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1. SUMMARY

In this report, we have described a method for the computation of viscous
transonic flows over 3-D wings using a zonal approach to treat the viscid-
inviscid interactions. The chord Reynolds number was considered large and the
boundary layer was assumed to be predominantly turbulent. For the inviscid
flow computation, a parabolic coordinate mapping was used in conjunction with
a finite volume formulation of the conservative full potential equation. A
new numerical-AFZ scheme was developed for the 3-D inviscid flow solution to
replace the SLOR scheme. A special far field asymptotic boundary condition
was derived that gave more accurate results and better convergence
performance. In addition, a second order artificial viscosity is used in the
supersonic zone rendering the computation formally second-order everywhere
except at the captured shocks. For the 3-D boundary layer calculation, the
integral method of Myring-Smith-Stock was extensively modified and made
suitable for our interaction calculation. The wing thickness effect was taken
into account and the viscous wake solution was computed beyond the trailing
edges. The interaction calculation was formulated with a set of coupling
conditions that included the proper source flux distribution due to the
surface boundary layers on the wing, the flux jump distribution due to the
viscous wake and the viscous wake curvature effect. Transpiration boundary
conditions were used for the inviscid flow boundary conditions for the coupled
calculations. In addition, a method was devised so that the results of the
trailing edge strong interaction solution in our 2-D viscous airfoil analysis
could be adapted for the normal pressure correction near the trailing edge
region. The wake surface (that is, a fictitious surface imbedded in the
viscous wake) was floated such that the converged solution coincides with the
inviscid flow stream surface. A computer program was written to perform
calculations including all the above mentioned effects in a fully automated
manner. A standard case of calculation is represented by data inputs of wing
geometry, section ordinates, freestream Mach number, angle of attack and mean
chord Reynolds number. Three versions of the source language code of the
computer program were prepared. One scalar version is to be used on the IBM-
3081 computer, and two vectorized versions are to be used for the computers
Cyber-205 and Cray-1S. For engineering requirements, a typical case of




calculation for a viscous solution usually takes about 5 minutes of CPU
computing time on a Cray-1S computer. Details of the program can be found in
Volume 2 of this report - "GRUMWING User's Manual". The viscous program has
been test run on the Lockheed Wing A - a transonic supercritical transport
wing, and on the Lockheed Wing B - a high subsonic cruise fighter wing. In
addition, many check calculations have been carried out with the basic AFZ
inviscid code. These include computations over an ONERA-M6 wing modified to
include a large degree of wing twist, and calculations for a more complex
swept wing designed at Grumman Aerospace Corporation.



2. INTRODUCTION

There has been steady progress in the computation of inviscid transonic
flows in the decade following the original contribution of Murman and Cole in
1971. Recent developments (reviewed in Ref. 1-3) have led to fast, reliable
and accurate methods for solving the full potential flow equation using ADI
and multigrid techniques for transonic flows over airfoils, wings and
relatively complex wing-body combinations. Major advances have also been made
in the solution of the full Euler equations using multigrid and Runge-Kutta
techniques. The availability of these codes coupled with advances in
computers has revolutionized the aerodynamic design process so that
computational methods currently have a central role in aerodynamic design.

It is of course well known that viscous effects are important in most
aerodynamic flows of interest, particularly at transonic speeds, and must be
included in the theoretical formulation to be useful for practical design
applications. Recent applications of inviscid codes to transonic wing design
reported in the papers of Ref. 4 showed the inadequacies of purely inviscid
methods for practical wing design at transonic speeds. At the high Reynolds
numbers of interest in most aerodynamic problems the flow field is essentially
inviscid with viscous effects confined to thin layers near the surface and in
the wake. In these problems viscous effects can be taken into account through
a zonal approach based on an iterative solution of the combined inviscid and
boundary layer equations, including other local regions of strong viscid-
inviscid iteration where necessary. An alternative approach is that of
directly solving the full or parabolized approximation of the Reynolds
averaged equations numerically. While offering the prospect of providing the
most accurate and general method for solving viscous flow problems, Navier-
Stokes solvers have not yet led to a practical methods for aerodynamic
design. This is due to the Navier-Stokes solver's large computing
requirements and expense and the inadequacies of the turbulence models
available for finite difference formulations. In contrast, zonal type methods
have proved practical for aerodynamic design, particularly when simple
integral methods are used for the boundary layer solution. Integral methods
are attractive for viscid-inviscid interaction calculations not only because
they greatly reduce the computing requirements but also because they are much
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more flexible than finite difference methods in adapting turbulence models to
fit the physics in various subregions of complex turbulent flows (see
discussion by Kline in Ref. 5). Such methods have proved particularly
effective for computing viscous transonic flow over airfoils and are widely
used throughout the aeronautical community.

The objective of the present work is to develop a zonal type method for
viscous transonic flow over 3-D wings. OQur approach is to apply the same
viscous/inviscid interaction techniques previously developed for our GRUMFOIL
code (Ref. 6,7) for airfoils.

In a zonal type aﬁproach the flow is divided into an outer inviscid
region and thin, inner viscous regions near the airfoil and wake. The viscous
layers are further subdivided into weak interaction zones comprising most of
the boundary layer and wake where the standard boundary layer equations apply
and small local strong interaction regions near shock waves and the trailing
edge where the boundary layer approximations breaks down due to the presence
of relatively large normal pressure gradients. The viscous effects on the
outer inviscid flow are accounted for through viscous coupling conditions that
appear as boundary conditions on the inviscid flow. The ultimate basis for a
zonal type approach is a large Reynolds number asymptotic limit. To be
complete in the sense of including all the leading order terms the matching
conditions should account for 1) displacement effects on the airfoil or wing,
2) displacement effects due to the wake and 3) wake curvature effects due to
the momentum defect across the wake and 4) normal pressure gradient effects in
the strong interaction zones at trailing edges and shock waves.

Nearly complete zonal type methods have recently been developed for
subsonic and transonic flow over airfoils by Melnik (Ref. 6-8) et al, Collyer
and Lock (Ref. 9), and LeBalleur (Ref. 10). A1l these methods employed a
potential flow approximation for the inviscid flow and integral methods for
the boundary layer solution. They accounted for all the weak interaction
effects due to the boundary layer and wake but only the GRUMFOIL code of
Melnik et al accounted for strong interaction effects at the trailing edge.
None of the methods accounted for strong interaction effects near shock waves.

In turbulent flow, the shock wave penetrates into the boundary layer and
generates large normal pressure gradients leading to a breakdown of the
standard boundary layer formulation. Although a simple boundary layer
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description cannot give an accurate prediction of the local details of such an
interaction, comparison with experiments (Ref. 6, 8, and 11) indicates that it
does seem to give a good prediction of the overall thickening of the boundary
layer across the shock wave and a good prediction of the boundary layer
integral properties downstream of the interaction. Fortunately, this seems to
be sufficient to achieve good predictions of airfoil section characteristics
even under high-1ift supercritical conditions. On the other hand, because
normal pressure gradient effects near trailing edges can produce significant
global results through their influence on the Kutta condition, they should be
accounted for, particularly when there is a significant degree of rear loading
on the airfoil.

A similar method was developed by Whitfield et al (Ref. 11 and 12) using
an Euler equation solver for the inviscid flow. Their method only accounted
for the displacement effect of the boundary layer and wake and ignored the
wake curvature and strong interaction effects. Although the use of the Euler
equations for the inviscid solution might be an improvement for strong shock
waves (MLOCAL > 1.3), the overall method may be less accurate than the
potential flow methods discussed above because of the neglect of the wake
curvature and trailing edge interaction effects in their viscous flow
formulation. For further discussion of developments in zonal methods for
airfoils see the recent reviews in Ref. 10 and Ref. 12-15. ’

Our overall approach to the wing problem addressed in this report has
been to extend the viscous flow formulation used in the GRUMFOIL code for
airfoils to three dimensions. For the inviscid flow, the full potential
equation for transonic flow over 3-D wings is employed. A finite volume
formulation based on Jameson's FL0O27 code was used to solve the full poten-
tial equation in conservation form. A modified "C" type mesh was employed to
allow the wake streamline to be aligned with the grid thus giving a more
accurate implementation of wake coupling conditions than used in the 2-D
GRUMFOIL code. A new approximate factorization (AFZ) scheme was formulated to
accelerate convergence. We also introduced a more accurate asymptotic far
field boundary condition and a fully second order artificial viscosity into
the program. The inviscid code is designated FL0O47. The new laminar and
turbulent boundary layer method used in the present work has its origin in
Stock's method (Ref. 16) but has been extensively modified for interactive




calculations. Stock's method uses a fully 3-D integral boundary layer method
with a lag entrainment method adopted from the work of Green (Ref. 17).

The viscous flow method employs a fully 3-D form of the wing surface
boundary layer and wake displacement thickness coupling conditions using a
transpiration velocity formulation. The wake curvature condition is
implemented using a quasi-2-D strip formulation that accounts only for the
pressure variation across the wake that is generated by the streamwise
component of the curvature of the wake surface. This approximation should be
useful for the wing flow field under consideration where the primary component
of the wake curvature is in the streamwise direction. The spanwise component
of curvature can be expected to be large only near the wing tip, and it is
only in this region that we showed significant departures from the simple
strip approximation employed in the present method. We also employ a simple
2-D strip approximation to justify the use of the same trailing edge
correction as employed in the GRUMFOIL code. Since gradients in the spanwise
direction are small compared to the gradients in the streamwise direction,
this should also be a good approximation except near the wing tip and root
sections. With these approximations, the present code accounts for all the
primary viscous interaction aspects except those arising from the shock
boundary layer interaction. As proved for the airfoil calculations we expect
this simple boundary layer treatment of shock wave-boundary layer interactions
to be adequate for the prediction of wing section characteristics for the
reasons discussed above.

Several other methods have recently been developed (Ref. 18-22) for
computing viscous transonic flow over wings and wing-body combinations. In
common with the present method, they all employ a modified version of Green's
l1ag entrainment method for the boundary layer solution and all, except Samant
and Wigton (Ref. 22), use a potential flow approximation for the inviscid
flow. Samant and Wigton (Ref. 22) use the Jameson FLO57 (Ref. 23) method for
solving the full Euler equations in the inviscid flow. Firmin (Ref. 18) and
Waggoner (Ref. 19) use a transonic small disturbance approach for the inviscid
flow which is less accurate than the full potential flow approximation
employed in the present method as well as in Streett's (Ref. 20) and Wigton
and Yoshihara's (Ref. 21) method. A1l of the methods, including the present
one, account for the displacement thickness effect both on the wing surface



and in the wake, except for Waggoner's and Samant and Wigton's methods which
neglect all wake effects. Only Streett's and the present method account for
the wake curvature effect and only the present method includes the trailing
edge interaction effect. The corrections to the coupling conditions that
arise from the local trailing edge interaction solution are particularly
important for a correct implementation of the wake curvature effect. The
proceddre used for the wake curvature terms in Streett's method, which ignores
the trailing edge interaction, employs a single mean of the curvatures of the
upper and lower surfaces of the wake. This undoubtedly leads to a significant
underestimate of the wake curvature effect. Nevertheless, computations
presented in Streett's paper indicated that the effect of the wake curvature
coupling conditions were fairly large. These results and those obtained
earlier for airfoils (Ref. 8) clearly demonstrated the importance of including
the wake curvature terms in the coupling conditions.

We believe the viscous flow method employed in the present work
represents the most complete implementation of a zonal type approach to
viscous flow over wings achieved to date.

Acknowl edgement. The authors wish to express their appreciation to
Mr. D. Roman for his contributions to the development of the inviscid portion

of the computer program used in this work.




3. VISCOUS WING THEORY - BACKGROUND

3.1 INTRODUCTORY REMARKS - INVISCID FLOW

In the last few years, extensive progress has been made in inviscid
transonic flow computations. Three dimensional transonic, inviscid fiow
fields can now be computed over wings and wing-fuselage combinations using
newly developed "finite volume" computer codes which solve the transonic full
potential equations. For cases where the shocks are not so strong that
extensive boundary layer separation or entropy production at the shock takes
place, accurate predictions of 1ift and drag can be obtained (Ref. 24). Just
as important as accuracy, these finite volume techniques are flexible, being
able to handle fairly complex geometries, and can be matched to turbulent
boundary layer computing methods as reported here and in Ref. 20.

