RtRu)

I*'2'' rffc* (2.12)

where \AT = &x and V^« = ^2 transformations are used and the integration path

is also changed from CZo to Cz accordingly. An evaluation of the above integral in

Equation (2.12) via the residue theorem yields a representation for G in terms of

a summation of the conventional guided modes propagating along the z direction;

namely:

x>
G =

n=0
— •»•

• «->**» I*-''' (2.13)

where

It is noted that the modes arise from the residues of the poles in the integrand of

Equation (2.12). The zeros of the denominator of the integrand in Equation (2.12)

yields the required poles. Also these zeros yield the eigenvalues of the modes.

Specifically, these eigenvalues are obtained by solving the transcendental equation

1 — R[RU = 0 in the integrand of Equation (2.12) via a numerical 'Newton-Raphsori*

iteration method which is described in Appendix C. One typical figure showing a

12



set of singularities in kx and kz plane is shown in Figure 4 for Zu = 0.1 + j'0.3

and Z{ — 0.0 + j'0.0 with a waveguide electrical height ka being 50. Note that

the singularity marked with a small dot in the complex kx plane corresponds to

the same one in the complex kz plane. For an e^jwt time convention, the closed

integration path (Cz) encloses all the singularities in the lower half plane as shown

in the figure (Cz = C^ + Cg). Also, note that all the singularities on the kx and kz

planes would lie on the real or imaginary axis for lossless case. When the surface

is lossy, the poles are displaced away from the real and imaginary axes as shown

in Figure 4.

An alternative ray expansion representation for G is obtained by expanding

the resonant denominator of the integral in Equation (2.12) into a geometric series,

d^ = £<**•>•: <2-'6>

Then, noting that for the employed time convention the contribution from C\ is

zero, one obtains

u)
n dkx (2.17)

It is convenient for subsequent evaluation of Equation (2.17) to introduce further

transformations

kx = kcosa (2.18)

kz = A: sin a (2.19)

13



Im K,
i

K,, PLANE

>o.o -n.o 0 It.O U.O 11.0
ReK,

Im K

Kz PLANE

ReK,

Figure 4: Poles in the complex kx and kz planes with an integration path in the
kz plane.
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The Green's function G(x,x';z,z') of Equation (2.17) is now expressed in the

complex a plane as

- -Ll4n Jc

oo

c

' (2.20)

where

cos a — (i , .
- - (2.21)
cos a + ft v '

Ru =
 cos<*-fr e-j2fcaco8a (

cos a -f- f u
L

and C is the contour obtained by transforming C£ using Equations (2.18) and

(2.19).

After interchanging the orders of summation and integration, each of the

integrals in the sum is evaluated asymptotically for large k\f (x — x')2 + (z — z')2

term by term via the method of steepest descent to arrive at the ray expansion.

For convenience, let G be expressed as

oo 4

52 Y^ G™ (2-23)
n=0 m=l

where

G ln = -— e 4 - ' c o s a x < - x > - s n a 2 - Z . lRR^da (2.24)

R?R?+ da (2.25)

15



— e - « > s * * < + * > « n « * - * . R f - R Z d a (2.26)
4ir •

°4n = **JC
(2.27)

Note that each Gmn corresponds to each term of the integrand of Equation

(2.20) and the relation between the index m and the number of reflections at upper

or lower boundaries is as follows:

m = 1 : n reflections at both boundaries,

m = 2 : n reflections at lower boundary and

n + 1 reflections at upper boundary,

m = 3 : n + 1 reflections at lower boundary and

n reflections at upper boundary,

m = 4 : n + 1 reflections at both boundaries.

The ray trajectories for each m are shown in Figure 5 for n = 0 case.

For analytical details, an asymptotic evaluation of Gmn is considered here for

m = 1 case. From Equation (2.24), Gmn for m = 1 may be represented by

1 da (2.28)

where

F(a) = (#/#«) * (2.29)

16
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Figure 5: Ray trajectories for m = 1,2,3,4 and n = 0 case. P' and P are source
and observation points, respectively.
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/(a) = j cos a (x< - x> - 2na) - sin a \z - z'\ I

= jr cos(a + /3) (2.30)

j _ cos a - fu
u cos a + £u

r = - x> - 2na)2 + (z -

. tan-( I— 'I )
\a:< - z> -2no/

(2.31)

(2.32)

(2.33)

Note that the exponential term in Ru is involved in the phase term f(a) in the

integrand of Equation (2.28). Then, employing the method of steepest descent

[9,11] to Equation (2.28) gives

. f-j(kr-w/i) (2.34)

where the saddle point as is given by

..-/»-.«. '( '-''I
V x< - x> -

(2.35)

The steepest descent integration path (CgDp] an^ the saddle point (as) in the

above equation are shown in Figure 6. Then, the ray field can be obtained using

Equation (2.34). Since the ray decays considerably as it travels bouncing back and

forth inside the waveguide, only a few terms (upto n = 2 or 3) are summed up in

the first summation in Equation (2.23) depending on the impedance values of the

18
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Figure 6: Integration path in complex a plane.
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inner walls. The analysis for m = 2,3 and 4 cases are very similar and therefore

ommitted here.

It is noted that the ray solution in Equation (2.23) could also be constructed

directly from the geometrical optics considerations. In order to assess the accuracy

of the ray field representation which is mentioned above, the magnitude of the ray

asymptotic approximation to the Green's function in Equation (2.23) is examined

by comparing this with the magnitude of the exact guided mode series in Equation

(2.13) which is used as a reference solution in this study. The magnitude of the

Green's function in terms of the exact modal solution is plotted against the normal-

ized distance kz as a solid line in each of the figures, while that of the ray solution

is plotted as a dashed line. For the sake of convenience, the various parameters

which appear in these figures are defined below.

20

.3



ka

kx'

kx

kz

pm

em

n

k

\

normalized waveguide height

normalized i-coordinate of the source point

normalized x-coordinate of the observation point

normalized «-coordinate of the observation point

number of propagating modes inside the waveguide

number of evanescent modes included in the calculation

number of terms which have been included in the summation

of the ray expansion of Equation (2.23)

resistance of the lower waveguide wall (x = 0)

reactance of the lower waveguide wall (x = 0)

resistance of the upper waveguide wall (x = a)

reactance of the upper waveguide wall (z = a)

wave number in the medium given by k = 2ir/\

wavelength in free-space

It is noted that the term propagating mode (pm) cannot be defined for the lossy

case because all poles corresponding to each mode are complex valued and each

imaginary part of the complex eigenvalues causes attenuation with propagation of

the modal field. In this study, however, each mode is defined as propagating (or

evanescent (em)) mode for convenience if the real part of kx of the corresponding

pole is less (or greater) than ka. As shown in Table (2.1), if the real part of

kx is greater than ka (t > 17 cases in Table (2.1)), the imaginary part of the

corresponding kz becomes very big and it results in a very rapid attenuation for the

field as it propagates. For ka — 50.0, there are 16 propagating modes for an electric

line source and the modal solution is plotted as a solid line in Figure 7 for the range

1.0 < kz < 41.0 which is examined here. The source and observation points are

21



Table 2.1: Poles on kx and kz planes for an electric line source for ka = 50.0 and
Zt = Zu = 0.1+yo.3

*«,

1 3.104+j 0.012

2 6.209+y 0.025

3 9.313+j 0.037

4 12.417+j 0.049

5 15.522+j 0.061

6 18.626+y 0.073

7 21.731+j 0.085

8 24.836+j 0.096

9 27.940+y 0.108

10 31.045+y 0.119

11 34.151-|-y 0.130

12 37.256-l-y 0.141

13 40.362+y 0.152

14 43.4684-; 0.162

15 46.574+j 0.172

16 49.680+y 0.181

17 52.787-l-y 0.191

18 55.894-|-y 0.200

19 50.00H-J 0.209

20 62.108+j 0.217

49.904-j 0.001

49.613-j 0.003

49.125-j 0.007

48.434.-j 0.013

47.530-j 0.020

46.401 -j 0.029

45.031-j 0.041

43.396-; 0.055

41.465-y 0.073

39.194-j 0.094

36.521-j 0.122

33.347-; 0.158

29.513-; 0.207

24.712-; 0.285

18.197-j 0.440

5.857-j 1.539

0.595-J16.934

0.447-y24.985

0.393-J31.324

0.366-J36.845
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both equi-distant from the waveguide walls in this case. The corresponding ray

field is shown as a dashed line for the same range. Only n = 3 is used in the

ray solution in contrast with 16 modes in the modal summation. As seen from the

figure, there is a good agreement between the modal and ray solutions for the range

kz > 15.0. The discrepancy for kz < 15.0 is due to the fact that the contribution

of the evanescent modes is strong when the observation point is near the source

point. When this evanescent field contribution is included in the modal solution,

it is then found to agree with the ray solution very well except in the region

where the observation point is very near the source point (kz < 3.0) as shown in

Figure 8 where the ray solution looses accuracy. It is anticipated that the modal

and ray solutions will show excellent agreement even in this region (kz < 3.0) if

the cylindrical wave (line source excitation) type behaviour in the asymptotic ray

solution of Equation (2.23) is replaced by the more exact representation in terms

of a Hankel function of the second kind. Hence, the first three evanescent modes

are included in the modal solution shown in all the other figures. In Figures 9-11,

the ray solution is compared again with the modal solution for different impedance

values of the waveguide wall. As shown in the figures, the ray solution shows very

good agreement with the corresponding modal solution. The magnitude of G is

again plotted for a magnetic line source in Figures 12-15. From Figures 8-15, it

may be concluded that the ray solution converges faster than the modal solution.

This convergence of the two solutions is examined in detail later in this chapter.
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MODAL SOLUTION

RAY SOLUTION

1.0 41.0

Kfl = 50.0
K X ' = 2 5 . 0

K X = 2 5 . 0

N= 3.0

PM= 16.0
EM=0 .0

Rl=0.1
X L = 0 . 3

R u = 0 . 1

Xu= 0.3

Figure 7: Magnitude of G for an infinitely-long parallel plate waveguide excited
by an electric lino source as a function of the normalized distance kz.
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Figure 11: Magnitude of G for an infinitely-long parallel plate waveguide excited
by an electric line source as a function of the normalized distance kz.
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Figure 14: Magnitude of G for an infinitely-long parallel plate waveguide excited
by a magnetic line source as a function of the normalized distance kz.
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2.2 Surface waves in the modal and ray solutions

Another interesting phenomenon which can take place in the case of a waveg-

uide with impedance walls is that pertaining to the excitation of surface wave type

fields. In the modal expression for the configuration in Figure 2, there are two

surface wave type modes in addition to the usual waveguide type modes which are

excited if the impedance is inductively (or capacitively) reactive when the excita-

tion is due to a magnetic (or an electric) line source within the waveguide. These

surface wave modes are distinct from the other waveguide modes; in particular,

these modes exhibit the behaviour of the usual bound surface wave fields that can

exist on a single impedance surface excited by a line source if the wall spacing is

made sufficiently large.

An important characteristic of these surface wave type fields is that the energy

associated with these fields is guided very close to the impedance surface. To check

this characteristic, the magnitude of G for a magnetic line source is plotted in

Figure 16 as a function of normalized transverse distance kx for fixed kz when

the source is very near the lower wall. As shown in the figure, the two solutions

show discrepancy when both the source and the field points are near the same

impedance wall. This is because the surface wave contribution to the ray solution

is anticipated to be very strong in that case and this surface wave contribution

is not included in the ray solution in that figure. Note that the surface wave is

included in the modal solution in the Figure 16. The details of the analysis which

include the surface wave for both solutions are presented later in this section.

However, as the field point moves to the upper wall for a given source point which

is close to the lower wall, the two solutions agree well again. This good agreement

is to be expected because the surface wave in the ray solution becomes weak and
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contributes negligibly due to the exponential decay of the surface wave field as

the field point is moved away from the impedance surface in whose vicinity the

source is located. Figure 17 shows the fields inside the waveguide of Figure 2 when

the source and observation points are both located close to one of the impedance

walls of the waveguide, and the impedance is chosen to be inductively reactive

for a magnetic line source excitation so that surface wave modes can exist. Note

that the surface wave type fields are not included in either the modal or the ray

solutions in the figure.

