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NUMERICAL STUDY OF HYDROGEN-AIR SUPERSONIC COMBUSTION
BY USING ELLIPTIC AND PARABOLIZED EQUATIONS
By

Tawit Chitsomboon! and Surendra N. Tiwari?

ABSTRACT

The two-dimensional Navier-Stokes and species continuity equations are
used to investigate supersonic chemically reacting flow problems which are
related to scramjet-engine configurations. A global two-step finite-rate
chemistry model is employed to represent the hydrogen-air combustion in the
flow. An algebraic turbulent model is adopted for turbulent flow calcu-
lations. The explicit unsplft MacCormack finite-difference algorithm is
used to develop a computer program suitable for a vector processing
computer. The computer program developed is then used to integrate the
system of the governing equations in time until convergence is attained.

The chemistry source terms in the species continuity equations are
evaluated implicitly to alleviate stiffness associated with fast chemical
reactions. The block mono-diagonal system of algebraic equations, resulting
from treating the source terms implicitly, can be inverted efficiently on
vector processing computers. Both premixed and nonpremixed reacting flows
are solved. Some of the results are compared with those using a complete-
reaction chemistry model. It is found that the finite-rate model predicts
the sane trends as the complete-reaction model, but the former allows lesser
extent of combustion,

The problems solved by the elliptic code are re-investigated by using a

set of two-dimensional parabolized Navier-Stokes and parabolized species

lGraduate Research Assistant, Department of Mechanical Engineering and
Mechanics, 01d Dominion University, Norfolk, Virginia 23508.

2fminent Professor, Department of Mechanical Engineering and Mechanics, 01d
Dominion University, Norfolk, Virginia 23508.
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equations. The thermo-chemical and turbulence models utilized are the same
as used in the fully elliptic procedure (with proper modifications). A
linearized fully-coupled fully-implicit finite-difference algorithm is used
to develop a second computer code which solves the governing equations by
marching in space rather than time, resulting in a considerable saving in
computer resources. Results obtained by using the parabolized formulation
are compared with the results obtained by using the fully-elliptic equa-
tions. The comparisons indicate fairly good agreement of the results of the

two formulations.



FOREWORD
This is a progress report on the research project "Analysis and Compu-
tation of Internal Flow Field in a Scramjet Engine." The period of perform-
ance on this research was December 1, 1985 through May 31, 1986. The work
was supported by the NASA Langley Research Center (Computational Method
Branch of the High-Speed Aerodynamics Division) through research grant NAG-
1-423. The grant was monitored by Dr. Ajay Kumar of the High-Speed Aero-

dynamics Branch.
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1. INTRODUCTION
General background information and motivation for the present study are
discussed in this section. Review of related literature is presented fol-

lowed by specific objectives of the study.

1.1 Background

A comprehensive research program has been underway particularly at the
NASA Langley Research Center to develop supersonic combustion ramjet (scram-
ject) engine for hypersonic aircraft cruising at Mach 5 and beyond [1-4].*
Flow characteristics at these speeds dictate engine-airframe integration
where the forebody of the vehicle is used to partially compress incoming air
for the inlet of the engine which is mounted directly underneath and becomes
an integral part of the vehicle. The aftbody of the vehicle, immediately
downstream of the engine, is used as part of the nozzle to provide addition-
al thrust. Hydrogen has been a strong candidate for fueling this type of
engine due to its many desirable properties such as high specific iinpulse
and cooling effect.

The engine module has a rectangular capture area with sweep of the
sidewalls and a cut back cowl in order to provide flow spillage which allows

the inlet to start at low flight speeds. The compression process in the

inlet is completed by wedge-shaped struts which also provide multiple planes
for injection of gaseous hydrogen fuel. The combustor has a diverging shape
and employs varying amounts of parallel and perpendicular fuel injection
from the sidewalls and the struts.

A cut-and-try procedure which is inevitable in the initial phase of

experimentation has always proved to be expensive and time consuming

*The numbers in brackets indicate references.




especially for hypersonic flow research; this has led the way to numerical
experimentation. In this study, the attention is directed on applying nu-
merical techniques to compute a chemically reacting flow field through the
scramjet engine.

Numerical investigation of a complex chemically reacting flow requires
enormous computer resources, well-proven numerical algorithms and realistic
chemical kinetics models. The advent of supercomputers such as the VPS-32
vector processing computer at the NASA Langley Research Center has allevi-
ated some restrictions on the computer resource, provided the computer code
is written to take advantage of the hardware of the computer. Advancements
in nunerical algorithms in the past decade have made numerical investi-
gations more reliable research tools than ever before. Chemical kinetics of
the hydrogen-air system are the most studied and understood pnenoimena, pro-
viding anple reliable data base for all levels of sophistication.

The flow field of a scramjet engine is qugte complex. Shock waves
emanating from the sidewalls and the struts leading edges are strong enough
to separate the turbulent boundary layers in the inlet. Interactions of
shock waves and expansion fans are also expected to be strong. The flow
field near transverse fuel injectors is particularly complex. Blockage and
deflection of the supersonic mainstream flow by the fuel jets give rise to
an adverse pressure gradient which separates the turbulent boundary layer
upstream of the injectors. The flow field in the combustor is further com-
plicated by the highly turbulent mixing and exothermic reaction of hydrogen
and air. Moreover, the efffect of combustion in the combustor could be felt
upstrean through the subsonic boundary layers which could degrade the per-
formance of the inlet. Several injector-diameters downstream of the injec-

tor, however, the flow becomes less complex; a predominant flow direction




can be determined in which there is no flow separation.

To resolve all kinds of interaction discussed, the fully elliptic form
of the governing partial differential equations must be used in the inlet
and in the near field of the injectors. Flow in the rear section of the
combustor and aftbody of the vehicle (where flow additionally expands) can
be solved by a much less expensive parabolic or parabolized form of the
governing equations since elliptic effects in the predominant flow direction

are negligible in these regions.

1.2 Survey of Pertinent Literature

Nonreacting flows in various two- and three-dimensional inlet configu-
rations were studied by Kumar [5-7]. In these studies, the fully elliptic
form of the governing equations are employed for accurate representatioﬁ of
the flow field which involves separations due to shock-wave/boundary-1ayer
interaction. The computer codes developed are highly efficient on the
vector processing computers since they are fully vectorized. Limited
success was reported by Chitsomboon and Tiwari [8] and Chitsomboon et al.
[9] in using a parabolized form of the governing equations for solving non-
reacting flow through the related configurations. Effect of gaseous fuel
injection without combustion and with a complete combustion model were also
investigated [10-11].

Incorporation of chemical reaction into a numerical scheme for solving
fluid flow problems is quite an endeavor. First of all, a chemistry model
compatible with the physical problem being solved must be selected. Depend-
ing on the rate of chemical reaction relative to the characteristic time of

the fluid flow, the suitable chemistry model could be any one of tne follow-

ing models:




1. frozen flow model

2. finite rate model
3. equilibrium model

4. complete reaction model

In general, the finite-rate model is the most accurate one but it is also

the most difficult to implement. More often than not, a compromise must be

made as to the level of complexity of the chemistry model selected and the

computer resources available. 1
Simple introductions to the physics and the mathematics of chemically

reacting flow can be found in [12-15]. Over the past decade, a number of

finite rate chemistry models for the hydrogen-air system have appeared in

the literature. Rogers and Schexnayder [16] proposed as many as 60 reaction

paths in their model; this is certainly one of the most complete representa-

tions of hydrogen-air reaction. Unfortunately, the enormous number of reac-

tion paths and chemical species involved in the model do not lend themselves

feasible for a numerical investigation, at least within the current capa-

bility of state-of-the-art computers. Intermediate-level models [17] reduce

the reaction paths down to twenty-five and eight with the number of species

of twelve and eight, respectively. Except for some inaccuracies during the

ignition delay period, the eight-reaction model performs as well as the 25-

path model. Although these models are considerable less tedious than the

60-path model, they are expected to be too costly to use for routine para-

metric studies especially if the fully elliptic governing equations were to

be used. The global two-step chemistry mope1 of Rogers and Chinitz [18]

offers an alternative to numerical investigators since it is a finite rate

model with only four species of reactants and products and with only two

reaction paths. This model was deduced by fitting the temperature history




of a 28-reaction model [16] used in a series of constant-pressure stream-
tube calculations. While there are a number of limitations to this model
such as ignition phase inaccuracy and a tendency to overpredict the flame
temperature, the model is considered to be appropriate for initial para-
metric study of overall mixing and extent of combustion.

It is the rule rather than the exception that incorporation of a finite
rate chemistry model into a numerical scheme will yield a stiff system of
governing differential equations. Stiffness arises from disparity in time
scales of the governing equations and has its meaning only in the context of
numerical or computational mathematics. From a mathematical view point, a
system of equations is stiff if the eigenvalues of the coefficient matrix of
its locally linear representation have negative real parts that are widely
disparate [13]. From a practical perspective, the size of the time step of
integration is severely limited by stability rather than accuracy when stiff
phenomenon exists [19]. The disparity in time scales, in turn, is caused by
wide differences in rates of chemical reaction of various species; usually
tne fastest reaction is the one that causes stiffness.

During transient period (or ignition delay period), some free radicals
may be produced very rapidly for a very short duration of time; thereafter,
they stay relatively unchanged at their equilibrium values since other re-
actions begin to consume them as soon as they are produced. It is paradoxi-
cal that stiffness occurs only when the rapid transient state has subsided
[13, 20]. During the rapid transient period, small time steps must be used
anyway in order to resolve the rapidly-changing temporal history and there-
fore, the system is not stiff since time step is limited by accuracy. Dur-
ing equilibrium period, rates of reactions slow down by several orders of

magnitude and it is natural to use much larger time step (while still



maintaining accuracy) for economical reasons. Use of large time steps,
however, will result in numerical instability because stability of the
governing differential equations is still dictated by the smallest time
scale. An eigenvalue analysis of a model problem clearly illustrates this
point (see, e.g., Ref. 21).

Stiff phenomenon is studied extensively in the framework of ordinary
differential equations (ODE) which are representative of the governing equa-
tions of a well-stirred reactor or a batch-chemistry system (systems with no
spatial gradients) [19, 22-26]. In most cases, some form of implicitness is
used to evaluate chemistry source terms in order to alleviate stiffness.
Some of the most popular stiff ODE solvers are those of Hindmash [23-24].
These solvers are based on the methods of Gear [25-26] which, in turn, con-
tain different implementations of the Adams formulae. When applied to flow
problems, an Adams-based algorithm was found to be inferior to the four-step
Runge-Kutta algorithm [27].

