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_R_O_

TheThirdWorkshoponTechnicalandScientific Aspectsof MST(mesosphere-
stratosphere-troposphere)radarwasheld in Aguadilla,PuertoRico, onOctober
21-15,1985. Thiswasthe first timethat theWorkshopwasheldoutsidethe

continental United States; the previous Workshops (in May 1983 and May 1984)

were held in Urbana, Illinois. My Co-Organizer, Dr. C. H. Liu, and I are

extremely grateful to the staff of the Arecibo Observatory of Cornell

Universlty for arranging and supporting a week of very intensive technical

activitles. We would particularly like to thank the Director of the Arecibo

Observatory, Dr. Tor Hagfors, for the courteous and sympathetic reception he

accorded to the participants; and also Dr. Jurgen Rottger for his unstinting

efforts in the Workshop organization.

The MST radar technique for studying the dynamics of the middle atmosphere

continues to take bold strides. Particularly noteworthy is the extent to which

the technique is beginning to be used operationally for the measurement and

prediction of tropospheric weather. It will be interesting to see the extent

to which ST radars will supplant or complement balloon measurments of wind and

temperature during the coming years.

The subject of gravity waves and turbulence continues to be a dominant

toplc; nearly one quarter of this volume is devoted to scientific and

methoaological papers in this area. Now that we are learning more about the

phenomenor, of gravity-wave saturation, and are beginning to measure momentum

fluxes, many previously obscure features of mesospheric gravity waves are

beginning to be understood. One clear lack in present measurements is the

absence of networks of MST radars at a suitable spacing for the determination

of horizontal wavelengths of gravity waves.

Many examples are given in this volume of intercomparison between MST

radars and other techniques. It is fair to say that none of these comparisons

cast serious doubt on }_T radar measurements of winds and waves that are now

part oZ the literature.

Technical aspects of the design of MST radar systems continued to be a

major preoccupation in this Workshop as new radars are planned, and as existing

radars are moved to new locations, where the parameters of the installation or

environment are different.

There is no doubt that development and exploitation of the MST radar

technique is one of the major contributions of the Middle Atmosphere Program.

As we move into the period of }iAC (Middle Atmosphere Cooperation), it will

continue to be used by many scientists in developing an improved understanding
of stratospheric and mesospheric processes.

pRE.C;F..D_NGFAGE ' " "_"
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1.1.1 ON THE POTenTIAL USE OF RADAR-DERIVED INFORMATION

IN OPERATIONAL NUMERICAL WEATHER PREDICTION

aoualdD" McPher"°n _ 8 7 . I 0 4_ 0
National MeteoroloEical Center

WashinEton. D. C. 20233

HISTORICAL PERSPECTIVE OF OPERATIONAL NUMERICAL WEATHER PREDICTION

Operational numerical weather prediction has historically been concerned

with the prediction of atmospheric flow patterns and associated sensible

"weather", which have characteristic lenEth scales of 2000 km and 8rearer. and

periods lonEer than a day. The physical basis for this approach was

established in the late 1940s and early 1950s, and rests upon the approximate

balance between the forces associated with the equator-to-pole 8radient of

pressure and the earth's rotation. Mathematically, numerical weather

prediction is posed as an initial value problem. Its solution thus depends on

specifyin 8 the state of the atmosphere at the initial time of the forecast

period, providin 8 a mathematical "model" of the physical laws which 8overn the

evolution of the atmosphere, and access to sufficient computational power to

advance the model solution forward in time.

For the quasi-horizontal, quasi-balanced flows with relatively larEe

lenEth and time scale which have been the principal focus of operational

numerical weather prediction, the initial state specification was provided at

the beginnin 8 of the operation _P era by balloon-borne measurements of

temperatures and wind as functions of pressure. The measurements were taken at

locations mostly in populous areas of the Northern Hemisphere. with an averaEe

distance between locations of 300-500 kin. Soundings were obtained generally

twice per day. Prom these measurements were derived digital representations of

the three-dimensional mass distribution of the atmosphere at a given time.

Such representations served as the initial conditions for early prediction

models.

During the years since the beginning of operational numerical weather

prediction in 1955. the data base has expanded, especially from satellite-based

observing systems. Atmospheric models have steadily grown in realism, and

improved in accuracy. In parallel, the necessary computing technology has

advanced to enable the improvements in modeling. Nevertheless. the object of

numerical weather prediction has remained the same: the forecasting of large-

scale atmospheric flow patterns and associated precipitation. The data base

for this operation, while expanded, remains concentrated on sampling the slowly

evolving flow patterns twice per day. Such a data base cannot profit very much

from radar-derived information, where one of the principal advantages lies in

frequent temporal sampling. Indeed. radar measurements have played virtually

no role in numerical weather prediction thus far.

However, it is widely known that many important precipitation events occur

on a much smaller space and time scale than the flow pattern in which they are

imbedded. Such events are poorly predicted by present operational NWP methods.

This is manifest in the long-term performance records of operational _P

centers: forecasts can be readily demonstrated. No such increase is apparent

with respect to numerical predictions of precipitation.

EXT_SION OF OPERATIONAL _P METHODOLOGY TO SMALLER TIME AND SPACE SCALES

In recent years, major advances have occurred in understanding the

physical processes associated with many smaller-scale major precipitation

events coupled with advances in the numerical modeling of those processes.



_r_ing co_se_su_ h d that an extension of operational h_P to smaller

'_keales is feasible, _nd in vlew of the deficiency in the skill of precipitation

forecasts, is highly desirable as well. To be successful, however, the recent

advances in modeling must be accompanied by an appropriate enhancement of the

observing system, and of course, more powerful computers. In an agreeable

conjunction of circumstances, modern computing and observing technologies

appear able to produce the required enhancements. In the latter, radar

technoloKy will evidently play a major role.

This may be illustrated by an examination of the requirements likely to be

placed on an augmented observing system by numerical weather prediction. Such

requirements cannot be specified with any accuracy very far in advance because

the frontier of our knowledge advances by a sequence of creative imbalances.

Thus, the recent advances in modeling have resulted in an imbalance between

models and observations, and efforts are being made to redress the imbalance by

enhancing the observing system. After information from the improved observing

system has been studied, it may be that deficiencies in the models will be

revealed, and the modelers will respond. Thus the process is a dynamic one

which may result in frequent revision of the requirements. Nevertheless, we

may attempt some estimates.

One of the most important conceptual advances in recent years is the

recognition that major precipitation events, especially those in the warm

season, are usually associated with organized convective systems. Examination

of cloud imagery from geostationary satellites has revealed some of the

characteristics of these systems. They appear with a wide spectrum of

characteristic dimensions, ranging from a few hundred kilometers to almost

synoptic scale (>2000 km). It is difficult, and perhaps misleading, to assign

one number as a characteristic horizontal length, but for this discussion

perhaps I000 km will serve. The convective systems generally occupy most of

the troposphere, so we may assign a characteristic vertical dimension of about

10 km. Sequences of satellite images, plus surface-based observations, show a

typical life cycle of perhaps 12 hours; occasionally, a system will persist

longer, but even so, often displays a diurnal variation in intensity. Thus we

may take 12 hours as a characteristic time dimension.

If we require that our observing system must sample the phenomenon of

interest at least I0 times per characteristic dimension, then the observing

network suitable for accurately describing the "typical" convective system as

outlined in the previous paragraph must have the following characteristics:

Horizontal resolution i00 km

Vertical resolution _i km*

Temporal resolution _I hr

*The vertical resolution should, of course, be substantially

higher in the planetary boundary layer.

By contrast with the existing large-scale observing network, where observations

are required only twice per day, the mesoscale observing system is required to

sample once per hour. It is in this connection that radar-based observations

will play a major role.

To summarize our estimates of the requirements likely to be levied on a

new observing system for mesoscale meteorology, observations of wind and

temperature are required with horizontal resolution of approximately I00 km,

and vertical resolution of at least I km in the free atmosphere and perhaps an

order of magnitude greater in the boundary layer. Atmosphere moisture

measurements are also required, but with greater spatial resolution in view of

the notoriously inhomogeneous character of moisture fields.



In addition, it is important that the mesoscale model of the a_mosphere

should know where and at what rate the reel atmosphere is precipitating at the

initial time. This requires knowledge of the horizontal and vertical

distribution of precipitation, as well as the precipitation rate.

POT_qTIAL OBSERVING SYST_S FOR OPERATIONAL NUMERICAL

WEATHER PREDICTION ON THE MESOSCALE

Several observing systems developed in recent years offer potential

application to the mesoscale numerical weather prediction problem. Summarized

in the list below are systems which have not been used or fully exploited in

operational meteorology.

Temperature

1. Thermodynamic Profiler: This is an experimental six-chennel

radiometer, based at the surface and pointed upward. It derives profiles of

temperature from infrared radiation emitted from relatively deep atmospheric

layers. It thus has relatively coarse vertical resolution and is adversely

affected by precipitation at the observing site. Soundings can be produced

each hour, and the integrated measurements (e.g., heights of standard isobaric

surfaces) are quite accurate. The greatest accuracy is found in the lower

levels. Scanning is not possible, so horizontal resolution is limited.

2. VAS (VISSR Atmospheric Sounder): This is an infrared radiometer on

the Geostationary Orbiting Earth Satellite. Temperatures are derived from

upwelling radiation, in the same way as with the thermodynamic profiler. VAS

has the advantage of scanning, and thus offers good horizontal resolution. It

also offers high frequency soundings in time. The soundings are most accurate

in the higher atmosphere. VAS soundings suffer from coarse vertical

resolution, and are not available in cloudy areas.

Wind

3. Wind Profiler: This is a clear-air Doppler radar, surface-based, with

two orthogonal heems pointing upward at 15 ° from the zenith. Wind profiles can

be produced each hour or even more frequently, from about 500 m above the

ground into the lower aunosphere. The profiles have acceptable vertical

resolution above the boundary layer. Scanning is not possible, so horizontal

resolution depends on the spacing between instrument sites. Preliminary

estimates suggest that the wind measurements are of acceptable accuracy.

4. Doppler Surveillance Radar: The National Weather Service has embarked

on a program (NEXRAD) to install new weather surveillance radars at approxi-

mately 160 sites in the US. It will be possible to derive winds from the radar

measurements when precipitating clouds, or other targets such as insects, are

present. The accuracy is good, vertical resolution is good, and the data may

supplement the wind profiler in the boundary layer. Winds are not available

under all conditions_ in particular, clear air in the cold season will be void

of data from this source.

5. Automated Aircraft Data: Modern wide-bodied commercial jet aircraft

are being equipped with communication devices which relay temperatures and winds

measured by the aircraft's sensors and inertial navigation systems to the

ground. Observations of wind and temperature will be available at roughly 100-

km intervals in level flight, and 10 mb intervals on ascent and descent. Slant

profiles will therefore be available in the vicinity of major airports. The

accuracy of the winds obtained from this source is good, but the temperatures

are less accurate.



Moisture

6. Moisture Profiler: A two-channel radiometer has been developed to

provide frequent, accurate measurements of the total water content of the

atmosphere above the radiometer. Profiles are not available. No scanning is

done, so horizontal resolution is determined by the distance between observing

sites.

7. VAS: Frequent estimates of total water content can also be determined

from the VAS instrument. Scanning is done, however, so the horizontal

r_olution is quite good.

It is clear from this brief summary that no single component listed above

satisfies all the requirements of the data base for operational mesoscale

numerical weather prediction. Instead, the requisite observing system will be

s composite of all the above elements, plus the existing network which is part

of the synoptic scale observing system.

The cornerstone of the network is likely to be the wind profiling radar.

Because of the accuracy and frequency of the radar wind observations, it will

be possible to estimate not only the wind field at any one time, but also its

tendency, with considerable accuracy. The former is extremely important,

indeed vital, to mesoscale prediction; the latter is important because it can

be used through the hydrodynamic equations to enhance the vertical resolution

of the coarsely resolved temperature profiles, thus indirectly enhancing the

accuracy of the prediction.

CONCLUDING R_ARKS

The National Meteorological Center is convinced that a mesoscale observing

system, with elements as described above, will be a reality within a few years.

It thus becomes a matter of some importance to devise a four-dimensional data

assimilation system capable of intelligently treating data from these various

sources. The Center has committed substantial resources to this development

project, and recognizing the long lead time necessary in such endeavors, work

is already underway. Experiments with simulated observations will begin in

1987. Read data experiments will begin with the availability of wind profiler

data from a 30-station demonstration network in 1989. As NEXRAD installations

proceed, efforts will be made to incorporate wind data from this source, also.
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1.1.2 A THEORY FOR THE RETRIEVAL OF VIRTUAL T_PERATURE FROM WINDS,

RADIANCES AND THE EQUATIONS OF FLUID DYNAMICS

8 7 - 1 0 421
School of Meteorology, University of Ok[lahoma _ "_ -

Norman, Oklahoma 73019 ' _i o'tr::'"

A technique to deduce the virtual temperature from the combined use of the

equations of fluid dynamics, observed wind and observed radiances is described.

The wind information could come e.g., from ground-based sensitive very high

frequency (VHF) Doppler radars and/or from space-borne Doppler lidars. The

radiometers are also assumed to be either space-borne and/or ground-based.

From traditional radiometric techniques the vertical structure of the

temperature can be estimated only crudely. While it has been known for quite

some time (GAL-CHEN, 1978; HANE and SCOTT, 1978) that the virtual temperature

could be deduced from wind information only, such techniques had to assume the

infallibility of certain diagnostic relations. The proposed technique is an

extension of the Gal-Chen technique. It is assumed that due to modeling

uncertainties the equations of fluid dynamics are satisfied only in the least

square sense. The retrieved temperature, however, is constrained to reproduce

the observed radiances. It is shown that the combined use of the three sources

of information (wind, radiances and fluid dynamical equations) can result in a

unique determination of the vertical temperature structure with spatial and

temporal resolution comparable to that of the observed wind.

i. INTRODUCTION

A few years ago, GAL-CHEN (1978) and HANE and SCOTT (1978) noted that if

sufficiently accurate measurements of the wind and its time history could be

obtained from Doppler radars, this information would, in principle, define also

the thermodynamic structure. In essence, this is done by requiring that the

data will also satisfy the momentum equations in the least square sense. This

has reduced the problem to a classical calculus of variation problem (COURANT

and HILBERT, 1953). The form of the momentum equations assumed in these

studies is quite general and is, in principle, applicable to small meso- and

large-scale atmospheric motions. While not immediately obvious, when the

approximations appropriate to large-scale atmospheric flows are employed, the

above variational formulation is reduced to solving a classical balance

equation (HALTINER and WILLIAMS, 1980) of obtaining the geopotential from the

wind.

GAL-CHEN and KROPFLI (1984), ROUX et al. (1984) and HANE and RAY (1985)

have tested the practical utility of the above-mentioned variational formu-

lation on a variety of observed small-scale phenomena; planetary boundary layer

(PBL) convection in the Gal-Chen and Kropfli case; severe storms for the Hane

and Ray case, and a tropical squall line for the Roux et al. case. In all, the

three case studies of temperature and pressure are deduced from observed

Doppler radars wind. Satisfactory agreement with in situ thermodynamic

observations is reported in all three cases.

As GAGE and BALSLEY (1978) point out, sensitive Doppler radars can be used

to obtain mesoscale wind profiles under all weather conditions. The vertical

resolution is up to 100 m. The time resolution is about 1 hour and the

horizontal resolution is determined by the average distance between the

profilers. Comparable resolution is not obtainable from radiometric

measurements of the atmosphere either from the ground or from satellites. The

purpose of this paper is to extend and modify the GAL-CHEN (1978) technique to

satisfy the following requirements :



(a) Thehorizontalmomentum equations are satisfied in the least

square sense (to be defined further below).

(b) _The hy_os_atlc c_ns_ai_ is satisfied exactly.

(c)_The _ th_rmo_ynamic_eq_ti%_ is satisfied in the least square

sen se.

(d) The radiative transfer equation at various frequencies is

satisfied exactly.

(e) Given wind and radiances as input, virtual temperatures

should be obtained as an output. The retrieved temperature

should have horizontal and vertical resolution compared to

that of the observed wind.

In this paper only the theory is developed. The practical utility

remains to be checked. This should be done first by simulation studies and

then by examining real data. The task is vast and difficult and I hope that

the theory developed here will stimulate other researchers to check its

practical utility and to seek even better ways to estimate the virtual

temperature.

The technique discussed in this paper has some similarities to the

techniques considered by KUO and ANTHES (1985) and by BRUM_ER et al. (1984).

However, it also has some potentially important differences. These include

inter alia:

Ca)

(b)

(c)

2o

Lateral boundary conditions for the temperature are obtained

directly from the wind data rather than prescribed from a 12-

hour forecast as in Kuo and Anthes or, as in the Brummer et al.

ease, prescribed from a vertically smoothed temperature profile

obtained by pure radiometric techniques.

In both the Kuo and Anthes and Brummer et al. techniques, the

horizontal divergence equation is used; as a weak constraint

in the Brummer case and as a diagnostic equation for the geo-

potential in the Kuo and Anthes case. In our case, attempt

is made to satisfy, albeit in the least square sense, all the

prognostic equations relevant to describing mesoscale motions.

The Kuo and Anthes approach does not utilize the information

contained in the radiances. It is assumed that in nature the

divergence equation is satisfied exactly. This is not true even

if the wind measurements are error free. In the Brummer

technique, a temperature profile is sought that will, on the

one hand, satisfy the divergence equation as close as possible,

and on the other hand, is also not too far from the smooth

temperature profile retrieved from radiometric data. Our

technique, however, demands that the retrieved temperature satisfy

the radiative transfer equation, augmented by additional dynamical

constraints. Unlike the pure radiometric techniques, the above

set is mathematically well posed and no a priori smoothing or

statistical constraints need to be imposed on the retrieved

temperature.

MODELING ASSUMPTIONS

Governin_ equations. The governing hydrostatic primitive equations in

Cartesian x, y, z coordinates may be written as :

Continuity equation,

Dp/Dt + pV-u = 0 (1)



Horizontal momentum equations,

DulDt = -(ll0)_pl_x + F 1 + fv

DvlDt = -(ll0)_pl_y + E 2 - fu

Here D/Dt is a symbol for total derivative

(2)

(3)

D/Dr = _/_t + u_/_x + v_/_y + w_/_z (4)

f is the Coriolis paraneter (f = 2_sin_; _ is the earth angular velocity and

is the latitude). For convenience we are displaying the equations using

Cartesian coordinates. Nevertheless, the extension of our ideas to spherical

coordinates is obvious and all our subsequent discussions (conclusions) are

valid for spherical geometry. The hydrostatic equation is given vis.,

ap/az = -0g (5)

An approximate form of the thermodynamic equation neglecting the contribution

of moisture to the density p and to the heat capacity (under constant pressure)

C is
P

Cp DT/Dt - (I/0)Dp/Dt = Sh (6)

The heat capacity under constant pressure is given vis. C = (7/2)R with R

the gas constant for dry air. The equation for conservation of water vapor is

(7)
Dq/Dt = Sv

The equation of state is

p = pRT (8)
v

Here u is the three-dimensional wind vector _ = (u, v, w). u is the horizontal

velocity in the x direction; v is the velocity in the y direction and w is the

velocity in the vertical direction, z. The density of dry air is denoted by

P; p is the pressure; g is the acceleration of gravity; F I and F 2 are

symbols for turbulent friction forces (of dimension Newton/kg) which in this

study we assume that they can be either measured directly or parameterized

based on wind observations. T is a symbol for temperature; p is the pressure.

T is the virtual temperature defined vis.v

T - T = 0.61 qT (9)
v

Here q is the water vapor mixing ratio (expr_sed in 10-3g/(kg of dry air)).

The symbol S, is for sources (or sinks) of heat energy. Since in this study
•

we are llmitlng ourselves to relatively short time scales (0-12 hours),

radiative processes are presumed to be of secondary importance (SMAGORINSKY,

1974) and the major source of heating in the free atmosphere is due to

precipitation. The major heating source in the planetary boundary layer (PBL)

is assumed to be fluxes of sensible heat. S is a symbol for sources or

sinks of water vapor and in accordance with _ur previous presumption that the

maj or contributor to S in the free atmosphere is the removal of vapor by

precipitation. In theVpBL, the major source is evaporation from the ground.

The nature of the data and/or the parameterizations. Our maj or

assumptions about the nature of the observed data or the parameterizations

employed are as follows:



(a) Horizontal motions can be measured by means of powerful Doppler radars

(frequency range is 50-900 MHz). The measurements have accuracy of
+1 ms-l; are such that all motions with time scales with less

than 1 hour have been filtered and are possible under all weather

conditions (LITTLE, 1982).

(b) Vertical motions with scales described in (a) can be either deduced

from the horizontal motions (using the mass continuity equation) or

else can be measured directly by Doppler radars (NASTROM et al.,

1985). To be useful for predictions of synoptic scale motions, the

accuracy of the deduced (or measured) vertical motions must be of the

order of + 1 cms-1 (HALTINER and WILLIAMS, 1980).

(c) Remote sensing of temperature and moisture profiles using ground-

based and/or space platforms renders some useful information under

almost all weather conditions (WESTWATER et al., 1985). (This is true

only if the infrared channels are augmented by additional channels

from the microwave. Otherwise, contamination from clouds may be

severe. Furthermore, microwave measurements are contaminated under

the presence of heavy rain.) The temperature and moisture retrieved

from these measurements typically have poor vertical resolution. As

a result, the retrieved profiles have an accuracy of no better than

+ 3°C for temperature and + 5 g/kg for the moisture.

(d) At the minimum, it is assumed that the measurements described in (a)-

(c) are available in at least three spatial locations to be able to

define a triangle. The satisfaction of this requirement would enable

calculations of horizontal gradients. It must be borne in mind that

the distance between the stations also determine the smallest scales

that can be resolved by such a network. Thus, even though the

horizontal wind measurements described e.g., in (a) may contain

spatial scales of motions smaller than the distance between the

stations, the computed horizontal gradients cannot properly resolve
this information.

(e) As is customary in numerical weather prediction (_P) models

(HALTINER and WILLIAMS, 1980), we assume that all motions and

processes with spatial and temporal scales that cannot be resolved

by the network can either be "parameterized" in terms of what is

observed or measured directly. For instance, F 1 and F 2 (in (2)
and (3)) which are turbulent friction terms may he estlmated from

single Doppler radar data (KROPFLI, 1984). Alternatively, one may

attempt to parameterize it in terms of the larger scale winds. (The

simplest parameterization is to set F. = F^ = 0 ) Another example1 z "
is the precipitation rate and the vertical distribution of latent heat

release which may be evaluated using conventional radars (DOVIAK,

1981) or from satellite data (ATLAS and THIELE, 1981) or par_eterized

(e.g., ignored).

3. ALGORITHM DEVELOPMENTS

Deduction of horizontal virtual temperature _radients. Taking into

account our assumption (a) and (b) in the previous section, we may write the

horizontal momentum equations (2) and (3) as:

(1/_)VHP= (i0)

Here, G E (GI,G,) is a given two-dimensional vector function (G =

-Du/Dt + fv $ FI; G 9 = -Dv/Dt - fu + F2) whlch, in prlnclple, can be

computed from t_e observed wind; VH is the two-dimensional gradient

operator. Differentiating (I0) wit5 respect to z and using hydrostatic (5),

and the equation of state (8) one gets

(I/O) VHP_InTv/_z + gVHInT v = _GI_z.