The surface wave modes can be included in the modal solution by simply

evaluating the integral in Equation (2.12) via the residue theorem for the surface

wave poles as done for the other ordinary modes. The distinction between the

surface wave poles from the other ordinary poles is that the real part of kg of

the surface wave pole is greater than ka as shown in Table (2.2). It is clear that

the surface wave pole at a = ap in the complex angular spectrum or a plane of

Figure 19 is complex valued. Therefore, this complex valued surface wave pole

(at a = ap) cannot be excited by a plane wave which has a real valued angle of

incidence. When the plane wave is incident on the edges at the open end of the

semi-infinite waveguide with a non-zero surface impedance (or absorber coating)

oh its inner walls, it scatters to produce the reflected and edge diffracted fields.

The scattered fields can be expressed as an integral (over a contour C of Figure 19)

in the angular spectral (a) domain; an asymptotic (saddle point) approximation

to this angular spectrum integral furnishes the so called "diffracted rays" which

propagate from the edges to an observation point along localized paths or rays. A

pole exists in the integrand at a real value of a; it can be captured for a certain

range of observation angles to furnish the reflected field which propagates along the

reflected ray. The exact integral representation in the angular spectral domain^
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Table 2.2: Ordinary and surface wave poles on kx and kg planes for a magnetic
line source for fco = 50.0 and Z/ = Zu = 0.1 + j'0.3

1 3.559+j 0.154 49.873-j 0.011

2 7.094+j 0.269 49.495-j 0.039

3 10.582+j 0.331 48.869-j 0.072

4 14. 009+ j 0.351 47.999-j 0.103

5 17.379+j 0.347 46.884-^0.129

6 20.702+y 0.331 45.514-j 0.151

7 23.998+j 0.312 43.871-j 0.170

8 27.247+j 0.291 41.925-j 0.189

9 30.486+j 0.272 39.633-j 0.209 ordinary

10 33.708+j 0.254 36.931 -j 0.232 poles

11 36.917+j 0.238 33. 723-j 0.260

12 40.117+j 0.223 29.846-j 0.300

13 43.309+j 0.210 24.990-j 0.363

14 46.494+j 0.198 18.400-j 0.500

15 49.674+j 0.187 5.913-j 1.571

16 52.850+ j : 0.177 0.547-jl7.129

17 56.022+j 0.168 0.373-j'25.270

18 59.191+j 0.160 0.300-y31.680

4 . 999+ j 15.000.' 51. 983 -j' 1.442 surface wave

5.00Hj'15.000 51.982-j 1.442 poles
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however, also contains a complex valued angle a = ap at which the integrand

exhibits another pole singularity; this pole can also be captured for a certain

range of angles to furnish the surface wave; i.e. the phenomenon of scattering

(or diffraction) by an edge in an impedance surface can indeed excite a surface

wave. Thus, the edges of the semi-infinite waveguide with an impedance boundary

condition on its inner walls will excite a surface wave when they are illuminated

by a plane wave. This surface wave will then propagate inside the waveguide. It

is convenient to think of "equivalent'" line currents located at the edges, which can

be deduced from the expression for the edge diffracted fields, as the sources which

produce the surface wave. It is therefore of interest to find the surface wave which

is excited by a line source on one of the waveguide boundaries as in Figure 2 to

simulate the effect of a surface wave excited by the diffraction of a plane wave

which is incident on one of the edges of the semi-infinite waveguide walls. In this

instance where the line source is located at (or near) one of the waveguide walls,

only the n = 0 case in Equations (2.24)-(2.27) is important, and even for this

n = 0 case only the corresponding m = 2 and m = 3 terms are dominant, as the

remaining terms emphasize repeated interactions of the surface wave field with the

opposite wall; the latter interaction is assumed to be small because the surface

wave decays exponentially on the boundary on which the source is located and its

field is therefore weak at the opposite wall if the wall spacing is sufficiently large.

Despite the inclusion of the surface wave effects, the agreement between the

exact modal and the approximate ray solution is not so good in Figure 18, unless

the distance from the source to the observer is sufficiently large. It was found

that the reason for this discrepancy between the two solutions could be traced to

the need for an increased accuracy in the asymptotic approximation of the ray

solution near the surface when the observation point lies within the surface wave
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"transition region" where the surface wave is not fully established. This "transition

region" extends over a certain distance from the source depending on the value of

the impedance; e.g., it becomes larger for the magnetic line source excitation of

an inductively reactive impedance boundary as the inductive reactance becomes

smaller. This transition region may be viewed as a "launching or "peel out" dis-

tance required to establish the surface wave. A uniform asymptotic treatment

of the integral representation of the waveguide Green's function which yields the

ray expansion provides a simple transition function correction to the surface ray

solution in terms of a Fresnel integral. The ordinary ray series solution includ-

ing the surface wave (or ray) contribution results from a non-uniform asymptotic

treatment of the integral for the waveguide Green's function; this ordinary ray so-

lution is accurate only outside the surface wave transition region. Mathematically

speaking, the observation point lies within the surface wave transition region when

the surface wave pole ap is close to the saddle point as as shown in Figure 19.

Consider the integral given by

I(kr) = f
JcSDp

krf(a)

where ap and as are a surface wave pole and saddle point, respectively and the

surface wave pole is near the saddle point as shown in the above figure. Then, the

integral is evaluated asymptotically using the uniform saddle point approximation

as in Felsen and Marcuvitz [9], and is given by

T(Q) ± J2^F(ap) e Q^jb^kr ) (2.37)

;/m(6) £0
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where

(2.38)

r(o) ss

h =

a — a.p b

' -2

f"M

/

oo 2

*-*
j

dx

(2.39)

(2.40)

(2.41)

Using the above formula, the integral in Equation (2.36) can be evaluated to obtain

the surface ray field.

For analytical details, consider G2n 'n Equation (2.25). For n = 0, Gin
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reduces to

! — ZU

4?r /(?2 cos a + Zu

where

(

F l
= [ (x< + x>)2 + (, - z')2 J (2.43)

Then, the parameters in Equations (2.38)-(2.40) are expressed as

/(a) = j cos(a - as) (2.45)

/"(a) = -jcos(a-as) (2.46)

b = v/7(l-cos(a-aa)) (2.47)

(2.49)

The analysis for (730 is very similar and is thus ommitted here.

A comparison of the improved or uniform ray solution with the exact modal

solution shown in Figure 20 now indicates that they are in excellent agreement.

42



Note that the modal solution in Figure 20 is unchanged as compared to that in

Figure 18; only the ray solution has been improved in Figure 20 by including the

uniform surface wave transition function. Since surface wave effects are dominant

only in the vicinity of the boundary on which the source is located, these surface

wave effects may be neglected whenever the observation point is located far from

the surface near which the source is placed as shown in Figure 21. A particulary

interesting result is observed when the source and observation points lie on the

same impedance wall of the parallel plate waveguide as in Figure 22. In Figure

22, the ray solution which is composed of the direct ray contribution from the

source together with the contribution from rays singly and multiply reflected from

the walls interferes strongly with the surface wave field plus the term containing

the surface wave transition effects since all of the latter surface wave effects are

particulary significant at and near the surface containing the source.

The result in Figure 22 indicates that the surface wave launched by the inci-

dent wave at the edges in Figure 1 could reflect strongly from any discontinuity

placed close to the walls of an absorber lined duct; the reflected surface wave could

then radiate outside the semi-infinite waveguide geometry in Figure 1 again via

diffraction from the edges at the waveguide opening. On the other hand, the effect

of the surface wave field could be controlled to exhibit a greater attenuation along

the direction of propagation with the inclusion of greater loss in the impedance

surface characterizing the thin absorber lined waveguide walls.

2.3 Convergence test of the modal and ray solutions

To check the nature of the convergence of the modal and ray solutions, the

magnitude of G is plotted against the number of modes and rays involved in the
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calculations for a fixed kz in Figures 23-26 which pertain to an electric line source,

and in Figures 27-30 for a magnetic line source. Different impedance values are

employed in each of these figures. It is observed from the figures that the modal

solution reaches a stable field value after summing all the propagating modes for

kz = 20.0. On the other hand, at most n = 3 terms are needed in the ray solution

to arrive at the same result.

As pointed out above, it is observed from Figures 23-30 that the convergence of

the ray solution is faster than the modalsolution, and secondly, the convergence of

the modal solution is not significantly improved by the presence of loss in the walls

since all the propagating modes in this case (plus one evanescent mode near the

source region) are required for convergence. On the other hand, the convergence

of the ray solution is improved much as the impedance value becomes bigger (for

the TEy case) as shown in the figures. It is conceivable that a special selection of

modes which contribute significantly for a given kz and kx will converge faster;

however, a different selection would be required for each different kz. It is not

clear at this time how such a special selection of the modes can be made.
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CHAPTER III

ANALYSIS OF ELECTROMAGNETIC SCATTERING FROM AN

OPEN-ENDED PARALLEL PLATE WAVEGUIDE WITH LOSSY

INNER WALLS

3.1 Ray solution for the interior fields of an open-ended parallel plate
waveguide with an impedance boundary condition on its inner
walls

The ray field inside an open-ended semi-infinite parallel plate waveguide with

an impedance boundary condition on its inner walls is found via the uniform

geometrical theory of diffraction (UTD) in the present section of this chapter. The

analysis is later extended to include an absorber coating of finite thickness on the

inner waveguide walls in the next section. According to the UTD [1,12], the total

ray field Utot at an observation point consists of the usual geometrical optics (GO)

incident and reflected fields together with the fields diffracted by the edges such

that

Utot = Ul: + Ur + Ud (3.1)

Note that in the present 2-D case, Utot represents the total electric field which is y-

directed if an electric line source is used, whereas, it represents the total magnetic

field which is y-directed if a magnetic line source is present (see Figure 34). The

fields Ul and Ur are associated with the usual GO incident and reflected rays;

whereas, the field Ud is associated with the edge diffracted rays. The contribution
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Figure 31: Dominant ray paths for the problem in Figure 1.

of the GO field is given in the first part of this section and the contribution of the

edge diffracted field is described in the second part of this section. In the later

sections, the effect of an interior planar termination is also included, and the total

scattered field is then taken be a superposition of the field scattered by the edges at

the open end, and the field which is coupled into the waveguide and then reflected

back from the termination to radiate out into the exterior region from the open

end of the waveguide.

3.1.1. Geometrical optics (GO) field

Returning to the problem in Figure 1, the GO field at some observation point

inside the semi-infinite parallel plate waveguide is due to the incident and reflected

rays which would result when an external plane wave illuminates the semi-infinite

waveguide as shown in Figure 31. The GO rays inside the waveguide undergo

multiple reflections which result in the separate regions (1), (2), (3) • • • etc., with

boundaries as shown in Figure 32. Each region corresponds to a certain number of

reflections from the top and/or bottom wall. Then according to the location of the

field point inside the waveguide, different combinations of rays such as direct (or
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Figure 32: Semi-infinite parallel plate waveguide showing different combinations
of geometric optical direct, singly and multiply reflected rays in each region of

the waveguide.
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incident), reflected, and also multiply reflected rays reach the observation point.

However, the GO field inside the waveguide has discontinuities when one crosses

the boundaries between different regions as shown in Figure 32. These non-physical

discontinuities are compensated in the UTD by the diffracted rays which originate

from the edges as shown in Figure 31. The edge diffracted rays and some numerical

examples are presented following this discussion of the GO field.