In 1ight of the above discussion, it is realized that fully explicit
numerical methods cannot be used to time integrate the stiff governing equa-
tions of chemically reacting flow due to the prohibitively small time step
required to ensure stability. If only a steady state solution is sought,
implicit methods could be used with no restriction on time-step size. Use
of fully implicit methods, however, requre large computer memory and the
inversion of the block multidiagonal system of algebraic equations. These
are difficult to implement to take advantage of the hardware of the vector-
processing computers. An alternative is to evaluate the chemistry source
terms in the species equations implicitly while other terms, not contri-
buting to stiffness, are evaluated explicitly. This semi-implicit method

was proposed by several investigators [28-31].



A stability analysis [31] reveals that by linearizing the implicit
source terms one ends up with a preconditioning matrix which modifies the
unsteady terms of the governing equations. The preconditioning matrix
allows each species to evolve at its own characteristic time scale. With
implicit source terms, the governing parameter is now the fluid dynamics
time scale which, in turn, is dictated by the Courant-Friedrichs-Lewy (CFL)
condition,

The partially implicit method and the global two-step chemistry model
[18] was used successfully by Drummond, et al. [32] to calculate premixed
Hy-air reacting flow using a spectral method. Bussing and Murman [31, 33]
used a finite volume method to solve for flows over ramps and rearward fac-
ing steps. Chitsomboon and Tiwari [34] used a finite difference method for
similar problems. Eklund et al. [27], studied relative merits of an Adams
scheme and a Runge-Kutta scheme. A nonpremixed calculation of this partic-
ular type of reacting flow was done by Chitsomboon et al. [35]; in the
study, gaseous hydrogen fuel was injected perpendicular to the sidewalls and
the fuel struts of an inlet-combustor configuration. The results reported
in these studies have indicated that the semi-implicit method together with
the global two-step chemistry model provides a viable tool in numerical
study of H,-air reacting flow by using the elliptic governing equations.

As mentioned earlier, the flow field far downstream of the fuel injec-
tors is relatively less complex; a predominant flow direction exists in
which there is no flow separation. If only a steady state solution is
sought, a class of approximation to the fully elliptic equations, para-
bolized approximation, is physically reasonable. The motivation in doing
this kind of approximation is that an N-dimensional problem reduces to an

(N-1)-dimensional problem. Furthermore, the reduced dimension problem can




be solved by marching in the flow direction once (or, at most, a couple of
times) instead of marching in time for many steps as in the elliptic proce-
dure. This method is nhighly efficient with regard to memory requirement and
total CPU time of the computer program, A brief discussion of this partic-
ular approximation is given below.

 The boundary 1layer approximatjon introduced by Prandtl at the turn of
the century has enjoyed a wealth of analyses both analytically and numeri-
cally (see, e.g., Refs. 36-38 and references therein). An order of magni-
tude analysis shows that, for a high Reynolds number flow, the streamwise
diffusion terms and the whole normal momentum equation can be dropped since
they are terms of high order. The remaining steady state equations, with
the streamwise pressure gradient specified, are mathematically parabolic and
can be solved by integration in the streamwise direction provided appropri-
ate initial and boundary conditions are supplied. In its original incep-
tion, the boundary layer equatiqns were used to correct for thin viscous
effects near solid walls of the outer inviscid solution. The streamwise
pressure gradient can be obtained from the inviscid solution; this method
has been termed the direct inethod. Due to the neglect of the normal momen-
tum equation, the direct method cannot resolve the viscous-inviscid inter-

action which could be important for some classes of flow. To partially

account for the interaction, modified methods such as the inverse method or
the interacting boundary layer method must be used. Numerical algorithms of
these methods could be quite tedious since they require adaptive adjustments
of various parameters.

Parabolized approximation contains all the boundary layer equations
plus the normal momentum equation. The inclusion of the normal momentum

equation makes the equations very versatile. First of all, the entire Euler



equations are included; this eradicates the need of laborious patching of
viscous and inviscid solutions required by the boundary layer procedure.

The viscous-inviscid interactions in the normal direction are naturally
represented and the equations still enjoy the efficient procedure of space
marching in obtaining the solution. Like the boundary layer approximation,
this approximation is valid for high Reynolds number flows only. Tradition-
ally, the equations are termed "parabolic" if the streamwise pressure gradi-
ent is prescribed a priori. The equations are called "parabolized" if
mathematical treatments are done to the pressure gradient term such that the
term can be retained as part of the solution without causing any illposed-
ness. Some investigators prefer to call both formulations as reduced
Navier-Stokes equations (RNS).

- It appears that Ferri [39] and Rudman and Rubin [40] are among the
first to propose using this class of approximation to the full Navier-Stokes
equations. Since then, it has found numerous applications from the incom-
pressible regime to the hypersonic regime for both external and internal
flow.

For imcompressible and subsonic flows, characteristics of downstream
flow can affect those at upstream since the pressure waves which propagate
disturbances in the flow travel faster than the local fluid velocity. For
supersonic flow, information can still propagate upstream through subsonic
boundary layers close to solid walls. In essence, a disturbance at a point
in the domain affects the solution through out the domain; this constitutes
an elliptic boundary value problem. If the untreated parabolized equations
are marched with the pressure determined as part of the solution, then, the
equations are illposed since they represent an elliptic boundary value

problem with a parabolic initial value problem. The mathematical




characteristic of the equations is controlled by the streamwise pressure
gradient term in the streamwise momentum equation. Lighthill [41] demon-
strated the existence of an exponentially growing solution (called the
departure solution) which reflects illposedness by retaining the streamwise
pressure gradient term. Lubard and Hé1liwe11 [42] showed that for a back-
ward difference on the streamwise pressure gradient term, the departure
solution can be avoided if the integration step size (ax) is greater than
(A;) where Ax is of the order of magnitude of the subsonic layer thickness.
This is a rather paradoxical conclusion since one would expect that the
smaller the integration step size the more accurate and the more stable the
solution will be. However, if Ax is less than AX (which is the extent of
upstream interaction) the parabolized equations will try to represent
upstrean influence and will result in a departure solution. If the pressure
field can be prescribed a priori, however, the equations are mathematically
parabolic and there is no difficulty in marching in the streanwise
direction. The initial prescribed pressure field can be updated once the
entire domain is swept. This is accomplished by a Poisson equation for
pressure derived from the momentum equations. Schemes based on this proce-
dure are quite expensive since the Poisson equation might have to be solved
several times [43-45], but it is still relatively economical as compared to
using the fully elliptic equations.

Algorithms which are valid from the incompressible regime to the hyper-
sonic regime which do not require solution to the Poisson equation have been
reported in [46-48]. These algorithms used forward difference on the pres-
sure gradient term which necessitates a known or guessed pressure field.

The departure behavior has been claimed to be taken care of by the forward

difference procedure. Also, global iterations on the pressure field, by
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multiple sweeping of the domain, become necessary in order to correct the
guessed pressure field. Another widely used algorithm was developed by
Patankar and Spalding [49]. This is a single sweep method for incompress-
ible flow. The assumed pressure field and the velocity field are corrected
simultaneously once an integration step is completed. The correction is
made in a manner such that the continuity equation, which is not included in
the implicit solution procedure, is satisfied. An extension of the algo-
rithm to compressible flows was made in [50]. The modified algorithm does
not seem to capture shock wave well due probably to the nature of the pres-
sure correction procedure [51].' Global iteration on the pressure field was
also studied [52]§ it was found that the iteration had quite an effect on
the characteristic of the flow field.

For supersonic high Reynolds number flow without streamwise separation,
the algorithm of Vigneron et al. [53] is very efficient and accurate. The
accuracy is partially attained by solving all the governing equations in a
fully coupled manner. The algorithm is really a steady state version of
those proposed by Beam and Warming [54] and Briley and McDonald [55]. Since
it is a non-iterative single sweep method, the algorithm is very efficient.
The only cumbersome part of the method is that one has to evaluate the
Jacobian matrices of all the flux vectors and solve them in a block tri-
diagonal manner instead of just a scalar tri-diagonal procedure encountered
in the previously discussed methods. The departure behavior of the solution
is suppressed by retaining only a fraction, w, of the streamwise pressure
gradient within the subsonic portions of a boundary layer. The parameter,
w, was obtained from an eigenvalue analysis of the locally linearized gov-
erning equations such that the equations become wellposed. By just manipu-

lating the governing equations, Khosla and Lai [56] have also revealed the

11




existence of the parameter w. A similar fully coupled fully implicit algo-
rithm was developed also by Schiff and Steger [57]. An elaborate eigenvalue
analysis revealed again that the ill-posedness of the system of equations is
caused by the streamwise pressure gradient in the subsonic layer. To render
the equations well posed, a sublayer approximation was then proposed. In
this approximation, the pressure gradient within the subsonic zone close to
a solid wall is evaluated at the first supersonic mesh point away from the
wall. In an independent study, the sublayer model was also proposed by
Rubin and Lin [58].

Another good feature of this type of algorithm is that it can be cast
into a fully conservative form, thus, capable of capturing strong shock
waves. Rakich [59] and Chitsomboon et al. [9] applied global iteration
procedures on the pressure fieid to this algorithm for attached and sepa-
rated flows, respectively. A modified form of the FLARE approximation [60]
was used in solving flows with streamwise separations.

Parabolic governing equations are quite popular in solving supersonic
chemically reacting flows of hydrogen and air [50, 52, 61-62]. The algo-
rithm used in these studies is that of Partankar and Spalding [49] with a
compressibility correction for the pressure-velocity update procedure.
Equilibrium chemistry models were used in all of these studies. Finite-rate
chemistry models were employed by Rogers and Chinitz [18] for solving simi-
lar flows in which gaseous hydrogen is injected parallel to the flow direc-
tion. Some difficulties were reported in using a finite-rate chemistry
model. Some of the species concentrations became negative and the computer
program could not continue but there was no discussion as to how the chemis-
try source terms were evaluated [18]. A finite rate chemistry model was

also utilized by Sinha and Dash [63]. In their study, the species equations
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were decoupled from the fluid dynamics equations and the chemistry source
terms for the next integration step were obtained by a shooting technique.
As discussed earlier, the Patankar-Spalding-based algorithm probably could
not capture strong shock waves typical of flow in a scramjet; thus limiting
the application of the algorithm to relatively simple flows. For flows with
embedded strong shock waves, particularly those with strong interactions

between chemistry and fluid, an alternative approach is warranted.

