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ABSTRACT

Single-channel ®pilot® manual control output in closed-
tracking tasks is modeled in terms of linear discrete transfer
functions which are parsimonious and guaranteed stable. The
transfer functions are found by applying a modified super-
position time series generation technique. A Levinson-Durbin
algorithm is used to determine the filter which prewhitens the
input and a projective (least squares) fit of pulse response
estimates is used to guarantee indentified model stability.
Results from two case studies are compared to previous
findings, where the source of data are relatively short data
records, approximately 25 seconds long. Time delay effects and
pilot seasonalities are discussed and analyzed. It is
concluded that single-channel time series controller modeling
is feasible on short records, and that it is important for the
analyst to determine a criterion for "best time domain fit"
which allows association c¢f model parameter values, such as
pure time delay, with actual physical and physiological
constraints. The ®"purpose®” of the modeling is thus paramount.
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NOMENCLATURE

numerator discrete polynomial in z
coefficient of z7XK in a(z)
denominator discrete polynomial in 2z
coefficient of z~X in b(z)

discrete pilot model pulse response
error displayed to pilot at instant t

coefficient of 27K in g(z)

pilot transfer function as a ratio of polynomials
independent, identically distributed

lag implying %"k&" seconds

pilot gain expressed in degrees per degree

total points available -

pilot input uncorrelated with y(t) in degrees at
instant t

white noise sequence (i.i.d.) at instant t
controlled element output signal in degrees pitch
angle at instant t

sample interval (seconds)

pilot output in degrees of elevator deflection at
instant t

number of sample times in pure time delay
transformed frequency

frequency

prewhitening filter in z
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1. INTRODUCTION

The key question of how the human being will be inser-
ted in the control loop of complex processes remains an issue
throughout our society (Rosenbrock, 1983), but nowhere is it
more urgent than in flight control systems design and analysis
(Harper, 1983). The fact that a pilot of a modern aircraft is
becoming a sophisticated systems monitor (Rouse, 1983) in no
way implies his demise as a controller (Rouse, 1980; Sheridan,
1974), and a fundamental assumption in this work is that the
interaction between man and machine should be understood much
better than it is today (Palmer, 1983).

Although describing function (McRuer, 1965) and optimal
control (Kleinman, 1969-1974) pilot models have been inge-
niously wused to provide insight into piloting strategy
(Schmidt, 1979; Bacon, 1983; Hess, 1977), they are now supple-
mented with pilot models derived from the emerging field of
time series analysis. Time series modeling of pilot behavior
offers tremendous potential for discerning key system charac-
teristics and relationships, such as the actual effect of
instabilities (Goto, 1974), pilot stress (Shinners, 1974), or
task effects (Agarwal, 1980).

The key questions in time series models involve not only
the parsimony of parameters, well established by Breddermann et
al (1978), but of identified model stability and the' model's
practical application in analysis (Baron, 1980). Shinner
(1974) seriously discussed the closed-loop identification
problem, but the manipulation of transfer functions in his
fitting procedure contains no gquarantee of final model stabi-
lity. The primary purpose of this work is to present a theore-
tically 8ound and relatively simple closed-loop fitting
procedure, still based firmly in the common sense methods of
Box and Jenkins (1976), which guarantees model stability
without sacrificing model accuracy.

2. MODEL

The linear discrete closed-loop model structure is shown
in PFigure 1. Each block represents a discrete pulse response
sequence which, when convolved with the discrete input
sequence, yields the discrete output sequence. Stable pulse
sequences, even though infinite in durations, eventually must
decay for a stable system. When the pulse sequence is ex-
pressed as a ratio of polynomials, stability is guaranteed if
the denominator roots are less in magnitude than one. The goal
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is to identify the pulse response sequence gp(z) and approxi-
mate its discrete (z domain) transfer function from actual data

sets {6(t)}, {y(t)}, and {W(t)}] which are equispaced in time
with their means removed.,

The assumptions are model linearity, time invariance,
causality, uncorrelated inputs W(t) and R(t), and prewhitenable
input W(t); that 1is, W(t) is a linear function of previous
values plus a white noise "shock." Previous values are mathe-
matically linked by the backward shift operator z(-1)