In Subsection 4.1, we describe a simple but efficient "AFZ" approximate
factorization scheme which can converge to a solution much faster than
relaxation methods. The scheme requires no more computer storage than
relaxation schemes, however, and, as is in those schemes, data is only
required in a fixed plane-by-plane sequence. Therefore, if necessary, a disk
or similar mass storage device can efficiently be used.

Other factorization schemes have been reported for the 3-D transonic
problem (Ref. 25, 26, and 27). In Ref. 25, two 3-D data arrays must be
stored, however, and more complicated data manipulations are required due to
the presence of an additional factor. The "“SIP" scheme of Ref. 26 requires
much more storage and data manipulations. The scheme of Ref. 27 is applied to
a nonconservative finite difference scheme, rather than a finite volume one.
In our work, the AFZ scheme is applied to the 3-D conservative, full
potential, finite volume formulation of Ref. 24.

Another approach to solving the inviscid equations involves using a
factorized or a relaxation method for reducing high frequency errors, together
with a multigrid scheme. Good results, comparable to ours, in terms of
convergence rates, have been presented in Ref. 28 and 29 for successive line
over relaxation (SLOR) with multigrid. These schemes require about 30% more
total storage than ours due to the extra grids used. Also, the use of
auxiliary storage such as a disk appears to be more difficult due to the



required intergrid transfer operations. However, multigrid methods may be
less sensitive to extreme grid stretching than our method.

An alternative to solving the potential equations for the inviscid flow
involves the Euler equations. These require, however, at least five times as
much storage and several times as many computations per point per iteration as
potential flow methods. Also, although recent progress has been made on
speeding up convergence (Ref. 30), they require at least several times as many
iterations to converge and almost an order of magnitude more total
computational cost.

Some of the initial work on the AFZ method was done with J. Benek and A.
Jameson (Ref. 31).

3.2 3-D BOUNDARY LAYER & VISCOUS WAKE THEORY

The subject of 3-D boundary layers is a very large and important area of
research in aerodynamics. It has been of continued interest to aero-
dynamicists for the past several decades. Examples of recent developments can
be found in the book "Three-Dimensional Turbulent Boundary Layers" (Ref.

35). Significant progress has been made on computing attached 3-D boundary
layers solution on wings. Although 3-D boundary layer separation remains a
very difficult problem to solve, the phenomenon has become much better
understood through the study of the development of the characteristics of the
system of partial differential equations for boundary layers (Ref. 36 and 37).
The study of boundary layer separation on wings is particularly important in
the transonic flow regime as it is very often caused by the interaction with
the inviscid shocks on the upper surface of the wings.

Methods of solving the 3-D boundary layer equations fall into two main
categories; finite difference schemes which predict flow properties at each of
the mesh points across the layer, and integral methods which predict only the
skin friction and certain integral properties of the boundary layer. For
turbulent flow, both categories involve a good deal of empiricism and both are
currently underdeveloped particularly when the flow is separated. There have
been many investigations made of 3-D boundary layers on wings. Among those
using finite difference formulations are the recent studies of Cebeci et al
(Ref. 38) and McLean et al (Ref. 39). Both studies used eddy viscosity
modeiing. McLean et al made an interaction study by coupling the boundary




layer solution to the inviscid flow. The McLean procedure did not account for
important wake effects and required too much computer time for it to be an
effective wing design tool. Our 2-D viscous airfoil study indicates that
there is always a strong wake curvature effect for subsonic trailing edges.

It is our belief that this phenomenon is also important in the 3-D viscous
wing problem and should be included in the theoretical formulation.

Integral boundary layer techniques have several advantages over the
finite difference methods. They are usually easy to apply, the computations
are fast, and the results are not overly sensitive to the choice of the
turbulence models used. Myring (Ref. 40) has developed a fairly complete
momentum integral prediction method for 3-D boundary layers in incompressible
flow. The continuity equation (i.e., the entrainment equation) and the two
Reynolds averaged momentum equations in directions parallel to the surface are
used to derive a system of first-order partial differential equations for the
momentum thickness along the mainstream direction, the shape factor, and the
streamline deviation angle g (the angle between the external streamline and
the limiting streamline at the wall). The global physical quantities (e.g.,
the momentum thickness in the transverse direction) are then implicitly
dependent upon the deviation angle 8. Myring's work has been extended by
Smith (Ref. 41) to 3-D compressible turbulent boundary layer flow over an
insulated surface. To improve the turbulence calculation, Green et al (Ref.
17) has developed a highly successful prediction method for 2-D compressible
turbulent boundary layers and wakes. A one equation lag-entrainment method
was developed to incorporate nonequilibrium "history" effects into the
integral entrainment method. This method was used in our 2-D GRUMFOIL code.

The work of Smith and Green et al was combined by Stock (Ref. 16) to
provide a 3-D extension of the compressible lag entrainment method. Stock's
method also incorporates an integral method for 3-D laminar boundary layers.
The laminar boundary layer formulation (Ref. 42) uses five equations, namely,
continuity, two momentum equations along the surface and their respectiVe
first-order moment equations, to determine five flow parameters including the
displacement thickness and the momentum thickness in the mainstream direction.
The laminar integral is based on one-parameter Falkner-Skan velocity profile

in the main stream direction and a two-parameter polynomial velocity profile
for the cross flow.
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Since we follow the same formulation as that of Smith and Stock, the
derivation of the governing equations is not given in this report. However,
certain modifications and extension of their work which are necessary for
viscid-inviscid computations are discussed. These include, the derivation of
the full metric coefficient taking into account the wing thickness and the
variation of the wake shape, the extension of the calculation to 3-D viscous
wakes and the derivation of the source distribution from the boundary layer
solution for the transpiration boundary conditions.

It is important to mention that the resulting 2-D (coordinates along the
surface) partial differential equations for turbulent flow governing the
surface shape factor (R), the momentum thickness along the main stream
direction (8;;), and the streamline deviation angle g are of hyperbolic type
with distinct characteristic curves (see Ref. 40 and 41). Similar conclusion
can also be drawn for the equations for the laminar boundary layer.

Therefore, the problem for the solution for the system of partial differential
equation as an initial value problem is well posed provided proper initial
conditions can be prescribed. We shall discuss this more in Subsection 4.2 of
this report.

3.3 "ZONAL" APPROACH TO SOLUTIONS OF 3-D VISCOUS FLOW ON WINGS

From the discussions made in the two previous sections, our inviscid AFZ
method for the 3-D potential flow solution and the integral methods for the
boundary layer analysis comprise the necessary elements for the viscid-
inviscid interactive analysis for the viscous flow about wings. OQur boundary
layer method follows Stock's (Ref. 16) treatment of the laminar and turbulent
boundary layer computation on wings with our improvement that the wing
thickness effect is taken into account. In addition, the complete 3-D viscous
wake is computed to take into account the wake thickness effect for viscous
interaction. In the present work, the transpiration coupling conditions are
used for the displacement effect and the wake curvature condition along the
wake streamline is determined from the iterative solution of the inviscid
flow. In addition, a local 2-D trailing edge strong interaction solution is
included, and imbedded in the global solution. The derivations of these
conditions are given in Subsection 4.3 of this report.
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4. NUMERICAL METHODS

4.1 INVISCID COMPUTATIONAL PROCEDURE
4.1.1 Basic Equations for 3-D Inviscid Flow

The basic equation describing irrotational, inviscid compressible flow
can be written

ax(pu) + ay(pv) + az(pw) =0 (4.1.1)

where 3,, ay, and 3, represent partial differentiation with respect to
Cartesian x, y, and z. It should be pointed out here that the notations used
in describing the numerical techniques employed in computing the inviscid flow
(Subsection 4.1) are different from those used for the viscous flow
formulation (Subsections 4.2 and 4.3).

When the velocity is related to a potential by

u
q= (v)= Vo + q (4.1.2)
w
and the isentropic relation is used for the density
1
-1 22 2\ 171
p=[1 + 5= M (1-47)]" . (4.1.3)

we have a single partial differential equation to solve for the single
variable, ¢. In the above y is the ratio of specific heats, q2 and p are
normalized by their free stream values and M_ is the Mach number of the free
stream.

Equations (4.1.1) to (4.1.3) are transformed to a computational space
with coordinates (X,Y,Z) by application of coordinate mappings according to
the method described in Ref. 24. This consists of introducing parabolic
coordinates (X,Y) 1in spanwise planes (z = constant) by the transformation

(X + 1Y) = /tx-xo(z)] +1 [y-y (2)]
7=z |
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where xo(z), yo(z) define a singular line just inside the wing leading edge.
The effect of the transformation is to unwrap the wing about the singular line

to form a shallow bump, Y = S(X,7). The bump is then removed by a shearing
transformation,

X' =%, Y =Y-s(X,D, ' =7

(see Fig. 1). A far field stretching is then used to define final
computational variables X, Y, and Z.

If the transformations are represented by a Jacobian matrix

axx an 9,X
H= 3y dyy 3,Y (4.1.4)
32 dyz 3,2
Eq (4.1.1) may be written in terms of transformed variables:

Lo(¢) = ax(phU) + 3Y(phV) + az(th) =0 (4.1.5)

where
h = det(H),

U, V, and W are contravariant velocities:

U 1 u
(V) = H” (v) (4.1.6)
W W

and the physical velocities are given in terms of derivatives of the potential
in the transformed space:

u WA u,
1.°
= (H') o) +{ v, (4.1.7)
w 3,6 w_
13



4.1.2 Boundary Conditions

Initially, freestream conditions were set on the outer boundaries in the
form ¢ =0 on Y = Yy and ¢y = 0 on the surfaces X = Xy and X = - Xy (Fig.
1). These surfaces are far behind the wing in the physical space and are
separated by the wake (Y = 0, Z < ZT) shed from the trailing edge of the
wing. The condition ¢y = O requires that the streamwise tangential derivative
of ¢ be zero at the wake in the far field. All boundaries are at a finite
distance from the wing in the procedure used here so that it was felt that
more accurate boundary conditions could be derived by assuming that the
Prandtl-Glauert equation is valid at these boundaries and solving for the
reduced velocity potential. The solution can be written formally as;

1
¢~¢LIFT+0 (?):'3')"'0 (Rj')
where
3¢( &,%) ( )
L —2 o1+ X B e
LIFT T8 5 (o0 2ey2 R
1/2
R = {(x - 8% + 8%z - )% + (y - m?])
2 =1-Mm
g,n,¢ = surface coordinates of the wing (see Fig. 2).

where the integration is carried out over the wing surface (w.s.) The wing
thickness integral of the order 0 Lig) , and the volume integral of the
order 0 (&5) are neglected in the %ar field compared to ¢ ;pr- On the
boundaries considered here (see Fig. 2), it is seen that, when (y - n)2 <1,
then (x - £)2 >> 0. Also when x = 0(E), it follows that on the boundary, that
lyl >> Inl, irrespective of the values of z and g. A very good approximation

(x - &)
2

for is then
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(x ﬁfs) - (x - &) .
{(x-8)% + 62[y2 + (z - ©)21}

i

Further expansion to 06%) allows us to express ¢ [p7 as:

%ar Field - ®LIFT = % ¥ 1

with
y +b/2 (1 + ul)r(;)d; (
¢ = 4.1.8a)
L& oietz-o0%+ v
and,
y e de ( ¥ (
oy = 7., {(JUMP(x ¢) - T(z)} 4.1.8b)
I1 ~ Ix -b/2 m 2 T.E.
where
1/2

m = x{x2 + sz[y2 + (z - c)2]}

-3/2 1/2

m, = {x2 { x2 + g2y - (z-)%] } - 2+ @y + (z-0)%] } ) }

Ng) = ,egg (£,2)dE = aplz)  (KUTTA)
) = ¢ ¢lE,0)de

It can be shown that the expression for ¢; approaches the relation given by
Klunker (Ref. 32) only for x + + = and differs from it otherwise. When x + - =
NIFT * 0 which is the correct behavior for the reduced potential in this
Timit. Although the code has been written to include both the ¢; and ¢y

terms in the far field boundary conditions we have so far made extensive runs
with only the first term included. The results obtained to date indicate that
for a value of BOUND = .9 (i.e., on the boundary about 4 chords from the

wing), using ¢; alone is quite sufficient. The computed 1ift results are
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consistently higher than those satisfying free stream velocity at the
boundary, indicating the importance of the effect of the far field boundary
conditions. Also, the convergence rate is better than that achieved using the
original freestream conditions previously discussed. Details of computed
results will be discussed in Subsection 5.1 of this report.