Taking it into account (10)

G_InTv/gZ + gVHInT V = 8G/_z (ii)

(11) can be considered as a generalization of the thermal wind relation in z

coordinates. In fact, for G = (fvl-fu) the thermal wind is reproduced.

Equation (11) expresses horizontal and vertical temperature gradients in

terms of observed quantities (i.e., winds and its derivatives). Together with

other relations to be used further below, it can be used to infer the vertical

structure. Nevertheless, it is also useful to consider several approximations

of (11). First consider the ratio (denoted by R ) of gV. inT to
.... a

GBln.Tv/BZ.Tradltlonalscaleanalys_sconslders(e.g.._DL_Y. 1979.pp.
_-10) dictates that the order of magnitude of the above-mentioned ratio is

given by

R = g6hT/L

a O(G)F

Here, _hT is a typical horizontal temperature difference over a typical

length scale L and r is the lapse rate (F ----_T./_z). We shall now try to

obtain for baroclinic weather systems a lower bVound of R . We know that F

can hardly exceed the dry adiabatic lapse (g/Cp). Furtharmore,

MaxlGl = Max(U/T, U2/L, fU)

Here, U is a typical velocity associated with the scale L, f is the Coriolis

parameter, and T is a typical time scale. Thus, overall

(6hT/L) Cp

Min (Ra) = max(U/T ,U2/L, fU)

For large-scale flows in the middle latitudes, L _ 106 m, U _ 10 ms-l,

f _ 10-4 s-l, O(G) _ fU. Also, a modest estimate of the large scale

temperature gra_en_ in a baroclinic flow is 3 deg/1000 km; in addition,

C = 1004 Jdeg-_ _kg-, thus Min(R ) = 0(3) This means that in the
p a "

1.h.s. of (11), the contribution of the terms associated with the horizontal

temperature gradient typically dominate that associated with the vertical

temperature gradient. The net result is

gVHln% -- _G/_z (n)'

For the geostrophic case, G = (fv,-fu) and (ii)' is recognized as an approxi-

mate form of the thermal wind relation (e.g., HESS, 1959, p. 191). As long as

significant baroclinicity exists, the approximation (11)' continues to be valid

for mesoscale flows with L _ 105 m, U % i0 ms-l, I G _ U2/L and 6hT/L =
0.3 deg/100 km.

Another useful form of (II) can be utilized if one recognizes that the

l.h.s, of (ii) is actually gVHlnTv),. Here the operator Vw)" is the

horizontal gradient in x, y, p, t s_ace (p is held constant) r. To see why this

is SO, note (HESS, 1959, pp. 260-264) that

VHT) z = VHT) p + (_T/SP)VHP

Using hydrostatic (5) and the chain rule, we obtain

T/_ P = -(i/0g) ST/Bz



i0

Wealso knowfrom (i0) that, (I/P) VHP = G thus, overall,

gVHTv)z : gVHTv)p - GBT/_

The net result is

gVHlnT)p = B_/_z (ii)''

(II)" is an exact expression to calculate horizontal temperature gra-

dients; nevertheless, to utilize it, its r.h.s, must be known at selected p

levels. This requires knowledge of the pressure as a function of z. Typically,

in the absence of rawinsonde, this is accomplished by utilizing a crude first

guess of temperature from the radiometers, together with hydrostatic (5) and

the equation of state (8). This results in a crude first guess of the pressure

(typically + I0 mb). Equipped with this information, one can interpolate

_G/_ which _s observed in x, y, z, t space to an x, y, p, t coordinate. In
ru ......

practlce, thls is aecompllshed by interpolatlng to those z which correspond to

constant p levels. Setting aside for the purpose of this discussion the

standard errors associated with interpolations, there is an error associated

with the fact that the pressure is inaccurately known; consequently, the z's

associated with the constant p levels are inaccurately known.

We will now proceed to evaluate the above-mentioned errors. From

hydrostatic we know that

z/Bin p = -RTv/g

Integrating from sea level to some specified height (assuming for convenience

p (sea level) % i000 rob) we get

z = (RTv/g)in(p/1000)

Here T is some vertically averaged temperature in the interval (o,z) and p

is theVpressure at level z. In the lower troposphere in(p/1000) = 0(i) and

RTv/g = 0(8 kin) (see e.g., HESS, 1959, pp. 75-77). Assuming a worst case

scenario that the errors in estimating TV and T v strictly from radiometric
data are the same, we obtain for 6z (the error in z) that,

_z = (R6Tvlg)O(1)

3°K we obtain _z % I00 m.Taking _T
V

6(3G/3z) % 6z_G/Bz 2

Furthermore, for Rossby number not too large from unity (essentially

corresponding to large and mesoscale motion) _ = O(fU) thus,

_2G/_z2 = O(fU/D 2)

Now from (ii)" and Taylor expansion

(12)

(13)

Here D is a typical vertical scale over which significant variation of

82u/Bz2 are occurring. For the troposphere, D _ 5 km, f _ 10 -4 s-I,

U % i0 ms -I , T _ 273°K. Also as discussed above, 6z % I00 m. Substituting

the above results in (12) and (13) and also taking into account (II)" we obtain

6VHT)p _ O(10-2deg/100 km) (14)

6V..T) in (14) is an estimate of the error in the evaluation of the

horizon_alPtemperature gradient in p coordinates due to interpolation errors

from x, y, z, t space to x, y, p, t space. As discussed above, these errors



ii

are the result of our inaccurate knowledge of p. The error appears to be quite

acceptable. Nevertheless, it should be remembered that our error estimate is

quite sensitive to the choice of D, the vertical scale. At any rate, the

algorithm to be described further utilizes (ii) which is the exact form in x,

y, z, t space rather than the approximate form (11)' or the form (ii)" which is

exact but requires interpolation to x, y, pp t space.

Deduction of vertical virtual temperature _radients. So far we have

shown how to find horizontal virtual temperature gradients. To find the

vertmcal temperature gradients we will have to use the thermodynamic equation

(6). A difficulty arises because while T -_T to within 1_ (HESS, 1959, p.

44) the contribution of the moisture to t_e horizontal virtual temperature

gradient at the lower troposphere could be comparable to that of the horizontal

temperature gradients. To overcome this difficulty we will now derive an

alternative form of (6) containing only gradients of the virtual temperature.

We start by noting that the continuity equation (1) and the equation of state

(8) imply that

-(1/0)Dp/Dt = -RDTv/Dt + RTvdiv.u

This enables us to rewrite (6) as

CpDT/Dt - RDTv/Dt + RTvdiv.u _ = Sh

From the definition of virtual temperature (9) we obtain

(15)

_/_t(gVHlnTv) + _/_tC_inTv/_z) = (gVH + G_/_z)_inTv/_t

DT/Dt = DTv/Dt - 0.61 qDT/Dt - 0.61 (Dq/Dt)T (16)

New, under all meteorological conditions q _ 10 -2 and less. Thus, the second

term ot the r.h.s, of (16) is always negligible compared to the first term.

Under conditions of strong moisture gradient (e.g., dry lines) the third term

may be important and is therefore retained. However, in the third term, we may

substitute T for T. Utilizing the above approximations we may substitute

(16) in (15)Vtaking also into account the moisture equation (7) and the fact

-- =
that Cp Cv R to obtain

CDTv/Dt - RTvdiv.u _ - 0.61 CpSvT v = Sh (17)

We next substitute (11) in (17) replacing the horizontal temperature gradient

in (17) by (Tv/g)_G/_z - (G/g)_Tv/_z. The net result is

+ $@inTvl_z) = F - Sh/T v (18)

Here F is a symbol for presumably observed quantities, i.e.,

- (19)
F = I/g(_H._G/_z) + Rdiv'_ 0.61CpS v

w is the modified vertical velocity given by

(_ _) / (20)w = w + H" g

The horizontal velocity vector is denoted by _ [_B = (u,v)].

The next step is to obtain explicit expressions for _inT /_z which do
• ° , V °

not contain temperature tendencies. This is accompllshed by applying the

vector operator g V_ + _/%z on both sides of (18). The result using (II) and

calculus rules of t_e s6rt f'g = (gf)' - g'f are terms like
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gw_/_ZCVHlnT v) + g( HW)_lnTv/_z = gVH(w_lnTv)/_z

G_I _z ( _lnTl _z) + G(_I _z)_lnTvl _z = G_I _z (_inTvl _z)

Furthermore, from calculus

Thus,

Gal_t(_inTvl_z)= _lat(G_in_/_z) - (_G/_t)(_in_/_z)

(gVH = G_laz)_inTvl_t= _l_tCgVH + G_l_z)lnTv

- (_l_t)_ln%laz

Using (11),

(gvH

Similarly,

+ G_/_z)_inTvl_t = _2G/Cgz_t) - (_G/3t)_inTv/_z

_inT % _inT v __ _inT _inT
v g(VHw)____ - + _aw v + %_2G - _(_/_z) v

(gVH_ 3z)-+C_ _ _z _z "--_-'-z _ _z

Also utilizing (II)

(gVH+_l_Z)T S-hh = _(gVH+_l_z)S h - (SHITv)_I_z

V V

Overall, the net results are two separate estimates for the vertical

temperature gradient, namely

31nT

Cv(gVH_+_l_z - _l_t - _(_l_z)-gz v = H (21)

where H is given by

H = (gVH+G_/_z)F_ - (Sh/Tv) _G/_z + (I/T v) (gVH+G_/_z)S h (22)

Here F is given by (19). Since we have assumed that a first guess of Tv is
available from the radiometers and is accurate to within + 3°K it is

permissible to substitute this first guess in the r.h.s, of (22). The net

result is that H is an observed vector function.

It is now useful to put together the forms of the horizontal and vertical

virtual temperature gradients and their dependence on the observed winds. They

are:

The generalized thermal wind relation (II) rewritten here as

(g ?H+G 3/_z) lnT v = _G/__z (23)

Equations for vertical temperature gradient (21) rewritten as

A_inTvl _z = H_ (241

Here _ are the horizontal accelerations (with a minus sign), namely

G_ = (-Du/Dt+fV+Fl; -Dv/Dt-fu+F 2 (25)

The term H is given by (22) and from (21)

= Cv(gVHW+G_w/_z-_G/_t-w(8_/_z) (26)
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Weclosethis section by noting that considerable simplifications of the

expressions for A, H, and E may be realized if either the approximation (II)'
• % % • . •

is used or pressure coordlnates are utllxzed. In that latter case (Ii)" may be

employed. While we have shown that the above approximations are for tile most

part reasonable, we prefer the use of the more exact forms because the

numerical solution of (23) and (24) does not become easier when (23) is

replaced by (11)' or (11)" and approximate forms for A and H are utilized.
% %

Retrieval of the virtual temperature from the wind and radiances.

Relations (23) and (24) contain information about spatial gradients of the

virtual temperature. From this, as is discussed e.g., in GAL-CHEN (1978), a

second-order three-dimensional Poisson-like partial differential equation for

T may be obtained. To be solved in a limited domain, the boundary
V . .

condxtzons (BC) need to be prescribed. GAL-CHEN (1978) has shown that

Neumann-type boundary conditions (i.e., conditions on the virtual temperature

gradient in the direction of the normal to the boundary) may be obtained from

the observed wind (essentially from the components of _ and _ in the direction

of the normal). Such a procedure appears to be better than using

Dirichlet-type BC which require the specification of the virtual temperature

itself on the boundaries. In the absence of radiosonde information,

Dirichlet-type BC are usually known very crudely (either from radiometric data

or from a guess from a larger scale model).

Regardless of what type of BC are used, the use of (23) and (24) may not

be optimal because it does not utilize the radiances from the infrared and

microwave channels. Also, retrieval techniques based solely on (23) and (24)

tacitly assume that the formulation of the dynamical equation (1)-(7) are

infallible, i.e., that the retrieval errors of the virtual temperature would

be attributed solely to observational uncertainties about the wind.

We shall now proceed to develop a formulation which incorporates the

observed radiances into the retrieval procedure. We start by noting that the

radiative transfer equation may be reduced often to a Fredholm intergral

equation of the first kind (e.g., WESTWATER and STRAND, 1972), namely,

B_(T)K(_,z)dz = I_ (27)

Here, _ is the frequency, B_(T) is the flanck function, K are the weights and

_ are observed radiances. The surface temperature contributions are included

in the r.h.s, of (27). These contributions can be determined from the '_indow

channel" measurements for space-borne radiometers and from the "big bang"

cosmic background of 2.9°K for ground-based observations. For a well mixed

gas, the function K(_,z) is known except perhaps for a small temperature

dependence. Traditional methods of determination of vertical temperature

profile rely on solving (27) for various channels (frequencies) having

different weights K(_,z). Thus, the contributions from different height layers

can be varied and a degree of height resolution can be achieved. Extensive

research (e.g., CHESTERS et al., 1982) have demonstrated the limitations of

such inversion techniques. In essence, the kernel K(v,z) acts as a vertical

smoother (low pass filter). As a result, the retrieved temperature profile has

a poor vertical resolution (at least in the troposphere). However, if (27) is

combined with (23) and (24) the problem of vertical resolution is eliminated.

In essence, the large vertical scales may be determined from (27) and the

smaller vertical scales, which cannot be resolved by (27) would be determined

from (23) and (24).

Before we proceed with further mathematical developments of the idea

outlined above, we note that (27) has been formulated for temperatures while

(23) and (24) are valid for virtual temperature gradients. Furthermore, as has

been noted before, the moisture contributions to the gradient may be
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important.Toexpress(27) in termsof the virtual temperature, observe that a

Taylor expansion of B_(Tv) around T_ taking into account (9) and the

smallness of the virtual temperature correction would result in

B_(T) = B_(T) + (_B_/_T)0.61 qT (28)

Now, the second term in the r.h.s, of (28) while small compared to the first,

may not be neglected if we desire at least + I°K accuracy for temperature

retrievals; nevertheless, we may substitute--the radiometers first guess about

the moisture and temperature in the second term. To justify this approxi-

mation, let us denote by _ () the first guess retrieval errors. We may recall

that _q = + 6 gkg and 6T = + 3°K. We _so know that, T _ 300°K and
(for the l_wer troposphere) q--_ I0 gkg- . Therefore, substituting the

radiometers first guess in the second term of the r.h.s, of (28) would result

in virtual temperature error _T of the order
V

6T v = 0.61 q_T + 061 T_q

Taking into account the order of magnitude of the various terms, the error is

a_ most + I°K. Furthermore, the contribution of this error to the radiances

[I_ in (27)] is further reduced due to the averaging implied. Overall, we may

substitute (28) in (27) approximating the second term in the r.h.s, of (28) by

the radiometers first guess with the net result

co

oB_(Tv)K(v,z) = I_ (29)

where the moisture correction to the radiances I_ have been absorbed in the

term I_.

The general retrieval algorithm may now be formulated as follows: Find

a T such that
V

fff[(gV.+G_/_z)inT -_G/_z] 2 + (A_inTv/3Z-H) 2 = Min (30a)M _ v

subject to the constraint that

co

fob 9(T)K (_,z)dz = (30b)

This is a familiar calculus of variation problem (COURANT and HILBERT, 1953,

Vol. I, pp. 164-274) whose solution will not be discussed here. We note,

however, that (30-a,b) attempts to satisfy the dynamical equations in the least

square sense while enforcing the retrieved virtual temperature to satisfy

everywhere the radiative transfer equation.

A potential weakness of the retrieval algorithm is that the terms A and H
• • . 0_

involves calculating higher order derlvatlve terms in both space and tlme. The

estimate of such terms from the observed wind and its time history may be

"noisy". To alleviate this problem one may use the Kalman filter approach

(GHIL et al., 1980) where observations at more than two (or three) time levels

are used to improve the estimate obtained from the solution of (30-a,b).

Detailed examinations of the terms involved in (30-a,b) reveal that for the

most part only two time levels are required. The calculation of A (equation

26) requires knowledge of _G/_t. Since G is accele=ation, this requires
• "b .

knowledge of the wlnd at three tlme levels. Nevertheless, _/_t would be
dropped out if we utilize pressure coordinates and relation (II)" or use the

approximate form (ii)'. As noted earlier (II)" is exact but the use of pressure

as a vertical coordinate requires some a'priori knowledge of the pressure

distribution.
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INTRODUCTION

EXAMPLES OF MESOSCALE STRUCTURES AND SHORT-TERM WIND

VARIATIONS DETECTED BY VHF DOPPLER RADAR

o. ,. N87-10422
Department of Meteorology

The Pennsylvania State University -J

University Park, PA 16802 _-_ _._

The first of three wind profilers planned for operation in central and

western Pennsylvania began full-time, high-quality operation during July 1985.

It is located about 20 km south-southeast of University Park and operates at 50

MHz. Another 50-MHz radar and a 400-MHz radar are to be installed over the

next few months, to complete a mesoscale triangle with sides of 120-160 km.

During the period since early July, a number of weather systems have

passed over the wind profiler. Those accompanied by thunderstorms caused data

losses either because the Department computer system lost power or because

power went out at the profiler site. A backup power supply and an automatic

re-start program will be added to the profiler system to minimize such future

losses. Data have normally been averaged over a one-hour period, although

there have been some investigations of shorter-period averaging. In each case,

preliminary examinations reveal that the profiler winds are indicative of

meteorological phenomena. The only occasions of bad or missing data are

obtained when airplane noise is occasionally experienced and when the returned

power is nearly at the noise level, at the upper few gates, where a consensus

wind cannot be determined. Winds are being examined in high-resolution (close

range) mode and low-resolution (far range) mode. Range gates are separated by

about 290 m in the former and about 870 m in the latter. For the types of

examples presented in this paper, with emphasis on mesoscale variations,

illustrations below are normally taken from the high-resolution data.

SUMMARY OF ANALYSIS SCHEME DEVELOPMENT

Before the first Penn State profiler began operation, much effort was put

into the development of analysis and display schemes. These were first tested

on data obtained on tape from the Fleming radar of the Wave Propagation

Laboratory. Some of these techniques are illustrated with Penn State data in

the sections that follow. Among the schemes developed are:

- Power spectra displays

- Tabulations of wind components, returned power, consensus statistics

- Displays of u end v component vertical profiles

- Time-height section displays of u, v, velocity vectors, wind speed,

wind direction, returned power

- Time series displays of u, v, wind speed, wind direction at a

selected level

- Tabulations of vertical wind shear and component normal to the

shear vector

- Tabulations and profile displays of temperature gradient, temperature

advection, stability gradient, and stability advection

- Hodograph displays

In the temperature gradient, temperature advection, stability gradient,

and stability advection calculations, it has been assumed, as a first ap-

proximation, that the vertical shear of the wind is in geostrophic (i.e.,

thermal wind) balance, even though the individual winds themselves may have an

ageostrophic component. The idea of computing the shear vector at various
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levels and the wind components normal to these shear vectors is that (I) many

a_ospheric banded features are oriented along the shear vector and (2) these

features are steered _ the normal component of the mean wind in the layer.

. ,.2 ',
CONFLUENCE ZONE _ONG "WEST SIDE OF WARM CONVEYOR BELT

On 27 August 1985, at about 1400 GMT, a sharp wind shift occurred at the

8-9 km levels (Figure I). The wind shift was accompanied by the passage of a

narrow band of cirrus clouds that marked the western edge of a warm cor_eyor

belt which was only partially filled with clouds. There was also a marked

decrease in wind speed at this time. While satellite imagery showed a near

discontinuity at this time, conventional upper-air analyses (Figure 2) did not

indicate that a wind shift would be expected over Pennsylvania. In fact, a

much more marked wind shift was evident across central Ohio. Knowledge of the

profiler wind would have allowed for a better interpretation of the hints of a

trough axis near Buffalo, New York, by allowing for a diagnosis that the main

part of the trough was negatively tilted (from near Buffalo to central

Pennsylvania) and was "lifting out" rapidly toward the northeast, leaving

behind the southern, positively tilted portion of the trough from central Ohio

to Tennessee and Louisiana. This shearing of the trough became apparent on the

next upper-air charts 12 hours later.

TAIL OF COMMA CLOUD

The extreme southern end of the tail of a comma cloud pattern passed over

the proffer at about i000 GMT on 19 August 1985. Its approach was accompanied

by a weak trough (backing) in the wind field, and a sudden clockwise shift

(veering) of the wind at its rear edge (Figure 3). The comma was accompanied

by a wind speed maximum. The data suggest that the trough line was nearly

vertical from surface to upper troposphere.

10 I I l I I I I I I i I I [ I I I I I I I I i I

kn _ • 12 _,-- time 0

_'_'fi4"IW--" _" _.,D/--., .# ÷_,,., +-.,., _ v

L_-_ /_...#_ _., _,..,;, j .,,, .,,, .,,. ..,, ..,, .i _,, j j ./i_ ./

O] I I I I I I I I I I I I I I I I I I I I I I I/

Figure I. Time-height section of hourly wind vectors (one barb equals

5 m/s) and isopleths of wind direction from 1800 GMT on 26 August

1985 (right) to 1800 GMT on 27 August 1985 (left). Dots indicate

cloud band.
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Figure 2. Upper-air chart of the 400 m surface at 1200 GMT on

27 August 1985. Winds are in knots, and a flag is approxi-

mately 5 m/s.
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Figure 3. Isopleths of wind direction from 0000 GMT on 19 August

1985 (right) and hourly to 0000 GMT on 20 August 1985. Trough

line is shown by dots, and center of comma cloud tail by arrow.
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MINOR TROUGH AND CLOUD BAND

During the morning hours of 19 September 1985 an unexpected thin patch of

clouds drifted across central Pennsylvania. These accompanied a rather

dramatic pattern of wind shifts shown in Figure 4. The clouds occurred near

the axis of e minor short wave trough at the 3-5 km levels from about 0500-

1300 GMT, marked by a shift of the winds from N or h_ to almost westerly before

veering back to north. There was no reason to expect this trough, based upon

the previous 0000 GMT upper-air charts (Figure 5).

Some other types of displays are illustrated in Figures 6-9. Figure 6 is

a vertical profile of geostrophic temperature advection at 0600 GMT on 19

September. Note that veering and backing of the winds indicate warm/cold

edvection by the geostrophic wind. Figure 7 is a hodograph of the

low-resolution (far range) winds at this time. Figure 8 shows an overlay of

three vertical profiles of the v component of the wind at 0000, 0600, and 1200

GMT on 19 September 1985. Figure 9 is a time series of the u component of the

winds at 5.12 km MSL from 0000 to 1800 GMT on 19 September 1985. Each of these

displays reveals that the temporal end spatial variations of the wind are rather

systematic and contain little apparent noise.

JET STREAM AND WARM CONVEYOR BELT

The rear edge of a warm conveyor belt cloud pattern passed over the

profiler at about 1200 GMT on 20 August 1985. Wind speeds were high within the

conveyor belt (Figure I0), in excess of 25 m/s at the 8-kin level, and decreased

rapidly as the west edge of the cloud pattern passed. Wind directions also

began to veer abruptly aloft (Figure II) as the edge of the clouds passed.