In this analysis, each type of rays is considered as shown in Figure 33. The

direct ray field can be obtained by simply including the phase term e~J^^ ^ for a

plane wave if the phase reference is at the lower edge O such that

u u\ (o)
ui (o)

,-jkO'P (3.2)

where UL±, (P) and t/jj^JO) represent the components of the incident electric

or magnetic field which are polarized parallel (perpendicular) to the edge (or y-

direction). Note that O1 is the projection of O onto the ray path. The singly

reflected ray is calculated by including the phase term given by e~:} , where

the extension of the incident ray to P' is the unfolded path of the singly reflected

ray to P, and by taking into account the reflection coefficient of the walls; i.e.,

U
= R E(M)

U\ (0)

,-jkO'P1
(3.3)

where RE(M\ 's the reflection coefficient matrix when U refers to the electric

(magnetic) field. The entries of the reflection coefficient matrix are given as
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Figure 33: Semi-infinite parallel plate waveguide showing direct, singly reflected,
doubly reflected, direct diffracted and multiply diffracted-reflected rays.
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RE(M) ~

D n/i|i/_L\ O

0 R-MID
(3.4)

where 7?i|/_L) is the reflection coefficient for the electric field which is polarized

parallel (perpendicular) to the plane of incidence and it is derived in Appendices

D and F for the impedance boundary condition and the absorber coated perfectly-

conducting surfaces, respectively. Similarly, the doubly reflected ray field is cal-

culated by including the phase term given by e J ^ , where the extension of

the incident ray to P" is the unfolded path of the doubly reflected ray to P, and

by taking into account the reflection coefficient of the walls two times in this case;

i.e.,

(P)
E(M)

(0}
(0)

,-jk 0"P" (3.5)

It is noted that the number of reflections which the ray experiences as it propagates

inside the waveguide is determined analytically by ascertaining the region in which

the field point is located as shown in Figure 32. The multiply reflected rays which

are diffracted by edges in Figure 33(c) follow the same analysis as the reflected

GO rays as discussed above.

3.1.2 Edge diffracted rays

The incident field impinging on the edges at the open end produces diffracted

rays which can be calculated via Maliuzhinets' edge diffraction coefficient [13]

that is valid for the problem of plane wave diffraction by a wedge with two face

impedances. Here the Maliuzhinets' result (13] can be specialized to the configu-

ration in Figure 1 corresponding to the case of a half plane pertaining to each of
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the semi-infinite waveguide walls. In particular, the half plane here is a special

case of a wedge with a zero internal angle and with a non-zero impedance on one

face (corresponding to the inner waveguide wall) and with a zero impedance on

the other face (corresponding to the outer perfectly-conducting waveguide wall)

of the half plane. An alternative, more approximate but simpler method [12] for

computing the diffracted rays by the edges at open end is to modify the diffraction

coefficient which is based on the UTD solution for a perfectly-conducting half plane

[1,2] to make it valid for a half plane with two face impedances. In this study, the

modified diffraction coefficent [12] is used for its simplicity. The simpler solution

in [12] is discussed below for completeness.

Consider a line source which illuminates a half plane whose one side is perfectly-

conducting and the other side is characterized by a non-zero surface impedance

as shown in Figure 34. According to the regions where the observation point P

is located (see Figure 34), the individual terms may be expressed in the following

forms,

0

; in Regions I and II, and AQ is some

known complex constant related to

the strength of the line source.

; in Region III.

(3.6)

Ur(P) =
.•L.H

RM(E) e nr > 'n Re6|on Iw '^

0 ; in Regions II and III.

(3.7)
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in Regions I, II and III.

In the above, s, (or sr) is the distance from the source (or point of reflection

to the observation point P and 84 is the distance from the point of diffraction on

the edge (<?#) to the observation point P.

For the half plane considered here (see Figure 34), the diffraction coefficient

for the TEy (TMy) case is given by [1,12]

DM(E) = D(l) + D(2) + Rll(±) D(3) + D(4) (3.9)

where

(3.U)

and

n = 2 for a half-plane (3-14)

L = -^- (3.15)
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2= 2 cos (0/2); /3 = <j>^<f> ' (3.16)

F(x) = 2j^e J X e~3t dt (3.17)
•/v/J

The F(z) of Equation (3.17) which appears in Equations (3.10) through (3.13) is

called a transition function and it involves a Fresnel integral. The magnitude and

phase of the transition function is shown in Appendix E. Note that both angles ^'

and <$> are measured from the perfectly-conducting side of the half plane as shown

in Figure 35.

The approximate UTD edge diffraction coefficient in Equation (3.9) provides

continuity in the total high frequency ray field across the incident and reflection

shadow boundary transition regions. It is noted from Equations (3.6) and (3.7)

that the GO field is discontinuous at these shadow boundaries; thus the diffracted

field must properly compensate the discontinuities in the incident and reflected

fields there. In particular, the D(4> — <j>') type terms (D(l) and D(2}) in the DM E

keep the total field bounded at the incident shadow boundary (ISB); likewise, the

D(<f> + <#') terms (D(3) and D(4)) do the same thing at the reflection shadow

boundary (RSB).

If the line source receeds to infinity, then the field incident on the half plane is

a plane wave. Normalizing the strength of the plane wave to be of unit amplitude

at QE in Figure 34, one may write

= : l (3.18)

U l(P) = e>** «*(*-*') (3.19)

U r(P) = R M E e^ k P c o s ^^ (3.20)
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Figure 35: A plane wave incident on a half plane geometry with
perfectly-conducting on one side and impedance surface on the other side.

where R, <f> and <j>' are defined in Figure 35. The only change in the solution for

Ud in Equation (3.8) is that L in Equation (3.15) is replaced by sj as s1 -+ oo for

the case of plane wave incidence.

3.1.3 Total UTD ray field

Using the diffraction coefficient developed in the previous section, the inci-

dent, reflected, diffracted and total fields are examined for the half plane geometry

as shown in Figure 35. The only difference between Figures 34 and 35 is that the

line source is allowed to receed to infinity in Figure 35 giving rise to a plane wave

illumination. In the above figure, R is the distance from the edge of the half plane

to the field point, and <f>' and <f> are incident and observation angles, respectively

as indicated earlier. In addition, one recalls that Rs and Xs correspond to the

surface resistance and reactance of the impedance wall, respectively as defined in

the previous chapter. For an incident TMV plane wave of unit strength (and zero
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phase at QE) which is polarized such that E* = y Ey, the corresponding GO (incir

dent and reflected) and diffracted fields are plotted against the observation angle

in Figure 36. The incident and observation angles are measured from the perfectly-

conducting face in this case. The reflected field is plotted as a dashed line; whereas

the incident field is shown as a solid line in the figure with vertical axis marked IN-

CIDENT. The ripples in the magnitude of the GO field result from an interference

between the incident and reflected fields. Note also that the discontinuities in the

GO field are compensated by the corresponding discontinuities in the diffracted

field as shown in the figures with vertical axis marked DIFFRACTED and TOTAL

fields, respectively. The total ray field is thus continuous for all observation angles

including the ISB (<j> = 210°) and RSB (<£ = 150°) directions. Similar plots are

shown in Figures 37-40 for different incident angles. In all the figures (Figures

36-40), the total fields are continuous for all observation angles. Additional cal-

culations are also shown in Figures 41-45 for TEy case for the various impedance

values on the same half plane. The incident and observation angles are measured

from the impedance wall side in Figures 41-45. One notes that the ripples in the

total fields becomes smaller as the loss or the resistive part of the wall surface

impedance becomes larger, because the magnitude of reflected field decreases with

higher loss.

The analysis developed above can be employed to treat the scattering and

coupling problems associated with the semi-infinite parallel plate waveguide illu-

minated by a plane wave as shown in Figure 46 because the waveguide can be

formed by two parallel half planes; one half plane corresponds to the lower wall,

and the other one corresponds to the upper wall as shown in this figure. As an

illustration, each type of ray field is plotted inside the waveguide configuration of

Figure 46 as a function of the axial distance in Figures 47-49 for a plane wave
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Figure 36: Each ray field for an incident plane wave of unit strength which is
polarized such that El = y El

v.
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Figure 37: Each ray field for an incident plane wave of unit strength which is
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Figure 40: Each ray field for an incident plane wave of unit strength which is
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Figure 43: Each ray field for an incident plane wave of unit strength which is
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Figure 46: Semi-infinite parallel plate waveguide geometry showing the incident
plane wave and the angle of incidence.

with TMy or parallel polarization for various incidence angles. Note that the ob-

servation point in all these plots is located off the walls; hence, the surface wave

effects are not expected to be strong in this case and thus the surface wave contri-

bution is not considered. As shown in these plots, the total fields are continuous

for all the boundaries designated in Figure 32. Similar plots are shown for dif-

ferent impedance values in Figures 50-52 for a TEy incident plane wave. Note

that the general shape of the total field is determined roughly by the GO (incident

and reflected) fields and the total field coupled into the waveguide region can be

reduced by properly choosing the value of the wall impedance. Also, the surface

wave attenuates sufficiently rapidly as it propagates if the wall loss (real part of the

impedance) is made even moderately large; in such a case, the surface wave effects

become negligible at a sufficient distance from the open end of the waveguide.
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Figure 47: Each ray field within a semi-infinite parallel plate waveguide with
impedance walls plotted as a function of the axial distance from the open end to

the field point for an incident plane wave with a parallel polarization (TMy).
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Figure 48: Each ray field within a semi-infinite parallel plate waveguide with
impedance walls plotted as a function of the axial distance from the open end to

the field point for an incident plane wave with a parallel polarization (TMy).
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Figure 49: Each ray field within a semi-infinite parallel plate waveguide with
impedance walls plotted as a function of the axial distance from the open end to

the field point for an incident plane wave with a parallel polarization (TMy).
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Figure 50: Each ray field within a semi-infinite parallel plate waveguide with
impedance walls plotted as a function of the axial distance from the open end to

the field point for an incident plane wave with a perpendicular polarization
(TEy).
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Figure 51: Each ray field within a semi-infinite parallel plate waveguide with
impedance walls plotted as a function of the axial distance from the open end to

the field point for an incident plane wave with a perpendicular polarization
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Figure 52: Each ray field withiri a semi-infinite parallel plate waveguide with
impedance walls plotted as a function of the axial distance from the open end to

the field point for an incident plane wave with a perpendicular polarization
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3.2 Ray solution for the interior fields of an open-ended parallel plate
waveguide coated with an absorbing material on its inner walls

Consider the waveguide whose inner walls are coated with a thin dielec-

tric/ferrite material. The only difference between the analysis of this waveguide

configuration and the one involving an impedance boundary condition which was

considered in the previous section lies in the reflection coefficients in Equations

(3.7) and (3.9). The reflection coefficients which must be used for the absorber

coating of finite thickness, i.e. for a grounded dielectric/ferrite slab are derived in

Appendix F using the usual transverse resonance method [4]; these new reflection

coefficients should replace the ones for the impedance boundary condition obtained

in Appendix D. It is noted that these Fresnel reflection coefficients of Appendix

F are a function of the incident angle <#', the thickness of the slab t, and the per-

mittivity e and permeability fi of the slab; they are given below for convenience as

sin $'—•*- v/fr^r — cos2 <j>' tan ( kt \/€rfir — cos2

R\\ = - T - ) - • (3.21)
sin ^' + vtrfJ-r - cos2 <j>' tanf kt er-Mr ~ cos2

sin $'+•£- \ArMr - cos2 <j>' cot[kt\/6rfj,r — cos2(j>' }
- Mr - - j - ^- (3.22)

cos2<£' cot( kt\J(.r^r — cos2<£' J

where fr and p,r are the permittivity and permeability of the absorber (dielec-

tric/ferrite) material relative to the free-space values, respectively, and k is free-

space wave number. As before, 4>' is the angle of incidence. Then, following the

same procedure as that for the impedance walled waveguide, one can calculate the

reflected and diffracted (as well as diffracted-reflected) ray fields for the waveguide

coated with a dielectric/ferrite composite material. The numerical results based

85



on that analysis are plotted in Figures 53-55 for various values of the thickness t

and other parameters of the absorber coating. Similar plots are shown in Figures

56-59 for various values of the permittivity t, and in Figures 60-63 for various

values of the permeability //, respectively. As shown in the figures, the interior

field of the waveguide can be reduced significantly by choosing the parameters of

the absorbing material in a proper way.

3.3 Ray solution for the interior fields of an open-ended parallel plate
waveguide coated with an absorbing material on its inner walls
and with a planar termination inside

A simple planar termination which is L wavelengths away from the open end

is placed inside the waveguide as shown in the Figure 64. It is noted that the

material of the termination need not be necessarily the same as that of the inner

walls but for the present it is assumed to be the same for convenience. Then

the field at the observation point consists of the fields associated with two groups

of rays. One group is associated with the incident, reflected and diffracted rays

from the open end of the waveguide as in the case of the waveguide without a

termination. The other group of rays corresponds to those which are reflected

back from the termination and then reach the field point. The ray field due to

the reflection by the termination can be calculated by simply using an effective

observation point at an image location which is symmetrical with respect to the

actual observation point about the termination as shown in Figure 64.