The boundary condition on the surface Z = ZM (Fig. 1) is ¢ = 0. A
symmetry condition is used on Z = 0 (i.e., ¢ is reflected) since the flow is
symmetric there.

The surface Y = 0 in the computational space contains the wing for -X1.E.
<X < Xqg and Z < Z1. The velocity tangency condition V = 0 is imposed here
by setting ¢y = 0 on the wing surface. The wing trailing edge is mapped to
two lines, X = Xyp and X = -Xqg, Z < Iy in this plane, so that the wake from
the wing trailing edge is mapped to two parts of the surface: X > X1g and X <
= X1gs Z < Zy. Across these surfaces the normal velocity V and the pressure
(p) are forced to be continuous so that both p and V must match at the two
computational points corresponding to the same physical location. Since p is
a function of q2 alone in potential flow, and V and W are small compared to U
(i.e., the coordinate surface is approximately aligned with the free stream)
continuity of pressure is, to a good approximation, enforced by requiring
continuity of U. This, in turn, requires continuity of ¢y Since, for a
1ifting wing ¢ is not continuous across the trailing edge it is not continuous
across these surfaces.

There are two options for positioning the wake in the computer code. The
standard one involves keeping it fixed as the solution converges so that, in
general, there will be (continuous) flow through it. The second option
involves allowing the wake to follow the local velocity. With the latter the
wake is still mapped to part of the Y = 0 surface and the mesh is iteratively
adapted to the flow. This mapping requires that the height (Y value) of the
wake be a single valued function of X and Z, which precludes its rolling up.
The equations for this option are described in Subsection 4.1.5. Off the wing
tip in the Y = 0 plane (Z > Iy, all X) continuity of V and ¢y 1s enforced but
no discontinuity of ¢ is allowed. The potential is then matched at points
which coincide in the physical plane.

Two exceptional lines occur in the Y = 0 plane where special conditions
are applied. The first is the line corresponding to the mapping singularity X
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= 0 for Zy < Z < Zy. There, a§¢ + a$¢ = 0 is enforced. The other
corresponds to the wing tip, Z = Iy, -Xyg € X < Xyg- There the physical
vortex sheet would start to roll up. Since the computation constrains the
sheet to start behind the wing and disallows roll up, an additional condition
is required to avoid a singularity in V. It should be pointed out that this
flat vortex sheet constraint is not inherent in the assumption of potential
flow. The existence of a potential is consistent with the appearance of
rolled up trailing vortex sheets or vortices at wing tips. Both these
phenomenon can be modelled in full potential flow. The condition we impose
(at the wing tip in the code) is that a$¢ = 0 all along this line, which
insures that V is a local maximum. Thus far, the use of this condition has
proved necessary in flows with highly loaded wing tip sections.

4.1.3 Discretization

The finite volume scheme of Ref. 24 is used to discretize Eq (4.1.5).
Two staggered grids are used (see Fig. 3a). On one, p, u, v, w, U, V, W, H
and h are defined; on the other, x, y, z, X, Y, Z, ¢, and L(¢) are defined.
The nodes of each grid are at the centers of the cells of the other, and a box
scheme is used to compute the derivatives in Eq (4.1.4), (4.1.5), and
(4.1.7a). For a variable f,

5 sl ol T isnanion * fangoeen ¥ fivga ¥ fiaa,
2 2
- fi e ket~ TiLiker T TiLjerk - fig /8

Similar expressions can be written for the Y and Z derivatives.

The indices i, j, k are used for the computational coordinates X, Y, and
Z which are normalized such that

AX = AY = AZ = 1
Using these relations, all the partial derivatives in Eq (4.1.4), (4.1.5) and

(4.1.7) are replaced by finite differences and the equations become finite
difference equations.
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The wing surface bisects the flux balance cell such that four cell
corners are above the surface and four image corners below. The values of U
and W below the surface occuring in the discrete version of Eq (4.1.5) are set
equal to those above, and the values of V set equal to the negative of the
values above. This is described, in 2-D, in Fig. 3b. Across the wake the
same flux balance is used as in the interior. The values of U, V, and W at
the image corners on one side are taken to be the values above the surface on
the other side. This defines the equations on one side of the wake in the
computational plane and ensures that V is continuous to second order at
convergence. On the other side of the wake values of ¢ are used equal to
values at corresponding points on the first side, with a constant
discontinuity (in each Z plane). The value of this discontinuity is
determined at the trailing edge points in each plane. This enforces
continuity of pressure as described above.

The same procedure is used beyond the wing tip where there is no
discontinuity. The far field boundary conditions are evaluated by numerically
integrating Eq (4.1.8) with the jump in potential given at the trailing edge
of each Z = constant section for Z < Z1.

The basic finite volume scheme leads to an odd-even decoupling of
solutions. If a small temm is added to the left hand side (L (¢)) of Eq
(4.1.5), this problem can be eliminated. First, L({¢) is expanded:

H¢)~Aa§¢+Ba$¢+ca§¢+oma'mmw.

The coefficients A, B, and C can be found from the nonconservative quasilinear
formulation:

>
!

= shlg, ; - U%/a%)

w
)

= on(g, ,- v¥/a®)
C = oh(gg 5 - W2/a?)

where g;,i are the diagonal elements of (HTH)"1 and a is the local speed of
sound. The recoupling terms are then
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Lrecl®) = gy (AtBYSyy ¢ + 8y, (B+C) 8y 0 + &5y (CrA) &)y 0

+ 5XYZ(A+B+C)SXYZ¢

Here,

Sy | = [f - f . - foe s + f, .

XY ' '..1..1 1 i+1,j+1,k+1 i,j+1,k+l i+l,],k+l i,j,k+1

1*2,J+23kﬁz v
* Fiengerk - Tiugenk - Fien,gk i,y /2

etc, and

Sevzf = [Fian,ge1 ket = FiL3en,k00 = Tiwn,g ke ¥ TiL5 k00

BN R AR R AR ERIERINRY
It can be seen that Lrec(¢) is of second order with respect to the terms in
Lo(d).
0

For stability in the supersonic zone, either a first order or a second
order artificial viscosity can be used. The first order form is less accurate
but results in faster, more reliable convergence to a solution in general.

For the first order form a switching function is first defined:
s = max(0, 1 - Mgle)

where

and M. is a switching Mach number, slightly less than 1 (= .95). Then,

P = "‘U25x2 3 Gyyet %’! S7x ¢

2.2 . WM UV
wVE8y ¢ + 7= Sy70 + 7= Syy¢)

£
]
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2.2 WU VW
l-l(w 624’ + T 6zx¢ + T 6YZ¢

P =]
1}

s cshpz/a2

=
1)

where ¢ is a constant and the second order difference operators are as defined
previously, with, in addition,
2

&8F = f

= fis5.k " f

Zfi sj ’k ¥ 1'1 :j 9k

etc.

In terms of these quantities, for flow with U and W positive and V
negative, the artificial viscosity tem is

W

Lvis® = Pisk = Pict,ik Y %50k 7 QLi-1,k T M5k T WiLg k-1

(a negative V implies flow in the increasing j direction).

This is first order compared to L°(¢). If this artificial viscosity
option is chosen, the complete equation to be solved for the potential, ¢, at
each point is
(¢) +L

L°(¢)+L (¢) =0

rec vis

In order to achieve second order accuracy in the supersonic zone L,;¢¢ is
replaced by (again for U and W positive and V negative);
Luis® = Py gk = &i,3kPi-1,3,k) = Picn,i.k = Si-2,3.k P12,k

+ similar terms for Q and R.

The Tocal parameter ey j \ 1s included for stability at shocks. e j ¢ =
1 forces the scheme with L ;.4 added to be second order, while €,j .k, = 0
forces Lyjo¢ to the first order form defined previously. In the work of Ref.
33 it is shown that the scheme had to be first order near shocks for
stability. Hence, the form
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.5,k = max(0, (1 - vy = Vg A))

is used, where v, and vy are adjustable parameters and A = Pi 5.k = Pi-l,j.k
is used to detect the shock. This is small in the smooth parts of the flow
and large near the shocks. To use the first-order option in the code, vp =1
and vy = 0. For the second-order option, vp = 0 and v = 4. We have found
significant differences in the flow field in the supersonic zone between the
first and second order schemes. For the second order scheme, the shocks are
captured over fewer mesh points. Results using the first and second order
schemes will be compared in Subsection 5.1 of this report.

4.1.4 AFZ Scheme

The basic idea benind the AFZ scheme is to solve a set of implicit
equations in each constant Z-plane, for a correction to ¢. Since no implicit
equations are solved in the Z direction, the 3-D array of ¢ values can be
stored on disk and only several X-Y planes of data need be stored in the
computer at any one time.

During the iteration of sweep number n+l, when updating plane number k,
values of ¢ are available corresponding to iteration n+l in plane k-1 since it
has just been updated. Only unupdated (level n) values are available in
planes k and k+1. It was decided to make use of the available updated values
in computing the residual at plane k, as is done in successive-line-
overrelaxation (SLOR) where updated values in the previous line are used and
implicit equations are solved along each line. It is most efficient to
compute contravariant velocities once each iteration between each plane and
use them in computing L0(¢) for both planes on either side. To directly
incorporate updated values of ¢ into each L,(¢) computation, it would be
necessary to abandon this approach and recompute these velocities, using them
only once for each L°(¢) computation. This would almost double the number of
required calculations. An alternative which was chosen involved adding the
correction multiplied by an appropriate constant to Lo(¢) computed using only
old values at each plane. Our scheme thus had the form

Nyy 56" = awt (") + alE] 84", (4.1.9)

4,n+]. 4,n + 5¢n

21



where Nyy is an operator in the XY plane, a may be an operator, w is a
relaxation factor and E; is the shifting operator:

Ez 6¢k = 6¢1(-1
If L(¢") is a Laplacian,
_ axl 2 2
LL(¢) = Ay ¢ + BSyo + C67¢

then choosing € = C would make the right hand side, at plane k, equal to

am[As)Z((pk + BG + c(¢|’(‘+i- 2¢k %1)]

which is aw LL(¢) computed using the latest available values of ¢. For our
nonlinear case we used a similar approach for determining C .

The operator Nyy was chosen from successful 2-D ADI schemes (Ref. 34):
= (ay - §A8 )(ay - &BS) .

The values of A and B are given by the expansion of L (¢), described
previously. Also, ay and ay are numbers at low speed, and, following the
approach of Ref. 34, become operators for supersonic flow. They also include
a part to approximate L ;.(4) in addition to L,(4).

For flow in the tX, +Y direction,

+ ayby

> +I

a= a°+a16

where

Q. = mx(Bogal) 9

B, = Py &z r(Z) max(0, 1 - qz/az)
B = 2 Py r(2) C
a = P, P, &z ¢(Z) min (1,q%/2") F(v)
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% = Pg P, &z r(Z) min (1, q4/a4) .

In the above, Az is the difference in physical z values between planes, f(U)
is 1 except near the point where U changes sign, C is an expansion coefficient
described previously, Py - Pg are constants for each iteration and

r(z) =1+ Z/Zwing tip

We also use

except at the root plane (Z = 0), where

C

P2 ab/1.1 .

The relaxation factor w is given by

€
n

Py (1 + 1/r(T)) .

Also, to approximate first order artificial viscosity terms

_ 2.2
ux-a.-GXuUGX

_ + 2.2
a = a- GY uy GY

where p is defined previously. To approximate second order artificial
viscosity, we use

uUz(l + e)6§
a = a- 6; uVZ(l - 5)53

where ¢ is defined above.

The form for «, was chosen to become small when the local Mach number
approached 1, which is required for stability. However, modal analysis showed
that, in far field regions, where the grid is stretched in X and Y, but not in
Z, there is a lower bound on o, for stability (for elliptic flow). The
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functions Bo and B represent these two competing requirements. The
parameters o and a, were designed to become small for low speed flow so that
a would then be a number instead of an operator. Finally, it was found that
the minimum o for stability increased with increasing Z. The function r(Z)
was accordingly included to improve convergence. The use of 1/r(Z) in the
formula for w results in a relative under-relaxation for larger values of Z,
which further increases stability and improves convergence.