300

29O

24O

Figure 4. Time-height section of hourly wind vectors and isopleths

of wind direction from 1900 GMT on 18 September 1985 (right) to

2900 GMT on 19 September 1985. Vertical scale is 0-I0 km at 1-km

intervals.
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Figure 5. Upper-air chart of the 500-rob surface at 0000 GMT on

19 September 1985.
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Vertical profile of _eostrophic temperature advection

at 0600 GMT on 19 September 1985.
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Figure 7. Hodograph of the low-resolution (far range) winds

at 0600 GMT on 19 September 1985.
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Figure 8. Sequence of vertical profiles of the v (north-

south) component of the wind at 0000, 0600, and 1200

GMT on 19 September 1985.
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Figure 9. Time series of the u (east-west) component of the

wind at 5.12 km MSL from 0000 GMT (right) to 1800 GMT

(left) on 19 September 1985.
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Figure i0. Time-height section of the wind speed (m/s) from

0000 GMT 20 August 1985 (right) to 0000 GMT 21 August 1985
(left).
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Figure 11° T4_e-height section of the wind direction from

0000 G_ 20 August to 0000 G_ 21 A_ust 1985.

COUPLED UPPER AND LOWER JET STREAK CIRCULATIONS

The exit region of an upper-tropospheric jet streak began to affect the

profiler about 1100 GMT on 1 September and apparently had maximum impact at low

elevations at about 1600 GMT. While there was little speed increase at the

2.5-kin level, there was e marked backing of the flow to a direction from the

southwest (Figure 12), becoming almost normal to the prevailing flow in this

region to the west side of the trough axis. There had also been a previous jet

streak, which passed over the profiler at about 0600 GMT on 1 September (Figure

13). The flank of the secondary streak passed the profiler at about 1900 GMT.

The response of low-level winds to upper-tropospheric jet streaks has been

discussed by UCCELLINI and JOHNSON (1979). Briefly, at low levels beneath the

exit region of an upper-tropospheric jet streak there is an indirect vertical

circulation and a transverse flow toward the cold side of the jet. In this

case, the transverse flow was from the southwest since the jet stream was from

the northwest.

U_XPECTEDLY SHARP RIDGE AXIS

Figure 14 shows a rather rapidly evolving pattern of wind directions, even

if the noise in the upper left is ignored. The winds progressively evolved

from easterly to southeasterly at elevations below about 5 km MSL. At about

6 km, it can be deduced that the high-pressure center passed just to the north

of the profiler, allowing winds to retain an easterly component throughout the

period and to shift from ENE to ESE (compare to Figure 15, the 500 mb chart).

DIURNAL OSCILLATIONS/TRAVELLING MESOSCALE RIDGES

Pronounced wind variations have been observed during a quiescent period

dominated by a quasi-stationary ridge axis located several hundred kilometers

southwest of the profiler. Without cloud patterns to supply some independent

mesoscale data, interpretation of the variations has been difficult. A good
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Figure 12. Time-height section of wind vector and wind

directions from 0000 GMT on i September to II00 GMT on

2 September 1985.
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Figure 13. Far-ranEe (low resolution) time-height section of

wind speed from 0000 GMT on 1 September 1985 (right) to

0000 GMT on 2 September (left).
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Figure 14. Time-height section of wind vectors and wind

direction from 0000 GMT on 20 September 1985 to 0000

GMT on 21 September 1985.
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Figure 15. Upper-air chart of the 500-rob surface at 1200 GMT

on 20 September 1985. Notice the high pressure system

centered near Pittsburgh, PA.
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exampleis the north/west/northpatternat about3 kmon Figure 16, with

apparent period of about 18-19 hours. This is approximately the period of an

inertial oscillation at the latitude of the profiler (about 41.5°N). It is, of

course, well known that there is an oscillation of the wind induced by the

diurnal mixing cycle (BLACKADAR, 1957), wherein winds that are subgeostrophic

at the top of the boundary layer in late afternoon undergo an inertial

oscillation during the nighttime and become supergeostrophic at some time

before sunrise. In the case of Figure 16, the geostrophic winds were from the

northwest, such that the wind oscillation shown appears to have the proper

phase. However, there may also have been some substructure within the ridge,

with short-wavelength ridges or lobes travelling around its periphery. As

these approached, winds would become more northerly, and then become more

westerly as the mesoscale disturbance passed to the south of the profiler.

Upper-air observations were inadequate to definitively resolve these features,

if they did exist.

HIGH-TEMPORAL-RESOLUTION DATA

Figures 17 and 18 show about one hour of profiler winds comprised of about

2-minute averages. There is obvious noise in the 3 upper gates and the

contamination from aircraft near 6 km in the sixth profile. Same eddy-like

variations can be seen in the lowest three gates during the early minutes.

Otherwise, the 2-minute-sampled winds are quite steady. These winds were

measured during a meteorologically quiescent period, which suggests that (1)

random fluctuations may not pose a problem for short-term measurements, and (2)

the potential exists for accurate measurement of short-term variations when

mesoscale features are present. Research on this topic and on the application

of VHF Doppler radar for nowcasting and very-short-term forecasting will
continue.
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Figure 16. Time-height section showing oscillations in the

wind direction during the period from 0800 GMT on 7

September to 0800 GMT on 8 September 1985.
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Figure 17. Time-heiEht section of winds at about 2-minute

intervals beginning about 0000 GMT on 12 September 1985.
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Figure 18. Time-height section of wind direction at 2-minute

intervals beginning about 0000 GMT on 12 September 1985.
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During May and June of 1985, the Oklahoma-Kansas Preliminary Regional

Experiment for STORM-Cemtral (OK PRE-STORM) was carried out, with the major

objectives of learning more about mesoscale convective systems (MCSs) and

gaining experience in the use of new sensing systems and measurement strategies

that will improve the design of STORM-Central. _"nree 50-_z wind profilers

were deployed in a triangular array _rith sides about 275 km (Figure 1). There

will be great interest in learning whatever we can from the profiler data from

these sites, especially in relation to mesoscale weather systems. It is far

too soon to report any results of this effort, for it has barely begun. _e

purpose of this paper is to show some examples of the data, some of the

surrounding "conventional" data, to discuss some of the issues important to

meteorologists in evaluating the contribution of the profiler data.

We concentrate on the case of 10-11 June 1985, featuring a major squall

line system which crossed the dense observing network from northwest to

southeast, passing the Liberal site about 2230 GMT/10 June, the McPherson site

about 0100 GMT/II June, and Wichita about 0300 GMT/I1 June. Radar and satellite

data show that the system was growing rapidly when it passed Liberal, and was

large and mature when it passed through McPherson and Wichita. Figure 2 gives

the radar depiction of the system during this stage, with the McPherson site in

the intense convective echoes near the leading edge at 01 GMT and in the

stratiform precipitation at 03 GMT.

Figure 3 (Liberal) and Figure 4 (McPherson) show the profiler wind data

for a 9-hour period encompassing the squall line passage at each site. (Ignore

obvious noisy data, which is not the subject of discussion herel the two

systems have different antenna systems and sizes, different processing

algorithms, and were passed by different parts of the storm system.) Both

systems were unable to function during the 60-90 minutes of most intense

thunderstorms. However, both clearly captured the major wind features ahead of

and, more interestingly, in the mesoscale stratiform precipitation region which

forms the rear half of the system. These include the northerly winds at low

levels, the increased southerly component in the upper troposphere (mostly

obscured by noise at McPherson) and a midlevel "jet" of inflow from the rear,

sloping downward from northeast to southeast (upward with time). The same

features are observed at nearby radiosonde sites, with Wichita chosen for

illustration (Figure 5). It is appropriate to compare times at Wichita with

those 2 hours earlier at McPherson to account for the later passage over
Wichita.

The increased time resolution of the profiler data is extremely important

in mesoscale research. One well-known problem is the difficulty of covering

the lowest kilometer -- in this case as in others, the wind structure here is

*The National Center for Atmospheric Research is supported by the National
Science Foundation.
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crucial to understanding the system. It is encouraging that the profiler

appears to be definin 8 the midlevel jet in a disturbed resion; it will be

important to establish reliability of the profiler data in the anvil outflow

re_ion nearer the tropopause, in view of the large area covered.
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Figure 3. Time-height cross section of the Liberal wind profiler

data. Each full barb is 5 m s-l, each half-barb 2.5 m s-l,

and each flag 25 m s-1.
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Figure 4. Time-height cross section of the Wichita radiosonde wind

data. Lesend for winds as in Fisure 3.
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1.2.3 OBSERVATIONS OF MESOSCALE VERTICAL

AROUND FRONTAL ZONES
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Clemson, South Carolina 29631 .....

J. Rottger*

Arecibo Observatory

Box 995
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INTRODUCTION

We have analyzed vertical velocity and reflectivity data obtained with a

VHF Doppler radar over a 15-day period in October and November of 1981 (DENNIS,

1985). Standard radiosonde data and surface observations have been used to

locate two occluded fronts, two warm fronts, and a cold front that passed the

radar site. These fronts are also evident in the radar reflectivity data.

Most studies of the vertical circulation patterns associated with

meeoscale systems have used precipitation and cloud formations as tracers.

Unlike other observational techniques, the VHF radar permits the continuous

measurement of the three-dimensional air velocity vector in time and height

from a fixed location. With the beam in a vertically pointing position,

signals are scattered from turbulent variations in the refractive index with

half the scale of the radar wavelength and by regions with sudden changes in

the refractive index associated with horizontally stratified layers.

Generally, the strongest echoes occur at the maximum in the vertical gradient

of refractivity, usually at the base of a temperature inversion, such as the

tropopause.

VHF radars can also be used to locate atmospheric fronts, which are

characterized by static stability, large horizontal temperature gradients,

large vorticities, and vertical wind shears (LARSEN and ROTTGER, 1982, 1983,

1984). Since these radars are not restricted to clear-air observations, they

can provide the velocity field data needed to study wave motions associated

with fronts and to compare the actual vertical circulation to theoretical

predictions. These radars can provide data on the horizontal and vertical

components of the wind with vertical resolution of approximately 150 to 300

meters and temporal resolution of about 1 minute.

DESCRIPTION OF THE DATA SET

The SOUSY VHF radar is located near Bad Lsuterberg, West Germany, and is

operated by the Max-Planck Institute. It is a pulsed coherent radar operating

at a wavelength of 5.6 meters. From 1600 GMT on October 28 through 1400 GMT on

November 12, 1981, the radar wind profiler was operated in the spaced antenna

mode using 196 Yagi antennas for transmission and three arrays of 32 Yagi

antennas for each reception. The spaced antenna technique uses vertically

pointing transmitters and thus detects echoes with a higher signal-to-noise

ratio than could be achieved with 0ff-vertical beans. The applied average

transmitter power for this experiment was 20 kW with a height resolution of

*On leave from Max-Planck-Institut fur Aeroncmie, Katlenburg-Lindau, West

Germany.
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150 to 300 m end an effective antenna aperture of 2500 mB2. The height range

is limited to 3.6 to 21.67 km due to the signal-to-noise levels. Approximately

one minute is required for each profile, but the radar was not run continuously

in order to reduce the amount of raw data. Throughout the period, data were

_ak_n fF_ a_ leas_ 12_i_es on the hour, but there were also two periods of

continuous data taken so _at five 12-minute averages per hour were available

for a detai_ed view of approximately 30 hours beginning at 1600 GMT on October

28 and of approximately 24 hours beginning at 1500 GMT on Nov_nber 4.

POTENTIAL T_PERATURES AND RADAR REFLECTIVITIES

PotenLial temperatures and reflectivities are shown in Figures 1 end 2

with contours at 5-K and 3-dB intervals, respectively. The tropopause heights

recorded by the radiosonde, represented as solid dots in each graph, agree with

the levels indicated by the grouping of the potential temperature contours and

by the higher reflectivity levels in these areas.

Frontal systems cause a packing in the potential temperature contour

lines. The contours sloping downward from left to right represent warm fronts

with upper-level effects occurring first while those sloping upward represent

cold fronts. The use of radiosonde potential temperature contours only give

the approximate location of frontal zones due to the poor time resolution.

There are many unexplained deviations in the contours that may be the result of

changes in the slopes of fronts or perhaps small fronts not established in the

data analysis. By comparing the potential temperature contour groupings to

breaks in the reflectivity contours, the location of frontal zones are more

accurately established. The maj or disturbances include an occlusion, a warm

front followed by a cold front, on October 29 and another occlusion on October

31; a warm front that arrives at the surface on November 3; a surface cold

frontal passage on November 4; and a warm front that passed the surface on

November 12. There are also two upper-level fronts that cause distinctive

breaks in the reflectivity contours. The warm front on November 7 and 8
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Figure 1. Potential temperature (K) with contours as indicated.
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stretches from I0 km down to 6 km, and the cold front on November ii and 12

reaches up from 5 km to 8 km. These fronts have been sketched as dotted lines

in Figure 2.

Beginning around October 30, the tropopause began to rise rapidly. There

may even have been a separation of the lower tropopause as seen in the

splitting of the potential temperature contour lines. The disturbance near the

tropopause was present through November 4 and peaked around November 2. This

phenomenon has all the characteristics of a tropopause fold. although the

potential vorticity cross section will have to be calculated for confirmation.

VERTICAL VELOCITIES

The vertical velocities measured by the radar are contoured at 2-cm/s

intervals with upward velocities graphed in Figure 3 and downward velocities

graphed in Figure 4. The established fronts are dr_n as dotted lines and the

radiosonde tropopause levels are shown as solid dots. The most striking

feature of these two graphs is the vertical stratification of the vertical

velocities. Some regions are dominated by vertically stratified waves of

upward velocities reaching to the top of the tropopause, while similar waves of

downward velocity dominate other regions.

OCCLUSION

The occlusion on October 31 partially overlaps the less occluded front of

October 29 and may cause variations in the normal occluded circulation

patterns. There are waves of strong downward flow in the pockets between the

warm and cold fronts, where a zone of rising air was expected to be found. The

downward flow becomes more intense at lower levels in the occlusions with

velocities reaching 26 cm/s at 3.6 km on October 29 and 40 cm/s at 4 km on

October 31. A column of strong subsidence reaches 26 cm/s on October 30

between the two occluded fronts, which is expected of air beneath a cold

frontal zone and beneath an approaching warm frontal zone.
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The occluded front is characterized by banded regions of subsiding air.

There are several areas with strong downward velocity throughout the entire

pocket of the occluded front at all levels of the troposphere. Two of these

columns of air begin in the stratosphere around 1400 GMT and 1800 GMT on

October 29. There are also cells of rising air alternating with cells of

subsidence above the cold front. These cells frequently contain velocities up

to 26 cm/s. The dominating downward flc_ in the occluded pocket, especially

above the cold front, is an unexpected feature but could be caused by the

complex circulation around the occluded frontal zone. The frequent intrusions

of air across the tropopause is also an unexpected feature of the occlusion.

TROPOPAUSE FOLD

On November 2, the upward thrust of a column of air with wind speeds up to

16 cm/s seems to be the source of the tropopause rise. This region of rising

air may be caused by the associated warm front. Immediately following this

column of rising air is a strong downward flow of air which begins around 12 Ion

just behind the warm front. This stratified region continues downward across

the frontal zone where vertical wind speeds intensify up to 30 cm/s. The warm

frontal zone may be the almost vertical boundary between the stratified

columns of rising and subsiding air, but, when drawn in Figures 3 and 4 as

derived from the reflectivity and potential temperature contours, the frontal

zone appears to be located in the column of rising air at upper levels.

COLD FRONT

The cold front on November 4 and November 5 causes four or five columns of

rising air, where the last two columns may be associated with the large warm

front beginning on November 9 or with the upper-level front beginning on

November 7. The first column arrives eight or nine hours before the cold front

arrives at the surface, extends about ten or eleven hours past the surface

arrival, and has upward velocities up to 12 cm/s. There are also smaller

columns of rising and subsiding air on both sides of the major column.

The second column of air has stronger velocities than the first column and

begins about 23 hours after the cold front begins at the surface. This column

is beneath the cold frontal zone and has strong upward velocities at lower

levels up to 20 cm/s and upper-level velocities of only 15 cm/s.

The third column begins about five hours after the second column ends and

almost 40 hours after the surface frontal passage. Similar to the second

column, the highest velocities are in the lower regions of the column.

Velocities up to 20 cm/s are found in the lower levels compared to I0 cm/s in

the upper levels. The upper-level warm front on November 7 extends into this

column of air at about 9 km and thus influences the associated velocity

patterns.

The fourth column of air begins about eight hours after the previous

column ends and almost 70 hours after the initial cold front arrives at the

surface. Even though the positive velocities in this region only approach 8

cm/s, the column stretches through the tropopause and into the stratosphere.

The potential temperature contours in Figure 1 do not show any fluctuations

caused by the passage of air through this region. The upper-level warm front

extends through this column of air and may be the major influence in the

vertic_l valoci'ies in this region.

There are small columns of subsiding air between these columns of rising

air, but none of these regions have the spatial extent of the first four

columns. The downward velocities occur above and below the cold front and have

velocities up to 30 cm/s in a region beneath 4 km on November 7. Unfortu-
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nately, there are only 25 hours of continuous data associated with this frontal

passage. Only the first column of rising air can be examined with these data.

"RAINBAND S"

With 12-minute velocity averages, the cold front on November 4 and

November 5 can also be examined in more detail. The velocity data from 1500

GMT on November 4 through 1536 GMT on November 5 are graphed in Figures 5 and 6

with upward velocities and downward velocities, respectively, contoured at 2

cm/s intervals. The location of the cold front is sketched in the contours.

This view of the cold front covers only the first of the five major columns of

upward velocity pictured in Figure 3. The most striking feature is the banded

structure of upward velocity that appears as only one column in the hourly

data. The columns seem to decrease in height as the front moves through the

area, but it is not clear how far beneath the front these columns extend.

Areas of downward velocity are between these columns, while other downward

bands extend across the front or are located beneath the front. One band of

upward velocity around 1000 GMT on November 5 rises through the tropopause.

Especially noticeable is the area of rising air towards the end of the data

set. One region of rising air has velocities up to 35 cm/s centered around an

intense cell near 10 km. Another cell of intense rising air lies below the

cold front and possibly stretches across the front.

The detailed view of the cold frontal system in Figures 5 and 6 shows that

even the large columns of rising air are composed of smaller, stratified

regions. The vertical velocity structure around the cold front supports the

rainband model shown in Figure 7 by HOBBS et al. (1980). The banded structure

in Figure 3 contains a column in the warm region and columns straddling the

frontal zone, as does the rainband model, but the horizontal dimensions of the

columns in Figure 3 are much larger than those of the rainband model. The

entire horizontal scale of the rainband structure is only about 175 kin,

compared to 300 km and 200 km for the first two columns of rising air for the
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Figure 5. Upward velocity (cm/s) for the cold front with 12-

minute profiles and with contours as indicated.
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analyzed cold front in Figure 3. The first column is in the warm section of

the cold front in Figure 3, and stretches across the frontal zone. Since this

column is also stratified into smaller columns, as seen in Figure 5, the

rainbands in Figure 7 are probably associated with this region of the cold

front.

The simulation of a cold front by HSIE et al. (1984) shown in Figure 8 has

a vertically banded structure 600 km in front of the surface cold frontal zone

and vertical bands above the frontal zonem but there are no bands stretching

across the frontal zone or located beneath the zone. The vertical columns in

Figures 3, 4, 5, and 6 are located in front of the surface frontal zone and

behind the zone. The banded structure in Figure 8 is supported by the

experimental results, but the model fails to simulate bands beneath and behind

the frontal zone.
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Figure 8. Cross section of the moist

model of a cold front at 78 h.

WARM FRONT

The large warm front extending over November 9, 10, II, and 12 has similar

features to the other warm fronts studied in this data set. A column of rising

air on November 11 is directly over a strong flow of downward velocities. The

upward velocities approach 14 cm/s, but the downward velocities reach 30 cm/s.

There are large areas of weak subsidence above the front, but there is a strong

column of downward velocities on November 12. The upper-level cold front of

November Ii also influences the velocity structure in this region, but it is

not possible to determine the extent of this influence.

CONCLUSION

Vertical velocity data and reflectivity data from the SOUSY VHF radar were

analyzed for a 15-day period in October and November of 1981. The analysis

supports the use of the VHF radar as an effective tool for locating the

tropopause and upper-level fronts and provides a detailed observation of the

vertical circulation around frontal systems.

The tropopause levels recorded by the radiosonde and those calculated from

the potential temperature contours and temperature contours correspond well to

the levels determined from the radar reflectivities. Likewise, the frontal



systems,establishedfromthe potential temperature contours, the weather maps,

and the temperature, pressure, and refractivity data, are identifiable in the

reflectivity data as well. These results support the findings of LARSEN and

ROTTGER (1982, 1983, 1984) on the effectiveness of the VHF radar. The analysis

of the vertical velocity data reveals the stratification of rising and sub-

siding air columns around frontal zones. In regions of strong velocity the

stratification is intensified.

Circulation patterns around the warm fronts show rising air, especially at

the upper levels of the frontal zones. There is some stratification around

warm fronts, but the circulation is not as strong as the velocity near the cold

fronts. The overall patterns around the cold and the warm fronts were expected

results. The vertical circulation associated with the two occlusions, however,

contains much stronger velocities and a larger area of subsidence in the

pockets than was expected. These results indicate that occluded fronts may

play a more important role in mesoscale dynamics than was previously believed.

The vertical circulation pattern near the tropopause folding event

consists of two vertically stratified columns of air moving in opposite

directions stretching below it. There is also a region of upward velocity

above the event that extends into the stratosphere. The tropopause is lifted

nearly 3 km at one point during the event and is effectively displaced for over

four days. Analysis of the associated potential vorticity is necessary to

determine whether a tropopause folding event actually occurred.
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I. INTRODUCTION

The use of wind profilers for measuring vertical velocities in the

troposphere and lower stratosphere is potentially of great interest for

verification of forecasts, diagnosis of mesoscale circulations, and studies of

wave motions. The studies of profiler vertical velocities to date (ECKLUND et

al., 1981; LARSEN and ROTTGER, 1982; NASTROM et al., 1985; DENNIS et al., 1986)

have shown that the observed patterns of ascent and subsidence are reasonable

when compared to the synoptic conditions. However, difficulties arise when a

direct verification of the profiler vertical winds is sought. Since no other

technique can measure the vertical velocities over the same height range and

with the same claimed accuracy as the profilers, direct comparisons are

impossible. The only alternative is to compare the measurements to analyzed

vertical velocity fields.

In this paper, we will compare vertical velocity measurements made with

the SOUSY VHF radar over a period of Ii days at the beginning of November 1981

to the analyzed vertical velocities produced by the European Centre for

Medium-range Weather Forecasting (EC_4F) model for grid points near the radar

site.

2. PREVIOUS STUDIES

A number of studies have compared the overall characteristics of the

measured vertical velocity fields to the synoptic conditions (e.g., ECKLUND et

al., 1981, 1982; LARS_ and ROTTGER, 1982; NASTROM et al., 1985; DENNIS et al.,

1986) and have found the expected trends. Thus, upward velocities were

generally on the warm side of the front and downward velocities on the cold

side. Also, the variability in the vertical velocities was found to increase

in connection with flow over nearby mountains, as opposed to prevailing winds

coming from the direction of flatter terrain.

Only one study that we are aware of has compared the measured vertical

velocities to the analyzed vertical velocity fields (NASTROM et al., 1985).