1.3 Objectives

The objectives of this study are to, first, incorporate the finite-rate
chemistry package of Rogers and Chinitz [18] into an existing nonreacting
elliptic computer code. This code was developed initially for solving flows
in inlets of scramjet engine configurations [5, 64). The unsplit MacCormack
finite difference algorithm was used to advance the discretized form of the
two-dimensional Navier-Stokes equations.in time until a steady state solu-
tion is attained. The code is fully vectorized and is operational only on
the VPS-32 vector processing computer at the NASA-LaRC (an upgraded version
of the CDC Cyber-205). The incorporation of the chemistry package has
included four species continuity equations along with the original set of
the governing equations. The energy equation is also modified to make it
appropriate for a chemically reacting flow. Stiffness associated with fast
chemical reactions is alleviated by evaluating the chemistry source terms
implicitly. The resulting computer code will be used to solve various re-
acting H,-air problems related to scramjet engine configurations.

A second computer code, based on fully implicit parabolized metnods of
Vigneron et al. [53] and Schiff and Steger [57], is also developed. The

reason for using this particular algorithm is to capture strong shock waves
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typical of the flow problems for which the code is developed. The thermo-
chemical models employed here are the same as those used in the fully
elliptic procedure. The chemistry equations and the fluid dynamics equa-
tions are solved in a fully implicit fully coupled manner in order to
resolve the fluid-chemistry interactions. The results obtained by using
this space marching code will be compared with those obtained by using the
more expensive elliptic code.

The basic formulations for this study are described in Section 2. The
eliptic and the parabolized governing equations are presented together with
the thermo-chemical models and other important formulations. The finite
difference algorithms for both the elliptic and the parabolized equations
are presented in Section 3 where other related informations are also pro-
vided. The important results obtained in this study are presented and dis-
cussed in Section 4. Finally, specific conclusions and some suggestions fof

further study are provided in Section 5.

2. BASIC FORMULATION
This section deals with the discussion of the physical model and basic
governing equations for the elliptic and parabolized formulations. The

relations for the chenistry and thermodynamic models are also provided.

2.1 Physical Model
As pointed out in the introduction, the primary goal of this study is
to compute chemically reacting flow through the scfamjet engine. A
schematic of a scramjet engine is shown in Fig. 2.1 in which it is shown
that the engine consists of many identical modules; the size of a module is
appropriate for ground testing. An engine module and a part of its topview

are also illustrated. The fuel is injected from the fuel struts as
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indicated by the arrows. Figure 2.2 depicts the complex flow field in the
vicinity of a fuel injector. To resolve the complexity of the flow in the
near field of the injector, the fully elliptic form of the governing
equations must be used. The parabolized form of the governing equations as
discussed in the introduction can be used in the region far downstream of

the fuel injector in which the flow becomes less complex.

2.2 Elliptic Governing Equations
The two-dimensional Navier-Stokes equations and the species continuity
equations in body-fitted coordinate system written in the strong

conversation law form can be expressed symbolically as

39 , 3 L 3F _ W (2.1)
ot 13 an J
where
T
q =-§ [e, pu, pv, pH-p, 01] (2.2)

i ) T

pu

uu + T -XT
o yn XX n Xy

E = PVU* YaTyx = *nTyy (2.3)

(oH-pury (ut, #v, #q )-x (vt  *ur, +q,)

XX y Yy yxX 'y

iU + yn(B(fi)X) - Xn(s(fi)

)

e y
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_ - 1
oV
puv - YeTy + XETxy
povu - ysryx XgTyy
F = (2.4)
(pH—p)v—yg(urxx+v'txy+qx)+x€(u-cyx+vryy+qy)
piv - Y (B(f3),) + x(8(f;) ) ]
Here, xE denotes 9x/3&, and so forth, and
U= yu-xv (2.5a)
vV = - VA + XV (2.5b)
= - -1..
J (xgyn xnyg) (2.5¢)

It is to be understood that the source terms, W, for the Navier-Stokes

equations are identically zero. For the species equations in source terms
represent rates of species production or extinction to be discussed in

detail in the subsequent section. The quantities t , t , and t are
T XXt Xy yy

components of the stress tensor. With the Stokes hypothesis assumed, these

quantities are given by

4 3 2 3
T, =P wru) CXE -2 (2.6a)
3 3x 3 3y
ou v
= S - + — — ¢
Txy TyX (U Ut) 2y + ax) (2 6b)
29 43
T =p+ (u + ut) _._li - —_.v_)- (2.6C)
vy 3 9x 3 ay

The quantities 9, and qy are components of the heat flux; the fluxes are due
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to heat conduction and transport of enthalpy by species diffusion. For a

laminar flow the terms are given by

a7 N af,
q = -k—=-00z [(—) h] (2.7a)
X =l 8x
N of .
a, = - k M oenr (D h] (2.7b)

where
h. = H? + f C . dT . (2.8)
0

Note that the effective binary diffusion coefficient, D, is used for all
species. Together with the assumption that the Lewis number is unity, the
approximation provides a great simplification to these heat fluxes. The
assumption, while not always stated explicitly, appears to be a fairly rou-
tine assumption in the analysis of gas.phase reacting systems. With the
manipulation presented in Appendix A, the heat flux terms can be written

simply as

q = - ) Kl (2.9a)
Pr 3x
3h

q = - ol Bl (2.9b)
Pr 3y

For a turbulent flow the terms are modified as
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u
q = - (P+_t) 20 (2.10a)

Pr Prt X

|

(2.10b)
y Pr Prt 3y

The molecular viscosity, u, is assumed to be dependent upon temperature and

is calculated by the Sutherland's formula:

. (1.458 x 1076) T13/2
T + 110.4

(2.11)

Pure air properties are used in the above relation since the mixture is
dominated by the nitrogen species. The turbulence eddy viscosity, M s is
obtained by the algebraic two-layer eddy viscosity model of Baldwin and
Lomax [65]. 1In this model, the inner layer is represented by the Prandtl-
Van Driest mixing length formulation and the Clauser approximation is used
in the outer layer. The model is very convenient to use since there is no
need to find the edge of a boundary layer like some other algebraic models.
The study of Peters et al. [66] shows that it is a viable turbulence model
and provides a good starting point in turbulence modeling. The laminar and
turbulent Prandtl numbers are assumed to be equal to constant values of 0.72
and 0.9, respectively.

The subscript i's in the species equations range from one to four and
denote the species 0y, H,0, Hy and OH, respectively. The mass fraction of

nigroten can be obtained by the mass constraint relation:
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f.. (2.12)

The quantity B in the species diffusion terms is defined as

n
B= - (M vt ) (2.13)
Le«Pr Let-Prt
where
le = a/D =1 (2.18)
and R
Pr = v/a . (2.15)

The laminar and turbulent Lewis numbers are assumed to be equal to one.

2.3 Parabolized Governing Equations
The two-dimensional parabolized Navier-Stokes and parabolized species
equations in a body-fitted coordinate system are expressed in a strong

conservation law form as

LA R L (2.16)
9 3¢  9n J
where
= _ 1 . T
P=— [09 EX (1'N)Pa gy (1'w)ps 03 0, O, 0’ 0] (2-17)
J
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- ou ]
puu + wp
3
X puv
J pHu
| P
[ ou |
puu + p
x puv
J pHu
| Py
0
T
XX
Xy
ut X + VTxy +q
(sfi)x

<

C_4|‘<

p— pv -1
puv
pVV + wp

pHy

R
L Y

v
puv

pvv + p
pHv

p.v
1

-

The derivatives in the viscous flux, F, are given as

T = - b tug) Cnpu - —ny v,)
Txy (w ut) (ny n T vn)

_ 4 2
Ty T T (b + ) (S-ny v, -.g e Up)

(2.18)

(2.19)

(2.20)

(2.21a)

(2.21b)

(2.21c)
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u t
g, = - (=+_J)n h (2.22a
X Pr Pry xm )
q, = - (—”-+E'-) N h (2.22b)
y Pr Pro yn
(Bf1)x = n (Bf1)n (2.23a)
(8,0, = n, (8F) (2.23b)

The above parabolized equations are obtained by dropping the unsteady terms
and the streamwise viscous derivative terms. For high Reynolds number
flows, neglect of these terms should not degrade quality of the solution by
much since they are high order terms. Note also that only a fraction w of
the streamwise pressure gradients are retained. The parameter w is a quan-
tity of magnitude varying between zero and one and is obtained from an
eigenvalue analysis [53]. The relation for w is given in terms of the
streamwise Mach number as

yMZ

w = — . (2.24)
1+(Y-1)M§

From the above relation, it can be seen that w is equal to zero when the

streamwise Mach number, M_, equals zero; it is equal to unity when Mx equals

X’
one. For MX greater than one, i.e., supersonic flow, w is assigned the
value of one. The parameter w is necessary in order to suppress upstream

pressure interactions. From a mathematical viewpoint, w suppresses the
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ellipticity of the equations rendering them well posed for marching in the ¢
direction., It is natural to expect that this technique will work well only
for supersonic high Reynolds number flows where subsonic layers close to
solid walls are thin. For flows with large subsonic zones, alternative
methods, such as those discussed in the introduction, are recommended.

In the supersonic region, the full Euler equations are included; the
equations should have capability to capture strong shock waves. The normal
pressure gradient is also retained in full; this allows free pressure inter-
action in the cross stream direction without having to resort to the explic-
it interaction mechanism used in boundary-layer techniques.

The quantities u, Pr and B are obtained in the same manner as those for
the elliptic equations. The vorticity which is required in the algebraic

turbulence model is evaluated by retaining only the cross stream component.

