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ABSTRACT

The Finite Element - Transfer Mgtn'x (FETM) method has been developed to reduce the
computations involved in analysis of structures. This widely accepted method, however, has
certain limitations, and does not directly produce reduced models for control design. To overcome
these, a modification of FETM method has been developed. The modified FETM method easily
produces reduced models that are tailored toward subsequent control design. Other features of this
~ method are its ability to (i) extract open loop frequencies and mode shapes with less computations,
(ii) overcome limitations of the original FETM method, and (iii) simplify the design procedures for
output feedback, constrained compensation, and decentralized control. T

This semi annual report presents the development of the modified FETM, and through an

example, illustrates its applicability to an output feedback and a decentralized control design.



NAG-1-622 : ' A Yousuff

I.INTRODUCTION

The objectives of this research are to develop an algorithm to produce reduced models of
structures and to integrate a controller synthesis scheme in this algorithm. This semi annual report
describes the status of the research. Major part of the research has focused on the development of
the reduced modeling procedure. This is based on the Finite Element - Transfer Matrix method. The
second objective, namclyr,“rthc gontroller synthesis procedure, has been dealt with only
preliminarily. Numerical investigations have been carried out to study the-applicability of the
reduced modeling procedure in control design.  ~ h

The Finite Element - Transfer Matrix (FETM) method has been developed to overcome the
problem of large size matrices that are encountered while modeling flexible structures within
acceptable accuracy. The main advantage with the FETM method is that it yields a reduced set of
. equations by operating at (finite-) elemental level. The advantages offered by the FETM method are
not fully utilized in the area of control design - this is since the FETM method has been developed
primarily for open loop structural analysis. The method developed in this research modifies the
FETM method to include control issues. The essential feature of the modified FETM method is its
ability to model the entire structure in terms of any selected degrees of freedom. The choice of these
dof is to be determined from the control objectives. Other features of this method are its ability to
(i) produce reduced order models for control design, (ii) extract open loop frequencies and mode
shapes with less computations, (iii) overcome the limitations of the original FETM method, and
(iv) simplify the design procedures for output feedback, constrained compensation, and
decentralized control.

With this perspective, this report is organized as follows: In Section II, we briefly review
the original FETM method, point out its limitations, and present the modifications developed in this
research. We will also offer a numerical example to illustrate the procedure. In Section III, we

present our preliminary analysis of this procedure's applicability to control design and use an

5
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example to illustrate the suggested method. We will show én output feedback design and a
decentralized control design. Section I'V concludes this report by summarizing our findings, and
raising issues that need to be addressed in future research. The findings of this research have been

presented at two conferences and copies of these papers are included in Appendix.
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IL. REDUCED MODELING BY FETM METHOD

The structural analysts, owing to the ever persistant problem of large size matrices, have
developed the FETM method. In the standard finite element analysis, the stiffness and mass
matrices are computed for the structure, and the natural frequencies are then determined from an
eigenvalue problem. The FETM method does not directly solve the eigenvalue problem. Instead, a
transfer matri{, lvliich depends on natural frequencies, is calculated which relates the displacements
and forces at right boundary to those at left boundary of the structure: The correct natural
frequencies are then extracted by iteration when the boundary conditions on left and right edges of
the structure are specified. One of the advantages of the FETM method is that it yields a reduced
set of equations by operating on the structure at the (finite-) elemental level. Another attraction of
this method is that it offers a straightforward means of substructuring.

The advantages offered by the FETM method are not fully utilized in the area of control
design. The FETM method can be modified to incorporate the mission (control) objectives at the
modeling phase. This is achieved by first identifying the dof based on the sensor/actuator locations
and mission objectives, and then by calculating a transfer matrix that relates these dofs to the rest of
the dofs (i.e, instead of relating the displacements and forces at the boundaries; see below for
details). This method is particularly suitable for decentralized control, output feedback, and
constrained compensation designs. The modified FETM method eliminates the limitations of the
original method, while still offering considerable computational ease.