NASTROM et al. (1985) used measurements made with the VHF radar located at

Platteville, Colorado, and a temporary installation of three VHF radars located

in the Rhone Delta in connection with ALPEX. Radiosonde data were the basic

input to the analysis scheme which used the quasi-geostrophic omega equation,

the kinematic method, and the adiabatic method to calculate the vertical

velocity expected at the radar sites. The conclusion of the study was that the

measured velocities were generally many times larger, and sometimes an order of

magnitude larger, than the calculated values, although there was general

agreement between the measured and calculated directions. Perhaps the

30n leave from the Max-Planck-lnstitut fur Aeronomie, Katlenburg-Lindau,

West Germany.



45

difference in the magnitudes is not surprising because the radar measurements

are most likely associated with a smaller spatial scale than the vertical

velocity analysis. However, we will show that better agreement is possible

when a more sophisticated analysis scheme is used.

3. DESCRIPTION OF THE DATA SET

The radar data consists of vertical velocity measurements made with the

SOUSY VHF radar located in the Harz Mountains near Bad Lauterberg, West

Germany. Data used in the comparison cover the period from November I-II,

1981, and have a height resolution of 300 m above 3 kin. The radar was operated

for 12 min beginning on the hour. A vertical wind profile was produced every

minute while the radar was operating, and 12 values were averaged to produce an

hourly wind profile. Only a few hours of data were missing during the ll-day

period.

The ECMWF data consists of analyzed vertical velocities at the 6 grid

points nearest the radar site. The model analysis uses the 12-hour model

integration as the initial guess and updates the analyzed field once every 6

hours based on the standard meteorological observations, including radiosonde

data, pilot reports, satellite cloud motions, etc. (DELL'OSSO, 1984). The

analysis scheme is a normal mode initialization procedure which includes the

divergent motions associated with those gravity wave modes allowed by the

dynamics of the model. Vertical velocity data were available at all the

standard levels up to 70 rob.

4. MODEL AND RADAR COMPARISON

The synoptic situation during the ll-day period of the comparison has been

described in much greater detail by DENNIS et al. (1986) in this volume.

However, Figure 1 shows the radar reflectivities for the period with the

location of the frontal zones indicated by dashed lines. The location of the

fronts was determined by analyzing a combination of the surface and upper air

maps, the potential temperature cross sections, and the radar reflectivities.

Figure 2 shows the comparison of the radar vertical velocities and the

analyzed vertical velocities at nine standard levels from 700 to 70 rob. The

radar data are the barbed wire end the model analysis is indicated by the solid

line. The '_nourly" radar data were averaged over a period from three hours

before to three hours after the model analysis time in order to decrease the

smaller time scale variations in the radar data.

The comparison shows that the emplitude of the radar and model velocities

are close in magnitude. The analysis used here produced vertical velocities 3

or 4 times larger than the velocities produced in the analysis used by NASTROM

et al. (1985). The overall trends in both sets of velocities are the same, but

there are short periods when the variability is larger and there are more

significant discrepancies. A comparison between Figures 1 and 2 shows that

periods when the disagreement is most pronounced are associated with times of

frontal passages. Finally, the variance of the vertical velocities can be seen

by inspection to decrease in both the radar and model data above the tropo-

pause.

5. CONCLUSION

Our comparison of analyzed model vertical velocities and vertical

velocities measured with a VHF wind profiler have shown good agreement in both

the overall magnitude and general direction. The most prominent discrepancies

occur at times of frontal passages. An earlier study by NASTROM et al. (1985)

which used a cruder analysis scheme did not find such good agreement with
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respect to the amplitudes. The implication is that the more sophisticated

normal mode analysis used by ECI_4F preserves more of the divergence in the

analyzed fields and this leads to an improved estimate of the vertical

velocities.
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INTRODUCTION / k "_ /., :_ _ / _'_

Although MST radars make it possible to study the dynamics of the middle

atmosphere (BALSLEY and GAGE, 1980), simultaneous observations of the

troposphere are also important, since various dynamical processes in the middle

atmosphere originate with meteorological phenomena in that region.

Sensitive VHF Doppler radars have the capability to detect echoes from

precipitation particles as well as refractive index irregularities. We have

used the middle and upper (MU) atmosphere radar at Shigaraki, Japan for

tropospheric observations of precipitating atmosphere (FUKAO et al., 1985a). We

have detected precipitation motions simultaneously with the ambient air motion

(FUEAO et al., 1985b), and shown the capabilities of the MU radar in investi-

gating mesoscale structures of meteorological phenomena such as air and

precipitation motions within a cold frontal system (WAKASUGI et al., 1985a).

More recently, a direct method for deducing the drop size distribution of

precipitation particles was developed using Doppler spectra of the MU radar

(WAKASUGI et al., 1985b). This method is free from errors inherent in con-

ventional measurements using microwave Doppler spectra.

In the present paper, we will discuss the capabilities of the MU radar for

studies of the precipitating atmosphere. Meteorological microwave radar (i.e.,

non-MST radar) data are also utilized for monitoring vertical and horizontal

structures of precipitation.

DOPPLER SPECTRA FROM THE PRECIPITATING ATMOSPHERE

Figure 1 shows typical altitude variations of Doppler spectra obtained in

the vertical direction during periods with and without perceivable precipl-

ration on the surface (FUKAO et al., 1985b). The rainfall rates at Kinose, 6.9

km north of the MU radar, provided by the Japan Meteorological Agency, is 1 and

0 mm h-1 in the respective periods. The rain is considered to be a weak

stratiform type.

Of the two spectral components in Figure l(a), the minor one with large

positive (downward) Doppler shift does not exist while no precipitation is

observed, whereas the maj or one with near zero Doppler shift persistently

appears irrespective of the precipitation.

The vertical speed of the minor component is about 7 ms -1 above 5 km,

while it is less than 2 ms -1 above 6 km. The fairly large change with

altitude near 5-6km is quite certain because the minor component is clearly

separated from the major one below 8.5 km. The minor component merges in the

major one above 9 km. The half-power spectral width varies by more than 3

times in the vicinity of 5-6 km, and is roughly constant elsewhere, i.e., 0.8

and 2.7 ms -1 above and below the melting layer, respectively. These

features, which are consistent with those of precipitation particles observed

with meteorological Doppler radars (DOVIAK and ZRNIC', 1984), indicates that

the minor component of the MU radar echo originates from precipitation

particles, i.e., snowflakes above the melting layer and raindrops below it.
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Figure i. Doppler spectra versus altitude obtained in the vertical

direction. The observational periods are (a) 0845-0851 LT and

(b) 0750-0756 LT on 22 August 1984. The power is in decibels

with an arbitrary reference level. Downward motions are positive

in this figure.

RADAR OBSERVATION OF A COLD FRONT

The three-dimensional motions of both air and precipitation particles can

be deduced when two off-vertical beams are used in addition to the vertical

one. Therefore, a modified VAD technique is used for the present observations

(WAKASUGI et al., 1985a).

The observations were made on 19-20 June 1984, during a period of a cold

front moving southeastward. Figure 1 shows the horizontal radar reflectivity

patterns observed with the Miyama microwave radar (5260 MHz). Several rain-

bands, which moved with the front, were several tans kilometers wide. These

rainbands can be attributed to wide cold-frontal rainbands as described by

HOBBS et al. (1980).

Figure 3 shows a time-altitude section of airflow perpendicular to the

front. The horizontal component is the relative speed of the front which is

assumed to move, on average, at a speed of 5.5 ms-1 toward 150 ° azimuth (see

Figure 2). For the vertical component, the figure shows that upward motions

are predominant during most of the observat/on. A relatively strong updraft is

observed around 17, 21 LT on June 19 before the frontal passage. A deep strong

updraft, associated with the leading edge of the cold front, begins at 03 LT on

June 20 at the lowest level 6f data. The lifted air then ascends and reaches

above an altitude of 10 km at 05 LT. Upward velocities in the region are 2.0

O0-lO LT.20 JUNE ]98q

O0 02 Oq ";

;qo Figure 2.

O _ 2o

06 _ 08_]0 i'j°

Radar reflectivity patterns

with the Miyama radar. The dot is

the location of the MU radar at

Shigaraki. The circle diameter is

400 kin.
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Figure 3. Vertical and transverse airflow relative to a cold front.

Time resolution is ten minutes. The vertical and horizontal

speed scales are indicated in the upper right-hand corner.

ms -I. For the horizontal component, the figure shows that air flows into the

cold front region at low levels both from ahead and behind the front.

DROP SIZE ESTIMATION FROM DOPPLER SPECTRA

Measurements of the size distribution of precipitation are important in

studies of the growth of precipitation and cloud modeling. In this section,

we will show a direct method in deriving parameters of N(D) from the VHF

Doppler radar spectra (WAKASUGI et al., 1985b).

In the presence of the mean (up- or downdraft) velocity w, the Doppler

spectrum S can then be written as So(V) = PiSl(v-w)*S2(v) +

P2S2(v-w) _here upward speeds are positive. PI and P2 are the echo

powers associated with precipitation and refractive index irregularities. The

asterisk denotes the convolution operation between SI and S2. We have

assumed that SI is of Gaussian form, and S2 of exponential arop size

distribution wlth parameter N o and A.

Figure 4 shows examples of the 10-min average Doppler spectra obtained

with the vertical beam during the frontal passage. Although the exponential

function well approximates the size distributions during the observation, least

squares fit errors semetimes decrease when a truncated N(D) was used. Figure 4

also shows the temporal variations of the estimated parameters No, A and the

liquid water content M. Temporal variations are characterized by a sudden

decrease of N and A with the passage of the front at 0400 LT. This cor-
O

responds to narrow size distribution of particles changing into much broader

distribution. However, the Doppler spectra of the precipitation before the

passage is wider than that observed after the passage. This is attributed to

the broadening due to turbulence and confirms that the information of spectral

broadening of the air component is essential to estimate precipitation particle

parameters accurately (HAUSER and AMAYENC, 1981).
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RADAR CALIBRATION USING PRECIPITATION ECHO

Finally, we will proceed to the calibration of radar sensitivity. A

direct calibration of the HST-type radars is difficult because the large

aperture antenna of MST radars can only he pointed to a limited number of

directions near the zenith. For the present observation, we have used the

radar reflectivity factor Z obtained by the Miyama meteorological radar to

calibrate the MU radar sensitivity.

The MU radar reflectivity factor is first calculated with an unknown

constant which is proportional to the sensitivity, and then, this constant is

determined by equalizing the two reflectivity factors. This method can be used

for the calibration of other HST radars especially when the microwave radar is

reliably calibrated, and both radars illuminate the same precipitating volume.

However, the resolution volume of the Miyama radar is about 500 times larger

than that of the MU radar over Shigaraki. Therefore, we conclude that the

accuracy is expected to within 5 decibels for our case. The MU radar reflec-

tivity factor is also estimated from the signal-to-noise ratio of the precipi-

tation component following the procedure proposed by VANZANDT et al. (1978).

The estimates generally coincide with that of the Miyema radar.

REFER_ CE S

Balsley, B. B., and K. S. Gage (1980), The HST radar technique: Potential for

middle atmospheric studies, Pure AppI. Geophys., 118, 452-493.

Doviak, R. J., and D. S. Zrnic' (1984), Doppler Radar and Weather Observa-

tions, 458 pp, Academic Press, New York.

Fukao, S., K. Wakasugi, T. Sato, T. Tsuda, I. Kimura, N. Takeuchi, M. Matsuo,

and S. Kato (1985a), Simultaneous observation of precipitating atmosphere

by VHF hand and C/Ku band radars, Radio Sci., 20, 622-630.

Fukao, S., K. Wakasugi, T. Sato, S. Morimoto, T. Tsuda, I. Hirota, I. Kimura,

and S. Kato (1985h), Direct measurement of air and precipitation particle

motion by VHF Doppler radar, Nature, in press.

Hauser, D., and P. Amayenc (1981_, A new method for deducing hydrometeor-size

distribution and vertical air motions from Doppler radar measurements at

vertical incidence, J. AppI. Meteorol., 20, 547-555.

Hobbs, P. V., T. J. Matejka, P. H. Herzegh, J. D. Locatelli, and R. A. Houze,

Jr. (1980), The mesoscale and microscale structure and organization of

clouds and precipitation in midlatitude cyclones. I: A case study of a cold

front, J. Atmos. Sci., 37, 568-596.



52

VanZandt, T. E., J. L. Green, K. S. Gage, and W. L. Clark (1978). Vertical

profiles of refractivity turbulence structure constant: Comparison of

observations by the Sunset radar with a new theoretical model, Radio

Sci., 13, 819-829.

Wakasugi, K., S. Fukao, S. Kato, A. Mizutani, and M. Matsuo (1985a), Air and

precipitation particle motions within a cold front measured by the MU VHF

radar, Radio Sci., 20, 1233-1240.

Wakasugi, K., A. Mizutani, M. Matsuo, S. Fukao, and S. Kato (1985b), Drop-size

distribution and vertical air velocities directly derived from VHF Doppler

radar spectra, in preparation.



1.3.1
N87-1042 

THE REAL-TIm USE OF WIND PROFILERS IN NOWCASTING

Tracy Lorraine Smith and Thomas W. Schlatter

ERL/PROFS, National Oceanic and Atmospheric Administration

Boulder, CO 80303 _ _

I. INTRODUCTION _

The Program for Regional Observing and Forecasting Services (PROPS) has

been using wind profile data in experimental forecast applications for over two

years, mostly in the form of real-time color displays on the PROPS forecast

workstation. The most ambitious test of the workstation to date, the 1985

PROPS Real-Time Experiment (RT-85), ran from 15 May-23 August, 1985. This

paper describes the use of wind profiler products during this and previous

experiments.

Data from the experimental profiler network in Colorado (Figure 1) and

from the PRE-STORM profiler in Oklahoma reach PROFS via ERL's Wave Propagation

Laboratory, which operates the network. The data are in the form of hourly

averages. Arriving data frequently contain errors whose origins range from

interference by aircraft in the beams to highway truck traffic. Most of the

irregularities are apparent through visual inspection of profiler wind

observations plotted on a time-height cross section, but this method of quality

control is inadequate if the intended uses of the data involve numerical

calculations.

With the advent of the STORM program and plans for the Profiler Hub (a

facility for collection, quality control, and archival of all profiler data),

PROPS has been assigned responsibility for developing automated quality control

procedures for profiler wind observations. At present, the quality control is

rudimentary, including only a check for excessive vertical shear. The vertical

check is limited in that it can recognize only two consecutive bad data points.

Because as many as eight or ten vertically adjacent profiler wind observations

have been in error in some cases, a more stringent quality control is needed.

PROFS is refining the vertical quality control procedures and adding tests for

temporal and horizontal consistency.

II. PROFILER DATA ON THE PROPS WORKSTATION

Several products on the PROPS forecast workstation utilize profiler data.

Most popular with the forecasters is the time-height cross section of wind

observations from a particular profiler site. This 12-hour time series has

time increasing to the left to allow spatial interpretation of the data through

the principle of time-space conversion. Different modes of operation

(different pulse lengths and pulse repetition intervals) are color-coded on the

screen. Longer pulses at longer intervals allow probing higher in the

atmosphere, but at decreased vertical resolution. The utility of this display

during a PROFS' Spring 1984 forecasting exercise has been discussed by GAGE and

SCHLATTER (1984). In particular, with the increased spatial and temporal

resolution of tropospheric data over Colorado, forecasters became adept at

tracking short waves moving across the state and in detecting short-term

changes in their amplitude, including the formation of closed circulations.

Another display, added during RT-85, is a quasi-three-dimensional

depiction of wind profiles from all four Colorado sites projected onto a

regional map. Winds are color-coded as in the time-helght cross section. This

is an hourly product that can be animated.

The Profiler Station Plot is a plot of the winds at all profiler stations

for one level, developed for overlay on a satellite image.
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_lesoscale Profiler Network--1985
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Figure 1. The Colorado profiler network overlayed with

the kinematic analysis areas. The profiler triangle

is in dashed lines; the RAOB triangle is denoted by

dotted lines.

Smooth temperature and moisture profiles derived from a six-channel

radiometer (HOGG et al., 1983) supplement measurements by the wind profiler.

Accurate estimates of the geopotential height and total precipitable water have

been obtained from these profiles, and several color displays are based upon

them, but they will not be discussed further here.

Profiler data provide input to the Mesoscale Analysis and Prediction

System (MAPS) and the Kinematic Analysis Model (KAM). MAPS is a mesoscale

analysis/short-range forecasting system, utilizing data from rawinsondes, VAS

soundings, aircraft reports, and wind and temperature profiles (B_2_JAMIN et

al., 1985). MAPS will provide upper-level guidance to PROFS forecasters in the

form of frequent analyses and 12-hour wind forecasts over the contiguous United

States and adjacent areas.

The Kinematic Analysis Model, which was brought to PROFS from Purdue

University, calculates vertical profiles of vorticity, divergence, and vertical

velocity. The computer code was originally written for use with RAOB data in

prediction of Great Lakes snowstorms (AGEE, 1983). KAM uses data from a

triangle formed by three sounding stations. At each station, the u and v

components of the wind are expanded in a first-order Taylor's series

= u + (au) (au)
Un o _x o (xn - x o) + _y o (Yn - Yo )

v = v + (__Xv) (_v.
n o _x o (Xn - Xo) + -_y)O (Yn - Yo )

n = 1,2,3

where the zero subscript refers to the middle of the triangle. These are six

equations in six unknowns, Uo, Vo, and their partial derivatives. Once the
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equations are solved, the vertical component of vorticity and the horizontal

divergence can be calculated. Pressure data, required to determine the

vertical velocities, are unavailable from the profiling system. As an

expedient, the pressure/height correspondence for the closest RAOB is

calculated and applied to the profiler data heights to get a good approximation

of the actual pressure. If the RAOB data are missing, the radiometric profile

at Denver is used (HOGG et al., 1983). The vertical velocity can be derived by

integrating the boundary conditions. At present, the vertical velocity is

assumed to be zero at the lowest level, about 1500 meters above the ground.

This is a shortcoming, particularly in summer, because it is known that most of

the convergence which initiates thunderstorms occurs in the first kil_neter

above ground. We will attempt to remedy the situation by using PROFS' surface

mesonet data in specification of the lower boundary conditions.

Another liability in the computation of kinematic quantities from three

profiler sites is the data availability. If any of the three instruments is

inoperative or transmitting unreliable data, then the analysis cannot be run --

an annoying situation which arose on some of the more interesting days last

summer. Improved automatic quality control of the data will help to solve this

problem.

III. PROFILERS IN USE: AN RT-85 CASE STUDY

The Kinematic Analysis Model was first used extensively with profiler data

during RT-85. Two consecutive days, 1 and 2 August, provide an interesting

comparison of synoptic vs mesoscale influences. In the following paragraphs,

we refer to profiles of convergence and vertlcal velocity computed from

soundings made at the vertices of two triangles. The small triangle (Figure 1)

includes the profiling sites at Platteville, Flagler, and Fleming, Colorado.

The large triangle (western portion shown in Figure 1) includes the r_insonde

sites at Denver, Colorado, North Platte, Nebraska, and Dodge City, Kansas.

On the afternoon of 1 August, a typical flow pattern existed over the

Colorado Rockies. In Figure 2, a broad band of clouds depicts a weak flow of

warm and very moist air extending from the Mexican border north-northeastward

to Colorado. At 500 mb, a trough of cool air lies to the northwest over

Washington and Oregon. Profiles of convergence and vertical velocity from the

large and small triangles (Figures 3 and 4, respectively) show similar patterns

-- slight divergence and subsidence at all levels. Although very little

convective activity occurred inside either triangle, strong convection occurred

to the west: the Cheyenne, Wyoming, hailstorm and flash flood caused fatalities

between 0200 and 0400 GMT 2 Augustl another cluster of thunderstorms caused

excessive rainfall and hail south of Denver.

By 2 August, the trough Loft had moved east to the northern Rockies

(Figure 5), and the flow over Colorado had become more westerly, although still

moist. The early evening profiles from the large triangle (Figure 6) show very

weak divergence in the lower troposphere and weak convergence above 500 rob.

The vertical velocity is correspondingly weak, mostly downward. A much

different situation exists within the small triangle (Figure 7), with moderate

convergence aloft and rising motion. Thunderstorms developed during the

afternoon and moved into the triangle by early evening. They dropped hail both

outside the triangle -- on the foothills northwest of Platteville -- and

inside. Near the western corner of the triangle, hail up to 2 cm in diameter

lay in drifts along the roadside.

The correspondence between profiles of vertical velocity and thunderstorm

activity is by no means perfect, in part, because the 50-MHz profilers cannot

obtain measurements close to the ground and because surface wind observations

are not yet being used. We expect to remedy the latter problem soon.
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IV. FUTURE WORK

Applications of the profiler winds are continuing to be discovered and

developed. BLECK et .I. (1984) have developed a method for using the profiler

winds to put better vertical resolution into the radiometric profiles of

temperature. The radiometer is capable only of smooth profiles because the

radiation it measures emanates from thick layers. Any sharp kinks in the

temperature profile such as a frontal inversion are undetectable. Using

variatior_l calculus and the profiler wind data, Bleck and his colleagues

expect to build such details back into the temperature profile. In an

operational setting, this technique could be used to upgrade the quality of

radiometric or satellite soundings.

Visiting forecasters who operate the PROFS workstation often recommend

extensions to existing products. One useful suggestion is a time series of

divergence, vorticity, and vertical velocity at a given level. We are also

adding the capability of making an hourly product of the kinematic flelds, so

that it can be loaded for animation, to give the observer a dynamic view of the

temporal changes.

If we can trust the early indications, profiler data displayed in a great

variety of ways will prove to be a boon to very-short-range forecasting. PROFS

will be continuing its application of profiler data to the problems of

forecasting during its next cool-season exercise in early 1986.
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N87-10428

THE INFLU_CE OF VELOCITY VARIABILITY ON THE

DETERMINATION OF WIND PROFILES

Jurgen Rottger* _ _/ _) ''_ _,2_-_:_V , .J t."

Arecibo Observatory

Box 995

Arecibo, Puerto Rico

High sensitivity radars allow the determination of velocity estimates at

time resolutions down to one minute or better. Because of the variability

introduced to the mean wind due to turbulence and waves, the high resolution

profiles may not be too useful for forecasting applications, although they

yield the most realistic estimate of the instantaneous wind profile. Figure 1

shows profiles of wind speed and direction, vertical velocity and echo power,

which were deduced in real-time on 23 August 1981 with the spaced antenna drift

mode of the SOUSY-VHF-Radar (ROTTGER, 1984). Whereas these profiles were

measured within 1 minute, the operating routine allowed the selection of

variable (longer) measuring periods, and one has to search for the optimum

duration of the data averaging period.

Figure 2 shows a high time resolution wind vector diagram which gives an

idea of the temporal variability (from ROTTGER, 1981a). The data were obtained

with the spaced antenna technique, which allows a good estimate of the

horizontal wind without having to correct for the vertical velocity component.

The wind vectors of Figure 2 specifically indicate a quasi-periodic variation

in direction. This is assumed to be due to gravity waves since also the

vertical velocity (Figure 2b) shows periodical variations with the same period.

In addition to the variability due to waves we have to regard the

variability due to turbulence as well as the variability introduced to the

analysis due to statistical variations of echo power and correlation time. We

have applied very stringent selection criteria, allowing only 5% of the latter

"instrumental" or "analysis" effects diluting the data when deducing the

distributions of wind speed and direction (Figure 3). These results indicate

that the meteorological variability (due to waves and turbulence) can still be

up to several 10% of the centre value, even at these fairly low wind

velocities. Less stringent criteria allow a display of the total profile but

introduce larger "analysis" variability (see Figures 4 and 5 of ROTTGER and

CEECHOW SKY, 1980).