2.4 Chemistry Model
A chemistry model is needed in order to obtain the chemistry source
terms, W, as functions of the dependent variables, g. In this study, tne
global two-step finite-rate chemistry model of Rogers and Chinitz {18] is -

adopted. The model is given by
k

fy
Hy + 0 2 OH (2.25)
ky
1
K
f
20H By [ 2 Hy0 (2.26)
b,

where the kf's are the forward reaction rate constants and the kb's are the
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backward reaction rate constants. The chemistry source terms can be obtain-
ed by applying the law of mass action to the two reaction equations. For a

general reaction equation:

B.. C. ; 1i=1,2,...,1 (2.27)

[ e I <Y
x>

J

the law of mass action states that the rate of change of molar concentration

of the (j)th species by the (i)th reaction is given by

(2.28)

The total rate of change in molar concentration of the (j)th species is

obtained by summing over all the reaction equations

(]
[}
it

(Ct). (2.29)
=1 17
The source terms on mass basis, W, are finally found by multiplying the

molar changes by the corresponding molecular weights

W, = CM

; 3 (2.30)

5t

By applying the law of mass action to the present two-step global model, the

chemistry source terms on the mass basis are given as
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2
P N T Y U
1
4

2 2
P e N D 7
, i

M3“ﬁ M2
Wy =M W _ M5 Wy
M Mo

W, = - 2 My Wi _ MyW2
M M2

(2.31a)

(2.31b)

(2.31c)

(2.31d)

where subscripts 1,2,3, and 4 are used to represent 0,, H,0, H,, and OH,

respectively.

The forward reaction rates are computed from the Arrhenius'

Ni -Ei/ROT
.= A. T e .

For the present model the rates are given by

-10 e-4865/R°T

Kep = A T

- -13 _-42500/ROT
kf2 = A2 T e

where

Ar = (8.917¢ + 31.433/@ - 28.95)(10)** m3/kmol-sec.

1aw

(2.32a)

(2.32b)

(2.32c)

(2.33a)
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>
"

(2 +1.333/8 - 0.8339)(10)38 m®/kmo12-sec. (2.33b)

1.1972 cal/mole-K. (2.34)

RO

Note that the pre-exponential constants, Ai’ are dependent upon equivalence
ratio, ¢; the functions were determined by curve fitting such that the rates

agree well with the more sophisticated model [18]. The backward rate con-

stants are related to the forward rate constants by

k.. =k_ /K, (2.35)
Di fi i

where K;'s are equilibrium constants. The values for Ki's are given by

-8992/T

K, = 26.16 e (2.36a)

(2.682 x 10-9)(T) 224¥/T 3 /kmo1 . (2.36D)

K2

It should be noted here that the global two-step chemistry model is not
accurate for predicting flames with long ignition delay times for tempera-
ture on the order of 1000 K. Specifically, the reaction would proceed con-
tinuously without a delay period even if the mixture temperature is below
the ignition temperature. To prevent this nonphysica] phenomenon, a cut off
temperature of 1000 K was used to control the reaction, i.e., if temperature

of the mixture is less than 1000 K, reaction is not permitted.

The model is used unmodified for the parabolized formulation.
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2.5 Thermodynamics Model
In general, thermodynamic properties of the mixture are computed by
sunming properties of individual species weighted by species mass fractions.
The specific heat at constant pressure of the (i)th species is assumed to be

a linear function of temperature
C..-= a, + biT (2.37)

p1

where a, and bi are constants which are obtained by curve fitting the therm-
ochemical data of Ref. 67. The numerical values of these constants are

given in Table 2.1. The static enthalpy of the mixture can be expressed as

5
h= 1z fH +CT (2.38)

where
5
T =z fi(ai + O'SDiT)' (2.39)

The total enthalpy can now be given by
H=h+ 0.5 (u2 + v2). (2.40)

The mixture gas constant can be obtained by a mass weighted summation over

all species as

5
R= 1 f.R. . (2.41)
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Table 2.

1 Numerical values of various constants

Species  H°(Joule/kq) a b R(Joule/kg-K)
02 -271,267 0.1198 947 254
Ho0  -13,972,530 0.4391 1858 457
Ho -4,200,188 2.0546 12867 4035
OH +1,772,591 0.1656 1673 478
N2 -309,483 0.1035 1048 240
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The equation of state for the mixture can be written as

P = oRT (2.42)

Finally, the specific heat ratio of the mixture is calculated from

y = P (2.43)

3. METHODS OF SOLUTION
In this section the finite difference algorithms for the elliptic and
the parabolized formulations are presented. Also discussed are the boundary

conditions and the smoothing functions used in both formulations. The grid

generation technique is given in section 3.5. Some important procedures in

| obtaining solutions are finally described in section 3.6.

3.1 Algorithm for Elliptic Equations
The symbolic form of the elliptic equations in body-fitted coordinate
is written here again as

| L B (3.1)

at 3L an

where Q = W/J for the species equations. Equation (3.1) can be forward

differenced in time as




— - - —

n n
qn+1 -gq" = -t (EE # 3F Qn+1) (3.2)
g oan

where (n+l) denotes the time level where solution is being sought. Note
that the source terms, Q, are evaluated at the implicit time level (n+l) to
alleviate stiffness associated with fast chemical reactions as discussed
earlier. Since the source terms are nonlinear functions of the dependent
variable vector, they must be linearized to render linear discrete equations

for solution. By using the Newton linearization scheme, one obtains

Qn+1 - Qn + (aQ n (qn+1 _ qn) . (3.3)

aq

The dependent variables, q, in the above equation are the pi/J of the four

species. Since both Q and q are vectors of four elements, the term 3Q/5q

becomes a 4x4 Jacobian matrix. Upon defining:

M = 3Q/3q (3.4)
n n+l n
AQ = q " -gq (3.5)
R =2E ,3F (3.6)
13 an

and substituting Egs. (3.3-3.6) into Eq. (3.2) one obtains

(1-at M)" aq" = - at(R™) (3.7)
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where I is the identity matrix. Equation (3.7) yields explicit relations

for the Navier-Stokes part whereas the species continuity equations give

rise to a block mono-diagonal system
the Jacobian matrix, M, are given in

algorithm [68] can now be applied to

Predictor step:

(I-at M)nAq

+
qn 1

Corrector step:

(1-at m™L g

n+l

The subscripts f and b in Egs. (3.8a)

finite difference, respectively.

of algebraic equations. Components of
Appendix B. The unsplit MacCormack

Eq. (3.7) as follows:

n
- At Re (3.8a)
Q"+ aq" (3.8b)
= - At RQ*l (3.9a)
=q" +0.5(aq" + aq™)- (3.9b)

and (3.9a) denote forward and backward

3.2 Algorithm for Parabolized Equations

For convenience, the symbolic form of the parabolized equations in

body-fitted coordinates are expressed

here again as

(FI + Fv) = Q. (3.10)
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The Beam and Warming finite difference algorithm [54] is used to discretize
Eq. (3.10). The algorithm was initially proposed for time dependent equa-

tions; the modifications for the present steady state equations are obvious
upon replacing the marching direction with £ coordinate. The algorithm for

Eg. (3.10) can then be written as

n (Ag)a 3 n

n
AE + - [— A ,(FI +F,) -2 Q]
+ b 3n
b -
= - A [__(FI+FV)-Q]n+ "
an 1+b

ap ) 5
- +0(a-b-0.5(a8)2 + 0(ag)3. (3.11)

X3

Many numerical schemes can be generated by varying the two parameters, a and

b. Some familiar schemes are given below:

a=0 ,b=0 ; Euler explicit

a=1 ,b=0 ; Euler implicit

a=1 , b=0.5; Three-point backward
a=0,5 b=0 ; Trapezoidal

If the difference between a and b is equal to one half, the algorithm is
second order accurate in the & direction, otherwise it is first order accu-

rate.

Since the flux terms and the chemistry source terms are all nonlinear

functions of the dependent variable vector and the metric quantities of

coordinate transformation, they need to be linearized. Unless an appropri-
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ate linearization scheme is adopted, the conservative property of the algo-
rithm given in Eq. (3.11) will be disrupted. Conservative linearization is
very important particularly for internal flow where mass flow rate across
the channel has to remain constant. Also, shock waves will not be captured
accurately if the linearization procedure disturbs the conservative property
of the algorithm. Another important consideration is that the linearization
scheme should honor the formal accuracy of the algorithm. In this study, a
scheme very similar to that used by Schiff and Steger [57] is used to lin-
earize the nonlinear terms. The general technique is to express the terms
to be linearized as functions of the dependent variable vector, q, and the
metric quantities; only the terms involving q are linearized, the metrics
are frozen at the implicit level. This is nothing but a basic mathematicai
operation for a function of multiple variables. -The noniinear terms are

linearized as follows:

A" = E™ BN S B e BB - B BB o) (3.12)

aq aq
e
8"y = (R )" + o(ag)? (3.13)
’ 3q
A"Q = (39."Anq + 0(ag)? (3.14)
3q

where a tilde over a quantity means that quantity is to be evaluated by

using q at the indicated level whereas the metric quantities are evaluated

at the indicated level plus one. Note that the (n+l) and the (n) terms of
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the streamwise flux, E, are linearized in the same fashion to ensure the
conservative property in the & direction; it is also second order accurate.
Even if a first order accurate algorithm in the £ direction is desired one
must still linearize in this manner to ensure a conservative scheme. The
cross stream flux, however, is linearized nonconservatively in £ direction
since it is already represented in a divergence form in the n direction.
The first order accuracy in linearization of F and Q is made second order
accurate since the terms have A¢ in multiplication. The chemistry source
terms are also linearized nonconservatively since they are non-conservative
source terms in the first place. For convenience in algebraic manipula-

tions, the following definitions are adopted:

— = A (3.15)
oq
3F
LV, By (3.16)
3q ’
LI (3.17)
3q

Substituting Egs. (3.12-3.17) into the original algorithm, Eq. (3.11), and

rearranging one obtains
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| [a+ 2522 (8#8,) - c})"a" = - a"1%
1+b on '
-1 n- A -
O S T S B LRI
1+b an 1+b
- % 40 (a-b-0.5)(a£)2 + 0(ag)3- (3.18)
Y

The quantity in the brackets on the left-hand side of the above algorithm is

an operator that applies on Aqn rather than a multiplication per se. It is

appropriate to note here that the dependent variable vector, q, in the pres-
ent formulation is not the same one as used in the elliptic %ofmu1ation.

| The intrinsic variable for the energy equation is selected as T/J rather
than (pH-p)/G. The choice of this variable is quite arbitrary. The selec-
tion was made because it permits easy evaluation of the Jacobian matrices;

i it also gives a good diagonal dominance property for the momentum and the

‘ energy equations. As a matter of fact, many choices of dependent varianle

) vectors were studied. They included:

q=[p,u, v, T, oi]T (3.19)
T

= [o, pu, ov, pH, 05] /J (3.20)
T

qa = [p, pu, oV, pT, 0.1 /3 (3.21)
T

q=[e, pu, pv, T, 051 /3. (3.22)

It was found that the last choice, Eq. (3.22), gave the best results. For



nonreacting flow, it has been traditional to use
T
q = [0, ou, ov, pe,] /3 (3.23)

as the dependent variable vector [9, 53, 57]. The use of these variables,
however, is not convenient for reacting flows since the pressure is related
to other variables in a complicated way.