Thus the ray field at P is calculated by adding the field of the rays from the

open end reaching P without passing through the termination as well as the field

of the rays reaching P1 after they are extended or continued past the termination

to P1 and by including the reflection coefficient of the termination wall to the fields
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Figure 53: Each ray field within a semi-infinite parallel plate waveguide coated
with a dielectric/ferritc material plotted as a function of the axial distance from

the open end to the field point for an incident plane wave with a parallel
polarization (TMy) case.
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Figure 54: Each ray field within a semi-infinite parallel plate waveguide coated
with a dielectric/ferrite material plotted as a function of the axial distance from

the open end to the field point for an incident plane wave with a parallel
polarization (TMy) case.
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Figure 55: Each ray field within a semi-infinite parallel plate waveguide coated
with a dielectric/ferrite material plotted as a function of the axial distance from

the open end to the field point for an incident plane wave with a parallel
polarization (TMV) case.
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Figure 56: Each ray field within a semi-infinite parallel plate waveguide coated
with a dielectric/ferrite material plotted as a function of the axial distance from

the open end to the field point for an incident plane wave with a parallel
polarization (TMy) case.
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Figure 57: Each ray field within a semi-infinite parallel plate waveguide coated
with a dielectric/ferrite material plotted as a function of the axial distance from

the open end to the field point for an incident plane wave with a parallel
polarization (TMV) case.
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Figure 58: Each ray field within a semi-infinite parallel plate waveguide coated
with a diclcctric/fcrritc material plotted as a function of the axial distance from

the open end to the field point for an incident plane wave with a parallel
polarization (TMy) case.

92



FiEFLEDIED FJELD

o
o
(M

o
o
OJ

O

o
o
CM

do

0.0 a.o y.o e.o 8.0
Z (WflVELENGTHS)

10.0

ft = 10.0 IWRVELENGTHS)
X = 8 . 0 (Wf lVELENGTHS)
T = 0.050 IWf lVELENGTHS)

<D '«60 .0 (DEGREES)
c = (9 .0 , -0 .90)

M =11.0 ,0 .00 )

Figure 59: Each ray field within a semi-infinite parallel plate waveguide coated
with a dielectric/ferrite material plotted as a function of the axial distance from

the open end to the field point for an incident plane wave with a parallel
polarization (TMy) case.
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Figure 60: Each ray field within a semi-infinite parallel plate waveguide coated
with a dielectric/ferrite material plotted as a function of the axial distance from

the open end to the field point for an incident plane wave with a parallel
polarization (TMV) case.
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Figure 61: Each ray field within a semi-infinite parallel plate waveguide coated
with a dielectric/ferrite material plotted as a function of the axial distance from

the open end to the field point for an incident plane wave with a parallel
polarization (TMy) case.
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Figure 62: Each ray field within a semi-infinite parallel plate waveguide coated
with a dielectric/ferrite material plotted as a function of the axial distance from

the open ena to the field point for an incident plane wave with a parallel
polarization (TMy) case.
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Figure 63: Each ray field within a semi-infinite parallel plate waveguide coated
with a dielectric/ferritc material plotted as a function of the axial distance from

the open end to the field point for an incident plane wave with a parallel
polarization (TMy) case.
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Figure 64: A semi-infinite parallel plate waveguide with a planar termination
showing singly reflected ray by the upper wall and doubly reflected ray by the

upper and the termination.

of the rays reaching P'. Each type of ray field is plotted in Figures 65 and 66 for

the two different wave polarizations. It is noted that the small ripples in each

field are due to the interaction between the rays coupled into the guide from the

exterior and those reflected back from the termination after being coupled into the

waveguide.

3.4 Field backscattered from a semi-infinite parallel plate waveguide
with an impedance boundary condition on its inner walls

Using the same diffraction coefficients as in Equation (3.9), the far zone fields

backscattered from a semi-infinite parallel plate waveguide with inner impedance

walls are computed and shown in Figures 67 and 68 as a function of the incident

angle for parallel and perpendicular polarization cases, respectively. The pertinent

rays used in this case are shown in Figure 69. In Figure 69, Rd represents the far

zone distance from the lower edge of the waveguide (zero phase reference) to the
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Figure 65: Each ray field within a semi-infinite parallel plate waveguide coated
with a dielectric/ferrite material and with a planar termination inside when a

plane wave with parallel polarization is incident.
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Figure 66: Each ray field within a semi-infinite parallel plate waveguide coated
with a dielectric/ferrite material and with a planar termination inside when a

plane wave with perpendicular polarization is incident.
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field point. Note that the backscattered field is entirely due to the edge diffracted

rays for the semi-infinite waveguide without any interior termination, and the rays

multiply diffracted across the aperture are ignored in the figures. Rays multiply

diffracted across the aperture become important if the waveguide width (a) is

not sufficiently large in terms of the wavelength. Additional plots are presented

in Figures 70 and 71 which show the behaviour of the backscattered field as a

function of the waveguide width for different incident wave polarizations. Similiar

results can also be obtained for a perfectly-conducting parallel plate waveguide

with absorber coating on its inner walls by simply using the results in Appendix F

rather than Appendix D for the reflection coefficient which occurs in the diffraction

coefficient of Equation (3.9).

3.5 Field radiated from the interior cavity region formed by the semi-
infinite waveguide and its interior planar termination

The field which is initially coupled into the waveguide from the open end and

then reflected from the interior termination to radiate out of the open end is cal-

culated using an aperture integration (AI) technique together with the equivalence

theorem [14,15,16] in this section. This field is referred to as the field radiated from

the interior waveguide cavity region where the open-ended cavity is formed by the

semi-infinite waveguide and its interior termination as shown in Figure 72. The

total field scattered by the semi-infinite waveguide consists of this cavity radiation

contribution and the fields scattered from the edges at the open end of the semi-

infinite walls of the waveguide; the latter contribution was found in the previous

Section 3.4 for the special case of backscatter. In order to use AI to calculate the

cavity radiation field, one can find a set of equivalent electric and magnetic currents

Js and M3 on an appropriate surface that encloses the semi-infinite waveguide.
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Figure 67: Plane wave backscattering by a semi-infinite parallel plate waveguide
with an impedance boundary condition on its inner walls as a function of

incident angle for the parallel polarization case.
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Figure 68: Plane wave backscattering by a semi-infinite parallel plate waveguide
with an impedance boundary condition on its inner walls as a function of

incident angle for the perpendicular polarization case.
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Figure 69: Plane wave backscattering by a semi-infinite parallel plate waveguide
with an impedance boundary condition on its inner walls as a function of the

waveguide width for the parallel polarization case.

These equivalent currents then radiate the same fields as those originally radiated

from the open end by the fields reflected from the interior waveguide termination;

also, Ja and M3 radiate a null field inside the chosen surface. Since the interior

cavity radiation in the forward half space is of major interest in this study, it is

convenient to choose a mathematical surface which is infinite in extent and is de-

fined by the plane z == 0 (which also contains he waveguide aperture at the open

end). The equivalent source Js and M3 then reside at z = 0~ and extend over

—oo < x < oo, -oo < y < oo as shown in Figure 73(a). Actually, the problem is

2-D in nature, so that there is no variation in y. The equivalent sources Js and

MS are defined by

3S = n x Hcr

Ms .= Ecr * n

(3.23)

(3.24)
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Figure 70: Plane wave backscattering by a semi-infinite parallel plate waveguide
with an impedance boundary condition on its inner walls as a function of the

waveguide width for the parallel polarization. -
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Figure 71: Plane wave backscattering by a semi-infinite parallel plate waveguide
with an impedance boundary condition on its inner walls as a function of the

waveguide width for the perpendicular polarization case.
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in which n = -z is the unit normal outward to the chosen surface (which encloses

the waveguide configuration). Here, Ecr and Hcr are the electric and magnetic

fields radiated by the open-ended waveguide cavity. As seen from Figure 73(a),

the above J5 and Ms at z = 0~~ radiate null fields for z > 0 and they generate Ecr

and Hcr for z < 0. A different form of the equivalence theorem shows that only

Ma over the perfect electric conductor at z = 0 as in Figure 73(a) generates the

same fields for z < 0 as the problem in Figure 73(a). It is noted that in Figures

73(a) and 73(b), the sources in the equivalent problem radiate with the original

waveguide geometry removed. The fields Ecr and Hcr are themselves unknown

and are quantities to be determined. Consequently, Ja and Ms as defined above

in Equations (3.23) and (3.24) are also unknown at this point. However, one can

introduce a Kirchhoff approximation for determining Ja and Ms in Figure 73(a),

or for MS in Figure 73(b). Knowing the values for the equivalent sources J5 and

Ms based on the Kirchhoff approximation then allows one to find Ecr and Hcr

approximately. In the Kirchhoff approximation, Js and M3 in the present case are

given by only those fields in the waveguide aperture (at z = 0) which arrive there

after undergoing a reflection from the interior waveguide termination; additional

wave interactions between the open end and the interior-termination are expected

to contribute weakly to the cavity radiation because the interior waveguide wall

is lossy, and hence their effect is ignored. It is convenient to deal with only Ma

as in the equivalent problem of Figure 73(b); thus, a. Kirchhoff approximation to

the equivalent problem in Figure 73(b) is shown in Figure 74(a), wherein M* is

set equal to zero outside the physical extent of the original waveguide aperture at

the open end. Then the configuration equivalent to that in Figure 74(a) which is

given in Figure 74(b) with the ground plane at z = 0 removed, and with 2 M5

over 0 < x < a at z = 0~, serves as the starting point for calculating the cavity
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Figure 72: Radiation of the field reflected from the interior termination.

radiation field. The final equivalent configuration in Figure 74(b) may be viewed

as the physical optics (PO) approximation (using magnetic currents) to the exact

equivalent configuration in Figures 73(a) or 73(b). It is noted that

2 M. = 2 Ea x n (3.25)

where Ea is the Kirchhoff approximation for the electric field in the aperture. For

the sake of convenience, a further approximation is introduced in E0 such that

only the geometrical optics fields which enter into the waveguide from the open

end and then undergo reflection at the termination within the waveguide to return

back at the open end are used to describe Efl; i.e. the effect of edge diffracted rays

which are coupled into the waveguide and then reflected by the termination are

ignored. Next, an appropriate radiation integral is employed to calculate the fields

radiated in the forward half space (z < 0) by the above magnetic current 2Ma.
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(b) A problem equivalent to that in (a). A perfect electric conductor

is placed at z = 0; this shorts out Ja leaving only Ms.

Figure 73: Equivalent configurations for calculating the cavity radiation field.
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(b) A problem equivalent to that in (a). The perfect electric

conductor at z = 0 is removed and its effect is accounted

for by doubling the strength of Ms. This is like the PO

approximation using magnetic current.

Figure 74: Kirchhoff or physical optics approximated versions of the equivalent
problem in Figure 73(b).
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Figure 75: A ray tube reflected back from the termination.

The analysis of this radiation problem is described below; this analysis begins by

giving an expression for Ea.