With a brief mathematical review of the FETM method, we present our modifications in what

follows. A numerical example is included herein to illustrate the procedure.
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2.1 Review of FETM Method”

The transfer matrix method is generally associated with the concept of stiffness. Pestel and
Lechie[l] demonstrated that, for one-dimensional structural members such as beams, the transfer
matrix could be derived from the stiffness matrix. Dokainish[2] was the first to suggest a combined
FETM method. He recognized that the transfer matrix method could be extended to
two-dimensional structures by deriving the transfer matrix for a plate strip from the corresponding
stiffness matrix. Since the publication of Dokainish's paper in 1972, several authors (notably,
[3-7]) have proposed refinements and extensions of the FETM method. All of these authors derive

the transfer matrix from the stiffness matrix-in-much the same fashion as Dokainish. This derivation

is summarized below. - T i e
If a dynamic stiffness matrix S is defined as S =K - @?M where K is the stiffness matrix,

M the mass matrix, and ® a natural frequency of the structure, then the equations of motion may be
written as

Sq = f. 2.1
Here q are the nodal displacements, and f are the nodal forces. Considering now the ith

substructure within the structure, eqn(2.1) may be partitioned as
[ T
S11 S12 S13 | [ur] fi ]

S91 S9p So3 uj = fi . 2.2)

fout &

531 S32 833 i [UR]i fri
The subscripts L, 1, and R refer to quantities on the left boundary, in the interior, and on the right

boundary of the substructure.

* Due to appropriateness, we reproduce Section 2 of [9] with minor modifications in the first half

of this section.
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For free vibration, there are no forces on the interior; i.e., f{ =0, (valid for open loop

analysis, and not for closed loop analysis which may involve active force actuators located at

interior nodes). This information is used to eliminate uj from eqn(2.2) which produces the

condensed set of equations

(2.3)

StL SLr| | = |fL
SRL SRR i |UR |i fR Ji

where Sy 1., SL R, SRLV,' and gRR involve the submatrices of the dynamic stiffness matrix S in

eqn(2.2). The transfer matrix for the ith substructure T; is then found by manipulating eqn(2.3)to

yield
sts s’ ] Tu u
LRLL R L] _ 'R .42
SRL-SRRSLRSLL  SrRSIR [; L ; fRli
or, simply,
XL = X, (2.4b)

For the adjacent (i+1)th substructure, equilibrium and continuity of displacements require that

X, =X @.5)
Lin R;

Equations (2.5) and (2.4b) are combined to give

T. ,T. X, . (2.6)
Ri+l i+1 "1 Li

X
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' /
Extending eqn(2.6) to N substructures results in

Xy = TGT XO’ 2.7

N IN-p o

where Xj and Xy are the "state” vectors on the extreme right and left boundaries of the entire

structure.

The derivation of the transfer matrix from the dynamic stiffness matrix requires the inversion

of the submatrix Sy p as shown in eqn(2.4a). In a strict sense, this inversion is possible if and only

if Sy R is a square nonsingular matrix. However, Sy p is a square matrix only if there is an equal

number of nodes (actual dof) on the right and left boundaries of the substructure. Moreover, if the
structure includes anyfigid body n;odés”and the dynamic stiffness matrix is evaluated at the rigid
body (zero) frequency, then Sy p may be singular even if it is square, and even eqn(2.3) may be
unobtainable. For simplicity however, we will focus only on flexible modes. Thus, the submatrix
S|_R cannot be inverted in general. Therefore, the above formulation of combined FETM method is

only applicable to models which have the same number of nodes on all substructure boundaries.

Recognizing that rectangular transfer matrices could occur in practice, Pestel[8] proposed
using a left-inverse of Sy . This is possible only if the number of nodes on the left boundary of a

substructure is equal to or greater than the number on the right boundary. This restricts Pestel's
approach to structural models in which the number of nodes on the substructure boundaries
decreases monotonically from one exterior boundary to the other. As suggested by Degen,

et.al.,[9], a further extension of Pestel's procedure for rectangular transfer matrices would be to
use a generalized inverse, rather than a left-inverse of S; g. This however introduces additional

approximations into the derivation of the transfer matrix from the stiffness matrix. More recent
developments to overcome these limitations has been reported by Degen, et.el.,[9], employing a
mixed finite element formulation. In [9], the energy expression is obtained as a Reissner functional,

which allows the governing equations to be obtained in mixed form, that is, as a combination of

10
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stresses and displacémcnts. This formulation permits the boundaries of a particular substructure to
have different number of dof "within certain limits"; the limits being that the number of the nodes
on the right boundary is not too large relative to the number on the left boundary. Hence, the
limitations of the original FETM method [1-7], though reduced in [8,9], are not completely

eliminated.