3. MODIFIED SUPERPOSITION TECHNIQUE

First, every signal in Figure 1 is decomposed conceptually
into a part linearly correlated with command disturbance W(t),
the remainder uncorrelated with W(t). For example, output
y(t) is the sum of Yp(t), which is correlated with W(t), and of
Yr(t), considered the effect of an additional unknown input
R(t), termed “Remnant," uncorrelated with W(t). The pulse
response to be found relates, for constant sampling interval
"a" seconds, the linearly correlated pilot output ¢p(t) to the
correlated error signal ey (t); that is,

ep(z)gpl(z) = 6p(z) (1)

This pulse response may be expressed as an infinite seguence or as
a ratio of polynomials:

- e ® - (2)
Gplz) & k2 %a(z)/b(z) & 277( ) qxz™™)
k=0
where
k=4 -k (3)
alz) = (1 4, 2k? )
k=
k=s —k (4)
b(z) = (1 + ) bgz )
k=1
and s 2 & imposed constraint
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If the integer "k" in Equation (2) 1is allowed all values
(-=» <k <+=), then Equation (2) defines the discrete transfer
function relating the z-transform of input sequence ep(t) to

the =z-transform of output sequence §y(t) (Franklin and
Powell, 1980, p.15).

Although the signals 6p(t) ang er,(t) are not directly
available, they must be "generated" if loop closure effects are
properly taken into account. To do this apply superposition to
signals Y(t) and W(t) of Figure 1:

Y(t) = Gy(z)W(t) + Go(z)R(t) (5)
Yr(t) & Gylz)w(t) (6)
where
Ga(z) = -G4(2)/[1-G4(2z)Gp(z) ] (7)
G1(z) = Gp(z)Ga(2) (8)

Since W(t) is prewhitenable (defined above) and uncorrelat-
ed with R(t) the cross correlation identification technique of
Box and Jenkins (details in Appendix) may be applied to find
an estimate of the initial portion of the pulse response sequence
gy(z), between y(t) and W(t). Then aj(z) and bj(z) may be

determined as shown in the section on model stability, such
that

G1(2z) = aj(z)/by(2) (9)

The essence of modified superposition is now to generate the time
series Yp(t) using the autoregressive relation

by(z)Y(t) = aj(z)W(t) (10)
Where aj(z) and bj(z) are numerator and denominator polyno-
mials,

respectively, with the structure of Equations (3) and (4). The
linearly correlated signal er(t) is then generated from

er,(t) =W(t) - Yp(t) (11)

The above process 1is then repeated by reapplying super-
position to obtain the following relation between 6(t) and W(t):

§(t) = G3(z)W(t) + G4(z)R(E) (12)
sp.(t) 2 G3(zIW(t) (13)
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The cross correlation identification (Appendix) applied to the
sequence 6(t) and W(t) yields the initial segment of pulse
response sequence g3(z), and the polynomials aj3(z) and b3(z) may
be determined (see next section) such that

G3y(z) = a3(z)/b3z(z) (14)

Pilot output linearly correlated with W(t) is generated from the
autoregressive relation

b3(z) 6p(t) = a3(z)W(t) (15)

Finally, the cross correlation technique (Appendix) 1is
applied to 6;(t) and e (t) to find the initial segment of g,(k),
defined by the coefficient set {gpk, 05k <N}, of the pilot model
pulse response., Numerator and denominator polynomials are then
found (see next section) which yields

gplz) = 6p(z)/ep(2) (16)

No multiplication or divisions of transfer functions occurs
throughtout the above procedure.

4. MODEL STABILITY

As mentioned above, the pulse response sequence identifi-
ed [g9(z), g3(z) and g (z)] will be truncated at some finite
lag "k" final task is to find a parsimonious numerator polyno-
mial stable denominator polynomial which together are equivalent
mathematically to the identified pulse response. These polyno-
mials are chosen to have the structure shown in Equation (2),
which is re-arranged into the following form:

S -i kmax -k % -
(1 + ) bjz )( ) gkz ) = K(1 + ) axz ) (17)
i=1 k=0 k=1

kmax >s 2%
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Since the pulse response 3x jis known for 0 <k <N, by equat-
ing coefficients for the operator "z" at each exponential
power"4", o relationships may be found between numerator and deno-
miator coefficients ayx and by. Moreover, by equating coefficients
for the operator z above power "s", for which the right side of
equation (15) vanishes, one obtains for every j > 0