Consider a ray tube which after being reflected from the termination occupies

the portion oj < x < 0.2 within the aperture in Figure 75. Also, the angle at which

this ray tube arrives in the aperture plane is TT + $ as shown in the figure. The

electric field at the aperture is then given by

where

od(J

y Eao

•>ao

L

a

n

electric field strength of the reflected ray tube

in the aperture; this is a known quantity,

distance from the open end to the termination

waveguide height

number of reflections of a ray tube

(3.26)

111



The 2 Ma for odd values of n is given by

2 Ms = _2x£ae~'M(n+1)°sin*'+2I'C08*') • ej*"in*' (3.27)

The Ey radiated in the far zone exterior to the aperture by the Ms in Equation

(3.27) is represented as [14]

E
I jif r f~JkR

a = W i^ Z0 I Y0 R x 2 Ma -j=^ dl' (3.28)

where Z0 (or y0) is free-space wave impedance (or admittance) and R is a unit

vector in radiation direction. Then the above equation reduces to

a

where

R = Ro-x'sm<t> (3.30)

R = — xsin^ — zcos# (3.31)

Also, 4> is an observation angle and RQ is the distance from the origin to the

observation point. Hence, Equation (3.29) reduces to

xl

Vflb

(3.32)
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where

x\ = kdi( sin <f> + sin #') (3.33)

x\ = kd2 ( sin <j> + sin ^') (3.34)

Similarly, the radiated field 2£J for even values of n is expressed as

(3.36)

- _B (3-37)xl

where

x\ •= kdi (sin <j> - sin $') (3.38)

i| = kdz (sin <f> — sin ̂ ') (3.39)

Note that the limits a\ and 03 in the integral of Equation (3.29) can be deter-

mined analytically and they are functions of the incident angle <f>', the waveguide

width a and the location of the termination at z — L. It is also noted that there

are always two ray tube components to be considered over the aperture with dif-

ferent number of reflections and arrival angle; one has n reflections with its arrival

angle at TT + <j>' in the aperture and the other has n + 1 reflections with an arrival

angle of TT — $ (see Figure 75). The total radiated field can then be obtained by
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Figure 76: Rays incident on the open end of the semi-infinite parallel plate
waveguide with an incident angle ^' and a simple planar termination at z = L.

superimposing the field radiated by each component. It is further noted that had

the effect of the edge diffracted rays which are coupled into the waveguide and then

reflected from the termination been included in the Kirchhoff approximation for

E0, the limits of integration would have been over the whole aperture 0 < x < a

rather than a\ < x < Q-I. As an example, consider the rays incident on the open

end of the semi-infinite waveguide with an incident angle <£' and the planar termi-

nation at z = L as shown in Figure 76. The rays in region I are reflected by the

termination and propagate outward from the waveguide with the angle — <£'. On

the other hand, the rays in region II hit the top wall and the termination and are

scattered backward with the angle +<f>' as shown in the figure.
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The EM plane wave scattering by a semi-infinite parallel plate waveguide

with an impedance boundary condition on its inner walls and with an interior

termination is plotted as a function of the aspect angle <f> in Figures 77-82 for

various impedance values and different polarizations. Each scattering pattern has

two peaks at <j> = 4-15° and <}> = —15° directions as expected because the incident

angle is defined by <f>' = 15°. The level of the two peaks are slightly different from

each other because the width of each ray tube on the aperture is different and one

ray tube has one more reflection than the other inside the waveguide as mentioned

earlier. It is recalled that the planar interior termination is chosen to satisfy the

same boundary conditions as those on the inner walls for convenience. Note that

the pattern for the lossless case or vanishing surface impedance in Figure 77 is

dominated by the interior radiation. However, as the real part of the impedance

becomes larger, the interior radiation becomes weaker and the fields diffracted

from the waveguide edges at the open end mainly contribute to the total scattered

fields. In Figures 83-88, the plane wave scattering patterns are again plotted

for a semi-infinite perfectly-conducting waveguide in which the inner waveguide

walls and the planar perfectly-conducting interior termination are coated with the

same dielectric/ferrite material. As shown in the figures, the interior radiation

can be reduced by properly choosing the permittivity and permeability of the

dielectric/ferrite coating; notice that the rim diffraction is not significantly affected

by the changes in the parameters of the coating in these cases.

In order to check the accuracy of the scattering patterns shown in Figures 77-

88, they are compared with those obtained by the use of a hybrid combination of a

modal and high frequency techniques together with the multiple scattering method

(MSM) [17,18,19]. Basically, the analysis in [17,18,19] combines asymptotic high

frequency techniques such as the GTD ray method, the equivalent current method
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Figure 77: EM plane wave scattering by a semi-infinite parallel plate waveguide
with inner impedance walls and with an interior termination as a function ot

aspect angle <j> for the parallel polarization case.
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Figure 78: EM plane wave scattering by a semi-infinite parallel plate waveguide
with inner impedance walls and with an interior termination as a function of

aspect angle <f> for the perpendicular polarization case.
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Figure 79: EM plane wave scattering by a semi-infinite parallel plate waveguide
with inner impedance walls and with an interior termination as a function of

aspect angle <j> for the parallel polarization case.
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Figure 80: EM plane wave scattering by a semi-infinite parallel plate waveguide
with inner impedance walls and with an interior termination as a function of

aspect angle <$> for the perpendicular polarization case.
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Figure 81: EM plane wave scattering by a semi-infinite parallel plate waveguide
with inner impedance walls and with an interior termination as a function of

aspect angle <j> for the parallel polarization case.
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Figure 82: EM plane wave scattering by a semi-infinite parallel plate waveguide
with inner impedance walls and with an interior termination as a function of

aspect angle 0 for the perpendicular polarization case.
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Figurie 83: EM plane wave scattering by a semi-infinite parallel plate waveguide
coated with a dielectric/ferritc material and with an interior termination as a

function of aspect angle ^ for the parallel polarization case.
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Figure 84: EM plane wave scattering by a semi-infinite parallel plate waveguide
coated with a dielectric/ferrite material and with an interior termination as a

function of aspect angle </> for the perpendicular polarization case.
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Figure 85: EM plane wave scattering by a semi-infinite parallel plate waveguide
coated with a dielectric/ferrite material and with an interior termination as a

function of aspect angle <j> for the parallel polarization case.
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Figure 86: EM plane wave scattering by a semi-infinite parallel plate waveguide
coated with a dielectric/ferrite material and with an interior termination as a

function of aspect angle <j) for the perpendicular polarization case.
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Figure 87: EM plane wave scattering by a semi-infinite parallel plate waveguide
coated with a dielectric/ferrite material and with an interior termination as a

function of aspect angle <£ for the parallel polarization case.
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Figure 88: EM plane wave scattering by a semi-infinite parallel plate waveguide
coated with a dielectric/ferrite material and with an interior termination as a

function of aspect angle 4> for the perpendicular polarization case.
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(ECM), and the physical theory of diffraction (PTD), with the usual modal tech-

niques to deal with only perfectly-conducting semi-infinite waveguide geometries

with perfectly conducting interior terminations. In Figures 89-90, the two scatter-

ing patterns are compared for different values of the interior termination length L.

As shown in Figure 89, the two solutions show good agreement in the main and the

first sidelobe regions. The discrepancy in the other regions is due to the fact that

the contribution from the diffracted rays to the interior radiation is not included

in the Kirchhoff approximation for analytical simplicity in the present study as

mentioned earlier. For the longer waveguide, the two solutions show some differ-

ences as indicated in Figure 90; this is because the effect of the edge diffracted rays

which have been ignored contribute more significantly to the interior field in the

waveguide with a larger L than those in the waveguide with a smaller L. For the

waveguide with a larger L, there are more discontinuities in GO rays (see Figure

32) and the diffracted rays which compensate for these discontinuities give signif-

icant contribution to the field over the aperture. Therefore, a better agreement

is anticipated if the diffracted rays are included for describing Ea in the present

solution.
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Figure 89: Comparison of the plane wave scattering patterns obtained by the
present method and by the MSM for the parallel polarization case.
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Figure 90: Comparison of the plane wave scattering patterns obtained by the
present method and by the MSM for the parallel polarization case.
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CHAPTER IV

ANALYSIS OF ELECTROMAGNETIC SCATTERING FROM A

RECTANGULAR WAVEGUIDE WITH LOSSY INNER WALLS

4.1 Ray solution for the interior fields of a semi-infinite rectangular
waveguide with lossy interior walls

In this chapter, the problem of electromagnetic scattering by an open-ended,

perfectly-conducting rectangular waveguide with absorber coated inner walls and

with an interior termination is analyzed. The geometry of this open-ended, semi-

infinite rectangular waveguide structure without the termination is shown in Figure

91. The outer wall is perfectly-conducting and the inner wall is coated with a thin,

uniform layer of absorbing (dielectric/ferrite) material. The height and width

of the waveguide are a and 6 wavelengths, respectively. This open-ended, semi-

infinite rectangular waveguide is illuminated by an arbitrarily polarized external

plane wave field. A part of this field incident on the openend is scattered back

into the exterior region and the rest is coupled into the interior waveguide region.

These interior and exterior fields are analyzed using the uniform geometrical theory

of diffraction (UTD) ray approach. The UTD field consists of the incident and

reflected geometrical optics (GO) fields and the fields diffracted by the edges at

the open end. The GO contribution to the fields coupled into the interior of the

waveguide is discussed in the first part of this section. This discussion is followed by

a description of the edge diffracted fields coupled into the waveguide in the second

part of this section. The effect of including an interior termination is also discussed
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Figure 91: Geometry of an open-ended semi-infinite rectangular waveguide
coated with a thin, uniform layer of lossy or absorbing material on its inner wall.
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in the later sections of this chapter; in particular the field which is coupled inside

the waveguide region and then undergoes reflection from the interior termination

to radiate back into the exterior region is found using aperture integration (AI)

in conjunction with a physical optics (PO) approximation for the aperture field as

done previously for the 2-D case in Chapter III. The total scattered field is the

sum of the field scattered from just the edges at the open end, and the field which

is initially coupled into the waveguide and then reflected from the termination to

radiate out into the exterior region of the waveguide.

4.1.1 Geometrical Optics (GO) fields

A plane wave incident on the open end sets up planes of incidence as shown

in Figure 91 and the incident ray travels in these planes of incidence to reach the

observation point P after reflecting off the top and side walls of the waveguide.

The top and side views of this waveguide together with the ray path which reaches

P and also the incident angles tf and <£' are shown in Figure 92. The angle tf is the

angle between the y axis and the projection of the incident ray onto the top wall

and (j)1 is the elevation angle from the y — z plane to the incident ray. Note that the

side view in Figure 92 is not the actual side view of the rectangular waveguide but

an unfolded side view of the planes of incidence shown in Figure 91. Therefore,

the ray path of the unfolded side view contains the actual length of the ray path

to the field point. Note also that the angles $ and 0' are defined differently from
A

the conventional spherical coordinate angles. Then, the incident unit vector I is

given by

I = x sin 4> + y cos 0'cos 4>' + z sin 0'cos <£' (4.1)
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(a) TOP VIEW

(b) UNFOLDED SIDE V IEW

Figure 92: Top and unfolded side views of the ray path in Figure 91.
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The path reaching the field point P in the top view of Figure 92 is a projection

of the ray path onto the top wall of the waveguide. From these top and side

views, one can easily determine the number of reflections which occur before the

ray reaches the field point for a given incident angle; the top view accounts for the

number of reflections by the side walls, while the side view indicates the number of

reflections by the top and bottom walls. In the specific example shown in Figure

92, there are five and four reflections by the top and bottom walls, respectively,

and one reflection by each side wall.

This rectangular waveguide problem can be analyzed easily in a fashion similar

to that employed in the previous chapter for the 2-D semi-infinite parallel plate

waveguide case. For a given observation point inside the waveguide, a possible set

of different combination of rays such as direct, singly and multiply reflected rays

by the side walls is determined by looking at the top view (as in Figure 92) and

then using the analogy of Figure 32 given in the previous chapter. For each ray

determined by the top view, this procedure is then repeated for ascertaining the

set of rays which have different number of reflections from the top and side walls

by looking at the side view of the rectangular waveguide as shown in Figure 92(b).