The linearized algorithm given in Eq. (3.18) yields a block tri-diago-
nal system of algebraic equations; the blocks are 8x8 matrices. By select-
ing the order of the dependent variables as in Eq. (3.22), the diagonal term
of the Jacobian matrix, A, for the continuity equation is always equal to
zero. Experiences with nonreacting flow studied in the past [8, 9] have
indicated that the algorithm is not very robust; some kinds of implicit
smoothing functions and/or stabilizing functions are always needed to pre-
vent a division by zero during the inversion of the block tri-diagonal
matrices. In this study, a method is proposed to improve robustness of the
algorithm, In this method, the streamwise velocity in the continuity equa-
tion is partially lagged one step behind the implicit level where solution
is being sought. To illustrate the point, the streamwise flux in delta form

neglecting the metric quantities is given as

n

A" = (ou) ™ - (ou) (3.24)

The flux is then partially Tagged as follows:

2"t = c "™+ (1-c) (ou)™?

. - cu™ e - (1-c ) (eu) (3.25)

C
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where CC is a parameter of magnitude less than one. This modification
renders the diagonal term of the continuity equation to be Ccun rather than
zero. Although the species continuity equations do not yield zero diagonal
terms, their streamwise velocity is partially lagged in the same way as the
continuity equation to ensure compatibility. For a second-order accurate
scheme, the lagging procedure causes the continuity and the species
equations to be somewhere between first and second order accurate depending
on the magnitude of Cc‘ The conservative property, however, is not
disturbed since the terms at (n+l) and at (n) are lagged in the same
manner.

Some difficulties arise in evaluating the Jacobian matrix of the

viscous flux. A typical component of the viscous flux is given as

a, — f. (3.26)
an an J an J

where a is a function of the transport properties and metric quantities and
f is a funtion of q. It is linearized and finite differenced as follows:

oy B 1

an 3q 2An An

+aj) [3f/3q) -(3f/3Q)j]

) (a s 1) [(Bf/aq)j-(-af/aq)j_ll.

2An An

(3.27)

This can be manipulated further to give a familiar-looking central differ-

ence scheme for a second order derivative.
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If the flow to be investigated is of high Reynolds number and largely
supersonic, a single sweep method will, in general, yield a very good solu-
tion. In this method, one has to march through the domain in the £ direc-
tion only once. The term 55/85 can be included by lagging it one step
behind the step where the solution is being sought; this could result in a
departure solution since the elliptic effect is introduced for all practical
purposes. For a departure-free solution the term 53786 should be dropped
[563]. The accuracy loss in neglecting this term should not be severe due to
the thinness of the subsonic boundary layer. Reasonable results for non-
reacting internal flow, using this method, were reported by Chitsomboon and
Tiwari [8]. For flows with large subsonic pockets and/or streamwise sepa-
rations, however, a multi-sweep technique becomes necessary. The first
sweep is used to establish a pressure field for the entire domain. The
term 3P/3€ is then used in the subsequent sweeps to relax and update the
pressure field until a convergence criterion is met. Usually, the criterion

is selected by the requirement that the maximum change in pressure from one

sweep to the next be less than a specified tolerance for all the mesh

points., »The method is also known as the global pressure relaxation tech-
nique. When flow reversal in the streamwise direction is encountered, a
simple procedure is to use the FLARE approximation of Reyhner and F]Ggge-
Lotz [60]. A negative streamwise velocity (i.e., separated flow) will
render the marching procedure to become unstable since the governing equa-
tions are again i1l posed. The eigenvalue analysis in Ref. 57 indicates
that when a flow reversal occurs the positive viscosity tends to amplify a
disturbance instead of damping it. In the FLARE approximation one simply
replaces the negative convection velocity with zero or a small positive
nunber. The procedure works well only for flows with small separation
bubbles; even if this is so, an additional procedure is required to make the
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multi-sweep method stable [9]. Some results of the multi-sweep technique
for nonreacting internal flows are shown in Ref. 9. For the present
reacting-flow investigation, only the single sweep method will be used.

It should be noted that Eq. (3.18) is appropriate for a two-dimensional
problem. For a three-dimensional problem, an approximate factorization
technique may be needed in order to avoid inverting a sparse block matrix

system of algebraic equations.

3.3 Boundary and Initial Conditions
Boundary and initial conditions are required for both elliptic and

parabolized equations; they are discussed in the following subsections.

3.3.1 Conditions for Elliptic Equations

Before starting the time integration, initial distribution of dependent
variables for all interior mesh points are specified using free streanm
values. This choice is very convenient since it requires no computation
whatsoever and seems to work well for all problems investigated in this
study. A1l characteristic values of the supersonic governing equations are
positive indicating that the inflow conditions should be fixed whereas free
outflow conditions could be used. In light of this, the inflow conditions
are fixed at constant free stream values at all time steps. A method of
extrapolation is employed at the outflow boundary. In this method, depend-
ent variables at the exit boundary are equated to the variables at one
station upstream of the exit, for a zeroth order extrapolation; first and
second order extrapolations can be devised also. The method appears to work
well even though it violates the rule of the method of characteristics with-

in the subsonic layer close to a solid wall; this is probably because of the
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thinness of the subsonic layer. At a solid wall, the no-slip conditions (u
= v = 0) along with the adiabatic wall condition (3T/3y = 0) or specified
wall temperature condition are imposed. Based on the analysis of boundary
layer equations, the zero normal pressure gradient (3p/d3y = 0) is also used
at the solid wall; close examinations of numerical output reveals that this
is indeed a good approximation. The non-catalytic conditions are used at
the solid wall for all four of the species continuity equations. In this
method, normal gradients of species mass fractions are set equal to zero
since the condition requires no net diffusion of species into the wall. In
the case where gaseous hydrogen fuel is injected from solid surfaces, the
conditions of injected hydrogen are specified at mesh points within which
lie thg injectors. At a plane of symmetry, reflection boundary conditions

are imposed.

3.3.2 Conditions for Parabolized Equations

Unlike the elliptic procedure, initial conditions (at the inflow bound-
ary) have to be as accurate as possible. Any inaccuracy in initial condi-
tions will jeopardize the accuracy of the solution through out the domain
since the equations are steady and the method of solution is direct, without
any relaxation. Any method can be used to specify the initial conditions
insofar as it provides accurate variable profiles. In this study, the
initial profiles are obtained from the results of the elliptic code. This
may seem too restrictive since an elliptic problem has to be solved first
before a parabolized investigation can be made. In real applications, the
elliptic equations will be used only in the near field of the fuel inject-
ors; the exit conditions of the elliptic results are then used as starting

profiles for the parabolized code.
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At a solid wall, the conditions imposed are the sane as those used in
the elliptic equations discussed in the previous subsection except that they
have to be expressed in implicit delta forms compatible with the numerical
algorithm. This is another advantage in using T as the intrinsic variable
for the energy equation; if this is not so, the linearization of variable
may be necessary in obtaining the implicit boundary conditions. OQutflow
conditions, however, are not needed since the solution is obtained by for-

ward marching in the flow direction.

3.4 Numerical Dissipation Functions
It is well known that the central finite difference schemes, as used in
this study, exhibits spurious numerical oscillations across a shock front.
Without any control, the osci11afion can destabilize the numerical scheme.
To suppress this high frequency oscillation phenomenon, fourth-order dissi-
pation functions are added to the righthand side of the elliptic algorithm

(Eqs. 3.8-3.9) as follows:

g2 ;
o= (ag) L X e a) [0y 62 P+ Cy82T] —q (3.28)
3¢ J 3E
g "5 3
£ = (an)* 2 Y (v + a) [C162 P + Cp82T] L g (3.29)
n m J (26 2637] an
where
P. . .- 2P . +P. . .
6§P - | i+1,] 1,J 1-1,.]' (3.30)
Pied,g * %P5 T Pienyg
T. .. -2T. .+P. .
62T = RECSRURRIARE : (3.31)
Tt P 2T T
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The form of the functions were suggested by MacCormack [69). In its origi-
nal form, only the term 62 P was used; Drummond [70] found that for some
problems this is not sufficient and suggested inclusion of the term 62T as
well. The coefficients C; and C, must be selected by numerical experiment.
For the cases investigated in this study, both coefficients are fixed at a
constant value of one-half; this value appears to work equally well for
other problems. Finite difference representations of these smoothing terms
follow the predictor-corrector sequence of the numerical algorithm.

For the value of the parameter CC equals to zero, the parabolized code
cannot be marched even for a single station since the diagonal term of the
continuity equation is identically zero. To render the term non-zero as
well as to provide some damping effects, the fo]]owjng third order implicit

function
- 2 n
Cp (an)2 (7,8 )8"g

is added to the lefthand side of Eq. (3.18). A fourth order explicit func-
tion given by

- Y 2 "
CEA (an) (VnAn) q

is also added to the righthand side of the algorithm. The explicit term

plays a major role in damping the oscillation. A simplified Von Neumann

analysis shows that both CI and CE must be positive (but note the minus

signs in front of the coefficients). The value of C. must not be larger

E
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than 1/8 for stability reasons. For large value of C., however, the stabil-

I!
ity bound of CE increases to about one-half of CI' An algebraic relation
for which optimal damping of high frequency oscillation is attained is given

by
1+ 4'cI - 16C. = 0 (3.32)

It is suggested that C_ be selected first and C. determined such that the

I E
above relation is satisfied. By numerical experiments it is found that CI =
1/4 and C_ = 1/8 gives the best results at least for the cases considered in

E
this study. Different smoothing funtions for this type of algorithm can be

found in [9, 71, 72]. It should be noted that the explicit function has the.
Jacobian matrix, A, in multiplication whereas the implicit function does

not. The Jacobian matrix is included to mimic the form of the linearized
streamwise flux. Inclusion of the Jacobian matrix in the implicit function
would destroy its diagonal-dominance effect for which the term is added.
Numerical experiment indicated that Jacobian scaling of the explicit func-

tion does give a better smoothing effect than without the scaling.

3.5 Grid Generation
An algebraic grid generation technique similar to that developed by
Roberts [73] is used to obtain computational grids. By using the grid gen-
eration technique, a physical domain is transformed into a rectangular com-
putational domain with uniform mesh spacing. The size of the computational
mesh is arbitrary; in this study, it was selected to be unity. Working with

the rectangular computational domain is much simpler than with the skewed

 physical domain since finite difference representations of derivatives and
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implementation of boundary conditions become fairly straight forward without
having to resort to interpolations.