The solution sequence consists of a set of cycles. In each cycle,there
are K sweeps through the field, in which values of P, are cycled and set equal
to P?, ePg, eZP?, coes eK'ng A1l other parameters are kept constant.
Best results were found for K = 4 and e = 1/2, for fine grid transonic
calculations. In each sweep, the factorized equations (4.1.9) are solved
plane-by-plane starting from the wing root, for corrections, &§¢, which are

added to ¢. In each plane, first,
~ n - N
(o - &A8 )¢ = al(¢7) + auCE; 8¢ (4.1.10)
is solved row-by-row for a temporary 2-D variable ¢ . Then,
(uY - 6B6Y)6¢ = ¢ (4.1.11)

is solved column-by-column for the correction, 8¢. The third order operator
terms in ay are all in one direction, since the Y-velocity always has the same
sign so that there are four diagonals in the equivalent matrix Eq (4.1.11) for
8¢, instead of the three that would occur if only o« were used instead of ay.
Thus, a four-diagonal solver, which is only slightly more complicated than a
three-diagonal one is required. For the solution of (4.1.10), a five-diagonal
solver is required since, in the mapped plane, the flow changes direction
along the line being solved, and derivatives in both directions occur. Again,
this does not require much more computation than a tridiagonal solution.

4.1.5 Fitted Wake Calculation

In each span station (z-const) a "C" mesh is generated. The inner-most
coordinate line partly lies on the wing surface. The rest of the line lies
between the trailing edge and the downstream boundary (see Fig. 4).
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The grid points are labeled with indices i, j, and k corresponding to
computational X, Y, and Z coordinates. Our concern will be lines B-A and D-
E. We will want them to follow the wake streamline from the trailing edge
(t.e.) to the downstream boundary. Points along these lines will be denoted
(x,y) = (xF . y+ ) or (x; ., ¥; ,) with z= 2z, independent of i. We

ik? i,k i,k? 71,k K
define i =1 at the t.e. and i = N downstream. Points on line B-A are denoted
by (+) and on line D-E by (-).

o : ot -
We set xi,k = Xk and determine 8 = yi,k - yi,k from a computed
wake thickness. Then, denoting the mean value

n

1, + -
Yik =7 Wikt o

and

ik ™ %k T Xk

the condition that the median wake line follow the wake streamline is that

Yisk _Yislk T Yik
Uik Xislk T Rk

(4.1.12)

where uj and Vi g are mean physical velocities defined in plane k:
=1 .t -
Uik =7 (gt Yy )

_1 ¢ -
Vik 7 Vit Vi)

During each iteration, for which new values of the potential function, ¢,
are computed, a displacement Bk is computed such that Eq (4.1.12) is
satisfied. These displacements are then added to each node corresponding to
the same i and k for the next potential iteration. The formula used for
computing the Ayi,k's is

v

1,k
Wivgk = s (X

Ui k

i1k Mk T Wien e o Yik - )]
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where w is a relaxation factor (presently set to 1).

The physical velocities uf K v% K are computed from the metric and
velocity potential ¢ values at surrounding points:

u= (6szx¢ - axy6Y¢)/h + COS a

v = (-6Yx6X¢ + Gxx6Y¢)/h +sina ,

-2
]

= 88X - & Y6 X.

In the above, for u: K and v: K ® the differences are computed by

1+ ++ + +
S5F =7 (Fiy, ka1 “Fik* Fisnk - Fixle
&F = 7 (¢t fFYOCF FHo)

v, k PRkt Fienk - Fik

where superscripts (++) denote quantities on the 1ine above those denoted by
(+). Similar equations with (+) changed to (-) are used to compute

u;’k, V;,k‘ The velocities are normalized to unity in the free stream and o
denotes the angle of attack.

During each iteration a boundary value problem is solved (approximately)
for the potential ¢, regarding the boundary lines B-A and D-E as fixed. The
corrections are then added to the coordinate so that these lines follow the
t.e. streamline, which moves from iteration to iteration. The boundary
conditions on ¢ are that pressure is equal on the top and bottom of the lines
and normal flux through the lines is conserved. These are boundary conditions
since the lines are mapped to two segments of the outer boundary of the
computational domain (Fig. 4). Hence, after each ¢ iteration fluid is flowing
through the lines. This is then corrected by moving the coordinate system
using the computed corrections.

The wake lines bisect a set of cells which have velocities defined on the
corners, and values of ¢ and x and y defined in the centers (Fig. 5). To
second order in cell mesh size, balance of the fluxes in the cells requies
that the normal flux be continuous through the wake line. This flux balance
relation is just what is imposed in the interior of the domain. Hence, by
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extending it to the boundary cells the velocity boundary condition is enforced
along line A-B.

The other condition is a force balance, imposed by specifying ¢ along
Tine D-E. This is used to determine ¢, the derivative along the line. The
isentropic equation for the pressure, which is used to set a relation for g
is

v/v-1
p=— 11+ w2 (-] (4.1.13)
Me
where
32 =ul +v2 = (¢n + qn) + (¢S + qs) (4.1.14)

In the above, q: s are the normal and tangential components of the free
stream velocity with respect to the line.

A pressure (p:’k) is first computed along A-B. Then, a desired
pressure, (p;,k) is computed for each point along D-E, using a force balance
relation. Also, a normal velocity, q, = ¢, + q: , Is also computed at each
point. Equations (4.1.13) and (4.1.14) are then solved for a desired ¢.

At present, we are only implementing a simplified version of this

2 2

relation: if q << 4 > then

n
D = _l,‘, 11 +15_]LME (1 - o) +0 (qﬁ/qg) (4.1.15)

Also, in this approximation the flow on the upper and lower sides of the wake
are in the x-y plane. Hence the curvature in the flow direction is the same
on both sides and the pressure relation, neglecting viscous effects, is just

Using approximation (4.1.15) we then have

a. q
S ik Sik
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or

Thus, ¢; K °© ¢: K + Ik , where Ty is a constant computed at the t.e. in
each plane after each iteration.

Presently, we are implementing a curvature calculation with the

assumption that the flow is entirely in each x-y plane. Although the inviscid

pressure balance relation does not require this curvature effect, the viscous
corrections do. At each point along the wake midway between the coordinate
points we have the unit normal (see Fig. 6a):

Ml ™ ke Y s D X008 4y, k
where

= 2 2.1,
DSidry o = Xiar = %07 Wiag e - Y607

The radius of curvature, R, can be defined by

+ 0 (462

where

_ 2 2.4
8i k= Ik = %ok Wi e Vi)' d

and 48; , is the angle between normals " K, "i-%@ K

= cos~! (n n
88; \ = cos ("141/2 X "i-l/z,k)‘

Although we have not implemented a general curvature calculation, which
would be required when the flow has a large spanwise velocity component, we
give the formulation here. Considering two lines,

(i,k-1) =+ (i,k+1)
and
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(i-1,k) =+ (i+1,k)

we can define a vector normal to the wake surface (see Fig. 6b):

L 4

- (-§ &> ) (+ > )
Mk ™ Wietk ~ Tik-1 ! X WMk T Ti-r ke

This is second order accurate if the mesh is smoothly varying.

We will define curvature in a coordinate system consisting of ﬁ% K*

> > _* >
i ri,k (ri+1,k - ri,k)’ and §1’k = "i,k X 5iri,k‘

We now take normals, as before, midway between points i+l,k and i,k, and
between i,k and i-1,k:

n = (F Fo) x( Feyy)
Malp ok T Taee T N, X ke T T ke

> - (-) > ) (+ > )
Motk T ik T Tk X ke T T kA

The scalar product then gives the relative angle at i,k for radial lines
intersecting (i+1,k) + (i-1,k):

i _ -1, + + >
855,k = €08 [0y k- My, WUy, w110y, (D

The distance between the mid points,

i _ 2 +
8¢k * Miag k= Tio1 k172

then is used to get the radius of curvature:
i
i 854 k

RV - + 0 (26
Aei

ik
,K

The radius of curvature along the line (i,k+l) » (i,k-1), R: K can then be

computed in exactly the same way by interchanging the two lines. The radius
of curvature in the normal direction (Si,k) can then be computed:
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s _ k i
Ri,k = (Ri,k - Ri,k cos Bi,k)/sin Bi,k

where
B = 08 TIeF e (B - R Us B RD)
}

We have tested the AFZ code with the fitted trailing wake on a number of
wings. A typical transport type configuration in shown in Fig. 7a. Shown in
the figure is a 3-D view of the wing and the isobars on the upper surface of
the wing for an angle of attack of 1.5° (upper half of the figure) and 0°
(Tower half). Both cases are at a free stream Mach number of .82. At 1.5°
angle of attack one can see two shocks at the root section which merge at
about midspan. Figure 7b shows a 3-D view of the wing and the trailing
wake. Figure 7c¢ compares the convergence of 1ift for calculations with and
without the fitted wake. The figure shows the same convergence rates while
the final 1ifts are slightly different. For this case (freestream Mach number
of .82 and angle of attack of 1.5°) the converged C_ = .588 for the fitted
wake calculation while the calculation without tracking the wake gave CL =
.590.

4.2 SOLUTION OF 3-D BOUNDARY LAYER & WAKE

In this section, we discuss briefly the numerical procedure for obtaining
the solution of the 3-D boundary layer and wake by the integral method of
Myring-Smith-Stock. We shall stress the modifications and improvements
whenever they occur but neglect the detailed derivation of the governing
equations. Since the solution procedures for the laminar and turbulent
boundary layers are identical, only the latter is discussed. The governing
differential equations for the integral laminar boundary layers can be found
in the report of Stock (Ref. 42). The notations for the coordinates used in
this section and the subsequent ones in this report are redefined and
different from those used in Subsection 4.1 of the inviscid flows.

4.2.1 Coordinate System & Governing Equations

A curvilinear nonorthogonal surface coordinate system (x,y) coinciding
with the wing surface and the wake is chosen for the differential equations.
The coordinate x is along the chord direction while the coordinate y is along
the constant percentage chord 1ine as shown in Fig. 8. Shown also are the
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velocity components u, v along x, y, respectively, X is the angle between x,
y axes at any point on the surface, a 1is the angle between the external
streamline and x axis. If the Cartesian coordinates (X,Y,T) of the wing and
the wake are given, the unique transformation

X = X(X,,Y)
Y = Y(x,y) (4.2.1)
T = T(x,y)

exists, from which the metric coefficients, hy» Ny, g of the curvilinear
system can be derived, where,

2 . 2
n?= & y + 30+ @)
2 2 2

n = () + (Gy) + @) (4.2.2)

Xy (X Yy (9Y Ty (oT
g = (3;3(57)'* G;()Qwﬂ + Cs;)@gy)-
Further reduction suitable for numerical implementation leads to

21/2
e @& n+dh
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[}

/
h, = (& ) [(3") +1 4 (3})2]1 ‘ (4.2.3)

9 = (33 ) L&Y + CHED) .

The term %é- is related to the sweep of the coordinate line y while 31 and

)4
T

3y are the slopes of the wing/wake surface. Since the boundary layer

equations will involve x, y derivatives of hi, hy, and g, the curvature terms
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2 2
¥T 37 can affect significantly the solution of the boundary-layer
o " av?
| equations.

Denoting the velocity components along the nonorthogonal curvilinear
coordinate system (x,y,z) (z being normal to the wing/wake surface) as (u,v,w)
(see Fig. 8), respectively, the boundary-layer momentum integral equations as
given by Myring are, along the x direction,

30 2 u 9
1 %1 {(Z-M)l e.13 (q 1 %%
1 + 0 - +.__._( )+k} + €
| ﬁl 11 h1 ug oX q X ﬁ1 1 ﬁz ay
2 ou au u
(2 - M) 1 e, 19 (q } 1 1 1 1}
+e12{ h, u_e'ay +'d y(ﬁz)+k3 Yy {h 1Ti_eax +k1ue
v u C
1 1 1 1 1 _ f1
) {h‘z'tre'r k2 g * *3 ﬁ‘;} + Oyky = (4.2.4)

and along the y direction,

2
1 21 (2 - M) 1 e 13 (q } 1 22
B, 3% +921{ e w tgw Bt B YRy
1 1 e 1 2
au v
(2 -M5) 1 e, 129 (q ) + } {1 1 1 1
19 2.0+ A =+ R —+ &
22{ h2 e & q 3y ﬁz 2 1 h—lue X lue 3
Y v C
1 1 1 1} f2
+ { 2 v =% +0,.2, = (4.2.5)
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where M is the Mach number at the edge of the boundary layer and Cg¢y and Cgp
are the skin-friction coefficients in the x and y directions respectively.
The velocity components in the x, y directions at the edge of the boundary
layer are denoted by Uy, Vq and the resultant velocity at the boundary-layer
edge is denoted by u, where
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The momentum integral thicknesses 911> 912> ©1» and Gy, and the mass integral
thicknesses 8 and ) together with the quantities kl’ kz, k3, N %, 43 and

q as functions of the metric coefficients hys My, g are given in Appendix A of
Ref. 41.