Therefore, there is a maximum of four different rays reaching a given observation

point inside the waveguide for a given incident angle; a maximum of two different

rays which have different reflections by top and bottom walls and each ray has also

a maximum of two different reflections by side walls (see Figure 32). As shown in

Figure 93, each wall with its front edge is denoted by numbers T through '4' for

convenience. It is also convenient to consider the incident GO, and the singly and

mutiply reflected GO fields separately as done below.
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WALL*!
(SIDE WALL)

WALL #2
(TOP WALL)

7
WALL #4

(BOTTOM WALL)

WALL #3
(SIDE WALL)

Figure 93: Rectangular waveguide showing the assignment of the wall numbers to
the waveguide.

i) Incident GO field

For the three dimensional (3-D) case, it is necessary to express the fields in

a reference coordinate system. The rectangular coordinate system is chosen as

the reference coordinate in this study. The incident field at the observation point

inside the waveguide is then computed in terms of the field incident at the origin

and then by including the corresponding phase term in which the phase is referred

to the origin O in Figure 91; i.e., the incident electric field E'(P) at P is given by

E'(P) = x Ei(P) + y Ei(P) (4.2)

where

&, (O)
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and 3* is the distance from the observation point to the plane which is perpendicular

to the incident unit vector I and which contains the origin (O); this s* is given by

3* = sin <f>' • Xp + cos O1 cos <f>' • yp + sin O1 cos <f>' • zp (4.4)

where zp, yp and zp are the coordinates of the observation point P. It is noted

that the range of values for the axial distance z which pertains to the incident field

must satisfy the following criteria; namely, that it must fall within the incident

field region (Region (1) in Figure 32) in the both top and side views of Figure 92;

if not, it is not an incident field, and it is then categorized as a singly reflected

field. The singly and multiply reflected fields are treated next.

ii) Reflected GO fields

Each component of the reflected electric field Er(P) at the field point P inside

the waveguide can be represented by a matrix in terms of each component of the

incident GO field at the origin as given below; namely,

Er(P) = x Er
x(P) + y El(P) + z El(P) (4.5)

where

E r
x(P)

El (P)
•[*]

El (QR)

(4.6)

in which Qp is the point of reflection and sr is the distance from QR to P along

the reflected ray, and R is the reflection coefficient (involving .Rii and J?j^ as in
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.PROJECTION OF THE RAY PATH
ONTO X-y PLANE

Figure 94: An electric field E* incident on i — y plane with incident angles 0' and
f.

Appendices D and F for the impedance boundary condition and the absorber

coated perfectly-conducting surfaces, respectively).

Let the field E* be incident on the x — y plane with incident angle Ol as shown

in Figure 94. Then E* is expressed by

_ W }k(s\n 6l cos (j>* z+sin 0* sin 4>l y+cos 8* z)

where

x oz

(4.7)

(4.8)

As shown in Figure 95, EJ, can be expressed in the plane of incidence as

(4.9)

where

p = x cos 4>l + y sin
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^ = -x sin <f>1 + y cos <f>* (4.11)

Ep = Eox cos<f> + Egy sin0* (4.12)

^n» 1^* I A ^ A \LZ - LOZ (4.14)

The reflected field Er is represented by

E T • Tpf* *t'~*]'C8 I A ^ e\— fj0 e J 14.15J

where

-|| £( x cos <£* + y sin 0') + R ± E ( - x sin tf + y cos 0') + R\\ E\ z

f- Ay ( J5JX cos ̂ * + jE;*y sin $ ) cos ̂ * - R± ( - El
ox sin 0* + E^ cos <^*) sin x

- R\\ (El
ox cos ^' + Eiy sin ̂ ') sin ̂ +R ± ( - El

ox sin ̂ ' + £Jy cos ̂ ') cos <^* y

2 'R± sin #') + j E * ( - fl - j sin ̂  cos ̂  x

?»,( - ^ - R±) amp cos 0l' cos
2 '

(4.16)

in which ^IK.L) is a reflection coefficient for the electric field which is polarized par-

allel (perpendicular) to the plane of incidence. The ^i|(j_) have been defined previ-

ously in Appendix D for an impedance boundary condition on the inner walls, and

in Appendix F for an absorber coating on the inner perfectly-conducting waveg-

uide walls. Therefore, from the above equation the reflection coefficient can be
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Figure 95: The incident field EJ, in Figure 94 in the plane of incidence.

expressed in a matrix form

[*]=

2 *-fij j cos 4>l + R± sin 0* — (fin + fijj sin<£* cos^* 0
- - . • • ~ 2 j * ¥ - i 7 *

h fij^) cos«p sin^ — fin sin <p + R± cos q> 0

0 0 fin

(4.17)

In order to obtain the reflected field, this reflection coefficient matrix is multiplied

sequentially to the incident field each time a ray is incident on the waveguide wall,

after transforming into the ray coordinate system pertaining to each waveguide

wall from which the reflection occurs. It is noted that the incident unit vector I is

changed each time the ray is reflected by the wall.

4.1.2 Edge diffracted fields

i) 3-D edge diffraction coefficients

In this part, the 3-D edge diffraction contribution to the field inside the open-

ended rectangular waveguide is discussed. Again, it is convenient to express the
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2-D diffraction coefficients as in the previous chapter in terms of the ray fixed

coordinate system. In this system, the incident field is expressed by components

parallel and perpendicular to the edge fixed plane of incidence, the plane containing

the incident ray and the diffracting edge, and the diffracted field expressed by

components parallel and perpendicular to the edge fixed plane of diffraction, which

contains the diffracted ray and the edge [12]. The "ray fixed coordinate system" is

illustrated in Figure 96. Let e be the unit vector along the edge direction and D

be the unit vector along the diffracted ray from the point of diffraction (Qs) to

the observation point P. Also, one may define the following:

' • . - . ; # = * > x i (4.19)

* - r t̂i <4-20'. |e x D |

Po = 0xD (4.21)

These vectors form the two orthonormal basis of the edge fixed plane of incidence

and diffraction. Note that the ordinary plane of incidence intersects the edge fixed

plane of incidence along the incident ray; whereas, the plane of reflection intersects

the edge fixed plane of diffraction along the reflected ray. The relationship between

the ray fixed coordinate system and the edge fixed coordinate system is depicted in

Figure 97. It can be shown that the angles a and a, defined as shown in Figure

97 are related by a = -a^. The unit vectors $,, 4>' and I form the spherical

coordinate unit vectors fixed in the incident ray; likewise /?0, ^ and D form the

spherical coordinate unit vectors fixed in the diffracted ray. It is apparent that

the components of incident electric field El along the J3'0 and <£' direction defined

by El , and E1., respectively in the incident ray fixed coordinate system can be
PO T
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OBSERVATION
POINT if}

CONE OF
DIFFRACTED

RAYS

SOURCE POINT

SOURCE
POINT" OBSERVATION

POINT (P)

Figure 96: Ray fixed coordinate system used for 3-D diffraction.

142



•̂ !'n

*•

PLANE OF.
•INCIDENCE

EDGE-FIXED INCIDENT
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Figure 97: Comparison of the ray fixed coordinate system and the edge fixed
coordinate system. The incident and reflected rays are perpendicular to the page

and directed outward.

expressed in terms of the incident field components

ordinary plane of incidence such that

and referred to the

, =

E1,, • =

i cos a - E]_ sin a

M, sin a + El
± cos a

(4.22)

(4.23)

where E j , / , > is an incident electric field parallel (perpendicular) to the ordinary

plane of incidence. These expressions may be written more compactly in a matrix

notation as

(4.24)

where Ee t denotes incident field components (£*, and E\,) in the edge fixed inci-

dent ray coordinates and El is the incident field in the ordinary plane of incidence.

Also,
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cos a — sin a

sin a cos a
(4.25)

The 3-D edge diffracted electric field Erf(P) at an observation point P for a half

plane whose one side is perfectly-conducting and the other side is coated with a

thin absorbing material (dielectric/ferrite), is written as [12]

Da -Db

DC -Dd
(4.26)

in which

Ed(P) =

(4.27)

(4.28)

and sd is the distance from the diffraction point at Q£ to the field point at P.

Also the elements of the diffraction coefficient matrix are given by

Da

Db

Dc

Dd

2= D(l) + L>(2) - D(3) - (fin cos^ a - R± sm* a) D(4)

= £>(!) + D(2) + £>(3) sin2 a - R± cos2 a) D(4)

(4.29)

(4.30)

(4.31)

(4.32)

and D(l), D(2), D(3) and D(4) are as given previously in Equations (3.10) through

(3.13). .R|| and R± are the reflection coefficients which are derived in Appendix D

for an impedance boundary condition on the inner waveguide walls or in Appendix

F for an absorber coating on the perfectly-conducting inner walls.. Note that

in case of the half plane which is perfectly-conducting on one side and which
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exhibits an impedance boundary condition on the other side, or which has the other

perfectly-conducting side coated with an absorbing material, there is a coupling

between the TEe(fge and TMettge components of the diffracted fields; this fact is

readily evident from the non-diagonal form of the diffraction matrix as shown in

Equation (4.26). Such a cross coupling takes place if the incident ray strikes the

edge obliquely and it does not occur for a normal incidence on the edge; it is

also absent for a normal or oblique incidence on a completely perfectly-conducting

edge.

ii) Diffracted fields

The shadowing or the discontinuous behaviour of the GO incident and re-

flected rays by the waveguide walls is compensated for in the total field by the

addition of the 3-D edge diffracted field of Equation (4.26) to the GO part of the

solution. There is also diffraction by the corners of the edges in addition to the

edge diffraction. However, the contribution of this corner diffraction is neglected

in this study because it is generally weaker in comparison to the GO and edge

diffracted fields, and its inclusion adds additional complexity to the ray analysis.

For a given near field point, it is well known that there is only one point along an

infinitely long straight edge from which the diffracted field can emanate. There-

fore, one needs to determine whether a diffraction point lies on the finite length of

each of the four edges at the open end of the waveguide, so that it can be included

in the total scattered field.

The point of diffraction at R^ on an edge due to a given source location and

a far zone observation point, as illustrated in Figure 98, can be obtained in a

straight-forward manner. It is noted that this situation is the reciprocal of the

one involving an observation point which is located at a finite distance within
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POINT OF
DIFFRACTION

Figure 98: Geometry for finding the diffraction point along the rim edge at the
open end of a waveguide.

the waveguide when the latter is excited by an external plane wave; however, the

procedure to obtain the point of diffraction is the same in both cases. In particular,

a vector perpendicular from the source to the edge can be found from

tp — (Rs — Cm ) ' Gm

m i~ *p &mRp —

(4.33)

(4.34)

Since all the rays diffracted by the edge lie on a cone as shown in Figure 96, the

scattering direction is known so that

cot 00 = -
d -em

- (d • em)2
(4.35)
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The diffraction point can now be found from

Hd = Rp +.«p cot 00 em (4.36)

where

RS — Rp (4.37)

To determine if the diffraction point (zj, yj and z& = 0) is on the finite limits of

the edge in the present waveguide problem of Figure 91, the z-coordinate of the

diffracting point must fall between 0 and a for vertical edges (edge 1 and 3) and

likewise, the y-coordinate must fall between 0 and 6 for horizontal edges (edge 2

and 4), respectively; i.e.,

0 < xd < a for edges 1 and 3 (4.38)

0 < yd < b for edges 2 and 4 (4.39)

Otherwise, each edge which does not satisfy the above equations has not diffracted

field giving contribotion to the observation point P.

Once the diffraction point is known for any edge, the field diffracted from

that edge to the field point P can be found from Equation (4.26) and this process

is then repeated for the other edges of the waveguide rim. The diffracted fields

which are represented by parallel (Ei ) and perpendicular (El) components are

then transformed into the components in the rectangular coordinate system to be

added to the GO field also in the latter coordinate system. For multiply diffracted-

reflected rays, the same procedure as employed for the multiply reflected fields in

the previous section is repeated by including the appropriate reflection coefficients

at each bounce (reflection) off the walls.
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As an illustration, each type of ray field in Figures 99-106 is plotted against the

axial distance z from the open end to the observation point for various waveguide

widths and heights, values of the inner wall impedance or absober coating, incident

angles and wave polarizations. In Figures 99-106, the magnitude of the total field

(which is given as a sum of its x, y and z components) is plotted in each case.

In Figure 100, the discontinuity at z = 9.0 A is due to the corner diffraction and

total field is not affected much as shown in the figure. Note that the numerical

sequence appearing in the figures represents the waveguide walls which the incident

ray hits during its travel to the observation point; these walls are numbered as

shown in Figure 93. Figures 99-102 pertain to the rectangular waveguide with an

impedance boundary condition on its inner walls. The same plots are repeated in

Figures 103-106 for the perfectly-conducting waveguide coated with a dielectric

and ferrite material on its inner walls. As shown in the figures, the discontinuities

of the GO field at the shadow boundaries are compensated by the corresponding

discontinuities of the diffracted field. From the plots of the total field in the above

figures, it can be concluded that the corner diffracted field is very weak and does

not affect the total field much inside the waveguide.