The technique allows clustering of mesh points near boundaries in order
to resolve high gradient quantities. Clustering can be made either at one

end or both ends of the coordinate. An algebraic stretching function can be

given as:

N2 - N1) [(B+2a) o - B+2a]
2 (2a+1) (1+0)

s =N+

(3.33)

where N1 is the smallest coordinate index and N2 is the largest coordinate
index. If the parameter a is equal to zero the mesh near Nl will be clus-
tered; the mesh near both N1 and N2 are clustered if o is equal to one nalf.
The degree of clustering is controlled by the magnitude of 8. The closer
the magnitude of 8 is to unity from above the more the clustering will be.

The quantity o is a variable defined by

o= |8+ 1) (3.34)
(8 - 1)
where 8 is a variable ranging from zero to one and is given as

o = N-N (3.35)
N2 -NL

where N ranges from N1 to N2.

The magnitude of the physical coordinate at each mesh point can now be
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obtained by the relation (the normal coordinate, y, is given here for illus-
trative purpose):
Y

- N1) +Y (N2 - SN)]/(NZ - N1) (3.36)

v e By n ¢
where the subscript N denotes the index of the mesh point in question. The
stretching of the physical coordinate in the streamwise direction, if de-
sired, can be achieved in a similar fashion. No attempt has been made to
enforce orthogonality of tne grid system. Orthogonality is not very criti-
cal since the geometries of interest do not vary appreciably in the normal
direction.

The mesh spacing near a solid wall is governed by the Reynolds number
of the flow. Ih order to properly resolve the details within a laminar
boundary layer, the minimum mesh spacing close to the solid wall should

approximately satisfy the following relation [69]

2
AY . == (3.37a)
"3 0.5
ReL
For a turbulent boundary layer the relation is given by
ay =20 L (3.37b)
min .
R 0.9
L

This is achieved by varying the parameter 8 and can, at best, be a trial and
error process.

Figure 3.1 shows a 31x31 grid system for a problem solved in this
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study. It can be seen that only the normal coordinate is clustered. Clus-
tering of mesh point in both normal and streamwise directions is illustrated

in Fig. 3.2. This is a 87x60 grid used in the other problem that is inves-
tigated.

3.6 Solution Procedures
Some important procedures used in the computer codes for obtaining the

solution are discussed in this section.

3.6.1 Procedures for Elliptic Code

The elliptic computer code is written specifically for the VPS-32
vector processing computer at the NASA Langley Research Center. The fluid
dynamic equations are integrated in time from an initial solution by the
fully explicit unsplit MacCormack finite difference algorithm. The species
equations give rise to a block mono-diagonal system of algebraic equations
which can be solved very efficiently on the VPS-32 computer. The LU decom-
position is applied on these blocks one element at a time. Elements of
matrices which nave the same species indices are traced througnh spatial
indices vectorially throughout the domain. Without this technique, the code
was quite expensive to use (about one hour of CPU time on the VPS-32 comput-
er). With the present technique implemented, however, the total CPU time
was reduced to about 800 seconds on the same test case whereas mixing along
(without combustion) required some 600 seconds. The vectorized subroutines
that solve the block diagonal system are given in Appendix C.

Once all the conservative variables are obtained at a time step, the
primitive variables have to be extracted. Some difficulties arise in deci-
phering the temperature, T, since it is embedded in pH-p, the intrinsic

dependent variable of the energy equation. This study assumes that the
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specific heat,'Cp, and the gas constant, R, of the mixture can be lagged one
time step without causing any significant error. With the above assumption,

temperature can be obtained as follows

5 * *
T = [(pH-p) - 2 p(u2 +v2) - T £HI)/(sT, - o) (3.38)
2 i=1 P
where the starred quantities are to be evaluated at the old time level. By
using Eq. (3.38) the temperature of the new time level can be obtained
directly without having to solve a second order algebraic equation in T.

The time step used is determined from the CFL condition:

(3.39)

where o is the CFL number of magnitude less than one. Note again that use
of this large time step is possible only if the chemistry source terms are
evaiuated implicitly. If an accurate temporal history is desired, one must
choose At in a different manner (see, e.g., Ref. 21). Experiences gained
during the numerical experimentation have suggested that the value of o
should be small in the early phase of time integration. The inagnitude of o
is then gradually brought up to 0.9 in about 100 time steps. Attempts to
use o = 0.9 at the very beginning yielded negative temperature which was
probably due to a relaxation process that was too abrupt.

Unlike the conventional central difference scheme, the present numer-
ical scheme lacks a decisive, so called, residual to be monitored for a

convergence criterion. A steady state solution is determined by monitoring
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the following criteria:

1. The maximum change in density for all mesh points from a time step
to the next be less than a specified tolerance.

2. The L -norm of the change in density from a time step to the next
be less than a specified tolerance.

3. The total integration time is equal to or greater than the time

required for a fluid particle with free stream velocity to travel three
times the length of the physical domain.
The tolerances for the first two criteria are usually selected as numbers of
three to four orders of magnitude smaller than the changes of corresponding
quantities over the first integration step. Most importantly, the numerical
solution must be examined in detail by appropriate measures for physical

plausability.

3.6.2 Procedures for Parabolized Code

The parabolized code was developed in a standard FORTRAN4 language.
Initial solution profiles are needed to start the program. The profiles
were obtained from solution of the elliptic code as discussed earlier. For
the present two-dimensional problems, the storage requirement of the program
is equivalent to that of a one-dimensional problem. Ironically, the coding
chore is more laborious than the elliptic code couterpart due to its fully-
implicit fully-coupled procedure. Two levels of data are needed to obtain a
solution at the next station. Only one level of data is used to start up
the program; this is done by using a first order scheme by specifying a=1
and b=0. Attempt has been made to start up with two levels of data by a
second order scheme; however, this results in instability due probably to

the fact that the two level initial data contained too much elliptic infor-
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mation,

Unlike the elliptic code, the temperature, T, is computed directly;
this eradicates the need to decipher T from a related variable. Some dif-
ficulties arise in evaluating the Jacobian matrix of the chemistry source
terms since the kinetic rate constants are strong and complicated functions
of temperature. The difficulties are alleviated by lagging the temperature
of the kinetic rate terms; this does not seem to affect the quality of the
solution,

The block (8x8) tri-diagonal system of algebraic equations are solved
by a direct non-iterative procedure. The so-called Thomas algorithm in
conjunction with an LU decomposition procedure is employed in inverting
these block matrices. There is no convergence criteria for the code since
it is a single sweep method. If the situation warranted, a multi-sweep
procedure could be implemented very easily. It is recommended that the
nunber of sweeps be limited to only a couple of times; too many sweeps will
certainly make the code less attractive. Fortunately, the physical problems
for which the pr e (supersonic nign
Reynolds number flows) almost always guarantee that only a couple of sweeps

are indeed necessary [9].

4, RESULTS AND DISCUSSION
Results of the elliptic code are presented first followed by the

results of the parabolized code.

4,1 Results of Elliptic Code
To gain some confidence with the elliptic code, a simple geometry

problem was solved first. The flow conditions and tne geometry of tne test

case are depicted in Fig. 4.1. A 31x31 grid system as shown in Fig. 3.1 was

52



cm

3 cm

<Y X

4

900 K
101325 Pa.
U.0

10
/ —

Fig.

4.

1

Geometry and flow conditions of case No.

53

1.




used in this test case. This is a premixed case with an equivalence ratio
(¢) of unity. fhe inflow temperature of the mixture was arbitrarily select-
ed as 900 K in order to study the effect of the explicit ignition switch
incorporated in the program. As mentioned earlier, the reaction is not
allowed to take place when the temperature is lower than 1000 K; it is to be
expected, then, that reactions should occur only behind the shock wave and
within the adiabatic boundary layers where temperature goes beyond 1000 K.
Figures 4.2 and 4.3 show the concentration contours of OH species and H,0
species, respectively. The contours indicate reacted regions as expected.
The line plot in Fig. 4.4 illustrates distributions of various species along
the y-location of about 0.13 cm from the lower wall (y-station No. 15). It
is seen that the OH concentration increases rapidly across the shock wave
and stays relatively constant thereafter (at its equilibrium value). The
H,0 concentration, however, increases continuously signifying that more fuel
is being consumed by an exothermic process. The behavior of the species
distributions is in good accordance with the physics of the global two-step
chemistry model used. A similar plot at the lower-wall surface is given in
Fig. 4.5.

The geometry of a more realistic problem and its inflow conditions are
shown in Fig. 4.6. The geometry and flow conditions are representative of a
planar cut perpendicular to the inward swept leading edge of a three-
dimensional single strut scramjet engine. It is noteworthy that this is the
sane configuration used in the study of Drummond and Weidner [74]. Gaseous
hydrogen fuel is injected into the flow from the side walls and from the
center strut such that the overall equivalence ratio is equal to one. The
conditions of injected hydrogen are: p = 258706 N/m2, T = 246 K, u= 156

m/sec, v = 1241 m/sec. The injectors are located 6 cm downstream of the
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engine cross sectional minimum and are each 0.1 cm wide. Due to symmetry,
only the upper half of the domain is solved. A grid system of 87x30 is
empioyed. Grid points are concentrated near the solid surfaces in tne y-
direction and near the injectors in the x-direction (see Fig. 3.2). Clus-
tering of mesh points in the near field of the injectors is necessary to
properly resolve jet-flow interaction and the mixing process between the
fuel and air. The computational grid used is the same as that of Ref. 74 in
order to allow point by point comparisons of the results.

It is of interest to study the nonreacting (mixing only) case first so
that the inferences can be made later on as to the effects of combustion on
the flow field. Figures 4.7-4.9 show the pressure contours, velocity
vectors, and Hz concentration contours, respectively, for the nonreacting
case. The figures reveal that small separation bubbles occur before the
throat due to interactions of shock waves and boundary layers. Separations
also occur immediately upstream of the injectors; it is imperative to have
these separations for proper flame holding in the engine.