The entrainment or the integral form of the continuity equation assumes
the form,

a Pel

1
paug lax t (08 - ey )+ g7 fr— (v 8 - uep)H]
(4.2.6)
1 Y18, Y186
= — —_—- W = F
Ug [ﬁl ax ﬁ2 ay 1]

where p, is the density at the boundary-layer edge and & denotes the boundary
layer thickness. F is the entrainment coefficient, i.e., the nondimensional
rate of change of mass flow in the boundary layer. The entrainment equation
is used to provide an independent relation in this procedure by prescribing
the entrainment coefficient as a function of the local boundary layer
properties. In the lag entrainment method employed here, this information is
supplied through a separate differential equation for the entrainment
coefficient F derived from an approximation to the turbulent kinetic energy
equation.

From the entrainment equation, one can derive a useful expression for the
source velocity distribution, that is, the normal velocity outflow due to the
presence of the boundary layer,

CAC UG P, QU
L3 1 Cele?)) (4.2.7)

m = - 2
Pad X h1 ay ﬁz

Another useful form of the entrainment equation is,

3 (pequls* .3 (peqvls*) -2 equeAl P queAZ (4.2.8)
E13 —_TGT——- Yy —_TE;——— X __TT——__ ay __TT——ﬁ— tee

which allows the displacement thickness &* to be computed when the integral
quantities A, and 4, are known.

Equations (4.2.4), (4.2.5), and (4.2.6) form the foundation for the basic
equations, and in addition, we adopt along the direction of the stream tube
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lag-entrainment model equation of Green (Ref. 17) for the entrainment
coefficient F. However, for a closed system, the total number of unknowns
must be reduced to four. The integral thicknesses ©11» 6125 &1s O 415 N
(i.e., the unknowns) can be expressed in terms of the corresponding
expressions denoted by 6;,, 8y5, 831, 835 &1, &7, 2 and o . These
quantities, except for X and a , are defined in terms of velocity components
in the directions along and normal to the local external streamlines. The
quantity a is the angle between the x-axis and the external streamline and
% 1is the angle between the x and y axes. Then by further introducing an
empirical cross flow velocity profile, we finally can reduce the system of
four equations for the four unknowns, namely, A , the equivalent incompress-
ible shape factor, 6;;, the momentum thickness defined with the main stream
direction velocity, F, the entrainment coefficient and y, a cross flow
boundary layer parameter equal to or implicitly related to the wall limiting
streamline angle 8 relative to the external streamliine, dependent upon whether
the empirical cross flow profile of Mager (Ref. 43) or Johnston (Ref. 44) is
used.

The equations are completed by an expression relating skin friction, C¢,
to the boundary layer variables 811> A , and the external conditions. First,
we note that the components Cg¢y and Cgp along x and y directions can be
expressed in terms of the skin friction magnitude, C¢ and the angles
A, a, and 8 by the relations,

_ sin{X - a) - cos(X - a) tan (8)
Cep = C¢ ~ }
sin A
(4.2.9)
_ sin(a) + cos{a) tan(B)
Cep = Cp 1 }

sin X

Following Smith we use the Ludwieg-Tillmann relation for the skin
friction magnitude, Ces modified for compressible flow according to Eckert's
reference temperature concept, viz,

268 Te

p u e halt 3
_ -.678
¢ = 206 (S () 107°°78 (4.2.10)
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where T*/Te =1+ .13 M2 for adiabatic flow in air and the coefficient of
viscosity u* is evaluated at the temperature T* by

N « -89
) - (};)

The final form of Eq (4.2.4), (4.2.5), and (4.2.6) together with the lag-
entrainment differential equation for the entrainment coefficient F, can be
expressed in the form,

J A
au B au

Ay o * By 3y

- (4.2.11)

11

e
and ) = | A
Y
F

The characteristics of the quasilinear system of four partial differential
equations and their solution are discussed in the following subsections.

4.2.2 Characteristics & Compatibility Equations

The equation for the entrainment coefficient F in Eq (4.2.11) is of the
form,

where
D=(“1a+"1_a__)
pt ﬁI’Ei' ﬁ;'ay

The x and y derivatives of F at any point can be computed and are decoupled
from the derivatives of 811> H , and y. Furthermore, the characteristic
curve for F is the external inviscid streamline. Equations for 811> A, and
Yy are coupled, viz,

J J
av +b v
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with v , Qs

ij # bij *4¢; *0 for i = 1,2,3. Multiplying each

component of Eq (4.2-12) by u; and summing, we have,

3611
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(4.2.14)

The system of homogeneous equations Eq (4.2.14) has nontrivial solution for
Hys U2 and by if and only if,

Detlbi aijxl =0 (4.2.15)

j-
The solution for A from the cubic equation has been studied rather extensively
(Ref. 40) in conjunction with the development of the integral methods of 3-D
turbulent boundary layers. At any point (x,y), X is the tangent of the angle
between the characteristic line and the x-axis. For incompressible flow, the
form of the characteristic equation is particularly simple as shown by

Myring. It was shown that for a well behaved boundary layer Eq (4.2.15)
possesses three distinct real roots, therefore the system of differential
equations is totally hyperpolic. The three characteristic lines lie between
the external streamline and the l1imiting wall streamline of the boundary layer
flow. Numerical solutions of Eq (4.2.15) carried out by us have shown that
this property is also true for compressible flow. It has been shown by
Cousteix and Houdeville in Ref. 36 that the behavior of solutions to the 3-D
turbulent boundary layer equations is strongly effected by the hyperbolic
character of the governing partial differential equations and by the nature of
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the associated characteristic curves in the plane of the wing. As noted by
them, when solved in the direct mode with the pressure distribution
prescribed, the equations admit weak solutions in which the characteristics of
the same family may intersect each other on certain singular lines. The
singular lines are analogous to shock waves across which the displacement
thickness and other boundary layer properties are discontinuous. Such
solutions have no physical significance and should not be identified with the
separation lines observed in 3-D boundary layer separation. The jumps in
displacement thickness leads to large (actually unbounded) values of the
transpiration velocity which will act, through viscid/inviscid interaction
mechanisms, to significantly alter the inviscid flow and streamline pattern
near such singular curves. Since discontinuous solutions of this type cannot
be self-consistent solutions of the coupled viscid/inviscid equations, it is
clear that the interaction must eliminate the characteristic crossings and the
associated discontinuities from the solution. One can speculate that the
singular crossing curves are transformed through a strong local interaction,
to an envelop of streamlines that could be identified with the locus of the 3-
D separation. Cousteix and Houdeville also proposed an inverse method for
avoiding the discontinuous solutions of the direct problem. In their method,
which was aimed at noninteracting type computations, they proposed specifying
two integral thicknesses and computing the pressure distribution as part of
the solution of the boundary layer equations.

Unfortunately, although inverse methods may be useful for avoiding the
shock line jumps in 3-D boundary layer solutions, they do not eliminate all
problems faced in computing separated 3-D boundary layers. Indeed the major
difficulty in computing such flows seems to be associated with the turning of
the 1imiting streamlines and characteristics to a direction perpendicular to
the marching direction and not with the formation of discontinuous weak
solutions. In these cases the curved streamlines seem to form a “sonic"
envelope across which the solution cannot be continued. This is so mainly
because the flow upstream of such envelopes do not lie in the domain of
dependence of the initial data 1ine from which the solution was initiated.
Although the details are far from understood, it seems clear that such
envelopes are likely to be relocated in some way to 3-D separation lines. The
computation of 3-D boundary layers in these circumstances is extremely
difficult because of the need to supply initial data some place downstream of
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the envelope and it is not at all clear at present how this can be done.
Because of the uncertainty in how to proceed in such cases, in our approach we
employ a standard direct method to treat the viscid/inviscid coupling.

If we assume there exists a solution of Eq (4.2.15) for the eigenvalues
A= for i =1,23, at any point (x,yn) on the wing surface or in the wake,
it follows that Eq (4.2.13) can be expressed in the form,

(3, + Wpsdyy + By.d )(aeu+ N )y (e b ey ugag) (e 3
11 " ¥ T M3i%31'\ax i 12 7 Mi%2 T M%7 T N by
3y Yy .

tlagg rouyapy tugag)lapt A gy) T oot i g0 (4.2.16)

where,

My = [=(byy = ay ) (bgy - agody) + (byy - 3, 4)(bgy - ag%5)1/Dy

ugy = [=(bgy = a3 )(byp = agphy) + (byy - ayy A by, - app k) 1/D;

Dy = (byy = ay N bgy = agoh) - (bgy = azy 4} (byy - apy%)

for i = 1,2,3.

Equations (4.2.16) are the compatibility equations of the hyperbolic
equations in their "normal characteristic form". The solution of Eq (4.2.16)
could be carried out most naturally with a " type-scheme" (Ref. 45). For
interior points, y = y,, the y derivatives of 0, fA and y associated with
each ); factor are evaluated using values of 81 etc. at (x, yn+1) and (x, yn)
when A; < 0 and using values at (x,y,) and (x, y,_1) when 5 > O, where y .. >
Yn > Yp-1- The x-derivatives of 8, A, and y then are computed using Eq
(4.2.16) and new values of 6;;, R, and y are obtained by an explicit
marching scheme. There is a fundamental problem that arises with any method
of integration associated with the implementation of the boundary
conditions. The integration domain lies between the wing root and tip
stations. It is seen that when A; > 0 at y = Ywing root °F when A, <0 aty =
Ywing tip® boundary conditions are required to supplement the compatability
equations, Eq (4.2.16) at these stations. According to the rules in Kreiss
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(Ref. 46), the total number of boundary conditions and compatibility equations
should be equal to the order of the system of equations. The number of
boundary conditions required at y = ywing root? for example, is exactly the
number of roots for which A; > 0. It is not clear at this stage how to
properly determine these conditions. Our study indicates that computed
results are very sensitive to the boundary conditions prescribed at the wing
root and tip. For numerical convenience, in our method we employ zero
spanwise gradient conditions. These conditions are non-physical and lead to
errors in the region lying in the domain of dependence of the wing tip or body
juncture points. Further study is clearly called for to determine correct
procedures for setting these boundary conditions.

4.2.3 Numerical Integration of Boundary Layer Equations

In view of the difficulty in imposing boundary conditions in the -
scheme, a less accurate but reliable numerical integration scheme is adopted
for the solution of the system of Eq (4.2.11). The same procedure is also
used to integrate the laminar boundary layer equations. The method, first
used by Smith, solves, first, at a constant x line, for the x derivatives of
811> H, v, and F. Then a two-level explicit integration scheme is used for
integration in the x-direction. A local C.F.L condition is imposed to
determine the maximum integration step Ax. The y derivatives of the dependent
variables 011» A, v, and F are evaluated in such a way that the rules of
domain of dependence and region of influence are not violated. Since the
characteristic lines lie either on (as in the case of characteristics for F)
or within an angle bounded by the external inviscid streamline (with an angle
of inclination a with respect to the x-axis) and the limiting wall
streamline (with an angle of inclination of & + B with respect to the x-
axis), the use of these two directions to predict the directional bias of the
disturbances always produces a conservative estimate of the step size to be
used. We denote by (x, yn) the location of the point where the y derivatives
are to be evaluated and by (x, yn_l), (x, yn+1) the two neighboring points

where ypu > y, > Yp-1- The y derivative %g’lx y (or, similarly for the
*7n
other derivatives ffi}-l 3y | EE-I ) is determined according
Y XYy T XY, T XY
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to the signs of the angles a and o« + 8. If both o and G + g are
positive, a backward difference of the form

(R) - (H)
_E_H_ l - xsyn xayn_l
%y XYy, Yo - Yn-1

is used. If both o and o + B are negative, a forward difference of the
form
(R) + ()
oH I ! X

| dl
Wy XY, Yne1 - In

is used. And if a and o + B are of opposite sign, a central difference of
the form

(A)

XsYn+1 XsYp_1

(R)
CLil
Y XY,

Ynel = Yn-1

is used. For the wing tip points, all the y derivatives are set equal to zero
unless both & and a + B are positive and in this case a backward
difference formula is used. For the wing root points, all the y derivatives
are set equal to zero unless both & and & + B are negative and a forward
difference formula is then used.