The selection or quality criteria (for the spaced antenna method: the

relative difference betwean time lags around the spaced antenna triangle, the

amplitude of the cross correlation maximum and the signal-to-noise ratio) can

be used to weight the significance of velocity estimates when deducing a mean

profile. In all our analyses only median values were used instead of mean

values, since this procedure disregards large singular deviations which may

occur due to analysis or meteorological effects (e.g., at 9:22 UT above 21 km

in Figure 2). We also use half the difference between the upper and lower

quartile instead of the variance. If the selection criteria did discard all

data in one range gate, a spline function was used to interpolate these data.

This procedure yielded mean wind velocities, which are shown in the profiles of

Figure 4 and the time series of Figure 5. The consistency of these spaced-

antenna VHF radar results with the radiosonde data allows us to be convinced

that the method, which is only briefly outlined in this note, is quite suitable

for wind profiling applications.

*On leave from Max-Planck-lnstitut fur Aeroncmie, Katlenburg-Lindau, West

Germany.
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FiEure 1. First reel-time velocity and power (reflectivity) profiles

recorded aE intervals of 1 minute with the spaced antenna drift

mode of the SOUSY-VHF-Radar: instantaneous wind direction and

speed, and vertical velocity. The power profile allows an im-

mediate determination of the tropopause height (here 10 kin),

defined by an intermediate power increase larger than 10 d_

(ROTTGER, 1984).
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The averagin 8 _ime period T., to obtain a mean velocity profile, should

be de_ermined by the characteristic _ime scale _ of the velocity

fluctuations. The time scale T can be deduced _orm the Eime la 8 T a_ which

the autocovariance function of _he velocity _ime series has fallen to a

specified (absolute) value. In order to reduce _he statisEical variat/ons due

to turbulence, waves and analysis uncertainties, the averasin 8 time T. must
' " " T ¥"be larser than _he characteristic tzme . . The latter can be deduced _n

real-_ime ellowin 8 _o selec_ also the velocity averasin 8 period T in real

time. Since a shor_ time T can be due to hishly _urbulent fluctuat/ons.

their large rms variations _ave to be smoothed out by averasin 8 over e

sufficiently larse number of samples. Typical averasin 8 _ime periods are

between 5 and 30 minu_es (_isure 5).

On the other hand, we also have _o use as good a heisht resolution as

possible, because serious velocity errors can occur when applyin 8 too coarse a

heisht resolution. As was shown by SATO and FUEAO (1982), the wind velocity is

considerably biased (of the order of 10 ms-1 for resolution of 3 kin) when the

wind shear is larse end _he echo power profile has s_ron 8 Eradien_s wi_hln the

resolution volume. An appropriate heisht resolution appears _o be 150-300 m.
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1981a).
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1.4.2 PERFORMANCE CHARACTERISTICS OF WIND PROFILING RADARS

R. G. Strauch, A. S. Frisch, B. L. Weber

NOA_JERL/WPL
325 Broadway

Boulder, CO 80303
i 87-1042S

INTRODU CT IO N

Doppler radars used to measure winds in the troposphere and lower strato-

sphere for weather analysis and forecasting are lower-sensitivity versions of

MST (mesosphere-stratosphere-troposphere) radars widely used for research. We

have used the term "wind profiler" to denote these radars because measurements

of vertical profiles of horizontal and vertical wind are their primary

function. It is clear that wind profilers will be in widespread use within

five years: procurement of a network of 30 wind profilers is undezway

(CHADWICK, 1986). The Wave Propagation Laboratory (WPL) has operated a small

research network of radar wind profilers in Colorado for about two and one-

half years (STRAUCH etal., 1985). Table 1 lists the transmitted power and

antenna aperture for these radars. Data arehiving procedures have been in

place for about one year, and we are able to use this data base to evaluate the

performance of the radars.

Table I. WPL wind profilers (1985)

Wavelength Average Power Antenna area

Site (m) (W) (M2)

Stapleton Airport 0.3 450 I00

Plattaville, CO 0.74 400 54

Plattaville, CO 6.02 400 I0,000

Fleming, CO 6.02 400 2,500

Flagler, CO 6.02 400 2,500

One of the prime concerns of potential wind profiler users is how often

and how long wind measurements are lacking at a given height. Since these

"outages" constitute an important part of the "performance" of the wind pro-

filers, they are calculated at three radar frequencies, 50-, 405-, and 915-MHz,

(wavelengths of 6-, 0.74-, and 0.33-m) at monthly intervals to determine both

the number of outages at each frequency and annual variations in outages. _is

study on the monthly performance of the wind profilers (i.e., measurement or no

measurements at various heights) is based on the more recent archived data from

the Colorado Wind Profiler network. It does not consider the accuracy of the

wind measurements.

RADAR SENSITIVITY COMPARISONS

The three radars operated with pulse widths of 3- and 9-_s. (The 405- and

915-MHz radars also have a 1-_s pulse mode. ) We can compare the sensitivities

of the various radars and their modes using the meteorological equation.

First, when we compare pulse widths for the same radar, we find relative

sensi ivity is proportional to [ARP t T^] where AR is the range resolution

P is the average transmitted power an_ T is the observation time. For
t . . . o

our radars the 9-_m mode is more sensltlve than the 3-_s mode as shown below:

50 MHz, + 6.4 dB

405 MHz, + 7.3 dB

915 MHz, + 7.1 dB
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These relative sensitivity values are important for evaluating the performance

of a given radar with different pulse widths.

Second, .when we compare the three radars and assume scattering from

homogpneous, isotro_ "turbulence in the optically clear atmosphere with the

_radar I_alf--w_el_ng_ i_',the inertial subrange, then relative sensitivity is

propor tio_al to

P- A AR T¢_ l I/6
t e o

(Top) L

where A is the effective antenna aperture, k is the radar wavelength, T
• e . . o .
is the system nolse temperature and L is the total loss (rf losses and re_elver

losses). For the 9-Us pulse mode, the 50-MHz radar is 6.5 dB more sensitive

than the 405-MHz radar. These numbers are important in comparing the per-

formances of the different radars.

PROFILER OUTAGES

Figure 1 shows an example of the outage in hourly-averaged wind profiles

for the 3- and 9- s modes of the 405-MHz radar. Each vertical dash represents

available data for that height and hour; no symbol is printed if data are not

available. The periods that show no data at all heights are due to equipment

failures including loss of power, loss of telephone transmission, etc.; these

outages are not included in the statistics. The 9-_s mode shows fewer outages

below 10 km than does the _smode because the sensitivity of the 9-_s mode

is about 7 dB greater. Where both modes show outages the scattering is too

weak to detect. Since there is no signal the "depth of fade" is unknown. If

the loss of signal is related to an increase in the inner scale of turbulence,

the fade could be very large and increased radar sensitivity could yield little

reduction of outages. If the loss of signal is related to weak scattering

where the fade is on the lower tail of a normal distribution, then the

reduction of outage with increased sensitivity can he inferred.

One of the statistics used to measure the performance of the profilers is

the percent of time that the profiler was "down" at each height (no wind data,

given that the radar is operating) for three or more consecutive hours.

Samples of these down-time statistics for January 1985 at the three frequencies

are shown in Figures 2-4. The 50-MHz profiler at Fleming (Figure 2) had no

outages to 6 km in either the 3- or 9-_ mode, and none until almost 14 fun in

the 9-us mode. In comparison, the 405-MHz (Figure 3) Profiler had outages

starting at 6 km in the 3- s mode, and at 9 km in the 9-Us mode; the 915-MHz

Profiler (Figure 4) had outages starting at a little over 15 km in the 3-Us mode

and at 6 km in the 9-us mode. All radars are in the same geographical area and

all radars have about the same sensitivity increase for the 9-ps pulse mode

relative to the 3-us pulse mode (the 50-MHz radar has the least sensitivity

increase). However, the 50-MHz radar has a 6-7 km increase in height coverage

for the 9-us mode compared to the 3-Us pulse mode whereas the 915-MHz radar and

405-MHz do no show nearly as much increase. This difference in performance

indicates a frequency-dependent profile of backscattering cross section.

To evaluate the height performance of the profilers and determine whether

this frequency-dependent difference in height performance for the two modes was

consistent, the lowest height where the probability of an outage for three or

more consecutive hours reached 0.i was calculated based on monthly statistics.

These heights for the two modes are shown in Figures 5-7. The 915-MHz Profiler

consistently shows the smallest height difference for the two modes (Figure 5).
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Figure 4. Probability that an outage will
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height at 915 MHz for the 3-_s (triangles)

and 9-_s (circles) modes based on January

1985 statistics.
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of an outage for _> 3 consecutive hours is

0.1 for the 3- and 9-ps modes (915 MHz).

(The radar did not operate with a 9-ps pulse width in October 1984.) Note that

the difference in height resolution for the two modes is about 900 m; therefore

an increase of about 500 m would occur in the data even if there were no actual

height increase. The actual height difference for the 915-MHz Profiler for the

summer of 1984 is therefore very small. The height difference for the 50-MHz

radar (Figure 6) shows a small height increase for the 9-ps mode for the summer

of 1984 and 6-7 km for other months. Preliminary analyses of summer data for

1985 also shows a 6-7 km difference. The 405-MHz radar started operating in

January 1985, end its height coverage and the difference between the two pulse

widths falls between the other two radars (FiEure 7).

20

18

16

14-

E
10-

8-
-v

6-

4-

2-

J F M A M J J A S 0 N D J F M

........... 1984 : ',: 85_

Figure 6. Lowest height where the probability

of an outage for >3 consecutive hours is

0.I for the 3- any 9-ps modes (50 MHz),
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CONCLUS ION S

The height performance of radar wind profilers at upper-tropospheric and

lower-stratospheric altitudes is important because the radar sensitivity

required to measure winds at these altitudes is a major factor in determining

the cost of the profiler. The profilers must reach these altitudes to provide

the wind data needed for synoptic meteorology and commercial aviation. The

specification of performance of a wind profiler must be a statistical

specification because of the variability of backscatter cross section; if a

profiler is required to measure winds to height H with height resolution of AH

in time T under all meteorological conditions, the cost would be prohibitive

for H, AH, and T needed for operational applications.

The upper-tropospheric/lower-stratospheric performance of wind profilers

operating at 50-, 405-, and 915-MHz has been evaluated according to statistical

criteria. The results of the evaluation indicate a wavelength-dependent

backscatter cross section profile that favors longer wavelength radars for

upper tropospheric wind measurement. For years it has been noted that 10-cm

wavelength radars are not very useful clear-air radars above the boundary

layer. The 33-cm (915-MHz) radar (with less sensitivity than that of a 10-cm

wavelength meteorological Doppler radar) has dramatically different

performance in that it can measure winds routinely to 9-10 km MSL. However,

the 915-MHz radar has a much lower increase in height coverage when the

sensitivity is increased compared to the height increase found with lower

frequency radars. Both the fact that the 915-MHz radar can measure winds to

much greater altitude than 3-GHz radars with equal sensitivity, and the fact

that increased sensitivity with the 915-MHz radar does not produce the same

increase in height coverage that is found with lower frequency radars, support

the concept of a frequency-dependent backscatter cross section that is related

to the increase in the length of the inner scale of turbulence as height

increases, or that the wavelength dependence in theory of scattering is

incomplete. The 405-MHz radar, with sensitivity equivalent to the 915-MHz

radar, was able to obtain wind data to about 3 km greater altitude. The 50-MHz

radar, with 6-7 dB more sensitivity than the UHF radars was able to measure

winds to 15-16 km except during the summer months of 1984. (Summer data from

1985 show measurement capability to 16 kin.) In case studies it has been noted

that the 50-MHz profiler has marginal sensitivity for some meteorological

conditions; a 3-dB increase in sensitivity should be sufficient to satisfy most

requirements.
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The 405-MHz radars being procured for a 30-station network (CHADWICK.

1986) will be about 9 dB more sensitive than the 405-MHz radar used in this

study. The performance of these network radars would exceed that of the

50-MHz radar used in this study if the backscatter cross section is not

frequency dependent. However. the data from this study indicate a frequency

dependence that may limit the increased height coverage due to increased

sensitivity, so a conservative statement regarding the upper altitude

performance of the network radars is that they will clearly exceed the

performance of the 405-MHz radar analyzed here and should be able to measure

wind profiles to greater than 14 km MSL using statistical criteria similar to

those used here.
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INTRODUCTION

Since about 1974, Doppler radars operating in UHF and VHF ranges have been

used increasingly to study amospheric winds. Historically, large systems

capable of obtaining data from high altitudes have focused attention on the

m_eaosphere and stratosphere, rather than on the --troposphere (MST) wherein

abides most of the weather considered by most meteorologists. Excellent

histories and exposition of the technology involved have been given by GAGE and

BALSLEY (1978) and BALSLEY and GAGE (1982). Perhaps the most recent compre-

hensive collection of MST studies is the HANDBOOK FOR MAP (Middle Atmosphere

Progr_-) Volume 9 (BOWHILL and EDWARDS, 1983).

Refinement of smaller systems with down-to-earth capabilities has

stimulated investigation of their application to meteorological problems as

evidenced by the existence of the session on forecasting applications at this

Workshop. The prospect that vertical profiling radars would provide accurate

wind information frequently and automatlcally is very intriguing to meteorolo-

gists at a time when data processing and communicating capabilities are

advancing rapidly with commensurate development of numerical meteorological

models. One scenario, for example, envisages that a network of wind profiling

radars, substantially denser than the present day rawinsonde system but no more

expensive, would transmit wind data as often as hourly to a central station,

where a grand numerical model would fuse kinematic details with thermodynamic

data gathered from weather satellites and perhaps a few ground-based thermo-

dynamic profilers, and produce a weather outlook updated hourly. No weather

system 100 km in size or larger would escape detection with this networkl

incipient storm triggers would be incorporated into the forecasts, and we would

only very rarely be much surprised by weather developments.

Since this session includes papers by experts who indicate practical

approaches to this meteorological utopia (see especially the outline of mathe-

mat/cal synthesis of diverse data given by Gal-Chen, this volume), we do not

dwell on this further here. Rather, we address some questions the meteorologist

must logically ask first, viz., what is the actual performance capability of

these systems, how accurate is the wind data of interest to meteorologists, and

from what altitudes in the troposphere are the data reliably obtained?

LITERATURE ON ACCURACY OF WIND FINDING BY PROFILING RADARS IN THE TROPOSPHERE

CLARK et al. (1985) cite 11 references that present some analysis of the

accuracy with which wind profiling radars measure the winds. The findings of

these studies are summarized in Table 1 and our list of references includes

their sources. From these papers we have drawn the following conclusions:

a. There is a remarkable paucity of solid tests. Most tests involve

one or more of the following limitations: check data unfortunately

distant in time and/or spacel too few cases to be definitive; winds

too light to be definitive; test conducted in region where winds are

quite variable.
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b. In a few cases (5, 8, 9, II) with radar beams quite narrow (_I o or

less), results are excellent, differences with other reported winds being

indisputably within the range of uncertaint T attributable to the other

wind-finding method.

c. Almost all of the test data concern VHF. There are only three papers

treating results in the 400-MHz region, and these apply to unusual and

markedly superior equipment, not of the ec0nomical type being recommended

for development and deployment in a meteorological network.

d. The typical deviation of radar-measured and comparison winds is near

5 m s-l. This is not small enough to give ease but not so large that

it cannot be largely explained by spatial and temporal separations in the

data acquired.

e. There are not enough data for us to be confident about possible

systematic differences betwee_ true winds and data gathered with VHF

radars of the type proposed for meteorological use. It appears, however,

that bias, if it exists, is not greater than about 2 m s -1.

f. Study (4) in Table 1 is persuasive in its indication that vertical

velocity contaminates the indications of horizontal winds at the Sunset

site and in its suggestions of means to reduce such contamination greatly

with multibeem systems. This paper, in a milieu of other meteorological

inputs, is also persuasive in its evidence for a substantially smaller

magnitude and persistence of vertical velocities in the plains than in the

Rocky Mountains.

g. Data collected by the 50-MHz systems deployed for weather studies are

in the layer between about 2 km AGL and 17 kin.

As we interpret these data to reach our conclusions, we should refer

to studies of wind variability and of rewinsonde accuracy; rewinsondes

represent usual means for measuring and studying winds. During 1968, during

the NSSL spring program of observations, paired soundings were released within

five minutes of each other at two sites and tracked with independent tracking

systems within a few hundred feet of each other on the ground. Seven pairs at

each site produced comparative wind data. The standard deviation of wind speed

differences near Fort Sill, Oklahoma, was 1.43 m s-l, and near the television

antenna for WKY north of Oklahoma City it was 2.55 m s-l; standard deviations

of direction-i differences were 6.00 and 7.68 degrees, respectively. Since the

balloons were launched in fair weather, it is estimated that practically all

the differences are attributable to properties of the procedures and equipment

used to gather the data. In particular, the larger value given for the WKY

site probably reflects some difficulties there that were especially noticeable

(BARNES et al., 1971). Also in 1968, at 10-station rewinsonde network near the

National Severe Storms Laboratory in Norman, with station spacing ranging from

25 to 132 km end average spacing of 39 kin, provided 573 soundings appropriate

for study of wind structure, of which 104 soundings were made during periods

devoid of local storms (BARNES and LILLY, 1975). The rms vector wind dif-

ference measured at the 46 km distance significant for the current study was

less than 3 m s -1 at each of the altitudes examined -- 1500, 3000, and 5700 m

MSL.

Finally, there is the study of HO_NE (1980) who found 3.1 m s-I to be

the standard deviation of the difference benceen wind speeds measured with

separate tracking systems that tracked pairs of sondes suspended from single

balloons. Hoehne's value seems large in view of the results from the NS_, data

described above.

Clearly, work remains to define both the wind-profiling performance

envelope of the 50-MHz and 405-MHz systems proposed for meteorological use, and

the spatial variability of actual winds.
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50-MHz PROFILER IN OKLAHOMA

In a project involving cooperation between the Wave Propagation Laboratory

in Boulder, Colorado, and the National Severe Storms Laboratory, a 2-beam 50-

MHz profiler was installed during Spring 1985 at Great Plains Apiaries, 34°58'N

x 97°31'W. This is in Section 21, Township 6 North, Range 3 West, McClain

County, Oklahoma, 46 km south of the Oklahoma City Weather Service Forecast

Office, where rawinsonde data are obtained twice daily. It is a region of

rolling hills with slopes averaging near 2°_ and valley bottoms are about 35

meters below hilltops about 2 km apart. The radar is at an elevation of 330

meters MSL and surrounding hilltops are typically 355 meters MSL. In order to

minimize displacement of earth during installation and subsequent erosion

problems, the 50-m-square dipole arrays were oriented along azimuths 11.3 ° and

101.3 ° , referenced to true north, with Earth's surface at the site tilted

upward 2.1 ° toward azimuth 11.3 °. The dipoles oriented toward 11.3 ° project a

besm toward azimuth 109.4 ° and elevation angle 75.4°5 and the dipoles oriented

toward 101.3 ° project a beam toward 191.3 ° and elevation angle 73.4 ° . The two-

way besswidths are about 5 ° to half power. The radar was placed "on the air"

about May 10th with software applicable to installations on a level surface_

software properly accounting for the tilted terrain and bess angles given above

was installed on July 15th. Data collected before the revised software was

installed can be corrected.

The radar operates automatically, with data transmissions hourly to

computers at the Wave Propagation Laboratory in Boulder, Colorado, and at the

University of Oklahoma in Norman. The archival data are represented in Table

2. The winds are drived from a composite of up to 12 determinations during the

previous hour_ the computer selects contributions to the composite on the basis

of a sufficiently large signal-to-noise ratlo_ processing details and other in-

formation have been presented by STRAUCH et al. (1985). Details on the Doppler

spectra are available but must be requested specifically. A dedicated line

will facilitate more comprehensive recording and in-depth study of the Oklahoma

data.

SOME COMPARISONS INVOLVING DATA FROM THE OKLAHOMA 50-MHz PROFILER

We have compared rawinsonde data acquired at Oklahoma City on 39 occasions

from August 8 to September 8, 1985, and on II occasions from October 1 to

October 8, 1985, with profiler data acquired at the same times (within one hour

of 00 Z and 12 Z). (Obviously erroneous data in both sets, such as the point

indicated in Table 2 were excluded.) A majority of the soundings in the first

set are characterized by light winds and weak shear throughout the troposphere.

The second set is marked by substantially stronger winds and vertical shear.

Vertical interpolation is necessary for comparison of the rawinsonde data

with profiler data. Data from one sensor were linearly interpolated to the

height of the data from the other sensor. This interpolation is a source of

error in the comparison_ its magnitude is surely small because of the small

vertical separation between data (290 m for the short pulse and 870 m for the

long pulse). At the higher heights the long pulse data are sometimes sparse,

with larger interpolation errors.

The root-mean-square (rms) average difference for the 39 comparisons of

the first set, for both the u (positive to the east) and the v (positive to the

north) wind components are listed in Table 3a. The average rms differences of

the components ere about 2.5 m s-1 for the rawinsonde/short pulse comparison,

3.5 m s -I for the rawinsonde/long pulse comparison, and 1.5 m s-I for the

long pulse/short pulse comparison. The rms vector differences are the square

roots of the sum of squares of the average rms differences.
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SZTE: OKLAHOHA
DATE: 85 5 23
?:HE: 23 O 0

NPROs 12 NTDA; 350 NOSPs 13 PULU: 3.67 PRPRI 238.00
HAX HORVELs 62.87"
FZRST HT (AGL)s 1.64

NUNBEROF HE|GHTSI 24
DELTA HEZGHT (KH)I .29
POUERANTENNA: E9

GATE SPEED DZRECT HEIGHT IE IN POUER
I -999.00 -999.0 1.97 2 12 -999.0
2 5.37 301.5 2.26 9 12 48.3
3 7.57 297.5 2.54 12 12 58.9

4 7.88 303.6 2.83 12 12 69.4
5 7.42 307.2 3.12 12 12 72.0
6 7.84 322.9 3.41 12 12 65.6
7 6.17 339.4 3.70 12 12 57.2
8 5.45 343.3 3.99 12 12 52.3
9 4.88 323.7 4.26 12 12 49.1

I0 6.80 304.3 4.57 12 12 46.5
il 6.12 299.9 4.96 12 12 45.5
12 5.65 300.4 5.14 12 !I 48.5
13 4.60 294.8 5.43 12 !1 48.2
14 3.89 294.3 5.72 12 II 42.7
15 3.27 293.4 6.01 11 10 36.1
16 5.46 302.1 6.30 11 9 35.2
17 9.74 302.0 6.59 11 IO 38.0
18 10.34 299.2 6.88 12 I1 38.0
19 10.94 294.2 7.17 12 10 35.7
20 11.43 293.2 7.46 I0 9 31.3
21 11.22 292.2 7.74 9 7 29.2
22 13.54 287.7 8.03 8 6 25.0
23 13.61 289.7 8.32 8 5 23.6
24 2.25 314.5 8.61 5 S 34.8

SITE: OKLAHONA
DATE: 85 5 23
TIRE: 23 0 0
NPRO: 12 NTDA: 124 ROSP: 22 PULU| 9.67 PRPR: 672.00
NAX HOR VEL: 62.85
FIRST HT (AGL)= 2.65

NUHDEROF HEZGNTSz 18
DELTA HEIGHT (KN): .87
POUER ANTENNA: EU

GATE SPEED DZRECT HEZGHT #E IN POUER
I 7.22 310.7 2.98 12 12 65.8
2 7.35 317.9 3.84 12 12 66.9
3 6.70 314.4 4.71 12 11 61.8
4 5.85 305.8 5.58 11 10 54.1
5 6.30 309.1 6.44 11 12 46.2
6 7.59 301.9 7.31 11 12 42.3

7 7.83 294.1 8.18 10 12 37.8
6 9.82 287.3 9.05 9 9 32.0
9 6.36 291.2 9.91 9 8 29.6

10 11.75 2?4.6 10.78 8 10 25.9
11 20.44 289.1 11.65 8 I0 24.6
12 19.53 292.0 12.51 8 I0 24.9
13 19.65 287.5 13.38 7 7 23.4

14 18.03 205.5 14.25 5 7 30.6
15 10.49 291.9 15.11 6 8 23.2
16 11.79 303.7 15.96 7 4 21.7
17 10.82 279.2 16.85 5 5 19.9
18 -999.00 -999.0 17.71 5 3 27.4
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Table 3a. Average RMS difference of the u and v wind components for 39

comparisons during August 8 - September 8, 1985.