4.2 Ray solution for the interior field of a semi-infinite rectangular
waveguide with an absorber coating on its inner walls and with a
planar termination inside

Let a simple planar termination be placed at z = L inside the semi-infinite

rectangular waveguide of Figure 91 and the termination wall is designated by the

number '5'. If the impedance boundary condition is assumed to hold on the inner

waveguide walls (wall #1,2,3,4) then the termination (wall #5) is also assumed

to satisfy the same impedance boundary condition. On the other hand, if the
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Figure 99: Each ray field coupled into a semi-infinite rectangular waveguide with
an impedance boundary condition on its inner walls for the perpendicularly

polarized plane wave incidence.
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Figure 100: Each ray field coupled into a semi-infinite rectangular waveguide
with an impedance boundary condition on its inner walls for the parallel

polarized plane wave incidence.
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Figure 101: Each ray field coupled into a semi-infinite rectangular waveguide
with an impedance boundary condition on its inner walls for the parallel

polarized plane wave incidence.
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Figure 102: Each ray field coupled into a semi-infinite rectangular waveguide
with an impedance boundary condition on its inner walls for the perpendicularly

polarized plane wave incidence.
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Figure 103: Each ray field coupled into a semi-infinite waveguide coated with a
dielectric/ferrite material on its inner walls and parallel polarized plane wave

incidence.
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Figure 104: Each ray field coupled into a semi-infinite waveguide coated with a
dielectric/ferrite material on its inner walls and perpendicularly polarized plane

wave incidence.
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Figure 105: Each ray field coupled into a semi-infinite waveguide coated with a
dielectric/ferrite'material on its inner walls and parallel polarized plane wave

incidence.
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incidence.
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perfectly-conducting, semi-infinite waveguide is assumed to possess an absorber

coating on its inner walls, then the termination wall is also assumed to be perfectly-

conducting and coated with the same absorber material. The present method

of analysis is also valid if the impedance or a dielectric/ferrite coating at the

termination wall is not the same as that of the inner walls, but they are assumed

here to be the same for the sake of convenience. The field at the observation

point inside this terminated geometry can be computed in a manner which is very

similar to that employed in the case of a terminated semi-infinite 2-D parallel plate

waveguide as done in the previous chapter. There are two groups of rays reaching

the observation point, one is from the open end side as if there is no termination

inside and the other is from the the rays reflected from the termination.

Some numerical results for the fields inside a semi-infinite rectangular waveg-

uide are shown in Figures 107-108 and 109-110 for the case of an interior planar

termination with an impedance boundary condition and for a planar perfectly-

conducting termination coaled with a dielectric/ferrite absorbing material cases,

respectively. Note that the ripples in the GO field are due to the interactions

between the above-mentioned two groups of rays.

4.3 Field scattered into the exterior region by a semi-infinite rectan-
gular waveguide with an absorber coating on its inner walls and
with a planar termination inside

The field scattered outside the semi-infinite rectangular waveguide with an

interior termination and with lossy inner walls is calculated in a manner similar

to that done for the 2-D case in the previous chapter. The exterior scattered field

consists of two basic contributions; one is the field due to the radiation from the

interior effects which is found using the AI method (together with a physical optics
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Figure 107: Each ray field for a rectangular waveguide with impedance inner
walls and a planar termination inside for a parallel polarization.
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Figure 108: Each ray field for a rectangular waveguide with impedance inner
walls and a planar termination inside for a perpendicular polarization.

159



2
^
Q̂°-

o

REFLECTED FjELD

o
OJ

O —

4.0 6.0 8.0
Z (WRVELENGTHS)

10.0 12.0

fl * 20.0
B * 10.0

10.0
10.0
8.0
0.10

(Wf lVELENGTHS)

(WfWELENGTHS)

Ikf lVELENGTHS)

(Wf lVELENGTHS)

(Wf lVELENGTHS)

(Wf lVELENGTHS)

< D ' = 3 0 . 0 (DEGREES)

e '=60 .0 (DEGREES)

€ = (3 .0 , -0 .10)

M =(1 .0 , -0 .30)

2 5 3 0 0 0 0 0 0 0

Figure 109: Each ray field for a rectangular waveguide coated with a
dielectric/ferrite material with a planar termination inside for a parallel

polarization.
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approximation) and the other is due to the direct edge diffraction from the rim

at the open end which is found via the UTD in conjunction with the equivalent

current method (ECM).

For calculating the radiation from the interior cavity, the 3-D radiation inte-

gral (over the aperture at the open end) which is used to represent this radiated

electric field E*nt in the forward half space (see the discussion in Section 3.5 for

the 2-D case) is given as (14,15)

(4.40)

where Z0 (or Y0) is free-space wave impedance (or admittance), R is a unit vector

in radiation direction (see Figure 111). 2 Ma is the equivalent magnetic current

in the aperture region which radiates in the forward half space as in the previous

2-D case (which employs a 2-D rather than a 3-D radiation integral). In general,

the amplitude and phase terms in the above integrand are separable in terms of

the aperture coordinates as follows.

M3 = Mx(z)My(y) (4.41)

e-JkR _ €jkxx ejkyy e~jkR0 (4.42)

where R0 is the distance from the origin to the field point. Thus,

— C / 2 Mx(x') ejkxx' dx' I 2 My(y'} t?^ dy' (4.43)
27T /t0 Jai Jbi

Clearly, for separable aperture distribution the calculation of the radiation pattern

reduces to the product of two 2-D patterns. Note that there are four patches to

be integrated on the aperture each giving different radiation patterns. These four
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different patches originate from the combination of two ray tubes from each top

and side views as shown in Figure 76. The total radation pattern can then be

obtained by superposing the field radiated by each of the patches of 2 Ma in the

aperture.

In order to include the contribution from the field directly diffracted by the

edges at the open end, the equivalent current method (ECM) [20-24] is employed

in conjunction with the GTD. Generally, this rim edge scattered field E^m is the

sum of the fields of all the singly diffracted rays which are initiated at various

points on the rim edge by the incident field in accordance with the law of edge

diffraction. However, in some situations, there may be a continuum of diffraction

points contributing to the scattered field [20]; in such a situation, a direct appli-

cation of the GTD fails and one must resort to an integration around the edge

as in the ECM. The rays diffracted from the corners of the rim of the waveguide

also contribute to the diffracted fields in addition to the edge diffracted rays. It

is noted that the ECM automatically but approximately takes into account the

presence of the corners at the open end.

In the ECM, the equivalent currents \eq and ~M.eq of the electric and magnetic

type, respectively, are located at the rim edge as shown in Figure 111. These equiv-

alent currents radiate in free-space to produce the scattered field. The strength of

the equivalent currents are calculated indirectly from the GTD, but they give a

bounded result even in the caustic regions where the GTD gives a singular result

because a continuum of rays contribute to the field at such points of observation.

The strength of the equivalent electric and magnetic currents are given by

[20,22]
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RIM OF THE WAVEGUIDE

Figure 111: Equivalent currents Ieq and Me9 on the rim at the open end of the
waveguide.

(4.44)

(4.45)

sin/?

sin/?

where 1' is the unit vector along the edge direction. The angles (/?0, (3, 0' and

0) appeared in the diffraction coefficients (£>£ and DM) in Equations (4.44) and

(4.45) are indicated in Figure 112. Note that the diffraction coefficients DM and

correspond to Da in Equation (4.29) and D^ in Equation (4.32), respectively.

Then, the equivalent currents \eq and Me(? are incorporated into the radiation

integral to calculated the scattered field E £ - - [22]; i.e.,

/ f R x R x Ie,(/') + Y0 R x Meq(l')} e-̂ — dl' (4.46)
J n m L J K4;r
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• £0ON K E L L E R CONE

Figure 112: Angles /?<>, 0, V*' &nd 0 which occur in the wedge diffraction
coefficients DM and

— — *
where R = .R R is the vector pointing toward the observation ponit from a source

point on the rim edge as in Figure 111. Although the rim scattered field E^m is

not expressed explicitly here, the integrand of Equation (4.46) can be calculated

in terms of each component of the incident field easily for each edge of the rim

once the incident and radiation vectors are specified.

Numerical results for the far zone scattering patterns in the z — z plane are

plotted in Figures 113-115 for the problem of plane wave scattering by a semi-

infinite rectangular waveguide with an interior termination as a function of the

angle 7. In these figures, the inner waveguide walls as well as the interior planar

termination are assumed to satisfy an impedance boundary condition. As in the 2-

D case, the field scattered from the interior cavity region dominates the total field

for small values of the loss in the wall impedance, however, as the wall loss becomes

larger, the field scattered by the rim contributes mostly to the total field. It is

also seen that this direct rim contribution to the total scattered field.can become
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Figure 113: Far zone pattern in the x - z plane of the field scattered by a
semi-infinite rectangular waveguide with an interior termination illuminated by
an external plane wave whose electric field is polarized parallel to the plane of

incidence.
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Figure 114: Far zone pattern in the x — z plane of the field scattered by a
semi-infinite rectangular waveguide with an interior termination illuminated by
an external plane wave whose electric field is polarized parallel to the plane of

incidence.
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Figure 115: Far zone pattern in'the x- z plane of the field scattered by a
semi-infinite rectangular waveguide with an interior termination illuminated by
an external plane wave whose electric field is polarized parallel to the plane of

incidence.
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stronger than the contribution due to the re-radiation from the interior cavity

as the incident field couples into the waveguide with incident angles far from the

waveguide axis. The latter is to be expected because there will be more ray bounces

inside the waveguide for these incident angles and thus making the interior field

weaker due to the loss effect at each bounce. In Figures 116-118, the same plots are

repeated for the case in which the perfectly-conducting waveguide and its interior

planar termination are coated on the inside by an absorbing (dielectric/ferrite)

material. Note that the field scattered by the rim is not changed much for different

values of e and p. characterizing the absorbing material, whereas, the scattered field

due to the interior radiation is affected much more by the absorbing material.

The surface wave type field similar to that considered in Chapter II, which is

launched by the diffraction of the incident wave at the edges of the open end of the

rectangular waveguide, could reflect strongly from any discontinuity placed closely

to the walls of the waveguide. The reflected surface wave could then radiate outside

the rectangular waveguide again via diffraction from the edges at the waveguide

opening. However, the effect of the surface wave field could be controlled to exhibit

a greater attenuation along the direction of propagation with the inclusion of

greater loss in the absorbing material. Assuming that the planar termination is

not located too close to the open end of the waveguide and assuming that the loss

in the absorbing material is sufficient to rapidly attenuate the surface wave over
*>•

that distance, one can then neglect the effect of the surface wave on the radiation

patterns. The above assumptions are expected to be valid for the calculations

shown in Figures 113-118 in which surface wave effects are ignored.
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Figure 116: Far zone pattern in'the x — z plane of the field scattered by a
semi-infinite rectangular waveguide with an interior termination illuminated by
an external plane wave whose electric field is polarized parallel to the plane of

incidence.
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Figure 117: Far zone pattern in' the x - z plane of the field scattered by a
semi-infinite rectangular waveguide with an interior termination illuminated by
an external plane wave whose electric field is polarized parallel to the plane of

incidence.
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Figure 118: Far zone pattern in the x - z plane of the field scattered by a
semi-infinite rectangular waveguide with an interior termination illuminated by
an external plane wave whose electric field is polarized parallel to the plane of

incidence.
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CHAPTER V

SUMMARY AND CONCLUSION

The problem of electromagnetic (EM) plane wave scattering by open-ended,

perfectly-conducting, semi-infinite 2-D parallel plate as well as 3-D rectangular

waveguides, with a planar interior termination and with a thin, uniform layer of

lossy material on their inner walls as well as on the interior termination are an-

alyzed here using high frequency methods. The high frequency methods provide

an approximate and simple but sufficiently accurate analysis for this problem as

long as the waveguide is large enough (in terms of the wavelength) so that it

can support propagating modes. An impedance boundary condition on the inner

walls and the termination has also been treated for both the 2-D and the 3-D

semi-infinite waveguide configurations. The total field scattered from these config-

urations is given by a superposition of the fields scattered from the edges at the

open end, and the fields which are initially coupled from the external plane wave

into the waveguide region and then reflected from the interior termination to radi-

ate back into the exterior region. The fields scattered from the open end as well as

that coupled into the waveguide are found via the GTD/UTD ray method. For the

fields scattered from the rim edge of the 3-D rectangular waveguide, it is necessary

for some aspects to use GTD in conjunction with the equivalent current method

(ECM). The contribution to the! total scattered field which comes from the interior

waveguide cavity radiation (due to the reflection from the interior termination) is
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found using AI in conjunction with the physical optics (PO) approximation for the

magnetic currents in the aperture. The effect of the edge diffracted rays is ignored

in this PO approximation.