The integration can be started with either laminar boundary layer
equations or turbulent boundary layer equations at or near the leading edge
lines of the wing. Because the integration must follow the flow direction,
the starting point must necessarily be downstream of the forward stagnation
line. For calculations with a laminar boundary layer start, one must either
impose the location of transition to turbulent flow or use a natural transi-
tion criterion to fix the transition position. In the present code we assign
the transition point locations unless the laminar boundary layer solutions
indicates separation, in which case we assign transition to the point of lam-
inar separation. When transition occurs, the momentum thickness 6;; is
assumed to be continuous across transition and the shape factor, H , is
assigned a value of 1.45 (an alternative to this is to assign a local jump in the

value of H equal to AHTransition as determined by experiments (Ref. 47)).
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The 3-D boundary layer integration is extended into the wake in a manner
similar to the 2-D calculation of Green et al. The skin friction C¢ is set
equal to zero, and the dissipation length used in Green's formulation is set
equal to half of that of the boundary layer value. Since Johnston's (Ref. 44)
cross flow profile cannot admit a zero friction solution, only Mager's (Ref.
43) crossflow profile can be used in the wake. In this case, y = B.

Since the information of the characteristic lines is nelpful in
understanding the boundary layer flow behavior, the eigenvalues from the
solution of Eq (4.2.15) are computed at each step of integration. For
example, a very large value of A or appearance of imaginary roots of Eq
(4.2.15) usually indicates the incipient breakdown of the computation.

4.2.4 Special Considerations

Since the solution procedure of the boundary layer equations as described
in the previous sections is only an intermediate step of reaching the
converged solution of the viscid-inviscid interaction, one does not always
have a smooth inviscid pressure distribution for each cycle of the boundary
layer computation. It is important in our iterative method to establish a
procedure for preventing a breakdown of the boundary layer computation from
the appearance of an unphysical intermediate inviscid pressure distribution.
Our numerical experiments indicate that a computational breakdown associated
with large inviscid pressure gradients is often started by a rapid local
growth of the shape factor A . When this happens we set a maximum cutoff
value of 2.4 for H and set the local y derivatives of the dependent
variables equal to zero. The computed boundary layer solution of the shape
factor H wusually reaches a maximum at the trailing edge and drops off
gradually going downstream into the wake. Occasionally, the computed value of
H may drop to below 1 far downstream in the wake. These physically
unrealistic values lead to numerical difficulties in the far field. To avoid
such problems, we set a lower bound of H = 1.05 in the far field and
continue the wake computation using a strip boundary layer approximation with
all spanwise derivatives set to zero.

Additional numerical difficulties may also arise because the streamwise
momentum thickness, 8;,, may occasionally drop below zero on the wing
surface. The basic code would usually break down at such points because of
appearance of a logarithm of 6y; In the computation of the skin friction from
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the Ludwieg-Tillman formula. We have found, that in these cases the solution
can usually be continued downstream using a strip boundary layer approximation
with all spanwise derivatives set to zero. The program has been setup to do
this if negative values of 811 should arise at any stage of the computation.

As mentioned in Subsection 4.2, we compute the metric coefficients
hl(x,y), h,(x,y) and g(x,y) taking full account of the wing thickness and wake
curvature. This more accurate treatment of the geometry turns out to be
important near leading and trailing edges and acts to provide smoother, more
accurate boundary layer solutions in these regions. To demonstrate this, we
have computed two boundary layer solutions, one with our full metric
coefficients expressions and the other with the metric coefficients for a
corresponding flat wing. The computations are for the Lockheed Wing A at a
Mach number M_ = .796, angle of attack a = 1.94 and reference Reynolds number
of 5 mitlion. The two solutions for the shape factor, A , are shown in Fig.
9. It is seen that there are significant differences in the two solutions
with the one using the full metric coefficients expressions showing milder
gradients and a much lower peak value towards the trailing edge as compared
with that of the flat wing solution. This behavior is generally true for the
solution of all the other dependent variables.

4.3 1TERATIVE SOLUTION TO VISCID-INVISCID INTERACTION ANALYSIS

The inviscid and boundary layer solution procedures described in
Subsections 4.1 and 4.2, must be modified to accomodate the matching
conditions coupling the viscid and inviscid flows. In this subsection, we
describe how the viscous coupling conditions are incorporated into the
solution of the inviscid equations and we also outline the interative
procedure used to solve the coupled viscid/inviscid equations.

4.3.1 Transpiration Coupling Conditions for Inviscid Flow Boundary
Conditions

The boundary conditions for the finite volume formulation of the inviscid
flow analysis need to be modified in order to take into account the boundary
layer displtacement and viscous wake effects. Transpiration boundary
conditions are used in the present work. In 3-D flow, the surface source
velocity, m, is related to the displacement thickness, &%, by the entrainment
relation, Eq (4.2.7), which can be written in the form,
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The displacement thickness, &%, is defined by

o - ? (pel;eu pU)dz
0 ee

where pU is the mass flux in the boundary layer in the external flow
direction. The external quantities at the boundary layer edge, are Mach
number (M), density (p,), and the total velocity (up). The velocity
components u, v, are components of ug, along x, y, the boundary layer
nonorthognal curvilinear coordinates. The quantities hy, hy, are the metric
coefficients and q is equal to

1/2
q = [hins - ¢*]

The displacement thickness is determined as part of the boundary layer
solution as described in Subsection 4.2. From Eq (4.3.1), therefore, the
source, m, can be computed at each step of the boundary layer integration.

The boundary conditions for the inviscid flow require the values of m at the
midpoints of the inviscid mesh, which can be obtained by interpolation. Since
the finite volume formulation is being used for the inviscid flow analysis, m
is to be converted into M, its corresponding contravariant flux vector across
the body surface. The scaling factor between m and M is quite complex and is
not given here. It can be shown that for 2-D problem, M = m « ds , where ds
is the arc length between the two nodal points of the inviscid mesh. With the
known distribution of the sources and its equivalent source jump in the wake
(the difference of sources from top and bottom of the wake), the inviscid flow
boundary conditions are modified as follows.
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Referring to Fig. 10, the velocity potential, G, at the span station Z =
Ly of the inviscid flow is to be computed. The value of G at Z = Liyy 1s
lagged and computed from the previous iterate. The contravariant fluxes are
to be computed at cell centers. On the boundary, A and E are the last points
of the wake across the sheet, B and D are the trailing edge points and C is
the leading edge point. On the wing surface (i.e., D - C - B) the reflection
condition of the normal component of the contravariant fluxes, VM and VP, of
the inviscid flow computation is modified due to the sources generated by the
boundary layer,

VM(I) + V(1) = 3{py + op) + M (4.3.2)

where py and pp are the densities computed at the two cells near the boundary
and between the two space stations. The tangential components of the
contravariant fluxes UM(I) = UP(I), WM(I) = WP(I) etc remain the same as those
of the noninteractive computation. On the wake (i.e., from E to D and from B
to A) the flux conditions are not changed from the noninteractive computation
because the image conditions have to be imposed, viz:

UM(I) = - UP(M)

VM(I) = - VP(M) (4.3.3)
UM(M) = - UP(I)

VM(M) = - VP(I) etc

where I and M are the respective image points across the wake sheet. The
adding (or subtracting) of sources, however, is reflected in the mass flux
balance equation (the continuity equation). Therefore, the residual formula
evaluated at the nodes both on the wing and wake surfaces are modified to
account for the mass injection from the boundary layer. Particular attention
is paid to points D and B where there are source contributions both from the
wing side and the wake side of the trailing edge.

4.3.2 MWake Curvature Effects

In Subsection 4.1, we described the procedure for adjusting the mesh to
follow the wake stream surface of the inviscid solution. In the inviscid
computation, the wake surface was updated at each cycle of the inviscid
iteration. In the viscous computation it was found to be more efficient to
update the wake position before each boundary layer computation rather than at
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each inviscid cycle. In the viscous computation the wake position is defined
in terms of a wake angle, B8,

tan § IZ=Z ) %§1Z=Z ) %-|Z=Z
K K K

where X; Y are the Cartesian wake coordinates, B is the wake 1ine angle with

respect to X-axis at constant Z = Z,, U0 and V are the inviscid velocity

components, averaged between the top and bottom of the wake surface, along X

and Y-axes, respectively.

The wake curvature effect terms are imposed in the following manner.
Referring to Fig. 10, let the row of computation nodes at the wake, above the
wake and below the wake at a spanwise station, Z = ZK, be denoted by (I,KY,K),
(K,KY-1,K), (I,KY+1,K), respectively, and let (M,KY,K) etc. be the image nodes
across the wake. The Kutta condition and the wake curvature condition can be
imposed according to the following formulae, for the surface wake nodes,

G(M,KY,K) = G(I,KY,K) + CIRC(K) + T (4.3.4)

and for the image wake nodes,

G(M,KY+1,K) = G(I,KY-1,K) + CIRC(K) + T (4.3.5a)

G(I,KY+1,K) = G(M,KY-1,K) - CIRC(K) - T (4.3.5b)

The function G is the reduced velocity potential, CIRC(K) is the trailing edge
velocity potential jump determined by the Kutta condition and I, the
circulation, is equal to the jump in velocity potential across the wake. The
circulatory function, I, is determined by the matching conditions coupling the
viscid and inviscid flows. Within standard boundary layer theory it can be
written in the form,

r(s)| = - [f W+ Ell)d?s'] (4.3.6)
Z=7, ~ =1
Beo K
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where ( 1is the average surface value of the outer inviscid velocity in the
chordwise direction, & and 511 are the respective sums of the upper and lower
displacement and momentum thicknesses, respectively. Our method incorporates
corrections to the standard coupling conditions to account for strong
interaction effect at trailing edges. These corrections modify the standard
expression for T given above, as described in the following section.

4.3.3 Trailing Edge Corrections

In our method we incorporate strong interaction effects at trailing edges
into our basic viscid-inviscid coupling procedures. We follow closely the
procedures developed for the 2-D airfoil problem as described in Ref. 6. In
that work a local asymptotic solution is developed which describes the strong
interaction effect at trailing edges. Through the use of this solution,
modifications to the classical coupling conditions are developed to take into
account normal pressure gradient effects across the boundary layer in the
trailing edge region. The theory of Ref. 6 was for a strictly 2-D flow. In
the present work, we adapt the 2-D corrections of Ref. 6 to the wing problem
considered in this study using a quasi-2-D approximation. In this approach,
we simply apply the 2-D corrections to the full 3-D form of the classical
coupling conditions assuming the flow is 2-D in streamwise planes. The use of
a 2-D strip approximation is justified because the fiow gradients normal to
the trailing edge are asymptotically larger compared to gradients in the
spanwise direction and the local analytic solution will be 2-D under these
circumstances except the near wing tip and body juncture stations. To be
consistent for swept trailing edges, the quasi-2-D theory should be applied in
a direction normal to the trailing edge. However, for simplicity we apply the
theory in the streamwise direction. Since the corrections are relatively
small we believe the simple theory will be adequate except, perhaps, for very
highly swept trailing edges.

In the modified theory, corrections are applied to the standard coupling
conditions to account for normal pressure gradient effects. The corrections
are applied to 1) the source velocity on the wing surface, 2) the jump in
source velocity in the wake and 3) the jump in pressure or velocity potential
(i.e., T) across the wake. In addition, the surface pressure computed from
the inviscid solution is corrected to account for the pressure drop across the
boundary layer in the trailing edge region. The corrected boundary
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conditions, following from Ref. 6, are written in the form:

Source velocity:

m(s,ZK) = mo(s,ZK) (/(s- 5 K(s,Z )] wing section (4.3.7a)

[n(s,2,)] = In"(540,2,) R7(s,20) 07 (5,,,2Z )R (5,201 + m (s,Z,)
wake (4.3.70)

Wake Circulation:

rs)l,, =~/ Q (3 + e 1) /s- Spa) (s)dB] (4.3.7¢c)
K Ete K
where m (s, ZK) and m_(s, ZK) are the classical expressions for the source

velocity on the wing at section Z = Z, and the jump in source velocity in the
wake, m (ste’ ZK) and m~ (Ste’ ZK) are the values of the corrected source
velocities on the upper and lower surfaces of the wing section at the trailing
edge, s is the arc length along the wing section and wake. The functions K{s,
ZK), K(s,ZK) and Jw(s) are given in terms of universal functions from the
local trailing edge solution in Ref. 6. The corrected pressure distribution
in the wake is given by an expression of the form

P(s,) = Pals,2) - opx [P ] (4.3.8)

where Ig(s,ZK) is the corrected pressure distribution on the wake,

P;(S,ZK) is the inviscid solution for the pressure on the upper surface of the
wake and [ P ] is the difference in pressure across the wake from the inviscid
solution. The jump in pressure in the inviscid solution is caused by the wake
boundary condition imposing the jump in velocity potential, T, across the
wake. The quantity A is also given in terms of universal functions in Ref.