2.2 Modification of the FETM Method
All the above methods [1-9] have been developed for open loop (free vibration) analysis. A

control engineer, however, is more concerned with the closed loop design and analysis, and

requires an appropriate reduced model of the structure. None of the above methods yield reduced

~ - models conveniently. Moreover; in order to control the structure, actuators may be located at —

interior nodes of the structure, invalidating the assumption fj = 0 used in deriving eqn(2.3). Thus,

in order to address the issues of unequal number of dof, development of appropriate reduced
models, and non-zero (feedback) applied forces at interior nodes, suitable modifications of the
FETM method are needed. These modifications, developed during the current investigation, are

now reported.

Frequency Determination: First, we present the modified FETM method to calculate the
natural frequencies. Consider the frequency determination by the conventional finite element
method: one solves the following equation which is obtained after enforcing boundary conditions,
to obtain the frequency.

IK-@°M! =0 ; KM ¢ R™V

(2.8a)
Partition eqn(2.8a) as
K mZM K sz
%1 5 11 12 5 12 - 0, (2.8b)

T
Kip-0 My My,-0 My,

where K11, M11 are (n1,n1); Ky9, M9y are (ny,n5; ny=n-nq), and K15, M1 are (ny,n,), with
11» M11 1-%1/» 522, V22 2212, 112 1 12- M12 1-12

ny being quite arbitrary for now. (Later, we will use the control objectives to determine ny). Then,

11
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assuming that [K, 1—0)2M1 1] is nonsingular, eqn(2.8b) can be written as
2 T 2.7 2 -1 2
I(K22-co M22) - (Klz-w Mlz)(Kl 1@ M1 1) (Klz-m Mlz)l = 0, 2.9)

and the frequency can be extracted from this equation.

Reduced Model from Assembled Equations: We will now relate the development

(2.82)-(2.9) to the analysis of the homogenoeus system
. n
Mqt) + Kq(t) =0, qe R. (2.10)

As usual, assuming a harmonic solution, we get

K- @*MlqQ) = 0, , “2.11a)
which in partitioned form is written as - ‘ T - )
2 ] 2 o,
[Kll-m Mll]ql(t) +[K12-(o M12]q2(t) =0, q € R (2.11b)
2 T 2 N n,
[Klz'(’) M12] ql(t) +[K22‘0) M22]q2(t) =0 ) q2£ R (2.11C)
Using eqn(2.11b) we obtain
- 2 -1 2
ql(t) = - [Kll-(!) Mu] [Klz-(l) M12]q2(t), (2.12)

establishing a relationship between qj(t) and q5(t). Hence, eqn(2.11c) yields

My, +M 5T 5 @)1 (0) + [Kpy HK 1T (@)]a,(0) = O, (2.13a)
where
Ty £ -[K; 1"°2M111—1[K12'“’2M12]- (2.13b)
Note that the 'reduced model’ (2.13a) of dimension n, still represents the original large model' of

dimension n, with the dof q; absorbed/transferred into g5. The frequency must satisfy

2
I[K22+K'{2T12((0)] - [M22+ 12le(m)]l =0, (2.14)

12




NAG-1-622 A.Yousuff
which in view of eqn(2.13b) is the same as eqn(2.9). Therefore, it is possible to extract the

frequencies (and the mode shapes using eqn(2.12)) of the original system (2.10) from the reduced

model (2.13a), by transferring the q1-information into q5.

It is in order now to make the following observations. The system representation (2.10) is
obtained after enforcing the boundary conditions, and represents a homogeneous system.

Eqn(2.10) represents the ‘assembled’ set of equations, and hence is of large order, i.e., n may be

quite large. Since n is large, either ny and/or ny may still be large - if nj is large, then the matrix

being inverted in eqn(2.12) is large; if nj is large, then the eigenvalue problem (2.13a) still

involves large matrices. This approach (as presented thus far) operates only on the assembled
équations, and not at an elemental level as proposed by Dokainish. Therefore, we would like to
develop a method that operates at the elemental level - and hence, less calculations - which would

yield the same reduced model (2.13).

Reduced Model from Elemental Equations: We will follow the method similar to that of
Dokainish with a few modifications. We will consider a free(no applied forces) plate vibration

@@ @D ®

0 1 2 ’ N2 N1 N

problem for illustration. Consider Strip1. The strip itself may contain a number of elements, whose

equations of motion may be assembled together to yield the following equation of motion for

Stripl. .
M M q K K q 0
11 M|, o Ky _ 2.15)
My1 Mpa|l9 K1 Kma|l9ra F 1

13
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where the nj dimensional variables q), are the free dof at the left section (boundary for Strip1),

obtained after enforcing the boundary conditions. (This is different from Dokainish's

approach wherein the boundary conditions are not enforced at this step). Since qj 1 are the
free dof, there are no external forces, leading to '0' at the right hand side of (2.15);

qr,1 (np dimensional) are the free dof at the right section. Since (2.15) is the equation of

motion for Strip] by itself, F; | represents the internal forces at the right section;

top and bottom boundary conditions are also enforced. The top-left and top-right boundary
conditions may be quite different (This totally eliminates the limitations of the original FETM ‘

~ method), and ny need not be equal to ny.