Compa ri son Average RMS difference RMS vector wind
difference

u v ms -l

Rawinsonde/short pulse

Rawinsonde/long pulse

Long pulse/short pulse

2.55 2.44 3.5

4.15 2.93 5.1

1.73 1.17 2.1

Table 3b. Average RMS difference of the u and v wind components for 11

cases during October 1-8, 1985.

Compa ri son Average RMS difference RMS vector wind

difference
u v ms--

Rawinsonde/short pulse

Rawinsonde/long pulse

Long pulse/short pulse

2.8 2.3 3.6

4.3 3.3 5.4

3.1 1.5 3.4

In order to learn if the average rms differences include a systematic

bias, we also computed the mean wind speed at all the points for which

comparative data existed (approximately 400 from each sensor). These mean

winds for the first set of data are listed in Table 4a. Note that the average

profiler winds, both with long pulse and short pulse, are smaller than the mean

winds estimated by rawinsonde. In the rawinsonde/short pulse comparison the

difference between the mean wind estimates is 1.9 m s-l; the speed of the

short pulse winds averages 74.3_ of the rawinsonde winds. Similarly, the long

pulse winds average 71.9% of the rawinsonde winds or 2.5 m s-1 less than

corresponding rawinsonde winds.

The findings from the August 8 - September 8 period are reinforced in the

October data, represented in Tables 3a and 4a. The October period was one of

substantially stronger winds, as shown by the u component listed in Table 4a.

All in all, these comparisons of rawinsonde and profiler data indicate a

bias toward zero in the profiler winds. More comparisons with other sensors

as well as in-depth analysis of Doppler spectral data with collocated profiler

and rawinsonde should be informative. It will be particularly important to

determine whether the rawinsonde/profiler differences represent a constant

offset or a percentage bias.

It should be noted that the average differences discussed here are

compounded of rather widely different situations. Thus, Figure la shows a case

with marked systematic differences between wind speeds at the rawinsonde and
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Table 4a. Mean wind speeds for the three comparisons in Table 3a.

Sensor Mean Wind Sensor Mean Wind Difference

Rawinsonde 7.24 m s -1 short pulse 5.38 m s -1 1.86 m s -1

Rawinsonde 8.94 long pulse 6.43 2.51

Long pulse 5.22 short pulse 5.11 0.11

Table 4b. Mean wind speeds for the three comparisons in Table 3b.

Sensor Mean Wind Sensor Mean Wind Difference

(u comp.) (u comp.) of means

Rawinsonde 14.2 short pulse 12.8 1.4

Rawinsonde 18.1 long pulse 15.2 2.9

Long pulse 15.5 short pulse 13.4 2.1

profiler sites, but lb shows that wind directions reported on the same occasion

aEree quite wall. On another date. shown in Figure 2a and 2b, rawinsonde and

profiler wind speeds are in remarkable asreement except in the layer from 7.5

to ii km, where differences are up to about 15 m s-1, while directions are in

close asreement except differences up to about 60 ° in the layer from 3 to 6 km!

We certainly must identify the reason(s) for such features since they represent

very lar&e deviations in implied kinetic energy and are correspondingly

significant for forecasting| such interestin 8 characteristics are present in

practically avery soundin 8 pair.

POSSIBLE EXPLANATIONS FOR DISCREPANCIES IN OKLAHOMA DATA

The followin 8 possible sources of differences noted above are: ground

clutter contm, inationl interference from stray electromagnetic transmissions

durin& oil field operations, rawinsonde errors, spatial and temporal varia-

bility of the wind. hardware and software discrepancies in the profiler radar_

backscatter from edges of the main besm and from sidelobes, and contamination

by vertical velocities associated with standin E and/or migratory waves. At

this writing we are just beginning to investigate these possibilities and to

look for others°

The authors believe that the differences presented are significantly

larger than can be explained by spatial variability of the wind. We plan to

evaluate this definitively during Spring 1986 with aid of a rawinsonde unit at

the radar site.

The sometime differences between profiler indications on long and short

pulse illustrated in Pigure 3 may be relatable to nonlinear vertical

distributions of wind shear interactive with the different pulse lengths.
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Figure 1. Wlnd speed (top) and direction (bottom) measured by

rawinsonde (O) and Oklahoma profiler (other symbols) on

13 August 1985o 00 GMT. Abscissae show wind speed in

increments of 5 m s-1 and direction in increments of 50 ° .

respectively. Ordinates show heights MSL in kin.

Concerning variations of reflectivity with elevation angle, it has been

noted that since VHF reflectivity declines with increasing zenith angle, the

measured velocities are biased low by the more reflective patches that have

smaller radial velocities in the more elevated portions of the beam. Although

formulations by DOVIAK and ZRNIC' (1984) show this effect to be negligible at

zenith angles larger than about 8 ° (Figure 4). consideration of sidelobes may

alter first impressions. A useful experiment in this regard would involve

addition of switchable phase shifters to r_he profiler antenna system and

study of backscattered power from a beam scanned in elevation.

GENERAL CONCLUSIONS

Highly accurate wind finding is confirmed for radars with narrow beams,

especially when VAD scanning is employed. Systematic differences up to 2 m
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s-1 between wind data from rawlnsondes and profilers of the inexpensive type

recommended for widespread use. averase random variations up to 5 m s-1

between wind data from these sensors, and occasional differences up to 15 m

s-l, are not well explained in much of the data reported so far. This is not

reason to be discouraged, however, because confidence in the basic profiler

method is well founded (KOSCIELNY et all., 1984), and the studies that leave us

with concerns, including this one, are insufficiently definitive. We are

stimulated to concentrate our efforts toward quanT/_ing the differences in

observations by profilers and other sensors, and then seeking their causes, so

that large variances can be understood and data of known and acceptable

accuracy can be produced routinely. We can be confident that a much better

situation will develop as we direct our resources stronsly to this probl-m.

SUMMARY

The Workshop provided a valuable exchanse of information among meteorol-

ogists and engineers. Clearly, advances in communicating, data processing, and
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mathematicalmodelin8 of meteorological phenomena have brought the meteorol-

ogical community to the threshold of effective use of kinematic and thermo-

dynamic data 8athered more frequently and on a finer grid than heretofore.

Such additional data provided routinely should lead to improved models and to

improved forecasts of precipitation and other weather variables.

Conference papers demonstrate a wide range of interestin 8 studies ongoin 8

with profilers, but the performance envelope of wind profilin 8 radars needs

better definition. In particular, further address is needed toward questions

concernin 8 possible bias in profiler wind data, measurement of winds in the

planetary boundary layer, and the accuracy of wind estimates in relation to the

time period over which averages are calculated.

In view of 8rear interest in boundary layer parameters and their

importance to interpretation of individual profiler data, as well as to

forecastin 8 with network data, it is ursed that profiler prosrems identify and

implement means for providing boundary layer data, especially on wind and

precipitation, at profiler radar sites.

The meteorological community is interested in prospects for studying

lightning and precipitation processes with VHF and UHF profiler radars because

Doppler signatures of meteors and of the air motion itself may be apparent

simultaneously.
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2.1.1 HARDWARE REQUIRI_TENTS: A NEW GI_ERATION PARTIAL REFLECTION RADAR

FOR STUDIES OF THE EQUATORIAL HESOSPHERE

N87-10431
Physics Department _ _ ....

University of Adelaide

Adelaide, South Australia 5001

A new partial reflection radar is being developed for operation at r_he

proposed Equatorial Observatory. The system is being designed to make maximum

use of recent advances in solid-state technology in order to minimize the power

requirements. In particular, it is planned to use a solid-state transmitter in

place of the tube transmitters previously used in PR systems. Solid-state

transmitters have the advantages that they do not need high voltage supplies,

they do not require cathode heaters with a corresponding saving in power con-

sumption and parts are readily available and inexpensive| the cost of high

voltage vacuum tubes is becoming prohibitive. It should be possible to achieve

25 kN peak powers with recently announced fast switching transistors. Since

high mean powers are desirable for obtaining good signal-to-noise ratios, it is

also planned to phase code the transmitted pulses and decode after coherent

integration.

All decoding and signal processing will be carri@d out in dedicated

microprocessors before the signals are passed to a microcomputer for on-line

analysis. Recent tests have shown that an Olivetti M24micro (an IBM

compatible) running an 8-MHz clock with a 8087 coprocessor can analyze data at

least as fast as the minicomputers presently being used with the Adelaide PR

radar and at a significantly lower cost. The processed winds data will be

stored in nonvolatile C_OS RAM modulesl about 0.5 to 1Mbyte is required to

store one week's information.

By using solid state, a modularized construction and keeping the use of

moving parts to a minimum (i.e. no tape or disk drives) the system will be more

rugged and compact than previous systems and will be significantly more power

efficient. These are important considerations when the system will be used in

a hot and humid environment.
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INTRODUCTION _

The purpose of this paper is to point out the need for, and the benefit

that can be derived from, a national wind profiling facility located in the

subtropics. At present no such facility exists. There are several advantages

associated with a ic_e-latitude location. The first is that wave motions and

large-scale circulations unique to the tropics can be studied. The second is

that the relatively steady mean flows in the subtropical belt may provide a

"cleaner" environment for studies of waves common at all latitudes. Examples

will be given below. We suggest the Arecibo Observatory as an ideal site for a

wind profiling facility since the land and much of the computing, technical,

end scientific support is already available.

LARGE-SCALE WAVES

The Arecibo Observatory in Puerto Rico is located at 18°N and has a sub-

tropical climate. Large-scale disturbances affecting the island are typically

associated with waves in the easterlies. The ITCZ (Intertropical Convergence

Zone) is usually considerably south of Arecibo but does reach that far north on

occasion. Hurricanes and tropical storms sometimes track across or very near

the island.

An example of the research topics that a wind profiler system at Arecibo

could be used to investigate is the observation of quasi-inertial waves. SATO

and WOODMAN (1982) obtained radar data in the upper troposphere and lower

stratosphere over a period of 48 hours. Their analysis indicated a long period

wave in the lower stratosphere with amplitude of several m/s. Further analysis

of the same data set by MAEKAWA et al. (1984) has shown that the intrinsic wave

period is very near the inertial period, although the earth-fixed period is

nearly twice as long. The wave behavior is particularly evident between 14 and

20 km altitude. A graduate student at Cornell (C. R. Cornish) is just finish-

ing his analysis of a 6-day data set obtained in May 1982. Again there were

wind perturbations with a period very near the inertial period for the latitude

of Arecibo. The preliminary results indicate that the waves are generated near

the height of the subtropical jet and propagate upward into the lower strato-

sphere. The wave is dissipated significantly by the time it reaches an alti-

tude of 20 km due to its short vertical wavelength of the order of I km.

Amplitudes of 3-5 m/s are significant in the lower stratosphere, and the dissi-

pation of the waves implies that there is a redistribution of energy and

momentum so as to decrease the subtropical jet maximum. The wind profiler

array, together with radiosonde data from the region, would provide information

about the intermittency of the waves, the depend=nce of wave amplitude on the

wind speed maximum or local shear, and the effect of wave dissipation on the

flow at higher altitudes.

The observations of CADET and TEITELBAUM (1979) and BARAT (1983) indicate

that quasi-inertial waves are strongly affected by the mean flow when the wind

speeds increase. The steady easterly flows in the subtropical regions provide

a good "laboratory" for studying the interaction of waves and the background

medium under conditions that are less complicated than those typically found at

midlatitudes.
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EFFECTS OF TROPICAL CONVECTION AND LOCAL HEATING

Other topics of interest would include the dynamics of locally generated

tides as first observed by WALLACE and HARTRANFT (1969) and WALLACE and TADD

(1974). They noted that the tidal motions in the lower stratosphere in the

Caribbean were not migrating tides but appeared to be generated by local

surface heating. To our knowledge, still very little is known about such an

effect. Data could also be provided to support land/sea breeze studies and

modeling. Land/sea breezes have been reviewed extensively by ATKINSON (1981)

who points out the connection between this type of circulation and the develop-

ment of local convection.

A great deal was learned about the dynamics of waves in the easterlies in

the GATE experiment (NCAR, 1977). However, further observations can still be

useful for the purpose of better defining the interaction between large and

small scales and for improving our understanding of the effect of the

environment on clouds. Also, measurements of vertical velocity fields within

developing clouds can be used to improve parameterizations of the effects of

clouds on their environment (ANTHES, 1983). Vertical velocity measurements

will not be possible once heavy precipitation develops since even the echoes at

the relatively long wavelength of 6 m will then be dominated by the precipita-

tion. Cloud studies will be particularly effective if they are carried out

with the VHF radar in conjunction with other instrumentation to determine

temperature and moisture fields. On a longer time scale, a climatology of the

vertical velocity can be developed in order to improve our understanding of the

dynamics responsible for the vertical velocity fields in the subtropics.

Dr. Joanne Simpson of GLAS (Goddard Laboratory for Atmospheric Sciences)

has indicated (private communication, 1984) that observations of the horizontal

winds and vertical velocity fields prior to the development of cumulus over the

island would be valuable input to and for comparison with a numerical cloud

model that Dr. Simpson has developed at GLAS. Dr. Bruce Albrecht of the

Pennsylvania State University has pointed out (private communication, 1984)

that our understanding of how convection develops could be improved signifi-

cantly if the Penn State portable 0.5-cm radar was brought to Puerto Rico for

the purpose of observing clouds and the dynamic environment in which they

develop in conjunction with the profiler measurements. The wind profiler data

could be used to study land/sea breezes and for comparisons with models such as

the one developed by Dr. Roger Pielke of Colorado State University.

TURBULENT PROCESSES

Recently, there has been considerable controversy about the underlying

dynamics responsible for mesoscale kinetic energy spectra. There appears to be

agreement about the spectral slope of the energy spectrum of the horizontal

wind (BALSLEY and CARTER, 1982; LARSEN et al., 1982; NASTROM and GAGE, 1983;

LILLY and PETERSEN, 1983). A number of observations have shown the slope to

follow a k-5/3 power law from some undetermined small-wavelength or low-fre-

quency limit out to scales as large as 500-1000 km and periods out to 12 hours.

There is little doubt that the motions are not three-dimensional at such large

scales, at least not in the sense required for a Kolmogoroff inertial subrange.

The competing interpretations argue that the observations indicate either a

two-dimensional turbulent process (GAGE, 1979; LILLY, 1983) or that it is a

manifestation of a universal spectrum of gravity waves similar to what is

observea in the oceans (VANZANDT, 1982).

Analysis by LARSEN et al. (1985) of several of the 3 to 8 hour time series

of velocity obtained earlier at Arecibo has shown an instance of a strong spec-

tral peak near the Brunt-Vaisala period during a period of active convection.

The spectrum a few hours later shows an enhancement of the energy at lower
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frequencies. This example is far from conclusive, but it is suggestive of a

two-dimensional turbulent process in which energy cascades from smaller to

larger scales. More extensive observations during and following periods of

convection are needed to determine whether the effect is repeatable. It is

possible that the enhancement of low frequency power is associated with an un-

related process. Simultaneous frequency and vertical wave number spectra of

the horizontal and vertical velocities would also help to resolve the problem

of the interpretation of mesoscale kinetic energy spectra since the predictions

of the universal gravity-wave spectrum theory, in particular, could then be

tested.

In addition, the VHF array can provide information about the frequency of

occurrence and spatial distribution of turbulent layers in the lower strato-

sphere. The theoretical analysis of WOODMAN and RASTOGI (1984), based on

earlier Arecibo 430-MHz observations, has already shown that vertical transport

by turbulence is a much more important process than had been thought earlier.

The crucial pare_eters determining the magnitude of the transport are the fre-

quency of occurrence and distribution of widths of the layers, information that

the radar can provide. Also, the relationship between the layers and waves in

the medium is still an open question, although it appears that the layers occur

at certain phases of the long-period, near-inertial waves seen in the lower

stratosphere. Dr. P. K. Rastogi of Case Western Reserve University is inter-

ested in obtaining more statistics on the intermittency, width, and height of

occurrence of turbulent layers in the lower stratosphere in order to refine a

model of turbulent transport due to such layers.

VERTICAL MOMENTUM FLUXES

At present there is great interest in upward momentum fluxes due to

gravity waves (VINCENT and REID, 1983) since it is believed that gravity waves

breaking in the mesosphere account for the momentum sources needed to explain

the general circulation of that region (LINDZEN, 1983; LINDZEN and FORBES,

1983). The wind profiling array at Arecibo could be used to study both the

momentum fluxes out of the troposphere and their variation with height in the

mesosphere. The antenna array will probably not be sensitive enough to detect

turbulent scatter from the mesosphere directly, but it should be possible to

use it as a meteor radar (S. K. Avery, private communication). Whenever detec-

tion of turbulence in the mesosphere is required, the 430-MHz facility may be

applied.

METEOR RADAR

In addition to studying the momentum fluxes in the mesosphere, an

important research topic, it is also important to obtain a better climatology

of the mesospheric circulation above Arecibo. The data could be used to calcu-

late momentum fluxes and accelerations of the mean flow due to gravity waves

(S. K. Avery, private communication, 1984) and to study tidal characteristics

at those altitudes.

CONCLUS ION

The research topics described above are only representative, but they

indicate the unique characteristics of the subtropical region as a site for a

wind profiling system.
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3.0 GRAVITY WAVES IN THE MIDDLE ATMOSPHERE:

RECENT PROGRESS AND NEEDED STUDIES
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Geophysical Institute

and

Department of Physics

University of Alaska

Fairbanks, Alaska 99775-0800

INTRODU CT ION

The recent recognition of the important role played by gravity waves in

the large-scale circulation and thermal structure of the mesosphere and lower

thermosphere (HOUGHTON, 1978; LINDZEN, 1981) has stimulated considerable

research on their properties and their middle atmosphere effects. For example,

these studies have begun to provide important information on gravity wave

scales, propagation, filtering, and the processes responsible for saturation

and turbulent diffusion. There remain, however, many areas in which our cur-

rent understanding of middle atmosphere gravity waves is deficient. The

purposes of this paper are to review the progress that has been made to date

and to suggest areas in which additional studies are most needed.

Major motivations for studies of gravity waves in the middle atmosphere,

of course, are the roles of such motions in providing both a drag on the large-

scale flow and a turbulent diffusion that acts on the heat and constituent

distributions as well as the need to incorporate these effects in dynamical,

chemical, and radiative models of these regions. In the mesosphere and lower

thermosphere, gravity-wave drag results in a reversal of the vertical shear of

the zorml mean wind, driving a strong mean meridional circulation and a

reversal of the mean meridional temperature gradient near the mesopause. The

effects of gravity-wave drag in the stratosphere, while not as significant as

at higher levels, appear to be important nevertheless in maintaining the large-

scale circulation of this region. Likewise, turbulent diffusion due to gravity

wave saturation contributes significantly to maintenance of the heat and con-

stituent distributions in the mesosphere and lower thermosphere and may be

important in the stratosphere as well. The theory and observations relating to

gravity-wave saturation were reviewed by FRITTS (1984).

RECENT PROGRESS IN GRAVITY-WAVE STUDIES

A number of studies in the last few years have addressed various aspects

of gravity-wave propagation, saturation, and effects in the middle atmosphere.

As a result, we are beginning to understand in more detail the role of gravity

waves in middle atmosphere dynamics. Several studies have examined gravity-

wave scales and phase speeds, yielding an indication of those wave motions that

are likely to be most important in the middle atmosphere (VINCENT and REID;

1983; SMITH and FRITTS, 1983; MEEK et al., 1985a). Typical motions were found

to have horizontal wavelengths that range from _ I0 to 103 km, observed

periods of % I0 to 103 min, and phase speeds of _ I0 to 102 ms -I. In

most cases, these values were associated with wave motions having vertical

scales _ I0 km due to resolution constraints of the various observing syst_ns.

There is also evidence, however, of motions with much smaller vertical scales,

and likely much smaller horizontal scales and phase speeds as well, from high-

resolution rocket, radar, and balloon soundings of the stratosphere, meso-

sphere, and lower thermosphere (PHILBRICK et al., 1983; FRITTS et al., 1985;

SATO and WOODMAN, 1982a; BARAT, 1983; and others).
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Otherstudies have examined the mechanisms responsible for gravity-wave

saturation in the middle atmosphere and the amplitude limits implied by these

mechanisms. The dominant saturation mechanisms appear to be convective and

dynamical instabilities, with nonlinear wave-wave interactions contributing,

perhaps, at small vertical scales (FRITTS and RASTOGI, 1985). These wave field

instabilities seem to limit wave amplitudes, as assumed by HODGES (1967) and

LINDZEN (1981), but to amplitudes somewhat smaller than monochromatic

saturation values due to wave superposition (ORLANSKI and CERASOLI, 1981;

FRITTS, 1985). Indeed, the amplitude limits imposed by saturation appear now

to account for the shape of the vertical wave number spectrum of gravity-wave

motions (DEWAN and GOOD, 1985; SMITH et al., 1985) and thus may explain the

apparent universality of the atmospheric motion spectrum (VANZANDT, 1982).

These studies have also shown the gravity-wave spectrum to be saturated

throughout the lower and middle atmosphere, with a characteristic vertical

scale and energy that increase with height (SMITH et al., 1985).

We are also beginning to understand the processes responsible for turbu-

lence production and turbulent diffusion. These are the convective and dynam-

ical instabilities mentioned above, and they appear, in many instances at

least, to result in the generation of strong, local turbulence at preferred

locations within the wavefield (SATO and WOODMAN, 1982b; BALSLEY et al., 1983;

BARAT, 1983; COT and BARAT, 1985; FRITTS et al., 1985). The convective insta-

bility is thought to predominate for high-frequency wave motions (with _ >> f)

while the dynamical instability appears more likely for low-frequency motions

(with _ _ f). In either case, the wave motion is believed to be most unstable

where T ' is a minimum rather than where u ' is a maximum (FRITTS and

RASTOGI z 1985). The resulting distributio z of turbulence throughout the wave

field appears to result in a large turbulent Prandtl number (JUSTUS, 1967) and

a reduction of the effective turbulent diffusion of heat and constituents due

to gravity-wave saturation (FRITTS and DUI_ERTON, 1985; STROBEL et al., 1985).