6. The expression for the pressure distribution on the wing section surface

is written in the form,

Bs, Z) = P(s, 2) - [0 Lo Is, 20 - @l p (s, Z,)  (4.3.9)
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where B(s, Z) and Pg(s, Zg) are the corrected and inviscid surface pressure
distributions respectively, [ P ]te is the jump in inviscid pressure across
the wake evaluated at the trailing edge. The quantity I(s, ZK) is a
universal function given from the local trailing edge solution and po(s, ZK)
is the pressure correction determined from the classical boundary layer theory
as described in Ref. 6.

4.3.4 Global Iteration Strategy for the Interaction Solution

The solution procedure for the global iteration is carried out in the
following steps,

I. Obtain the inviscid 3-D solution using the AFZ scheme, compute the
surface velocities and surface flow angles.

II. Compute the corrected surface velocities and surface flow angles as
indicated in the previous subsection.

III. Obtain the 3-D boundary layer and wake solution using the modified
surface velocities and flow angles from the previous step.

Iv. Compute the coupling condition as follows:

1. Compute the surface source velocity distribution and its
contravariant equivalent from the boundary layer solution.

2. Compute the floating wake surface coordinates using the inviscid
velocities, and obtain the equivalent shear function used in the
inviscid parabolic coordinate mapping.

3. Compute the wake jump condition from the updated wake
coordinates.

V. Go to step I.

There are two sets of relaxation factors assigned to the calculations,
the Py, 1 = 1,2,3, for the inviscid solutions and the relaxation factors Vy, i
= 1,2,3,4, for the boundary layer source flux on the wing, the viscous wake
source flux, the floating wake coordinates and the velocity potential jump for
the wake curvature effect. The chosen values of P; are based solely upon the
best convergence behavior of the inviscid calculation. The values of V; range
from .5 to 1. Since the inviscid AFZ scheme requires four sweeps per one
outer cycle of iteration, the boundary layer calculations are updated after
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multiples of four sweeps of the inviscid iteration. Eight sweeps of inviscid
iterates are chosen between boundary layer calculations for our computations.

Our experience indicates that the inviscid part of the program is quite
robust and convergence has been achieved for quite a broad range of test cases
including wings of practical interest. The major requirement for a successful
convergence calculations for the viscous wing program during a global
iteration is the avoidence of boundary layer computation breakdown. For a
modern transonic wing with large trailing edge camber and wing twist, large
inviscid pressure gradients can cause a breakdown of the boundary layer
computation at the outset. Since viscous effects generally smooth out these
large pressure gradients, such breakdowns in the initial stages of the
computation do not necessarily imply that a converged solution cannot be
obtained. Some practical techniques can be used to achieve convergence. For
example, if the computational problem is the result of too strong an inviscid
shock locally, the iteration can be initiated at a lower freestream Mach
number to achieve an intermediate convergence, then the Mach number is
progressively increased to the desired value. On the other hand, if the
difficulty in obtaining a boundary layer solution is due to the complexity of
the camber variation and wing twist, it is desirable to start the iteraction
at a 1ow angle of attack which is then increased to the desired value. These
techniques shall be implemented in future versions of the code.

With a given wing geometry, a given case requires the specification of
the free stream Mach number M_,, the angle of attack, a, and the reference
Reynolds number Re..¢. Numerical computation is performed with an assigned
mesh and sets of relaxation parameters P; and V;. In addition, the boundary
layer transition location needs to be assigned. An improperly assigned
transition location can lead to erroneous results, as shall be discussed in
detail in the next section. A typical converged interaction calculation for a
supercritical flow case takes about 10 to 20 boundary layer cycles of
computation dependent on the relative difficulty of the case. Normally it
takes about eight cycles of boundary layer computation to reduce the maximum

inviscid residual to less than 10'5.

The convergence history of a typical case run for the Lockheed Wing A is
shown in Fig. 11. The free stream Mach number used was M, = .82, the angle of
attack a = 1.5°, reference Reynolds number Re..¢ = 18 X 106, and grid
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distribution (160 x 16 x 32). The wing root circulation value and the total
number of supersonic points are plotted as a function of iteration numbers.
The CPU time required for the total thirty cyctes of boundary layer
calculations is about eight minutes uéing a Cray-1S computer.
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5. RESULTS

5.1 NUMERICAL RESULTS - INVISCID FLOW

Results for the ONERA M6 wing of Fig. 12 are illustrated in Fig. 13
through 22. For M_ = .923, a = 0, the computed Cp distribution is given in
Fig. 13. It can be seen that there is a large supersonic zone with shocks
extending over the length of the wing. A comparison with experiment near mid-
span is given in Fig. 14. From Fig. 15 it can be seen that the solution is
well converged after 32 iterations. Figure 16 compares the convergence
history of the average residual for two variations of the present AFZ method
with a relaxation (SLOR) method. The development of the supersonic zone for
the three methods is shown in Fig. 17. Figure 16 seems to indicate that SLOR
exhibits a faster convergence at the beginning of the iteration. This effect
is even more pronounced in the 1ifting case to be considered later (Fig.

21). The convergence of SLOR slows down significantly after the first 50
iterations while the AF schemes maintain a steady and rapid convergence

rate. The advantages of the AF scheme shows up even more clearly when
considering the convergence of the global aspects of the solution such as the
number of supersonic points (Fig. 17) and the 1ift (Fig. 22).

Figures 18 through 22 give results for the same wing (Fig. 12) at M_ =
.84 and a = 3.06°. Figure 18 shows the upper and lower surface pressures. It
can be seen that the two shocks (one near the leading edge, the other further
back) come together as the wing tip is approached. Figure 19 shows a
comparison with experimental surface pressures, at a spanwise section near
mid-span. Figure 20 shows the convergence in surface pressure. Figure 21
shows the convergence history in terms of average residual. Again it seems
that SLOR has a faster initial convergence rate, but considering Fig. 22
(development of 1ift) the advantage of the AF schemes is obvious.

The computation of the inviscid transonic flow about transport type wings
1ike the ONERA M6 is relatively straightforward. This is because these wings
are characterized by high aspect ratios, low sweep, small twist and similar
airfoil sections. The 3-D effects in the flow field about these types of
wings are minimal. The results of Fig. 23 and 24 are intended to demonstrate
the capability of the inviscid code for computing the flow about highly 3-D
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wings. Figure 23a shows a 3-D view of a low aspect ratio, highly swept and
twisted wing. The flow field about this wing was computed at a free stream
Mach number, M, = .9 and an angle of attack, a = 8°. The surface pressure
distribution at three sections are shown in Fig. 23b, 23c, and 23d. Figure
23b shows the root airfoil section and the corresponding surface pressure.
The section 1ift at this station is small because of the lower relative
incidence. Figure 23c shows computed results at the mid-span section. The
section Toad here is higher than that at the root although the section is
twisted down relative to the root. This effect is due to the upwash from the
root section caused by the large sweep of the wing. This effect is even more
pronounced at the tip section (Fig. 23d) where the large relative incidence
(due to upwash) causes a strong shock at the leading edge.

Figure 24a shows the planform and surface isobars for another wing. This
wing was also run at a Mach number of M_ = .9 and a = 8°. The isobars clearly
show a two shock pattern before the crank in the trailing edge. The leading
edge and trailing edge shock waves interact near the wing tip. Figure 24b
shows the airfoil section and surface pressure at the root of the wing.

Figure 24c shows the mid-span section where the two shocks can be seen
clearly. Figure 24d shows the tip section after the two shocks have
interacted. The leading edge camber of the outboard sections of this wing is
shown in Fig. 24d. The effect of leading edge camber, in eliminating strong
leading edge shocks, is demonstrated dramatically by comparing Fig. 24d and
23d. Both these wings are highly 3-D and heavily loaded at their tips. These
conditions usually require adjustments in the parameters of the AFZ inviscid
code. For these more difficult cases the iteration procedure should be
underrelaxed somewhat, particularly for fine grids. The fact that converged
solutions could be achieved in these very difficult cases indicates the
soundness of our basic AFZ scheme.

A comparison of convergence rates using the two far field boundary
conditions mentioned in Subsection 3.1 is shown in Fig. 25. In the figures
the solid line was computed using the expansion of the Prandti-Glauert
equation (Eq 3.1.8) the dashed 1ine was computed using the original condition
¢ = 0 upstream and ¢y = 0 far downstream. Figure 25a shows how convergence is
improved using the new far field condition. Figure 25b shows that the 1ift is
increased significantly with the new condition. The computed 1ift using our
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Prandt] -Glauert far field boundary condition Eq (3.1.8) seems less sensitive
to the location of the far field boundary (i.e., less sensitive to the
parameter BOUND). The results of Fig. 25 were computed with a BOUND of .95
which places the outer boundary about 6 cords from the wing.

Figure 26 shows a comparison of computed results using the first and
second order artificial viscosities. Figure 26a shows these convergence
rates. The figure shows that the convergence is slowed using the second order
scheme. Figures 26b-26j shows sectional surface pressure distributions from
the root to tip. The figures show that the pressure distributions are all
sensitive to the choice of the artifical viscosity formula. The shock in the
second-order results is sharper (for example, see Fig. 26g) and the suction
peak near the leading edge is significantly reduced. The 1ift is increased
from CL = .635, first order, to CL = ,665, second order.

5.2 VISCOUS INTERACTION RESULTS

In this subsection, we present results computed from the viscous wing
program. The computer program developed for the present program is designated
GRUMWING. The present version of the code is a pilot code which we expect to
further develop into a production code. The inviscid results presented
earlier in this Section were computed with the inviscid option of the GRUMWING
program. Details of this program are given in the user's manual included as

the second volume of the report.

The results presented in this section were obtained for the Lockheed
Wings A and B described in the report of Hinson and Burdges (Ref. 48). Of
particular significance in their work is the fact that special attention had
been paid to the effects of the fuselage on wing pressure data so that
meaningful comparisons can be made for an analysis method with wing alone.
Shown in Fig. 27 and Fig. 28 are the wing planform and wing airfoil sections
for the Wing A and the Wing B, respectively. Wing A is a transonic wing of
transport type. It has an aspect ratio of 8, and quarter chord sweep of
25°. Wing B is a fighter type wing designed for transonic cruise. It has an
aspect ratio of 3.8, and quarter chord sweep of 30°. The nominal test
Reynolds number for the experiments based on the mean aerodynamic chord was Re

= 6 x 109 for Wing A and Re = 10 x 10°% for Wing B.
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5.2.1 Boundary Layer Transition Assignment

It has been known that inappropriately selected transition points can
lead to unrealistic results even when the computation proceeds without any
apparent difficulty. 1In this section we show results of computations with
varying transition point locations that give some indications of the
sensitivity of the solution to the choice of transition point location.

In order to demonstrate the effects of the transition point locations on
the solution, computations were carried out for a variety of transition
locations for the Lockheed Wing A at M, = .82, a = 1%, Re = 5 x 105 using a
(160 x 16 x 32) grid. Shown in Table 1 are the transition results for runs
using assigned transition locations of 0, 2.5, 5, 7.5, and 10% chord, on the
upper and lower surfaces. For the last case laminar separation occurs on the
upper surface at 8.2% chord. For this case, the transition specification is
overridden and transition is set at the laminar separation point. For all
cases, turbulent separation occurred on the lower surface which is physically
unrealistic and is due to the assignment of the transition point too far
forward on the lower surface. To show this, four runs were made for the same
Mach number, angle of attack, reference Reynolds number and transition point
location (10% chord) on the upper surface. Calculations were run with
transition locations on the lower surface of 20, 40, 60, and 80% chord.
Results are shown in Table 2. It is seen that all four cases end up with
transition on the upper surface set at 8.2% chord (laminar boundary layer
separation) induced by the large suction peak in the pressure distribution.
The turbulent boundary layer on the upper surface remains attached. The
solution on the bottom surface separates at 88.2% when the transition point is
set at 20% chord. For transition point at 40% the flow remains fully
attached. In the remaining two cases of assigned transition at 60 and 80%
chord, the transition occurs naturally at 47.8% chord due to laminar boundary
Tayer separation resulting in identical solutions with no turbulent
separation.