In the absence of external forces, the motion of the plate will be harmonic. Thus, similar to the

derivation of eqn(2.12), we get

q;,10 = Ty, 1(@)qr 10 (2.16a)

where

Ty 1(@) = - Ky 1-0°My) )" Ky 1-02My ). (2.16b)

Note: Eqn(2.16b) requires an inverse of an (ny,nq) matrix which is always square. We assume the

existense of its inverse.

With the relationship (2.16) available, ql,l(‘) can be eliminated from (2.15) to yield V

My G 1+ Kp g 10 = Fr @ 2.178)
where,
A T
M =M+ M T @ .
A T (2.17b)
K1 =Ky + Ky 1Ty 1 (@

Similarly, with Strip2 under consideration, using continiuity conditions (qj 2=q, 1) and equiibrium

conditions (F1,2=-Fr’1), and by using (2.17) one gets
14
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[(My12+M 11q) 2(t) + Ky 24K 11q)2(1) + My 26 2(8) + Kyp 2Gp 2(t) = 0.

From eqn(2.18) we obtain

qp 2(t) = Tyr 2(@)gy H(1)

where

M
Ty 2(@) = -[(Ky 2+K; 1)-02 My o+K;. D1 Ky 2-02My 5],

Finally, with eqn(2.19) substituted in the equation of motion of Strip2, we get

M, 58 2() + K o o(t) = Fro(D)

where,

>

T S
M 5 = Mo+ My Ty @)

T
Kio = Ky g + Ky 5T (@)

1]

A.Yousuff

(2.18)

(2.19a)

(2.19b)

(2.20a)

(2.20b)
(2.20c)

We pause for a moment now to point out that the same model (2.20) could also be obtained

by first assembling the equations of motion of Strips 1 and 2, and then eliminating q; 1(t) and

ql,z(t) from it. Hence, eqn(2.20) is a reduced model for Strips 1 and 2 assembled together, but

obtained by operating at the elemental level.

One can now proceed similarly and obtain a model, using Strip3, in q; 3 coordinates only as

My 367,30 + Kp 3073 = Fr30).

(2.21)

Or, one could start from the right boundary (StripN), eliminate q, )y and obtain a model for

StripN in terms of q; N and Fl,N’ and move left to StripN-1...., and similarly to Strip5. At the end

of this, one would have

M 545 5(®) + K 5q1,5() = Fy 500).

Now consider Strip4:
Myg Mpglldial . [Kns Fia){%a | _ |Fra
. T o T -
Mipa Mpdldra Kira Kira||%a Fa]

15
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Assuming that there is no applied force along the right edge of Strip4, we getFr 4 = - F; 5, and

the continuity condition 9r4=9] 5 Thus, from eqn(2.22) and eqn(2.23), we get

94 = Th 4@ 4- (2.24)

Now, if there is some external force vector Pj 4 acting along the left edge of Strip4, then

F1’4 = Pl,4 - Fr’3. (2.25)

Therefore, combining eqns. (2.21), (2.24), (2.25), and (2.23), we finally get

My 441 40 + Ky 491 4® = Py 4. —{226)

The model (2.26) represents the entire structure, with the boundary conditions taken into account.

The dimension of the model is ng4, the number of free degrees of freedom along the left edge of

Strip4. If PL4 is zero eqn(2.26) becomes a representation of a homogeneous system.

Note that, when there are no external forces present, we can obtain a reduced model of the
structure in terms of any intermediate dof. Hence, if there is external load along the right edge of,

say, ith strip, then one gets a model as

n.
1

M, O +K g ) = eR . (2.27)

i1 ,i ; qr,i
Now suppose that only ny; external forces (Pyy ;), of the possible n;, are applied at this

edge, cormesponding to ny; dof, then eqn(2.27) can be written as
My My [ |, {F1n Xagf (U] _
My, My|fari| [%or Xoz| |%2ri|  |Pori

sRH; Ui ean ng.+n, =n

(2.28)

qlr,i
It is then possible to reduce (2.28) further, by eliminating q; ;, to obtain the following model of

order ny;.