9g+j * 9s+j-1P1 * <o + 9g+j-sbs = 0 (18)

The above relation exists for a finite but large number of

“J >0", so projection theory (least squares) may be used to coef-

ficients Dby (0 <k $s). Bringing term "9(s+j)" to the other

side of equation (18) and divided by "g(s+j)" one may write
T T

A[by, by, «e.s bgl = [-1, ..., =1] (19)

and the "j*th roy of A is given by

| 9s+i-1 , 9s+j-2 , ..., Is+j-s| j >0 (20)
9s+7 95+ s+
1 by s

The solution from linear algebra is

T T -1 7T T

[b1, b2, <oy bsl™ = —(a"A) Ao [1, ..., 1] (21)

To provide a parsimonious denominator, the solution of
Equation (21) is accepted for the lowest order "s" which has
both a stable characteristic equation (i.e. roots less than 1.0
in magnitude) and which yields a model pulse response similar
in shape to the truncated pulse response identified from the
data. Once a stable denominator is found the numerator a (z)

and the gain K may be determined by once again matching coef-
ficients in Equation (17);

K = gqg (22)

(23)
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By defining error residual to be the actual output time
series minus the pilot model output series at each sample
instant, the gain K may be adjusted by a suitable minimization
technique to minimize the error residual variance.
Alternatively, it may be adjusted to provide a steady state
response of unity when the input to the transfer function is a
unity pulse train, a constraint recommended by Agarwal (1980).

If -a time delay %®t® is to be included, the final form
of Gp(z) will be as shown in Equation (2), and the indices for
the pulse responses in Equations (17)-(23) should be incre-
mented by the integer ®t® during identification (for example

the gain K from Equation (2) equals g; identified from the
data).

Validation tests may also be applied to the model. There
are two types of tests: acceptability and statistical signifi-
cance. Acceptability tests are common sense checks which com-
pare model output series verses actual autocorrelation
estimates from the data, autocorrelation of residuals for whi-

teness properties, and checks for negligible cross-correlation
between the noise inputs.

Statistical significance tests may be performed after
acceptability tests indicate the model is reasonable. Chi-
squared statistics are available from the w(t) and v(t) prewhi-
tened series (discussed in the Appendix and shown in Figure
13). Assuming one can safely neglect correlations beyond a lag

of 20, for example, the statistics to be computed are, for
®*whiteness® of v(t)

20 N
(N-p) ) {
k=1  (N-k) t=k

vit-k)v(t) (24)

and, for uncorrelated w(t) and v(t)

20 N

(N-p) } { —— ) w(t-k)v(t)} (25)
k=1 (N-k) t=k

p = order of Qy(z) filter

N = total points in data set
which should pass the chi-squared significance test for degrees
of freedom (20-p) and (20-1-s-1) respectively (Box and Jenkins,

1976, p.394). Failure of either significance test is evidence
of "a faulty assumption or a modeling inadequacy.
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To summarize the modified superposition technique

a) Find a finite pulse sequence relating y(t) and W(t) using
cross correlation identification (Appendix).

b) Determine a parsimonious, stable transfer function Gy (I)
which is mathematically equivalent, in the least squares
sense, to the sequence identified from the data gj(z)
[Equation (9)].

c) Generate time series realizations {yp(t)}, {ep(t)] using
Equations (10) and (11).

d) Find a finite pulse sequence, gj(z), relating 6(t) and W(t)
using cross correlation identification, and determine a

stable transfer function G3(r) for this pulse response
(Bgquation (14)).

e) Generate time realization $y(t) using Equation (15).

£) Find a finite sequence of the pulse response gp(z), from
6y,(t) and 6p(t) using cross correlation identification,
and fit a stable pilot model transfer function Gp(t) to
this pulse response (Equation (16)).

g) Adjust K if desired and validate the model.

5. PILOTED LABORATORY SIMULATION

Single-channel *piloted® simulations in the Flight
Simulation Laboratory at Purdue University were accomplished
with a pilot performing pursuit tracking tasks using a single
and double integrator (K/s and K/s?2 respectively) controlled
element dynamics, The task involved a command disturbance
input of a random appearing forcing function, and a standard
pursuit (McRuer, 1974) display using a CRT Monitor. Data sets
were obtained at a 20 hertz sample rate and 500 points were
used for modeling, providing a record length of only 25 seconds
(although the data run itself exceeded 60 seconds).