Results with chemical reactions are given in Figs. 4.10-4.15. Figures
4,10-4.12 illustrate the similar information to that in Fig. 4.7-4.9. It is
seen from Fig. 4.11 that the separation bubbles upstream of tne throat
increases in size as compared to the honreacting case. This is believed to
be due to a higher level of back pressure caused by the heat release from
combustion. The separation bubbles, in turn, induce upstream shock waves as
can be seen in Fig. 4.10. The occurrence of these bubbles due to inlet-
combustor interaction can easily choke the flow in the inlet and should be
avoided, if possible, in design. The hydrogen contours shown in Fig. 4.12
indicate that the fuel jets do not penetrate significantly into the core air

flow resulting in low level of mixing. Increasing the jet pressure and
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velocity can, again, choke the flow. Parametric studies of the jet condi-
tions required to promote more mixing will be the subject of future study.
Figure 4.13 shows the water concentration contours of the reacting case
indicating the regions where combustion has taken place.

One major purpose of this study has been to compare the extent of com-
bustion using the present finite rate chemistry model with the results of
Drummond and Wiedner [74] where a conplete reaction model was used. In the
complete reaction model, only the species equation for the fuel is solved
along with the fluid dynamic equations. There is no source term in the fuel
species equation and therefore the system is not stiff. The extent of com-
bustion is determined by assuming that when the fuel and oxidizer mix at
temperatures above 1000 K they react to their maximum extent possible
(stoichiometric 1imit) until one reacting partner is completely depleted.

The comparisons of water profiles at some selected x-stations are made
in Fig. 4.14. The cross stream coordinate at each station was normalized
with the corresponding channel's width such that its value ranges from zero
to one. Tihe top grapn shows the profiies upsiream of the injectors within
the recirculating zones where flames are stabilized. It is seen that the
concentration levels of water, which are an indication of the extent of
combustion, are approximately the same. This could be attributed to the
fact that mixture velocity in the recirculating zones is relatively small
providing ample resident time for it to react to an appreciable amount. The
bottom graph of Fig. 4.14 indicates the water profiles downstream of the
injectors where it can be seen that the finite rate model predicts a lower
level of combustion than the complete reaction model. This is consistent

with the formulation of the two models since the finite rate scheme does not

necessarily allow complete reaction.
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Finally, normalized surface pressure, (p'pmax)/(pmax'pmﬁn)’ is plotted
in Fig. 4.15. The highest spike in the plot indicates the location of the
injector. The finite rate model predicts a small bump in surface pressure
upstream of the cross sectional minimum whereas the complete reaction model
does not. This pressure bump was caused by the induced shock wave ahead of
the separation bubble; the complete reaction model does not show as large a
separation. Downstrean of the injector, however, the pressures exhibit
similar trends except that the pressure predicted by the complete model is

somewhat higher due mainly to a greater degree of combustion.

4.2 Results of Parabolized Code

A1l results reported in this section were obtained by using the single
sweep method with the value of w equals to 0.7. In most cases, the values
of important parameters used are indicated at the bottom of the figures.

The premixed test case (Fig. 4.1) solved earlier by the elliptic code
has been reinvestigated by the parabolized code. Initial data profiles were
obtained from those of x-station No. 5 of the elliptic results which is
located at five stations upstream of the compression corner. Regardless of
the schemes used, the code is always started up by the Euler implicit scheme
which requires only one level of initial data. In the following discussion,
comparisons are made between results of the parabolized and elliptic codes.

Results obtained by using the second order accurate three point back-
ward scheme are illustrated in Figs. 4.16-4.18. Comparisons of temperature
and pressure between the parabolized (PNS) and elliptic (NS) results are
made in Fig. 4.16. The plots are made along the y-station located approxi-
mately 0.13 cm from the lower wall {y-station No. 15). It can be seen that

the comparisons are very reasonable. In the absence of combustion, the
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pressure and temperature behind the shock wave would remain constant.
Increase in pressure and temperature due to heat release during combustion
are predicted very well by the PNS code. Both NS and PNS results show some
oscillations in pressure. Use of parameter CC = 0.2 and/or larger values of
the smoothing coefficients do not suppress these oscillations. The distri-
butions of H,0 and OH species along the same y-station are compared next in
Fig. 4.17. The H20 mass fractions compare well for both formulations but
the OH mass fractions show some disagreement. In fact, OH mass fraction in
the PNS results at the grid point right at the shock front takes a huge jump
out of the plot frame. Fortunately, the jump occurs at only one grid point
and appears to be a very local phenomenon. By refining the mesh spacing in
the streanwise direction two times, however, the jump disappears as indi-

" cated in Fig. 4.19. It is, therefore, concluded that the jump in OH species
(which is the one that causes chemical stiffness) occurs because of large
linearization errors due to the use of a coarse mesh. Even with the refined
mesh, the PNS results underpredict the OH mass fraction when compared with

o

~ (o] b (D3~ A Q
HE vo Te3urLd \I'iy.

101 L. AL ammammmm s So o1 2
4,17}, 1

he discrepancy is believed to be due to Lhe
lagged temperature used in the evaluation of the Jacobian matrix for the
chemistry source terms. As the flow develops further downstream, however,

OH concentration picks up to the same level as the NS results. Figure 4.18

details the comparisons of vaFiOus quantities across the channel at the
outflow boundary of the geometry. The cross stream coordinate, Y, was nor-
malized such that its value ranges from zero to one whereas the dependent
variables are scaled with respect to their corresponding maximum values.
A1l profiles appear to be in reasonable agreement. Both results suffer
oscillation in pressure across the shock front which is typial of a central

difference scheme. Not shown here are the velocity profiles; numerical
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output indicates that velocity profiles for the two formulations are in good
agreement.

Figure 4.20-4.22 show the same information as those of Figs. 4.16-4.18
but the new figures were produced by using the first order accurate Euler
implicit scheme. Note that the value of CC is equal to 0.2 rather than
zero. The vanishing of CC for this scheme cannot be allowed since it gives
rise to an instability regardless of the magnitude of the values of the
smoothing coefficients; this appears to be the case only for reacting flows
since zero value of CC was_used all the time in nonreacting flow calcula-
tions [8, 9]7 A jump in OH concentration across the shock front persists as
in the three point backward results. In general, these plots indicate that
results of the Euler implicit scheme are slightly inferior to those of the
three point backward scheme,

The single strut scramjet engine problem is also reinvestigated with
the PNS code. The x-station No. 59 was selected as the starting solution;
this is reasonably well downstream of the injectors where elliptic effects
should be weak. Like the previous case, only the one-level Euler implicit
scheme is used to start up the integration. In all the plots to be discuss-
ed, the symbol always indicates the PNS results whereas the solid line
represents the NS results. Figures (a) always indicate surface pressure
whereas Figs. (b), (c) and (d) always indicate cross stream pressure at the
outflow boundary (x-station No. 85), cross stream pressure at x-station No.
70 and cross stream mass fractions of H,0 at x-station No. 70, respective-
ly. A1l variables are scaled with respect to their corresponding maximum
values and the spatial coordinates are normalized such that their values
range from zero to one.

Results of the three point backward scheme are shown in Fig. 4.23. It
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is seen that the early phase of surface pressure (Fig. 4.23(a)) is oscilla-
tory. The cross stream variables at x-station No. 70 compare very well with
the NS profiles but the cross stream pressure at x-station No. 85 is not in
good agreement. By using CC = 0.2, the oscillation in surface pressure
disappears as can be seen in Fig. 4.24(a). However, quality of other vari-
ables is slightly degraded; this is probably due to the fact that a non-zero
Cc disrupts the second order accuracy of the scheme. Larger values of CC
worsen the PNS solution even further but the surface pressure becomes
smoother. Increasing the values of CI and CE’ while using CC = 0, however,
appears to improve solution of the PNS code as is evident from Figs. 4.25
and 4.26.

Results obtained by using the Euler implicit scheme are presented in
Figs. 4.27-4.29. As in the previous problem,’ the scheme becomes unstable
for the value of CC equals to zero. In general, the results shown in these
three figures are superior to the results of the three point backward
scheme. This surprising paradox was reported earlier by Chitsomboon et al.
£9] is solving
mofé natural damping capability embedded in it since the first truncated
term in the scheme is an even order term (second-order derivative) whereas
the three point backward scheme has an odd order term (third-order deriva-
tive) as its first truncated term. An even order derivative term, with
proper sign, behaves like an artificial viscosity terms which helps in damp-
ing disturbances whereas an odd order derivative term disperses the disturb-
ances without damping their magnitudes [38].

Figure 4.27 shows the results by using CC = 0.2. The cross stream

pressure at x-station No. 70 and the surface pressure are sligntly dissi-

pative in comparison with their three point backward counterpart in Fig.
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4.23. The pressure at x-station No. 85, however, compares more favorably
with the NS results. The solution is further improved by increasing CC to
0.5 as is seen in Fig. 4.28. Larger values of CI and CE do not seem to
affect the quality of the solution (Fig. 4.29).

5. CONCLUDING REMARKS

Two computer programs for solving viscous supersonic chemically react-
ing flow problems associated with the hydrogen-air system have been develop-
ed. In the first computer code, the unsteady form of the fully elliptic
governing equations are employed in order to capture strong upstream inter-
actions of the flow. The finite rate global two-step chemistry model is
used to represent hydrogen-air combustion. The stiffness resulting from
using the chemistry model is circumvented by evaluating the chemistry source
terms implicitly. The elliptic code is written in a vector FORTRAN language
which is made operational only on the VPS-32 vector processing computer at
the NASA-LaRC. The fluid dynamics part of the governing equations is
integrated in time by a fully explicit MacCormack algorithm. Due to implic-
it source terms, the chemistry part of the governing equations gives rise to
a block monodiagonal system of algebraic equations which can be solved also
in a vectorized manner giving considerable saving in computer time over a
scalar inversion procedure. The results obtained from the elliptic code in
solving two internal flow problems are physically reasonable. In the case
of the scramjet inlet-combustor configuration problem, the codé predicts
strong interactions between the inlet and the combustor which could choke
the flow in the inlet.