MRAr +KRAR = Porji s 9R= Qr,i- (2.29).
16
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2.3 Example: Simpl B
In order to present the application of the proposed method and its relation to the FETM
method let us consider an output feedback control of a simply supported beam shown below. It is

desired to control the linear displacement and linear velocity at point2, by using the linear force

actuator (f) located at point2. The available sensors measure the linear position (w») and the linear

velocity (v'vz) at point2. In this Section, we only develop a reduced model and compute the natural

frequencies of this beam, the control design is deferred till next Section. The conventional finite

p' - mass density per unit area
A : cross-sectional area 7 B B -
E : Modulus of elasticity
I : momentof inertia

f
4 (E.D
1 2 L 3 ’ 3

| 747/ SIS IS LS IS S LSS S S/ /A7 NNNNNNNNNNKN ONNNNNNNNNNNNNNNNNNNN

> .45L »
X
F e

Numericel Values: L =1; pA=420; EI=1.

/

element method would yield a model containing 4 dof, namely 6,, 6,, w,, and 0;. Assuming that

this model is too large for subsequent calculations, we wish to obtain a reduced model. We proceed
as follows.
For simplicity, divide the beam into two elements as shown. The conventional FETM

method (intended for analysis and not for control design) would first develop transfer matrices -

assuming some numerical value for the natural frequency - that relate (62,w7) to (8;,wy), and

(93,W3) to (92,w2). Then it would obtain an equation relating the dof (93,W3) at the right

17
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boundary to those (8;,w) at the left boundary. Finally, it would enforce the boundary conditions

at the left and right boundaries in this equation and iterate on the assumed frequency to extract the
actual frequency. This procedure is accomplished without regard to the control objectives and
sensor/actuator locations. Moreover, this procedure does not vield a convenient reduced model for
subsequent control design. The following steps illustrate the proposed FETM method.

Step O:  Determination of critical dof.

‘Since the proposed FETM method is capable of producing reduced models in terms of any dof, the

dof appropriate to the control objectives and sensor/actuator locations must be determined. In the

cxmpl:uﬁdcr consideration this dof is w,, the linear deflection at point2.

Step1: Element 1.

Write the cubic-beam model for Element 1 with the boundary condition w;=0 enforced. Assume a
value for the frequency ®, and eliminate 6, dof using the transfer matrix method. This gives a

model of Element 1 in terms of (92,w2).

Step2: Element 2.

Write the model for Element 2 (with w3=0) and eliminate 63 as above, using the same assumed .

This gives a model of Element 2 in terms of (62,w2).

Step3:  Reduced Model in terms of wy.
Combine the models in Steps 1 and 2, to develop a model of the entire beam in terms of (92,w2).

Eliminate 6, from this model as above, using the same . This gives a model of the beam in terms

of only w», which is the dof that we wish to control.

18
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Clearly the reduced model is function of the assumed frequency. The model obtained in Step 3 can
be claimed to be a reduced model only if the assumed frequency is one of the frequencies of the
beam. Hence, Step 4 is required.

Step4:  Extraction of frequencies.

Evaluate the determinant of [KR-(DZMR] for the same assumed value of w. If the determinant is

zero, then the assumed frequency is one of the natural frequencies of the system; if not, the
assumed frequency should be updated and Steps 1 through 4 repeated until the determinant

vanishes. (Currently, a modified secant method has been adopted for this updating scheme, and it

- works fairly cfﬁéi?nt&). For -‘th‘iﬁéic-xa_mple, the four fundamental frequencies were computed to be

0.48, 2.15, 5.32, and 10.2 rad/sec.

An interactive program has been developed on IBM PC/XT using FORTRAN which solves
for the natural frequencies of an abitrary beam with arbitrary boundary conditions employing the
modified FETM. This program can compute the frequencies of a beam with even arbitrary

intermediate boundary conditions such as, a hinge at some intermediate point - a situation wherein

Dokainish's method is not applicable.