For the single-integrator controlled element many low-
order transfer functions provided excellent "fits," and the
lowest order model 1is shown in Table 1. A "direct iden-
tification® neglecting the closed-loop structure was also per-
formed by merely fitting signals {6(t)} and {e(t)}, and a
comparison of those results in Table 1 shows little variation
in parameter values between direct and indirect identification
in” this case. This implies a small value for pilot injected
noise relative to stick output (See Figure 1), a reasonable
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deduction for a ®"simple® controlled element such as K/s. An a
priori selected time delay of 0.2 seconds yielded the lowest

error residual variance and is consistent with previous results
(Bredderman, 1976).

A frequency response of the identified transfer func-
tion is shown in Figures 2 and 3 where it is clear that a delay
in series with a pure gain effectively describes pilot beha-
vior. This is consistent with classical pilot modeling results
(McRuer, 1974). Since a conventional Bode interpretation and
analysis using these frequency responses is not valid over all
frequencies in discrete systems z-domain analysis, a transfor-
mation of variables from 2z to w' was accomplished using
(Franklin and Powell, 1980, p.114)

w. a ;2_ ~(Z"1
a (z+1)
A 2 wh
v e = tan = (27)

Figures 4 and 5 show the transformed frequency (v
response in the w' domain, where a conventional Bode interpre-
tation is allowed. By comparing Figures 4 and 5 with Figures 2
and 3, one can find no discernable difference between the
responses over the frequency range of interest (0 w 25 rps).

The time histories are shown in Pigure 6. Only the first
500 points (25 seconds) were used to develop the model, "and the
model output remains reasonably accurate beyond this time. This
verifies stationarity and avoids an overfit (Kashyap, 1976),
which would be evidenced by increased error residual when the
model is applied to data independent of model derivation(in
this case beyond 25 seconds).

For the double-integrator controlled element a more
complex transfer function was identified and is shown in Table

2 for two values of a priori selected time delay (0.05 seconds
and 0.2 seconds).

From the frequency response plot in Figure 7 there is some
resonance near 2.0 Hz. The phase plots are shown in Figures 8
and 9 for two different values of time delay (0.2 and 0.05
seconds respectively). The transformation to w' domain yields
no discernable difference from these responses and they are not
shown,
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In contrast to control of a "simple" K/s, the "best fit
(minimizing residual error variance) was obtained when time
delay was set to 0.05 control for of K/s2. The phase contribu-
tion (from the poles and zeros) of the discrete transfer func-
tion is apparent as time delay changes between 0.2 seconds and
0.05 seconds, as may be seen by the phase plots of Figures 10
and 11 in which the pure time delay has been removed from the

discrete_ transfer function. Selecting the larger pure time
delay for the model exposes the considerable lead generation
from the transfer function poles and zeros. This lead genera-

tion is not as apparent when pure time delay is reduced for the
“best time domain® fit, but the resulting 0.05 seconds might be
judged too fast to associate with a lumped physiological delay
for a human operator. A possible explanation 1s unmodeled
pilot anticipation; that is, a possible anticipatory loop clo-
sure not accounted for in Figure 1.

Further evidence of this is provided in the time history
for the best fitting model in Figure 12. Note that a seasonal
pilot residual (where pilot output "leads" model output) occurs
during some of the longer intervals of large slope. This could
be caused by momentary anticipatory behavior arising from the
“pursuit" display including commanded input, a factor not
accounted for in a time invariant model. Thus in determining
the "best" model using time series analysis, the purpose of the

model must be given as much consideration as tests for "best
fit.*»

In summary for the K/s2 controlled element, an a priori
time delay in series with a rate sensitive gain describes "pilot"
behavior over his usable bandwidth, in agreement with classical
results (McRuer, 1974). When pure time delay 1s not set a
priori but allowed to vary in obtaining the "best time domain
fit," the minimization of an error variliance criterion results
in a math model where the time delay is perhaps too small to be
associated with physiological operator delays. This case 1is
associated with a pursuit task in which the command as well as
the plant output is displayed.
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6. CONCLUSIONS

A modified superposition technigque was described for
obtaining a parsimonious and stable discrete transfer function,
along with statistical tests for model wvalidation. Results
provide evidence that the time series technique appears
feasible to implement on "short® data records. The analyst
needs, however, to determine the criterion for a "best time
domain fit® which allows association of parameter values, such
as pure time delay, with actual physical and physiological
constraints. Seasonalities in pilot residual, possibly caused
by anticipatory behavior, were observed as first noted by

Shinners (1974), and are not well modeled with a time invariate
model.