Finally, recent studies have begun to address the distributions of gravity

wave energies and momentum fluxes with height and time. Studies of the former

by MEEK et al. (1985b) and VINCENT and FRITTS (1986) suggest significant

seasonal variations as well as short-term fluctuations. The seasonal

variations of gravity-wave energies correlate well both with variations in the

turbulent diffusion of HpO inferred from SME 0q fluctuations (THOMAS et

al., 1984) and with obsegved seasonal variations of turbulence intensities

(Vincent, private communication, 1985). Short-term fluctuations appear to cor-

relate with variations in the mean winds at lower levels.

Observational studies of gravity-wave momentum fluxes by VINCENT and REID

(1983), REID (1984), and FRITTS and VINCENT (1985) have provided estimates of

zonal accelerations due to gravity-wave drag _-50 ms-lday -I, largely con-

sistent with expectations based on the observed zonal wind structure (HOLTON,

1983). In addition, the latter studies have found considerable variability of

the momentum flux due to high-frequency gravity waves with time-of-day, sug-

gesting a modulation of this flux by tidal motions. A model of the modulation

and of its implications for mean flow accelerations and tidal measurements was

proposed by FRITTS and VINCENT (1985). This study also found the majority

(_ 70%) of the gravity-wave momentum flux and flux divergence to be associated

with motions with periods < 1 hr, suggesting that the dominant flux is due to

motions with small horizontal scales as well (VINCENT and REID, 1983).

NEEDED STUDIES

The gravity-wave studies described above have contributed substantially to

our knowledge of the role of such motions in middle atmosphere dynamics. How-

ever, there remains a great deal that is unknown or poorly known concerning

gravity-wave propagation, saturation, and effects in the middle atmosphere.
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The purpose of this section is to highlight several areas in which our

knowledge is particularly limited.

As noted above, some attention has focused on the dominant gravity-wave

scales in the middle atmosphere, but the identified motions number only _ I00.

And because these studies were performed at only a few locations, the results

may not be representative of the global gravity-wave distribution. Most

observational facilities are located in or near mountainous terrain, which

might bias wavelength and/or phase speed distributions. Preliminary motion

spectra in the equatorial Pacific, for example, exhibit a somewhat different

character than those obtained over significant topography (BALSLEY, personal

communication, 1985).

The character of the gravity-wave spectrum will have a maj or influence on

the response of the middle atmosphere, however, and should serve to motivate

additio_l studies of this sort, hopefully representing a more diverse global

coverage than is presently available. An indication of the geographic

variability of gravity-wave sources and of the middle atmosphere response is

provided by the model studies of MIYAHARA et al. (1985), which show consider-

able variability in the gravity-wave momentum flux extending to upper levels

due to localized regions of convective activity. And this is in a model that

does not resolve what are now thought to be the dominant temporal and spatial

scales (FRITTS, 1984). Presumably, smaller spatial scales would produce even

more localized middle atmosphere effects.

Other areas of major uncertainty are the causes and effects of variability

of the gravity-wave spectrum. Variability imposed by planetary-wave motions

were examined by DUNKERTON and BUTCHART (1984), HOLTON (1984), SCHOEBERL and

STROBEL (1984), and MIYAHARA et al. (1985). Observational studies have

likewise provided evidence of considerable variability of gravity-wave

energies, momentum fluxes, and turbulent diffusion (REID, 1984; THOMAS et al.,

1984; MEEK et al., 1985b; VINCENT and FRITTS, 1986; FRITTS and VINCENT, 1985;

FRITTS et al., 1985). Yet our knowledge of these processes remains primitive

due to the extremely limited observations. Of particular importance, perhaps,

are observations addressing the variability due to gravity-wave sources and

filtering, as these appear to operate on the planetary-wave scales of relevance

to the middle atmosphere circulation and structure.

Another area requiring additional study is the generation and subsequent

evolution of turbulence resulting from gravity-wave saturation. Again, while

preliminary studies of the mechanisms responsible for turbulence generation

have been performed, we know little about either the primary products of tur-

bulence decay (secondary gravity waves, 2-D turbulence, or heat), and thus

their role in middle atmosphere dynamics, or the role of such turbulence in the

diffusion of heat and constituents.

Finally, our understanding of the role of nonzonally propagating gravity

waves is very limited. Most numerical and observational studies to date have

considered primarily zonal propagation in zonal flows. Yet there is no reason

to suppose that meridionally propagating motions are not equally important.

Indeed, studies by SMITH and FRITTS (1983), MEEK et al. (1985a), and VINCENT

and FRITTS (198_) indicate that meridional propagation may be preferred, per-

haps due to zonal filtering by large zonal winds.

Thus, there are numerous valuable studies remaining to be done which may

keep us all busy for quite some time.
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TOPIC 3 SUMMARY: GRAVITY WAVES AND TURBULENCE

Papers presented in this session revealed that we have made considerable

progress in understanding a number of important problems concerning gravity

wave and turbulence processes in the lower and middle atmosphere since the last

MST workshop. Advances were made in understanding the spectral description of

the motion field, including the effects of anisotropy and Doppler shifting on

gravity-wave spectra, the mechanisms leading to saturation and their effects on

wave amplitudes and turbulence intensities, and the causes of the apparent

universality of the gravity-wave spectrum and the variation of this spectrum

with height. Other studies revealed significant variability of gravity-wave

and turbulence paraneters and effects, on small to large (annual) temporal

scales, associated with changing forcing conditions or propagation environ-

ments. Of particular significance in this regard were annual climatologies

of gravity-wave energy and turbulence intensity in the mesosphere suggesting

a reduction of turbulent diffusion during equinoxes. Evidence was also pro-

vided that the more dynamically significant gravity-wave motions (in terms of

energy and momentum transports) are those with small horizontal wavelengths

(< 200 kin) and high intrinsic frequencies. Finally, a number of studies

addressed characteristic gravity-wave and turbulence parameters and their

variability as well as various means to distinguish between gravity-wave and
turbulence motions.

Despite recent progress in understanding gravity-wave and turbulence

processes, there remains much that is not known about these motions, their

variability, and their effects in the lower and middle atmosphere.

Particularly important in this regard are studies (both case studies and

climatologies) that address gravity-wave sources, including the dominant

temporal and spatial scales and phase speeds, and their long- and short-term

variability.



It is important to examine, with whatever systems are available, the

climatologies and variability of gravity-wave energy and momentum fluxes and

the role of turbulence in the diffusion of heat and constituents throughout the

atmosphere. A major factor in the annual climatologies of gravity waves and

turbulence in the mesosphere, and one requiring considerable study, is the

filtering of the gravity-wave spectrum by local mean winds at lower levels,

which causes significant modulations in the energy and momentum fluxes (and in

the associated turbulent diffusivities) at higher levels.

The momentum flux divergence due to gravity waves is also likely to be

important in the upper troposphere and stratosphere, though the magnitude is

expected to be much smaller on average than in the mesosphere and contributions

due to various sources may be very localized. This requires high-resolution

observations capable of inferring these contributions in a wide range of

conditions and locations. It is also important to exercise care in estimating

the momentum flux due to mountain waves as these motions are nearly stationary

and may not be able to be studied using the dualbeam technique on short time

scal es.

In addition, further studies are required of the mechanisms and effects

of gravity-wave saturation and of the evolution of the motion spectrum by

processes other than gravity-wave filtering. With a little luck, our progress

in understanding these motions in the next two years will be as significant as

in the last twol
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3.1.1 A MODEL FOR GRAVITY-WAVE SPECTRA OBSERVED BY DOPPLER SOUNDING SYSTEMS

T. E. VanZandt

Aeroncmy Laboratory ' _'

National Oceanic and Atmospheric Administration

Boulder, Colorado 80303

It has bean proposed that mesoscale fluctuations of wind and temperature

in the free atmosphere are due to internal gravity (buoyancy) waves (VANZANDT,

1982). Critical tests of this hypothesis must involve the comparison of models

based on the theory of gravity waves with suitable measurements. The MST radar

technique is particularly attractive for this purpose, because it can measure

several independent power spectra simultaneously. However, because of the com-

plexities of the geometry of the MST radar experiment, which measures the

radial velocity as a function of radial range and time, and the particular geo-

metry of buoyancy waves, the relation between the observed spectra and the

usual description of buoyancy wave spectra is not simple.

In this paper a model for MST radar spectra is developed following the

formalism presented by PINKEL (1981). Expressions for the one-dimensional

spectra of radial velocity versus frequency and versus radial wave number are

presented. Their dependence on the parameters of the gravity-wave spectrum and

on the experimental parameters, radar zenith angle X and averaging time T
av"

are described and the conditions for critical tests of the gravity-wave

hypothesis are discussed (VANZANDT, 1985). SMITH et al. (1985) compare the

model spectra with spectra observed in the Arctic summer mesosphere by the

Poker Flat radar.

This model applies to any monostatic Doppler sounding system, including

MST radar, Doppler lidar and Doppler sonar in the atmosphere, and Doppler sonar
in the ocean.
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3.1.2 HALF-DAY AND FOUR-DAY WAVES IN THE STRATOSPHERE

Jurgen Rot tger N87-10435
Arecibo bbservatory ......

P.O. Box 995

Arecibo, Puerto Rico 00612

Further analysis of spaced-antenna measurements of 3-dimensional velocity

in the stratosphere (ROTTGER, 1981) was performed over a period of 10 days and

compared with meteorological observations.

A quasi-four-day wave in the lower stratosphere can be shown to originate

in planetary wave/synoptic scale disturbances in the troposphere. Its phase

propagates downwards and its amplitude decreases strongly with height in the

lower stratosphere. The wave features are most pronounced in the meridional

wind component, but they show up also in the vertical component (Figure 1).

A 12-h oscillation with downward phase progression and about 1.5 ms-I

velocity amplitude is also detected in the meridional component above 18 km,

but there is no comparable feature seen in the troposphere.
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3.1.3 TROPOSPHERIC TURBULENCE PARAMETERS MEASURED BY USING THE MU RADAR

Toru Sato I, Hiromasa Matsumoto 2,
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iRadio Atmospheric Science Center

Kyoto University, Uji 611, Japan

2Department of Electrical Engineering
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INTRODU CT ION

The spectral width of the Doppler radar echo has been used to estimate the

atmospheric turbulence parameters (CUNNDLD, 1975; SATO and WOODMAN, 1982;

HOCKING, 1983a), because it is directly related to the kinetic energy contained

in the turbulence. However, sufficient care must be taken in deriving the

turbulence parameters since the measured spectral width can be easily affected

by undesired factors such as beam broadening, shear broadening, and the

temporal variation of the wind field (SATO and WOODMAN, 1982; HOCKING, 1983b).

Here we examine these factors in the case of the MU radar observation of

the upper troposphere, and present preliminary results obtained so far.

METHOD AND DATA

The MU radar has a relatively broad antenna beam among existing radars

(see FUKAO, et al., 1985 for details of the system), thus suffers mainly from

the beam broadening effect. The shear broadening does not cause any trouble

because the antenna beam can be pointed to the zenith. It is even possible to

estimate the strength of the shear inside the turbulent layers by comparing the

spectral width in the vertical and off-vertical directions. The temporal

variation of the wind field may add to some error, but it is not the major

factor since the time resolution is as good as I min. The magnitude of rms

fluctuation within I min is estimated to be about 0.2 m/s based on the record-

to-record valiability of the radial wind velocity.

In order to estimate and correct the effect of the beam broadening, it is

important to measure the horizontal wind accurately. We used five antenna

beams in the present observation; one pointing vertically, and remaining four

toward north, east, south, and west at a zenith angle of I0 °. The zonal and

meridional wind components derived from the line-of-sight velocity in these

directions are used to correct the beam broadening effect.

The solid line in Figure 1 shows the result of a numerical simulation

which relates the true and observed spectral width g and the horizontal wind

velocity V h. The broken line shows the case where the antenna beam pattern
is approximated by a Gaussian. In this case, the effect of the beam broadening

is expressed simply as

2
= _ 2 + C2Vh 2 (i)

_obs true

where C = 0.044 is a constant determined for the MU radar antenna. Thus, it

can be easily removed if the horizontal wind velocity is known. This

approximation is used in the following. The spectral width and the mean

Doppler shift are determined by fitting a Gaussian to the observed spectra.
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After subtracting the beam broadening effect, the energy dissipation rate

k and the eddy thermal diffusivity _ can be estimated as (SATO and WOODMAN,
1982I HO(XING, 1983b)

¢ = 0.49 O3k ° (2)

k h = ¢/3Wb2 (3)

where k = _h/o is the outer scale wave number of the turbulence

(WEINSTBCK, 1981), and _b is the Brunt-Vaisala frequency.

The data were taken for four days in July, 1985, when the stratospheric

jet was weak. The time and height resolutions are 1 rain and 150 m,

respectively, and the height range in which the meaningful data are obtained

was 4.8-16 kin.

RESULTS

Figure 2 shows a 24-hour mean observed spectral width at 5 beam directions

and the beam broadening factor obtained from the horizontal wind velocity. An

interesting feature is that no appreciable difference exists between the spec-

tral width in the vertical and off-vertical directions, which means that no

shear broadening effect is observed. This is probably due to the convective

structure of the troposphere where large shear cannot last for a long duration

over a large vertical dimension.

Figure 3 is the resultant 24-hour mean profiles of the derived parameters.

The Brunt-Vaisala frequency is estimated from nine temperature profiles

obtained by rawinsondes launched at Hamamatsu, about 150 Pun east of the MU

radar. The values are slightly larger than those obtained at Arecibo, Puerto

Rico (SATO and WOODMAN, 1982).
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The fairly large outer scale of turbulence, which is close to the height

resolution of 150 m, seams to be consistent with the macroscopic behavior of

the layers found in the time-height variability of the echo power structure.

However, the turbulence parameters obtained here must be treated with care,

because the temperature profiles observed by r_insondes do not reflect local

structures, although the radar itself has a high resolution.
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3.1.4 SIMULTANEOUS VHF AND UHF RADAR OBSERVATION OF THE MESOSPHERE AT ARECIBO

DURING A SOLAR FLARE: A CHECK ON THE GRADIENT-MIXING HYPOTHESIS
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The physical mechanism responsible for backward scattering of radio waves

from the middle atmosphere depend on the microstructure of small-scale

refractivity fluctuations in the vicinity of the Bragg scale, and the spatial

distribution (or morphology) of this microstructure within the scattering

volume. The electromagnetic part of the scattering process new appears to be

reasonably well understood. Characterization of refractivity microstructure,

however, is only possible in a statistical sense through simplified models for

turbulent gradient-mixing of passive scalars. Such models were originally

applied to early tropospheric radio propagation experiments (see e.g. BOLGIANO,

1968), and with slight modification form the basis for the MST radar technique

(ROTTGER, 1984). Radar experiments at multiple wavelengths can provide useful

information on the refractivity microstructure and its dependence on scales

associated with turbulence (BOLGIANO, 1963; RASTOGI and MATHEWS, 1984). Such

experiments are feasible only at select facilities.

In this paper, we discuss the results of a two wavelength (VHF and UHF)

mesosphere experiment performed at the Arecibo Observatory on January 5, 1981.

The 46.8-MHz VHF radar (3.21 m Bragg scale) was operated by the Nax-Planck-

Institut fur Aeronomie (MPI) to provide spectral measurements of signals

scattered from refractivity fluctuations due to turbulence (ROT_GER et al.,

1983). Other physical parameters such as radial velocities (V_) scattered

signal power (P_), and Doppler spread (W) due to turbulenc_ _an be derived

from signal spectra. The 430-MHz UHF rada{ (0.36 m Bragg scale) was used for

D-region electron-density (N) measurements using the incoherent scatter

technique with a comparable height resolution (MATHEWS, 1984). The radars were

pointed symmetrically about the vertical with a beam spacing of 5.5 degree in

the meridiorml plane. Occurrence of a type 4 solar flare during the experiment

produced enhanced D-region electron-density gradients. This was a unique

circumstance that provided the possibility of t_ting the basic premises of the

turbulent gradient-mixing hypothesis.

The behavior of physical parameters derived from the VHF experiment is

analyzed in the next section. We focus on the evolution of a strong layer of

turbulence at 71 km immediately after the flare onset. It is argued that the

turbulent layer existed prior to the onset of flare, but was rendered visible

through enhanced electron-density gradients established after the onset.

Incoherent-scatter electron-density measurements described in Section 3 clearly

show substantial enhancement of D-region ionization after the flare. In

Section 4, we briefly outline the turbulent gradient-mixing hypothesis. The

VNF and UHF observation are then used to show that the development of the layer

at 71 km is almost entirely due to enhanced gradients.
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VHFOBSERVATIONSDURINGTHEFLARE

Details of the MPI VHF experiment at Arecibo and the salient results for
iL_ ', • . _ .*

_h_e December-January 19_81_._eriod have been reported by ROTTGER et al. (1983).

We review the observations for January 5, 1981, and present the results of

further analyses.

Figure 1 shows contours of constant received signal power as a function of

height and time. The ST region from 9 to 27 km shows several thin persistent

layers. The mesospheric signals are weaker in comparison, but layers in the

vicinity of 65, 71, 73, and 77 km can be distinctly seen. The layer at 71 km

appears suddenly after 12:16 AST, coincident with the occurrence of the flare,

but vestiges of it could be seen even earlier. A weak (1-2 dE) but abrupt

enhancement of received signal power at this time occurs at all heights, and is

probably due to enhanced solar radio emission seen through a secondary lobe of

the anten,m radiation pattern (ROTTGER, 1983). Details of flare occurrence are

shown in Figure 2.

5 JAN 1981

. -_.,._o_- -._ _.. :_ -"_/_ _-I*.>__ "'_-_

.,, , .... . -. :. • .A__.,.,_ _-_'o- _-_.- :o,.,_
:,k,,. -_ ...:_

" O v _4_>_ , . .._oo,,_ ._
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Figure i. Contour plots of the total received signal power (P + P ) at

2 dB increments as a function of height Z and time in AST _UT -n4 hr) for

the MPI VHF experiment at Arecibo. Noise enhancement at 12:16 hr AST and

subsequent development of the echoing region at 71 km is attributed to

the occurrence of a Type 4 Solar Flare. (ROTTGER et al., 1983).

Figure 3 shows the linearly scaled spectra of the received signal and

profiles of the noise power P , signal power P , radial velocity V , andn s r
Doppler spread W in the mesosphere just before and just after the flare

onset. A new laCer with a near 10 dB enhancement in Ps appears to form at 71

kin, but the weak layers at 68 and 73 km do not show any significant variation

in the signal power. Enhancement of incoming ionizing radiations (Lyman Alpha

and hard X-rays) during the flare cannot produce turbulence, but it can amplify

the refractivity structure within an already turbulent layer by creating

steeper gradients in the ambient electron densities.

The intensity of turbulence within a layer of thickness L is characterized

by the parameter e denoting the rate at which energy is dissipated per unit

mass by turbulence, e can be related to overturning by buoyancy of the largest

eddies (of size L) within the layer. Mean background wind shear produces a
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Figure 2. Solar X'ray fluxes in the 1-8 A band (upper) and 0.5-4 A band

(lower) recorded by the SMS GOES satellite for January 4-5, 1981. A

Type 4 solar flare occurred at 16:13 hr UT (12:13 hr AST) on January

5. It reached a maximum at 16:16:30 hr UT and lasted for ii min.

(Solar-Geophysical Data Comprehensive Reports, No. 443 pt II, July

1981, NO#mE).

velocity differential across the layer which is mixed by eddies of successively

smaller sizes. The velocity profile in the vicinity of the layer is slightly

deformed to maintain a supply of energy to the layer at the rate e. Details

of this process have been considered by LINDEN (1979) and ROTTGER (1981). The

distribution of turbulent velocity fluctuations across the layer is mapped into

the Doppler spectrum of the scattered signal, and the Doppler spread W is
.S

linearly related to e. A small contribution to W due to wind shear is
S

negligible for radar pointing directions close to vertical (SATO, 1981).

Figure 4 shows the time evolution of received signal power P and Doppler
s

spread W in the vicinity of the 71-km layer. At 70.8 km, estimates of W

(without6any noise correction) are slightly less than 1.5 m/s for noise Tone.

The statistical variation in this parameter is about 0.2 m/s and remains at

about the same level for time intervals 11:30-12:15 AST and 12:15-13:00 AST.

We conclude, therefore, that the average energy dissipation parameter <e >

remains reasonably constant before, during and after the occurrence of the

flare.

ELECTRON-DENSITY MEASUR]_4ENTS

Profiles of electron densities obtained with the incoherent-scatter

technique are shown in Figure 5. The time resolution for these measurements is

typically 10 rain and height resolution is typically 0.5 kin. The profiles have

been rescaled from total signal power profiles that are smoothed and filtered

to remove the effect of external interference. A typical uncertainty in

electron-density measurements is of the order of 10 electrons cm -3. The
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Figure 3. Received signal spectra in the mesosphere, linearly rescaled

for each height, are shown on the left for the VHF experiment.

Derived parameters P , Ps" Vr" and W s (see text) are shown• n

in the rzght panels. Top two panels cover the period just before

the flare reached its peak. The two lower panels are after the

flare peak. Appearance of the layer at 71 km is discussed in the

text.

profiles are not obtained at equal time spacing. The actual averaging

intervals are tabulated in Figure 5. Profiles 1 and 2 correspond to periods

just before and just after the flare onset. Profiles 3 to 5 are for

successively later periods. At a height of 71 km, electron density abruptly

increases from _80 cm-3 to %700 cm-3 durin_ the first i0 min of the flare,

and then gradually decays back to %100 cm -j over the next half hour.

Electron-density gradients dN/dZ in the vicinity of the layer show a local

maximum, and a similar pattern of enhancement after the flare onset.

DISCUSSION OF TURBULENT GRADIENT MIXING

The local gradients dN/dZ in electron density N (any passive scalar in

general) are mixed by turbulence, producing a spatial power spectrum of

fluctuations in N. The scattered signal is obtained as a component of this
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Figure 4. Time variation of total received signal power P_ + p_

(top panel) and Doppler spread Ws+ - without noise corr_ctio_

(bottom panel). Flare occurs at about 12:15 hr AST. The

statistical variation in W is about the same over 11:30-

12:15 hr as over 12:15-13:_nfor the 70.8 km altitude. For this

altitude Ps + Pn jumps by about 9 dB at 12:15 hr.

spatial fluctuation spectrum evaluated at the Bragg wave number. It follows

that the scattered signal power P would depend on [dN/dZ]2. The energy
• S .

spectrum of velocity fluctuations that m_x the scalar gradlent has several (two

or more) cutoff scales associated with it. The smallest of these scales

depends on the energy dissipation parameter ¢. The exact wave number

dependence of the energy spectrum, hence the wavelength dependence of P is

decided by the location of Brag 8 scale in relation to the cutoff scales_

RASTOGI and BO_HILL (1976a,b) discuss wavelength dependence of P from
.S

dimensional considerations. BOLGIANO (1968) and others have polnted out that

potential concentrations of the passive scalars should be considered in mixing

theories. HOCKING (1983) has derived improved relations for wavelength

dependence of P s in the mesosphere for inertial range turbulence. For

discussion of experiments at Arecibo we consider only the [dN/dZ] 2 term,

since no information can be obtained on wavelength dependence.