19
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1. CONTROLLER DESIGN BY FETM METHOD

One of the problems encountered in designing a controller for flexible structures is the
'dimension problem’, if one chooses to work with ordinary differential equations. The standard
finite element method yields models consisting of many degrees of freedom, requiring more
computer memory than is available for control design. The conventional FETM method, though
uses less number of equations, does not yield models of lower dimensions suitable for control
design. The modified FETM method, as explained above, produces reduced models with due
consideration to control objectives-One might then use his/her favoritq method to design a
-controller-based on these reduced models. T -

One such approach would be to cast the problem in state space domain. Given the reduced

model of eqn(2.29), its state space realization can be obtained as

. T T.T

Xp = ARxR + BRu ; [qR, qR] € R

YR = CRXR (3.1
Zp = Mpxps

where yg define the variables to be controlled and zp are the measurements. Note that, for a given
control problem, in order for yg and zR to be defined properly it is important to choose the dof qR,

and hence xp, appropriately. Once eqn(3.1) is obtained, it is then possible to employ any of the
state space techniques to develop a control policy to produce the required controller as
i c = A x + FR R ’
u = GRx et E 2R

nc
X, € R
(3.2)
where n,; is the order of the desired controller. Depending upon the type of controller sought the
parameters {A., FR, GR, E.} can have different structures; for example, in an output feedback

control scheme all parameters except E; would be zeros.
20
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o Having obtained the controller, the evaluation of this controller has to be achieved only with
respect to the actual full order model of the system. However, since the full order model is assumed
to consist of many degrees of freedom, an efficient means of evaluating the controller is needed.
This problem is being investigated jointly by Dr. Leon Bahar of Drexel University and the author of
this report, employing a nested procedure for computing matrix exponential. Alternately, one might
predict the performance of the controller by using only the reduced model (2.29), if an appropriate
procedure could be developed. This issue is also under investigation at Drexel University.

o The papers included in Appendix illustrate two controller design methods: (a) an output

feedback design, and (b) a decentralized control design. Both these methods are based on the

Linear Quadratic Regulator approach. o
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IV. CONCLUSIONS AND RECOMMENDATIONS FOR FUTURE
RESEARCH

In summary, during the first half of this research support, we have developed a modified
FETM method that is capable of producing reduced models of flexible structures to ease the
subsequent design of controllers. Unlike the conventional FETM method, the proposed method
does not require equal number of dof at each section, i.e., at edges of each strip. Moreover, this
procedure does not involve generalized inverses. More significantly, the reduced models pr@pced
by this method are tailored toward the control design. The applicability of this method to controller
design has been iluustrated through an example. - o

The progress of this research has raised several issues that need to be addressed:

(1) During the development of the reduced model, the inversion of a matrix involving _
submatrices of the stiffness and mass matrices is assumed. Precise conditions under which this
assumption is valid needs to be established. Currently it is believed that if the assumed natural
frgquency does not coincide with the frequency of the particular strip under consideration, then the
matrix is invertible. This belief has to be formalized.

(2) The iterative numerical scheme employed in the extraction of the natural frequency is a
modified secant method. This scheme works quite efficiently for the example considered herein.
We believe that the scheme could be accelerated by using the results of the above Issue #1.

(3) Since the reduced model (2.29) depends upon the frequency, each natural frequency
yields a different reduced model, and one could conceivably obtain many reduced models. This
raises the question of which one (or which few) of the natural frequencies are to be used for the
generation of the reduced models? In order to answer this question one needs to determine a priori
the 'significant' frequencies, such as those identified by modal cost analysis[10]. This issue has to
be resolved for the proposed method to be a feasible controller design scheme.

(4) The controller design based upon the proposed method needs to be explored. Currently,
we have used an example to illustrate our thoughts on this design technique. We believe that, since

tha reduced model is directly related to the full order conventional finite element model, in terms of
22
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the ftciluency, the stiffness matrix, and the mass matrix, the performance of the controller with
respect to the full model could be predicted. In particular, the stability of the overall closed loop
system could be predicted; infact, for the example considered in the first paper of Appendix, one
could guarantee stability fo the system for all bandwidth controllers. The stability properties of

matrix second order systems would naturally be used here.

(5) An important requirement of any control design is the robustness of the controller. This

issue needs to be addressed in future research.
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ABSTRACT™

@_N RS The Finite Element - Transfer Matrix (FETM) method has been developed to reduce the
computations involved in analysis of structures. This widely accepted method, however, has
certain limitations, and does not directly produce reduced models for control design. To overcome
these, a modification of FETM method has been developed. The modified FETM method easily

produces reduced models that are tailored toward subsequent control design. Other features of this

method are its ability to (i) extract open loop frequencies and mode shapes with less computations,

(ii) overcome limitations of the on'giﬁa‘l FETM method, and (iii) simplify the design procedures for

output feedback, constrained 'compcnsaﬁgg;_%g_:g;c@ngﬂi@ cpntl'ol: P -

é - mnpon presents the development of the modified FETM, and through an
% example, illustrates its applicability to an output feedback and a decentralized contro! design.
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