The second computer code employs a parabolized form of the governing

equations in which only a fraction of the streamwise pressure gradient is
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retained. The code is applicable for supersonic high Reynolds number flows
with weak upstream interaction such as regions far downstream of the trans-
verse fuel injector in a scramjet engine. The governing equations are solv-
ed in a fully coupled fully implicit manner in order to capture strong shock
waves as well as fluid-chemistry interactions. The finite difference algo-
rithm used is fairly general; it degenerates into many familiar schemes upon
specifying two parameters. The fully coupled procedure yields a block (8x8)
tridiagonal system of algebraic equations which is solved by a noniterative
method. Solution is obtained by forward marching in the streamwise spatial
direction only one time providing considerable saving in computer resources
when'compared with the elliptic code. If desired, a multi-sweep procedure
can be devised with minimal effort. The results obtained from the para-

bolized code compare reasonably well with those from th

viiv S LI ARV AL L At

elliptic results,
The first order accurate Euler implicit scheme is found to give good
results. 1In some cases, the Euler implicit scheme gives even better results
than the second order accurate three point backward scheme. In a real
application, it is highly desirable to have a bench mark solution to compare
results of the three point backward scheme against results of the Euler
implicit scheme in order to determine which scheme is more appropriate for
the class of flow being investigated. For cases where bench mark solutions
are not available, the Euler implicit scheme is recommended since, in
general, it should provide fairly accurate results. If the three point
backward scheme is selected, the suggested values of various parameters are:

C, = 0.25, CE = 0.125, CC = 0.0. For the Euler implicit scheme, the follow-

I
ing values are recommended: C. = 0.25, C

T
1

£ 0.125 and C_ = 0.5.
L
The robustness of the parabolized code is considerably improved by

introducing the parameter CC into the continuity equation and the species
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equations. The value of CC = 0.2 can suppress pressure oscillation while
still maintaining overall accuracy. Non-zero value of Cc’ however, is
recommended for a first order accurate scheme only since it could disrupt
the formal accuracy of higher order schemes.

The results of the two problems solved by the present parabolized aligo-
rithm confirm that the algorithm is highly conservative. Regardless of the
quality of the solution, mass flow rate across the channel at all stations
are always within 0.01 percent of one another.

Further investigations are obviously needed in the area of turbulent
Jet mixing. The algebraic turbulence model used in this study serves only
as a starting point. The multi-component mass diffusion processes also need
more elaboration. In any event, experimental data are highly desirable to
validate the models. More sophisticated finite rate chemistry models can be
included especially in the parabolized formulation. Inclusion of better
chemistry models always means more species and more reaction paths; this

makes the elliptic equation approach very expensive.
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APPENDIX A

DERIVATION OF HEAT FLUX TERMS

Only the 5g/6x term will be derived here; relation for 3q/3y follows

the same line of derivation. The heat flux term is given in its unsimpli-

fied form as

5 of,
q, = -k -p0z [(—2)n]
3x i=1 = ax

by using the relation
a = k/pCp
and

Le = a/D .

Eq. (A.1) can be rearranged as

with the help of the relations (A.3) and
Pr = v/a

the term oD can be written as

(A.1)

(A.2)

(A.3)
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oD = 1t . (A.6)
Le Pr

For a unit Lewis number, Eg. (A.4) can be given as

5
— T 3
g = - —— [T, + = {(= f)n}] (A.7)
Le Pr P ax i=1 X
where
_ 5

C =1 f,. C... (A.8)

Py ¥ P

5 T
h= 1 f,(H + [ C_.(g) de). (A.9)
= 0 p.| .

Note that the dummy variable, £, is employed in evaluating the sensible

\ .
enthalpy. Upon takin

Upon ing a partial derivative with respect to x and applying
the Leibnitz rule one obtains
oh 5 T af aH",
o= T LR+ Cple) de) L+
X i=1 0 X 3x
T 3, 3T
+ £ Pl(g) d +f oc. (1) (A.10)
0 3x P X

By realizing that the coefficient of the first term is nothing but hi and
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the second and the third terms are identically zero, Eq. (A.10) can be

written as
5 of, 5
a_h.=):(___l)h1.+zf1.c1.ﬂ (A.11)
ax =1 ox i=1 ' Pl oax
or
5 of,
PR SR A L (A.12)
ax =l ax P ax

Substituting Eq. (A.12) into (A.7), the desired relation is finally obtain-
ed. It is important to ﬁote that the simplification is possible only for
the unit Lewis number assumption. The simplification is useful since it
helps in organizing and simplifying the coding chore and it offers some
saving in computer storage because only one array, h, is needed instead of

five arrays of hi'
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APPENDIX B

JACOBIAN MATRIX FOR CHEMISTRY SOURCE TERMS

Components of the Jacobian matrix for the chemistry source terms, Mij’
are given in this appendix. The suffixes i and j denote row and column of
the matrix, respectively. Whenever a component is not given, it means that
component is identically zero. It should be noted that temperature depen-
dency of the kinetic rate terms, kf and kb, is not considered in evaluating
the components. The temperature for these terms is simply lagged one step
behind the step where solutions are being sought. The matrix takes exactly
the same form for both the elliptic and the parabolized formulation but in
the parabolized formulation the matrix is defined as C rather than M (see

section 3.2). The components are given as follows:

7= 9™
MIT = - (ko /M) Zo,
M13 = -(kfl/M3)Z p1
M4 = (k.. M./M)Z
= \Kpp M/Mg/ 4 Pg
w22 = -(4k_,/M,)2 o,
2 2
koM I° o
w3« 52" : 4
My MG
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M24 =

Cl =

c2 =

M31 =

M32 =

M33 =

M34 =

€3 =

C4 =

M4l =

M42 =

M43 =

Ma4 =

2
deg My 7 03 04

3 4

My/My

M /oM,

(C1)(M11)

(C2) (M22)

(C1)(M13) + (C2)(M23)
(C1)(M14) + (C2)(M24)
-oM, /M,

-M4/M2

(C3)(M11)

(C4)(M12)

(C3)(M13) + (C4)(M23)

(C3)(M14) + (C4)(M24)
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APPENDIX C
VECTORIZED SUBROUTINE FOR SOLVING
A BLOCK MONO-DIAGONAL SYSTEM

The following subroutine is written in CDC CYBER 200 FORTRAN VERSION 2
(Vector FURTRAN) in order to make it operates efficiently on the VPS-32
vector processing comuter at the NASA-LaRC. The solution procedure can be
made more efficient by realizing that only a fraction of mesh points are
chemically reacting; the rest of the mesh points are nonreacting and can be
integrated by a fully explicit procedure which is much less expensive. The
reacting mesh points are distributed throughout the domain, more or less,
randomly. The scalar array, (IT), and the bit array, (B2), are calculated
independently in the main body of the program and are used as maps for
determining which mesh points are chemically active. The sparse arrays can
then be compressed into concatenate locations giving shorter vectors lengths
and therefore less mathematical operations. Finally, the solution can be
expanded back into their real locations with the help of the maps (IT) and

(82).

SUBROUTINE LUDEC(NN)
BIT B1,B2
COMMON/COML/IT(NY,NX) ,B2(NY,NX),Q(NY,NX,4,4) ,RHS(NY,NX,4)
1,SLN(NY,NX,4) ,EBAR(NY,NX,4) ,NXM4, IRP
C
C DECOMPOSE THE ORIGINAL (Q) MATRIX TO (LU) VECTORIALLY.
C THE METHOD IS A STRAIGHT FORWARD DECOMPOSITION WITH THE
C DIAGONAL TERMS OF (L) EQUAL TO ONE.
C THE (LU) MATRIX IS STORED BACK INTO THE (Q) MATRIX.
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OO OO

O

10

40

NOTE ALSO THAT THE SPARSE VECTORS ARE COMPRESSED INTO
CONCATENATE VECTORS, BY THE FUNCTION "Q8VCMPRS", FOR
EFFICIENT OPERATION. THE COMPRESSION AND EXPANSION BACK
INTO THE SPARSE VECTORS ARE CONTROLLED BY THE ARRAY

(IT) AND THE BIT VECTOR (B2)
(RHS) IS THE UNKNOWN

(SLN) IS TEMPORARY ARRAY

(Q) IS THE ORIGINAL BLOCK MONO-DIAGONAL MATRIX
IRP IS THE LENGTH OF CONCATENATE VECTORS

NN IS THE DIMENSION OF THE BLOCK MATRIX

NXM4=NX*NY-2*NY-2
DO 5 I=1,NN

WHERE(IT(2,2;NXM4) .EQ.0) SLN(2,2,1;NXM4)=RHS(2,2,1;NXM4)

COMPRESS THE RHS

DO 6 I=1,4
RHS(2,2,1;NXM4)=Q8VCMPRS(RHS(2,2, I;NXM4) ,B2(2,2;NXM4) ;
&RHS(2,2,1;NXM4))

CONTINUE

DO 100 I=2,NN

00 110 J=1,NN

IF(J-1)10,20,20

M=J-1

1F(M)30,30,40

00 50 K=1,M
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50 Q(2,2,1,3;1RP)=Q(2,2,1,J; IRP)-Q(2,2,1,K; IRP)
&*Q(2,2,K,J; IRP)
30 Q(2,2,1,d;IRP)=q(2,2,1,3;1RP)/Q(2,2,d,J;IRP)
GO TO 110
20 M=I-1
DO 60 K=1,M
60 Q(2,2,1,J;IRP)=Q(2,2,1,J;IRP)-Q(2,2,1,K;IRP)
$*Q(2,2,K,J; IRP)
110 CONTINUE
100 CONTINUE
c
C SOLVE (LU)X=RHS
C X IS STORED BACK INTO RHS AND LATER ON TO SLN
C THE LAST STEP IS NOT NECESSARY, I.E., THE FINAL RHS
C CAN BE USED AS THE FINAL SOLUTION.
c
C SOLVE (L)X*=RHS
c
105 DO 200 M=2,NN
N=M-1
D0 140 K=1,N

140 RHS(2,2,M;IRP)=RHS(2,2,M;IRP)-RHS(2,2,K;IRP)*Q(2,2,M,K;IRP)

© 120 CONTINUE

200 CONTINUE
C

C SOLVE (U)X=x*
C
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320

330
310
300
C

DO 300 M=NN,1,-1

IF(M-NN) 320,310,310

N=M+1

DO 330 K=NN,N-1

RHS(2,2,M; IRP)=RHS(2,2, M; IRP) -RHS(2,2,K ; IRP)*Q(2,2,M,K ; IRP)
RHS(2,2,M; IRP)=RHS(2,2,M; IRP) /Q(2,2,M,M; IRP)

CONTINUE

C EXPAND BACK THE SOLUTION INTO (SLN)

C

D0 340 1=1,4

EBAR(2,2, I ;NXM4)=Q8VXPND(RHS(2,2, 1;NXM4),B2(2,2;NXM4);
&EBAR(2,2,1;NXM4)

WHERE (IT(2,2;NXM4).EQ.1)SLN(2,2,1;NXM4)=EBAR(2,2,T;NXM4)

350 CONTINUE

RETURN
END
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