The numerical results from the GTD/UTD ray method for representing the

interior waveguide fields are compared with those obtained from the formally ex-

act, conventional modal solution for a line source excited interior 2-D waveguide

problem (involving an infinitely long waveguide) with an impedance boundary

condition on its inner walls in order to check the accuracy and convergence of the

ray approximation. It is found that there is an excellent agreement between the

two solutions. Some of the advantages of the purely ray approach over the modal

approach are that it does afford some physical insight into the propagation and

scattering mechanisms particularly in connection with the coupling of the fields

from the exterior to the interior regions in the case of the semi-infinite waveguide

configuration, as well as into the effect of the wall loss on the fields in the interior

waveguide region. The ray solution does not require one to evaluate the eigen-

values which are essential for the construction of the modal solution; these modal

eigenvalues must be found numerically for different values of the absorber lining

on the interior walls, and for each mode, making the modal approach more cum-

bersome and inefficient as compared to the ray approach. Also, it is found that,

in general, the ray solution converges faster than the modal solution for the case

of interest, namely, when the interior waveguide wall becomes lossy. Furthermore,

it is also found in this work that, in general, the rate of convergence of the modal

solution does not improve significantly even with the presence of loss in the interior

waveguide wall.

It is found that the electromagnetic plane wave scattering by the semi-infinite

waveguides with an interior termination is strongly dependent on the interior wall
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loss. As the wall loss increases, the interior radiation is reduced considerably and

the field scattered by the edges at the open end then becomes the dominant con-

tributor to the total scattered field. For the lossless perfectly-conducting case, the

scattered field obtained by the present approach is compared with that calculated

by a hybrid combination of modal and ray techniques in conjunction with the mul-

tiple scattering method (MSM). The two solutions show good agreement in the

region of the main and the first side lobes. The discrepancy in other regions is

due to the exclusion of the diffracted field for reasons of simplicity in the present

calculation dealing with the interior radiation.

While a significant amount of further work is necessary to improve the AI con-

tribution to the total scattered field in the present approach, and also to deal with

the scattering by semi-infinite waveguides of arbitrary cross-section and tapers, it

is hoped that the present study will efficiently provide a resonable estimate of the

effect of absorber coating on the scattering properties of semi-infinite, perfectly-

conducting parallel plate and rectangular waveguide configurations with an interior

perfectly-conducting planar termination coated with the same absorbing material.
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APPENDIX A

BOUNDARY CONDITIONS AT AN IMPEDANCE WALL

Consider an infinite parallel plate waveguide excited by a y directed magnetic

line source (TEy case) as shown in Figure 119. Then, the surface impedance Z'a at

x = 0 is defined by the boundary condition [24]

E - f n - E > j n = Z ! n x H atx = 0 (A.I)

Since H has only y component, the right side of Equation (A.I) is reduced to

Z'a n x H = Z'3 x x y Hy

= Z' siHy (A.2)

Therefore, the surface impedance Z's is given by

From Maxwell's equation,

V x H =

(A.3)
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Figure 1.19: An infinitely long parallel plate waveguide excited by a y directed
magnetic line source (TEy).

for the given time convention (e+jut). Since E and H have z and y components,

respectively, Equation (A,4) is reduced to

dx

= jkZ sHy (A.5)

where Z0 is free-space wave impedance and Za is surface impedance normalized to

Z0. Consequently, for Hy = G, the boundary condition at x = 0 is given by

— - jkZ s G =
ox

at i = (AA)

Similarly, the boundary condition at x = a is expressed as

h jk Zs G = 0 at x = o
ox
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By employing the duality, the boundary conditions at z = 0 and a can be repre-

sented compactly as follows;

dG ..
•o^-jk

fx+ j k

;$l G = 0

fuG = 0

at z = 0

at z = a

(A-8)

(A.9)

where

{ Ziu for TE« casey (
Yi>u for TMy case

and Z[u (or Y[)U) is the surface impedance (or admittance) at x = 0 and x = a

which is normalized to the free-space wave impedance (or admittance), respec-

tively.
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APPENDIX B

CONSTRUCTION OF ONE DIMENSIONAL GREEN'S

FUNCTIONS

Let Gx(x,x') satisfy the differential wave equation

h k2 Gx(x,x') = -6 (x - x') for 0 < x < a

and the boundary conditions

dGx

dx
x = 0 a t x - 0 (B.2)

-T- + jk fu Gx = 0 atx = a (B.3)
ax

where A; is the free-space wavenumber and 6(x) is the Dirac delta function, and

(
Zi u for TEV case' * i a /^^(BA)
y/)U for TMy case

where Z/ u (or K/ u) is the surface impedance (or admittance) at x — 0 and x — a.

Then Gx(x,x') may be expressed as [11]
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where U(x) and T(x) are two independent solutions of

U(x)

and jy (r, U) is the conjunct of T(x) and U(x) defined by

, u) = r(x') t/(x') .- tf(z')

Equation (B.5) may be compressed into a single expression by using the notation

as shown below:

, U(X<)T(x>)

where x< means use x if x < x' or use x' if x' < x.

r Let t/(z) be represented by

(B.9)

where RI is a constant to be determined. From the boundary condition at x — 0

given in Equation (B.2), it follows

) = 0 ' . _(B.10)

Then,

180



and U(x) is given by

U(x) =

Likewise, let T"(x) be expressed by

T(x) = e"^1 + R

Similarly, applying the boundary condition at x = a in Equation (B.3) to T(z)

and solving the equation for the constant Ru gives

T(x) =

Next, from Equations (B.7), (B.9) and (B.13) the W^(T, U) is given by

t=x'

= 2 jk x ( l -R l R u ) (B.15)

Consequently, Gz(a;,x') is found to be

For ^2(2,2'), a similar procedure is repeated for the differential equation
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U(z)

T(z)

where Gz (z, z1) satisfies the boundary condition

= 0 (B.17)

dG2

dz
± jk Gz = 0 as \z\ —» oo (B.18)

Let U(z) and T(z) be represented by

U(z) =

T(z) =

Then, the conjunct W(T, U) is given by

W(T, U) = jkz

Therefore, Gz(z,z') is expressed as

(B.19)

(B.20)

(B.21)

Gz(z,z') =
z-z

(5.22)
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APPENDIX C

A METHOD FOR THE NUMERICAL SOLUTION OF MODAL

EIGENVALUES

The transcendental equation for solving the modal eigenvalues is obtained by

setting the denominator of the integrand in Equation (2.12) equal to zero. Let this

equation be written symbolically as F(kx) = 0. This transcendental equation can

be re-expressed in terms of any of its roots denoted by kx as:

F(kx) = (kt - fcf/). (fc« - fcftt) e ~ 3 * a - (kx + *f/) (kx + *£„) (C.I)

A popular method of finding the roots of a transcendental equation is the 'Newton-

Raphson? method. The basic theory behind this method is that the function F(x)

is expanded in a Taylor series about some point x0 which gives

F(x) = F(x0) + (x- Xo) F'(x0) + \ (x - x0)2 F"(x0) + • •. (C.2)

With the assumption that x is the root and x0 is a good initial guess of the root,

the series can be written approximately as

(C.3)
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since (x — x0) is small due to x being approximately equal to x0 by a good initial

guess. Then the above equation can be rewritten as

(CA)

which gives the iterative equation

(c-5)

where xn and xn+i are the values of x after the n and (n -f l) iterations,

respectively.

As seen from the above approximation, it is necessary to have a good initial

guess when using the 'Newton-Raphsori* method. This will allow rapid convergence

to the proper root. The eigenvalues of the waveguide with perfectly-conducting

inner walls are used as the initial guess in the modal analysis of the waveguide with

impedance walls. The computer program stops iterating when the percent change

in the magnitude of the root between successive iterations is less than 10 .

184



APPENDIX D

REFLECTION COEFFICIENTS FOR AN IMPEDANCE

BOUNDARY

Consider a plane wave obliquely incident on a surface impedance boundary,

as shown in Figure 120. The incident and reflected waves make angles of 0* and

Or with the x axis, respectively, and Za is a normalized surface impedance. The

field vectors shown in the figure are those corresponding to the TEy case and thus

H has only a y component.

The incident and reflected magnetic fields H* and Hr in this TEy case are

represented by

H* = y # * = y e z c 0 8 - * 8 n (D.I)

Hr = yH'^yRfteM*™ 6 ' -*™^ (D.2)

where R\\ is the reflection coefficient for the y-directed magnetic field (or for the

electric field which is polarized parallel to the plane of incidence (x — z plane in

Figure 120)). The total magnetic field Hy satisfies the following equation on the

impedance boundary

- jkZ sHy = 0 at x = 0 (D.3)
ox

Therefore, incorporating Equations (D.l) and (D.2) into Equation (D.3) gives
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Figure 120: A plane wave obliquely incident on a surface impedance boundary.

(DA)

From Equation (D.4) one obtains the law of reflection (0* = 0r) so that the fields

can be phase matched at the boundary in order to satisfy Equation (D.3). As a

result, Equation (D.4) reduces to

#U (Za + cos0') + (za - cos0*\ = 0 (D.S)

Hence the reflection coefficient for the y-directed magnetic field in the TEy case is

given by

R\\ =
cos el - zs
cos 0i + Zs

(DA)

Likewise, the reflection coefficient for the y-directed electric field in the TMy case

is given by
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K\ = (D.I}
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APPENDIX E

TRANSITION FUNCTION
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Figure 121: The magnitude and phase of the transition function.
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APPENDIX F

REFLECTION COEFFICIENTS FOR A DIELECTRIC/FERRITE

SLAB ON A PERFECTLY CONDUCTING GROUND PLANE

The dielectric/ferrite slab making up the semi-infinite parallel plate and rect-

angular waveguide walls is illustrated in Figure 122. The slab has a thickness t,

and it is backed by a perfectly conductor of electricity. While the Region I (free-

space) for x > t is chracterized by .(e'i, /zj), the Region II (dielectric/ferrite slab) is

characterized by fa, ^2) f°r Q <•* <t. A plane wave is incident on the slab at an

angle of <£' from the x-axis. The transverse resonance method [4,25] is employed

for the Fresnel reflection coefficient of the slab. The equivalent transmission-line

circuit model for the Figure 122 is shown in Figure 123. Z\ and Z^ are wave

impedances of the wave in Region I and II, respectively.

The characteristic impedances for TMy and TEy polarizations are given by

.Z* t2 = kl'*r?1'2 for TMy case (F.I)

.Z™2 = fcl'2 /?1'2 for TEy case (F.2)

where

(F.3)
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Figure 122: A Dielectric/ferrite slab grounded by a perfectly conductor of
electricity.

X *

Figure 123: Equivalent transmission-line circuit for Figure 122.
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(F.4)

(F.5)

- If / . 1,

— sin 0i (F.6)

\u\ t .
f/1,2 =

From transmission-line theory, the input impedance at x = t is given by

*. <~ -^ - *- ^±3 ^2 Janj^O

Since Zs=0 for electrically perfectly conductor at x = 0, Equation (F.8) reduces

to

(F.9)

Then, the reflection coefficient for TMy at x = t can be written as

Therefore, incorporating Equations (F.3) through (F.7) into Equation (F. 10) gives

cos 0, + ; - v A ^ 2 - sin <^i cot kN2 - sin2

± — - r—~—
cos fa - j jjj VA^ - sin^i cot (kit^N2 - sin2 fa J

For T^y the reflection coefficient is represented by

; : • • • ' • • ' • ' ' . • • • . . - . • 1 9 1 • • • . . . .

(F.ll)



Substituting Equations (F.3) through (F.7) into Equation (F.13) gives

- - v - sin2
'

„
cos + - sin2
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