Future work should concentrate on the full potential of
these time series models for analyses, especially their ability
to provide stable and accurate power spectral densities, and on
their application to multi-channed closed-loop pilot modeling.
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8. APPENDIX: Cross Correlation Identification
(Box and Jenkins, 1976)

Given the situation in Figure 13, the goal is to find the-
pulse response relating Y(t) and W(t), which is prewhitenable
by wuy(z). The prewhitening is accomplished by applying the
Levinson-Durbin algorithm as given by Kay and Marple (1981, pp.
1388-1389). By reversing the order of the blocks in the for-
ward path of Figure 13, and multiplying each signal at the
summer by
Qw—l (z), the following equation results:

Glz)w(t) + a, ~“1(z)v(t) = B(t) (28)
BlE) = qy ~M(z)y(t) (29)
Now multiply Equation (28) by w(t-k) and take the expecta-

tion, recalling that w(t) 1is uncorrelated by assumption
with v(t):

G(z) E[w(t)w(t-k)] = E[B(t)w(t-k)] (30)
By expanding G(z) using shift properties of 2z one obtains

(go+g12™ ! 492272 * ...) Elw(t)w(t-k)]l= E[B(t)w(t-k)] (31)

Since w(t) is an independent, identically distributed seguence of

random numbers with variance owz . one obtains for every lag k

Ik%w2 = E[B(t)wl(t-k)] (32)
k>0

Conventional estimation relations may now be used to estimate
the terms in Equation (32) and solve for gk; for example, from Box
and Jenkins (1976, pp. 32-33) one obtains

N N

9k {l L wit)w(t)} ={—1~ L B(E)w(t-k)} (33)
N t=1 N-k t=k

which detemines the pulse response sequence estimate gy
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Table 1 Discrete Transfer Function Identification
Results for Controlled Element K/s (K = 1)

K ""(1+a

P 12-1)
Model Structure Gp(z) =

-1
(1+blzp )

Signal to noise ratio = 50
N = 500 points a4 = 0.05 seconds t =4 (0.2 seconds)

Modified Direct
Parameter Superposition | Identification
Value
K; 0.64 0.69
K*¥® 0.79 0.72
p
3 0.71 0.69
b1 0.32 0.37

* Gain which minimizes error residual variance

** Gain yields steady state step response of unity
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Table 2 HModified Superposition Identification Results

for Controlled Element K/s2 (K = 1)

Kz'T(1+alz'1)

Model Structure Gp(z) =

Signal to noise ratio = 30

(1+b12'1+b22'2+b3z'

3)

N = 500 A = 0.05 seconds 1 =4 (0.2 seconds)
Parameter v = 0.05 sec 1 = 0.2 seconds

Kp* 0.03 0.89

Kp** 0.033 1.22

ay 10.9 -0.67

b1 - 1.42 -1.41

b2 0.91 0.88

b3 - 0.1 -0.06
Roats 0.14 0.08

0.64 tj 0.57 0.67 +j 0.57

® Gain which minimizes error residual variance

** Gain yields steady state step response of unity
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Figure 3 Manual Controller Frequency Responss Phats:
Controlled Element K/s
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DB MAG

Figure 4 W’ Response Magnitude: Controlled Element K/s
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Figure 5 W' Response Phase: Controlled Element K/s
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Figure 7 Manual Controller Frequency Response Meagnitude:
K/s2, 7= 0.2 seconds
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Figure 8 Manual Controller Frequency Responss Phase:
Klsz, 7 = 0.2 seconds
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Figure 9 Manual Controller Frequency Response Phase:
K/s2, T = .05 seconds
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Figure 10 Manual Controller Frequency Pole-zero Response Phass:
K/s2, 7= 0.2 seconds
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Figure 11 Manual Controller Frequency Pole-zero Response Phase:
K/s2, 7= 0.5 seconds
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