From the above discussion, it is clear that the solutions can be
sensitive to the transition point location, particularly when the transition
point on the lower surface is set far forward. For a typical transonic wing
geometry, the transition point on the upper surface should be set just down
stream of the suction peak. For the lower surface, if the computation is made
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for wind tunnel data comparisons, the separation point should be set at the
location where the boundary layer is tripped, otherwise, the transition
location should be set at far enough downstream of the leading edge to insure

natural transition.

5.2.2 Reynolds Number Dependence of Viscous Wing Solution

Computations were made to study the Reynolds number dependence of the
theoretical solutions. The computations are for the wing A at M_, = 0.82 and «
= 1.5°. Reference Reynolds numbers for the seven cases were, 5M (5 million),
8M, 10M, 12M, 14M, and 16M, respectively. The runs above Re = 10M required
smaller integration steps in the boundary layer solution in order to avoid
unrealistic results associated with the momentum thickness becoming
negative. The results for the 1ift variation with Reynolds number are shown
in Fig. 29. There is a strong Reynolds number effect for Re < 8 x 106. The
1ift levels off quite rapidly beyond 10M indicating that the results of free
flight chord Reynolds number in the 100M - 200M range can be extrapolated from
the present results. The inviscid, large Reynolds number limit for the 1ift
coefficient in this case is C_ = .637 as determined from an inviscid
calcualtion. These results show that very large Reynolds numbers are required
to approach the inviscid 1imit and that viscous effects will be very important
even at flight Reynolds numbers.

5.2.3 Solution for Pressure & Section Lift Distributions & Comparison with
Experiment

In this section, we compare solutions for the pressure distribution,
1ift, and drag with experimental data for Lockheed Wings A and B. The
pressure distributions given here are the composite pressure as given by Eq
(4.3.8) and (4.3.9). The freestream Mach number, M_, and chord Reynolds
numbers were matched with those of Lockheed test cases. The boundary layers
were tripped at 5% chord from the leading edge. Since the effective angles of
attack of the wind tunnel test are subjected to major uncertainties due to
wall interference, we carried the computations out at an angle of attack
chosen to closely match experimental values of total lift.

For the Wing A run, the free stream Mach number M, was .82, the angle of
attack a was set to 2°, the reference Reynolds number Re.os was six million
and a grid of 160 x 16 x 32 was used. In addition to a 5% chord tripped
boundary layer run, a natural transition run was made for comparison,
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Furthermore, an inviscid run was also made for the same M_ and a. Nothing
special was required to achieve a converged solution. The maximum inviscid
residual was down to less than 10~2 after about 10 cycles of boundary layer
computations or ninety inviscid fine grid sweeps. At this point the inviscid
pressure was accurate to within 10~% and CPU time was about three minutes on a
Cray-1S computer. Of this about 2 minutes of CPU time was for the computation
of the inviscid solution. The convergence history of the total number of
supersonic points and the wing root section circulation are shown in Fig.

30. The position of the floating wake was the last quantity to converge.
Figure 31 shows the convergence history of the last point of the wake at the
wing root section as a function of boundary layer iteration. The converged
wake at this section is shown in Fig. 32.

The results show that for the natural transition case, the transition
occurred at 8.1% chord on top of the wing and 50% chord on the bottom
surface. The results for the forces are shown in Table 3. It is seen that
the wing 1ift coefficients, C,, and drag coefficients, Cpy, for the two
transition calculations are relatively close to each other. The two transi-
tion calculations gave different boundary layer solutions and hence different
friction drags. This will be discussed in the next section. The CL for the
viscous solution (tripped boundary layer) was .536 as compared with the
inviscid value of .749. The experimental value of C, was .53 at a nominal
angle of attack of 2.9° (compared to the a = 2° used in the comutation).

Results for section pressure distributions (for the tripped boundary
layer case) are shown in Fig. 33a - 33e for n= .15, .30, .50, .70, and .95,
respectively, where n is the sectional distance from the wing root normalized
with the half span. Shown also are the inviscid pressure distributions at the
same free stream Mach number (M, = .82) and angle of attack (a = 2°) as well
as the experimental results. It is seen that the viscous effect at this
Reynolds number (6M) is quite strong. Shock location is shifted upstream and
shock strength becomes much weaker resulting in a much lower 1ift. The
viscous effect on the bottom wing surface is relatively small. The reasons
for the poor agreement of the pressure distribution with the data on the lower
surface near the trailing edge are not understood at this time. The
comparisons for span load distributions for the same case are shown in Fig.
34. We note again the vast differences between the viscous and inviscid
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solution for the section 1ift distribution. The isobar plots for the
converged viscous solution are shown in Fig. 35. Pressure distributions on
the wing and wake for the top and the bottom surfaces are displayed. Because
of the viscous effects, the shock patterns differ greatly from those in the
inviscid solution. The lambda type shock pattern is clearly exhibited. The
bottom surface shows relatively smooth flow patterns with no shock waves. The
pattern is "2-D" 1ike on the lower surface except near the wing tip region.

For the Wing B runs, the free stream Mach number was M, = .9, the
Reynolds number Re..¢ was 10 million and the boundary layers were tripped at
5% chord to match the experimental values. The computation grid was (128 x 16
x 32). Two angles of attack a = 3° and a = 3.5° were run in order to compare
with the nominal experimental value of a= 3.9°. The results for section 1lift
distributions at n = .2, .4, .6, .8, and .95 and wing loadings are shown in
Table 4. Because of higher Reynolds number, it is seen that the 1ift results
for the viscous flow calculation differ by only about 10% from the inviscid
values. The experimental value of C_ was .49 at a nominal angle of attack of
a = 3.9°. Sectional pressure distributions for both the viscous and inviscid
calculations at « = 3.5° are shown in Fig. 36a - 36e for n= .2, .4, .6, .8,
and .95, respectively. The span load distribution for the same case is shown
in Fig. 37. The overall viscous effects are small as compared to the Wing A
computations which is consistent with the difference in Reynolds numbers in
these two cases.

5.2.4 Boundary Layer & Wake Solutions

In this section, we present solutions for some of the boundary layer
quantities from the results of the converged viscid-inviscid interaction
solution. For Wing A calculations at M, = .92, a = 2° and Re. ¢ = 6 X 106,
two solutions are presented, one for tripped transition (5% chord) and one for
natural transition. The results for the displacement thickness &*, the
momentum thickness 6;,, the skin friction C¢ and the shape factor R at the
mid span station are given in Fig. 38 - 41, respectively. In the natural
transition case, the transition point on the upper surface occurred at 8.1%
chord. The two solutions on the upper surface are virtually identical. On
the bottom surface, natural transition occurred at 50% chord compared to the
5% location of the fixed transition case. The solutions on the lower surfaces
differ significantly. The displacement and momentum thicknesses are much
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smaller in the natural transition runs as shown in Fig. 39. The comparison of
the skin friction results shown in Fig. 40, indicates that natural transition
will result in a smaller friction drag due to a larger area of the wing
surface covered by laminar flow.

The isocline results for the tripped transition run are shown in Fig. 42a
- 42f. Both the top and the bottom wing and wake surface plots are shown.
The isoclines for the surface velocity are shown in Fig. 42a. This velocity
is the converged interaction "inviscid solution" with trailing edge strong
interaction corrections. It is seen that the contours are quite similar to
those of the isobar results shown in Fig. 35. On the top wing surface, the
tambda shock structure is restricted to about 40% of the half span region from
the wing root. In this region, the boundary layer exhibits more 3-D
effects. On the bottom wing surface, the spanwise variations of the solution
is relatively small. The wing tip effects are apparent as shown in the
results of surface velocity angle a 1in Fig. 42b. Relatively large gradients
are seen near the tip and towards the trailing edge and into the wake. It is
also seen that the contours of the surface velocity angle in the wake for the
top and the bottom surfaces are quite similar indicating that the viscous wake
in this case does not have a very complicated 3-D structure. The boundary
layer solutions for the displacement thickness &%, the momentum thickness 811>
the shape factor H and the limiting wall streamline angle B8 are shown in
Fig. 42c - 42f, respectively. The displacement thickness & has a rather
curious wake distribution on the top surface where a moderate gradi-ent in the
spanwise direction is shown near the wing root region. This reflects the fact
that more realistic wing root boundary conditions are probably required. This
aspect is beyond the scope of the present study. From our experience, the
shape factor A 1is the most sensitive part of the boundary layer
calculation. At early stages of the interation, there is relatively large
spanwise gradient for H near the intersection of the two shocks. Boundary
layer computations can break down if the shocks are too strong. At a later
stage, the spanwise gradient gradually decreases as the viscous effect sets in
and shocks become weaker. The converged results for H is shown in Fig.
42e. The distribution of the limiting wall streamline deviation angle g from
the external inviscid streamline is shown in Fig. 42f.
The variation of g is relatively mild except near the outboard and trailing
edge region on the bottom surface, where most of the spanwise flow occurs.
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6. CONCLUSIONS

The principle conclusions of this report are:

The approximate factorization scheme (AFZ) used in the inviscid
calculation presented in this report is as efficient as any state-of-
the-art scheme available today. Inclusion of the Prandtl-Glauert far
field boundary condition made the scheme faster and more reliable.
Extending the method to second-order accuracy in the supersonic zone
affected the solution significantly in critical areas (i.e., leading
edge and wing tip). The assumption of irrotational flow does
introduce some inaccuracies, particularly for strong shocks. The use
of the Euler equations may be an alternative but their solution would
require more computing time and memory. In addition, the Euler.
equations may introduce additional computational difficulties.

The 3-D boundary layer equations resulting from the integral method
formulation are very complex. There is room for improvement in the
solution method of these equations. The lack of a complete set of
physical boundary conditions at the tip and root sections forces us
to use arbitrary zero gradient conditions at these stations and this
introduces errors on the wing in the region of influence of these
points. For high aspect transport wings, errors introduced in these
regions are snall and the consequences are not too important for
engineering purposes. However, this will not be the case for highly
swept, low aspect ratio fighter type wings.

The results indicate that the wing loadings are strongly controlled
by the inviscid solutions which are affected by the grid resolution
and distribution.

The "direct mode" boundary layer analysis as employed in the present
study has a suprisingly large region of validity. While the "inverse
mode" boundary layer analysis has proved very successful in 2-D
studies with small separated region, the method has yet to be
explored in 3-D boundary layers. Three-dimensional boundary layer
separation is inherently more complex and very likely cannot be
adequately treated by extension of the 2-D inverse methods.
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The present investigation has demonstrated that the "zonal" approach
is a practical procedure for computing viscous flows over realistic
wings at transonic speeds. Results are qualitatively good in many
cases although many areas of improvement are required to achieve
accuracies comparable to our 2-D viscous airfoil codes, GRUMFOIL.
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TABLE 4 COMPUTED FORCES RESULTS FOR LOCKEED WING B

Section Lift CL

Viscous Solution Inviscid Solution Experiment
n a=3° 3.5° 3° 3.5° 3.9°
0.2 0.4516 0.5024 0.4966 0.5539 0.48 (n =.22)
.4 0.4738 0.5301 0.5252 0.5882 0.52
.6 0.4753 0.5351 0.5339 0.6001 0.55
.8 0.4458 0.5037 0.5116 0.5746 0.51
.95 0.3588 0.4056 0.4229 0.4771 0.38

WING LOADING

Cy Cp Pressure Drag
Viscous Inviscid Viscous Inviscid
a=3° 0.4483 0.5006 0.0190 0.0217
a = 3.5° 0.5020 0.5605 0.0242 0.0280
a = 3.9(EXPERIMENT) 0.49 ———

M= 0.9 Repae = 10M  Ak(1) = AK(2) = 0.05 Grid = 128 x 16 x 32
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