On the basis of earlier discussion, we assume that the turbulent layer

at 70.8 km has constant thickness L and constant energy dissipation parameter
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Figure 5. Time evolution of electron-density profiles on January 5,

1981, using the incoherent-scatter technique at 430 MHz. The

averaging time corresponding to each profile is shown in the

table. For the entire time interval shown, the solar zenith

angle remained within 41.0 to 41.6 degrees.

E for about 0.5 hr before and 0.5 hr after the flare onset. We will consider

the following form for the signal power:

Ps = A F(E, L, fo ) [dN/dZ] 2 + B

where A is a constant, F contains the dependence on e, layer thickness L, and

radar frequency fo" B is an additive correction term that may be important

in more exact formulations using potential quantities. We will assume that

B=0.

Figure 6 shows the time variation of the total signal power at 70.8 km in

the VHF experiment, and electron-density gradients at 2-km scale derived from

the UHF experiment. Suppose that at two closely spaced times t I and t 2

signal powers are P1 and P2' and gradients are [dN/dZ] I and [dNZdZ] 2.
If all other parameters are constant and B=0, then the ratio R given by:

R = [F2 dB - PI dB] / lOgl0 {[dN/dZ] I / [dN/dZ]2 }2

should be i0. In applying this test to data of Figure 6, we face the problem

that the power and gradients have disparate time scales. This problem can be

circumvented by considering transitions in gradients (labeled I to 4) and using

appropriate values of P . The noise level is reasonable constant at 40 dB.

For transition i, we find that R = 8. Transition 2 has only a small change in

gradient associated with it, so we combine it with 3. These two transitions

give R = 8.7. Transition 4 cannot be used, as a decrease in gradient is

associated with enhancement in power. This suggests that the assumption of

constant c and L may have become untenable for intervals exceeding I hr.
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Figure 6. Time variation of the total VHF received signal power

P for the 71-km layer at 3 min inte_als (upper panel),sn
an_ the electron-density gradients obtained with the

incoherent-scatter method with variable averaging intervals

as shown (lower panel). Gradients are obtained with a 2-km

scale. Labels 1-4 in the lower panel indicate transitions

in gradients that are referred to in the text.
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We note that the value of R found in the two cases are both less than and

close to I0. This suggests that the assumptions made in our analysis hold

reasonably well, and that enhanced electron-density gradients associated with

the flare were the principal reason for the layer seen at 70.8 km. A value of

R>I0 is physically unrealistic as it does not allow dependence on other

parameters. The deficit from R=I0 can be attributed to following plausible

reasons: (a) variability in c, L, (b) local gradients steeper than average

gradients, and (c) non-zero additive terms derived from mixing of potential

scalars. In view of intermittent nature of turbulence, we expect (a) to be

most significant.
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EVIDENCE OF A_MOSPHERIC GRAVITY WAVE PERTURBATIONS OF THE

BRUNT-VAISALA FRBQU_qCY IN THE ATMOSPHERE

iii

R. E. Good, R. W. Beland, J. H. Brown, and E. M. Dewan

Air Force Geophysics Laboratory

Hanscom AFB

Bedford, MA 01731 N87-10438
A series of high altitude, medium resolution, measurements of temperature,

pressure and turbulence have been performed by the Air Force Geophysics

Laboratory. These measurements were conducted using the VIZ Manufacturing Co.

microsondes with attached AFGL micro-thermal probes measuring the temperature

structure coefficient C T (BROWN et al., 1982). A typical atmospheric temper-
ature measurement is shown in Figure I. Several small temperature inversions

are evident in the troposphere. The stratosphere is marked with numerous

fluctuations in the temperature profile. Microsondes provide temperature and

pressure measurements every 4 seconds up to a maximum altitude of 30 km (MSL).

Since the average ascent rate is 5 m/s, the altitude interval between the

measurement reports is 20 m. The potential temperature is calculated from the

temperature and pressure from the definition (COLE, 1970):

0 = T i00___O0R/Cp

where T is the temperature in Kelvins with a resolution of 0.I K and P is

pressure in millibars, R is the ideal gas constant and C is the specific

heat of air at constant pressure. This equation definesPthe potential

temperature for adiabatic displacements relative to the 1000 mh level. The

nominal ratio of R to C has the value 0.286.
P

The Brunt-Vaisala frequency squared, N 2, is defined by

N 2 =gd8
8 dz

A problem of computing the Brunt-Vaisala frequency from the microsonde

data is thus one of numerical differentiation. Some smoothing of the data is

essential due to the tendency that numerical differentiation has in amplifying

high frequencies, and hence, noise. Such filtering reduces the spatial

resolution of N 2. However, the competing interests of maximizing resolution

while minimizing noise must be balanced. The filtering adopted here has two

steps. The first filter is a simple 5-point moving average filter. Smoothed

potential temperature (8_ is computed by:

+2

k=-2

The transfer function of this filter is:

1 sln(bk/2)
A(k)

5 sln(k/2)

The transfer function is displayed in Figure 2. This is a simple low-pass

filtering scheme that reduces the vertical resolution of the data from 20 m to

approximately 50 m (one half the wavelength of the first null in the transfer

function). The sidelobes of this filter are significant. After a differenc-

ing, these lobes are much larger than the main peak due to the fact that

differentiation corresponds to multiplication by k in the Fourier domain. To

overcome this sidelobe problem, a second-stage filter is employed. This stage

is a 13-point least squares parabola, i.e., the previous and succeeding 6

points are used to smooth the center of the data. The transfer function of

this parabolic filter is also shown in Figure 2. This too is a form of a low-

pass filter which reduces the resolution of the data to approximately 75 m.
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Figure I. Microsonde temperature profile,

Flight M6483 on August 3, 1985 at noon

local time, using a standard rod

thermistor.

The useful feature of this two-stage filter is that the parabolic sidelobes

tend to cancel the moving average sidelobes. This cancellation holds only for

certain combinations of orders of the parabola and moving average. The net

two-stage transfer function is shown in Figure 2. The potential temperature

is smoothed in this two-stage fashion. A further useful feature of the second-

stage parabolic filter is that the filter form is a polynomial which is easily

differentiated. The transfer function of this differentiating filter is shown

in Figure 2. The spatial resolution of the differentiator is approximately

i00 m. This is the method of determining the vertical potential temperature

gradient; the least squares parabola is differentiated after the first

smoothing with the moving average. The Brunt-Vaisala frequency is then

calculated using this derivative and the two-stage smoothed potential

temperature. The actual derivative can be considered as having occurring over

dz of about 300 m. Shorter wavelengths are attenuated.

A typical Brunt-Vaisala frequency squared profile is shown in Figure 3.

Depending upon the a_nospheric boundary layer conditions, there may exist

static instability conditions as indicated when the Brunt-Vaisala frequency is

negative. Above 5 km altitude, the Brunt-Vaisala frequency averages to around

0.01 sec-l, while in the stratosphere, the frequency was about 0.025 sec-l.

The wave-like structure apparent throughout the atmosphere exhibits different
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Differentiation of the combined the 5-pt

and 13-pt parabola _-----) yields the

Brunt-Vaisal a frequency.

characteristic scales in the troposphere and the stratosphere. An examination

of Figure 3 indicates a visual periodicity of 1 to 3 km in the stratosphere and

less then 1 km in the troposphere. The Brunt-Vaisala frequency transition

between the troposphere and the stratosphere generally occurs over a I- to 4-km

altitude region.

A power density spectra was obtained of the Brunt-Vaisala frequency

squared to examine possible periodicities in the wave-like structures. The

procedure applied was to use the Blackman-Tukey approach of (I) de-trending

the data by removing a mean, (2) obtaining the truncated autocorrelation, (3)

Hamming the autocorrelation and then (4) computing the power spectral density

(PSD) of N 2, § (rad/s)4/(cy/m), as a function of wave number, k (cy/m).

Note that no pre-whitening and subsequent post-darkening is applied. The

reason for not doing this is that we are interested only in the low

frequencies. Furthermore, the data have been extensively smoothed which avoids

aliasing errors in the PSD. We have also used a minimum entropy method linear

predictor with 20 and 40 coefficients. The 20 coefficients are used to obtain

smooth PSD plots to examine the envelope. The 40 coefficients are used to

identify specific wave number contributions.
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Figure 3. Calculated Brunt-Vaisala frequency,

Flight M6483.

Figures 4a and 4b represent the PSD of the vertical spatial profile of the

squared Brunt-Vaisala frequency for the microsonde flights shown in Figure 3.

The stratospheric region is defined as being between 17 km to 27 km and the

troposphere is defined as between 2.5 and 14 km. The spectral envelope is one

of constant PSD to the maximum wave number, k*. The PSD dec[eases as the wave

number increases from k* to the filter cutoff, kf = 1/200 m- . A detailed

look at the spectrum shows 2-4 identifiable peakg. This is interpreted as

indicating a narrow selection of gravity waves in the stratosphere and not a

continuous array of wavelengths. This can be visualized in Figure 5 which is

an expanded graph of the Brunt-Vaisala data.

Finally, we have combined the spectra from four soundings (M5309, M6472,

M6474, and M6483) and obtain an average PSD for the troposphere and the

stratosphere shown in Figure 5. Shown here is the fact that the spectra can be

considered to have a -I slope between 4 km and the 300-m wavelength of the

filter. The stratosphere amplitude is about an order of magnitude larger than

the troposphere amplitude.

FRITTS (1984) and WEINSTOCK (1984) have indicated that gravity-wave

saturation should occur simultaneously with the existence of convective

instability regardless of whether or not the saturation mechanism is due to

Kelvin-Helmholtz instability, nonlinear wave interactions, or direct
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Figure 5. Comparison of the power spectral

density of the stratosphere and tropo-

sphere. Each curve represents the

linear average of four PSDs obtained

from flights M6483, M5309, M6472, M7474

from July 31 to August 3, 1985.

convective instability. The fact that we do not see convective instabilities

above the boundary layer (as indicated by negative Brunt-Vaisala frequencies),

may be due to the following reasons. First, the instability produces

turbulence at scales less than 100 m and have been filtered out of this

presentation. This is consistent with the detailed turbulent layer measure-

ments of BARAT and BERTIN (1984). Second, the microsonde thermistor rod has a

long time constant (t _ 15 seconds at 25 km, 7.8 sec at 15 kin) and is unable

to accurately respond to the presence of 20- to 40- m thick regions exhibiting

adiabatic lapse rates. We are presently conducting experiments using both bead

and rod thermistors. The hope is that the bead thermistor, while having errors

in absolute temperature, will indicate the small-scale regions of adiabatic

lapse rate owing to their fast time constant (t _ .3 second).

The source of the wave-like structure is assumed to be gravity waves.

DEWAN and GOOD (1985) have suggested that gravity waves grow in amplitude

during passage up through the atmosphere. However, a maximum growth is reached

when the saturation conditions occur. The saturation instability leads to the

production of turbulence. The spectra of vertical profile of horizontal winds

observed in the stratosphere has been shown by DEWAR and GOOD (1985) and SMITH

et al. (1985) to exhibit a -3 slope for all wavelengths greater than the

dominate wavelength, k*. The question that needs to be answered is, What is

the mechanism for producing the wave-like structure in the Brunt-Vaisala

frequency? An explanation is that the gravity waves themselves alter the

Brunt-Vaisala frequency in the atmosphere. HODGES (1967) estimates the density

and temperature perturbations of a gravity wave. It can be shown that the

squared Brunt-Vaisala power density spectrum under gravity-wave saturation

hypothesis will have a slope of -1.

Thus, the temperature changes that can be produced by a gravity wave are

small unless nonlinear effects are occurring. Such nonlinear interactions can

occur and themselves limit the growth of gravity waves. FRITTS (1984) has

shown that these nonlinear interactions can produce a gravity-wave spectrum

similar to the saturation theory.
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CONCLUSIONS

Spectralanalysisof atmospheric Brunt-Vaisala frequencies reveal spectra

similar to the velocity spectra of DEWAN et al. (1984), DANIELS (1982), and

ENDLICH and SINGLETON (1969). The Brunt-Vaisala spectra indicate existence of

separate, distinguishable wave modes.
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3.1.6 A_MOSPHERIC WAVES AND THE NATJRE OF BUOYANCY TURBULENCE IN THE

CONTEXT OF THE WAVES VS 2D-TURBULENCE DEBATE

l ClO L/

INTRODU CT ION

Edmond M. Dewan

Air Force Geophysics Laboratory

Optical Physics Division

Hanscom AFB, MA 01731

An interesting question is "How does one empirically distinguish between

velocity fluctuations due to turbulence and those due to waves?" The subject

is more interesting at present because there is a controversy between those who

interpret such velocity fluctuations as being due to 2-D turbulence (GAGE,

1979; LILLY, 1983) vs those who attribute them to waves (VANZANDT, 1982; DEWAN,

1979). Is there a way to determine by means of experiment which view is cor-

rect, or when one or the other is more appropriate? Unfortunately, the power

spectral density (PSD) does not help very much with this problem.

The goal of this and the companion paper to follow is to address this pro-

blem. It will, however, be necessary to first discuss the physical differences

between waves and turbulence. One of the main purposes of this paper is to

display certain new theoretical ideas on the subject of buoyancy range turbu-

lence in this context. The companion paper presents a proposed empirical test

to distinguish between 2-D turbulence and gravity waves.

WAVES VS TURBULENCE

Inertial range turbulence (IRT) involves an energy cascade or, to put it

another way, strong mode interactions. The PSD has a k-5/3 dependence where

k is the wave number. IRT also involves strong mixing and it is isotropic.

The cascade was vividly described by TENNEKES and LUMLEY (1972) in terms of a

3-D vortex stretching interaction between scales. RICHARDSON (1972) used

poetry for the same purpose.

In contrast, buoyancy range turbulence is not isotropic but is strongly

affected by buoyancy. It was described by Bolgiano (1959) who gave a k -II/5

dependence for the spectrum, and by LUMLEY (1964) who gave k -3 for the

dependence. There were other prominent contributors as well, but, the main

point is that thi_ v_k led to a particular length scale known as the buoyancy

length i B = (e/N_°) _'_ where e is the dissipation rate and _ the
buoyancy frequency. This scale separates IRT from BRT accoraing to these early

authors. As we shall see, this is indeed correct, but a slight extension of

this concept leads to a scale which separates waves from BRT.

Table 1 summarizes some basic differences between waves and turbulence. A

particularly useful distinction involves the interaction time between modes.

BRT can be best regarded as a field of wave modes which interact so strongly

that a given mode dies within one period or so of oscillation. In contrast,

the fluctuations which can properly be called waves oscillate for very many

periods and do so in a linear fashion i.e., without significant mode inter-
action.

INTERACTION TIME AND THE BRT/WAVE SEPARATION SCALE

While there is very little interaction between waves, Phillips and others

have shown that under certain resonant conditions (PHILLIPS, 1977) there is

indeed some interaction. He has shown (PHILLIPS, 1960) that the interaction

time, Ti, is to a certain approximation,
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v2 )-1/2Ti = (kI Vl k2 (i)

where k. and v i refer to the wave numbers and particle velocities of compo-
nents o_ a resonant triad of interacting waves. If one ignores constants of

order unity and if we let k and v refer to the primary wave, then we can, for

our purposes, use the approximation

T. =_ (kv) -I (2)
1

The dispers/on relation for an incompressible buoyancy wave is simply

= (_ cos e)-1 (3)

where T is the wave period, 8 is the angle between the wave vector k, and
w

the horzzontal. In this paper, we shell ignore factors of 2.

In view of the above discussion, we shall characterize waves by

T. << T
i W

and BRT by the reverse of this inequality.

tween the two regimes is given by T i = Tw.

the boundary

(_ cos 0) = (kv)

from (2) and (3).

(4)

It follows that the boundary be-

From this it follows that at

(5)

It is useful to eliminate v from (5). For this purpose we consider the

case where 8 = 0. As will be shown below, this leads to the transitional scale

that separates horizontally propagating waves and IRT. We next assume that at

this scale all the energy of this borderline wave with velocity v is fed into

the IRT cascade and that the energy emerges from the small scale end of that

cascade in the form of e, i.e., dissipation. With this in mind, and using the

definltion that a borderline wave dumps all of its enerEy in one period, we

obtain

V 2

e :__ (6)
T
W

This is used in Equation (5) to eliminate v and hence

= k ( E)l/2
NB B_ B

or

k B = (N3/e) 1/3

(7)

(8)

an equation which has what may be a surprisingly familiar look to it. It is,

of course, the inverse of the well-known buoyancy length, but it appears in a

novel context. At first it seems to contradict the assertion that this length

separates IRT and BRT; however, the seeming contradiction will soon be

resolved below.

To address the above paradox, we now turn to the general case where 8

is allowed to be arbitrary. In this case, the borderline condition which is

given by T = T. leads to
W 1

kB = (NB3COS3_C,)I/2 (9)
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where e has beem replaced by e, in anticipation of the discussion to follow.

For BRT we claim that the clearest physical description is that it consists of

a cascade of strongly interacting waves of large amplitude. This cascade

resembles IRT in the sense that, for the most part, the flow of energy is down

the scale. (The subharmonic instability is a good candidate for the mechanism

of interaction). Now an interesting observation is that, as O is increased,

T is also increased (in accordance with the dispersion relation). This
w

means that for any T. one can find a T such that T. = T . In princi-1 w

pie, as 0 goes to 90 _, Tw goes to _. _t is these waves where 0 > 0 but

where T < T. which are not proper waves in the usual sense but are,
1

rather,Wthe strongly interacting buoyant modes which constitute what is

designated at BRT.

As promised, we now discuss e'. In BRT, there are two additional ways

for energy to be dissipated in contrast to IRT which has only e. These are,

namely, ePE which is the dissipation rate of potential energy brought about

by mixing In the stratified fluid, and eRA D which is due to the radiation of

energy in the form of gravity waves that are generated by a certain amount of

"up scale" energy flow caused by mode interactions. Thus,

E' = EpE + eRA D + e (i0)

Unfortunately, the numerical values of e_A n and epE are not known. As can
be seen from Equation (9), BRT can exist*_fbr wavelengths ranging from the usual

"buoyancy length border" or, the outer scale of IRT, to scales that are bound-

less for 8 close to 90 ° . The very large wavelengths and associated long

periods correspond to nearly horizontal particle motion as can be seen from

the incompressibility condition _ • _ = 0. In other words, as 8 is increased,

becomes more vertical, the period lengthens, and particle motion becomes

horizontal. Thus, the question arises, 'q)oes this type of BRT represent what

is usually called 2D-turbulence?" The answer seems to be "no" for the follow-

ing reason. The 2D-turbulence in the literature involves a cascade in the

direction of small to large scale, which is to say, a reverse cascade. BRT

does not seem to fit this description.

We leave as an unanswered question '_4here does 2-D turbulence fit as

strongly interacting buoyancy-affected modes such that

k < (_3 cos38/e,) I/2

Equation (ii), in principle, could lead to an empirical test between BRT and

waves. Further discussion will be given in the companion paper.

Table I

Physical distinctions between waves and turbulence

Waves Turbulence

1. Linear Superposition I.

2. No Fluid Mixing 2.

3. Wave Pattern is Global 3.

(In Space & Time

Propagation

Lasts many periods
Coherence

4. Obeys Dispersion Relation 4.

NonLinear "Promiscuous"

Mode-Interaction

("Cascade" in k-space)

Fluid Mixing (Dispersion)

Eddies are Local

(In Space &-Time)

No Propagation

Decays in about one period

Incoherence

No Dispersion Relation
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3.1.7 A PROPOSED EXPERIMENTAL TEST TO DISTINGUISH WAVES FROM 2-D TURBULENCE

7
Edmond M. Dewan

Air Force Geophysics Laboratory

Optical Physics Division

Hanscom AFB, MA 01731

While the companion paper on buoyancy range turbulence given here leads to

a unique scale, _, that allows one to differentiate between waves and tur-

bulence for the s_ecial case of e = 0 (i.e., horizontally propagating waves),

it does not seem to lead to a practical empirical distinction for the general

situation. This is due to the fact that, as 8 is increased, one has the

ever-increasing presence of BRT for longer wavelengths (see Figure I below).

The fact that the numerical values of e' are not yet available compounds the

difficulty. In addition, it does not appear possible to encompass true 2-D

turbulence in the above picture. We are thus driven to a test which circum-

vents all these difficulties.

Our proposed test is based on the idea shown in Table 1 (of the companion

paper) that waves are coherent and propagate while in turbulence we have the

opposite situation. In particular, our test is suggested by the following

quotation from MULLER (1984), on the nature of such turbulence: "The turbu-

lence in each horizontal plane is independent from the turbulence in the other

planes." If this statement were to be taken literally, it would imply that the

temporal coherence between horizontal speeds, separated only in altitude, would

be zero. Any vertical separation would be enough to destroy coherence.

Naturally, in the real world, one would be forced to take into account the

effects of viscosity; that is to say, a specific finite vertical separation

would be needed to destroy coherence. In order to estimate this distance, L,

one can use (see PRANDTL, 1952, P. 107)

e = C(_/S) I/2 (I)

where _ is the kinematic viscosity, S is the shear scale, and C is a constant

of order unity. Thus, if the coherence were very close to zero for vertical

separations somewhat larger than L, then this would constitute strong evidence

for two-dimensional turbulence and against other types of fluctuations such as

gravity waves or three-dimensional turbulence over that frequency range.

Numerically, L is of the order of I0 m in the troposphere and stratosphere.

If however, v in Equation (I) is replaced by turbulent eddy viscosity, then L

would be increased by something like an order of magnitude. If C = 5, we would

have something like 500 m. Perhaps, then, L = 1 km would be a safe value.

In view of the practical importance we will now present some of the

mathematical details of _he above test (see BENDAT and PIERSOL, 1971, 335-
339). The coherence Y between two time series x and y is defined by

xy

2 lCxy(fm )12 _ (2)

Yxy
_x(fm)_y(fm)

Here the x and y time series _re obtained at N discrete times separated by the

sampling time interval At. The frequencies fm are given by

m (m=0,1 N
fm = NA---_ .... 2) (3)
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The cross spectrum, @xy(fm) is defined by

2At (4)
_xy(fm) ----_ X*(fm)Y(fm) I

where

2_nm I (5)
X(fm) -= ZXnexp[- j "--N-"--.

and this would be computed by means of the "fast Fourier transform" and then

smoothed by means of standard windowing and averaging methods as described by

B_DAT and PIERSOL [1971]. The Y(fm) is related to y by the same relation.

XmomiS the complex conjugate of &. The PSD, _x(f ), is obtained
(4) by setting y = x and uslng only the x serles. A similar thing is done

to obtain #y. In other words,
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2At Xm*Xm ]_x (fm ) = -N-
(6)

and similarly for @y.

At the meeting, we shall discuss the caveats associated with this test,

and perhaps we can arrive at that time at a numerical specification of coher-

ence which will satisfy most people in regard to a definitive test between

waves and 2-D turbulence.

As a final remark, it should be pointed out that a certain amount of care

is needed in order to avoid artifact when calculating the coherence. In par-

ticular, a single unsmoothed data set would automatically lead to a value of

unity for y_, . In this way, an enthusiast for the gravity-wave interpre-

tation woul_unwittingly delude himself into thinking that he had proven his

case. To circumvent this artifact the procedure is to (a) calculate __,

_x" and 4. on a significantly large number of data records, or (b) to _d_e
appropriate smoothing. Bendat and Piersol point this out on p. 339 of their

book in Section 6.6.
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PROPAGATING TIDES IN THE I_SOSPHERE

S. A. Bowhill and K. O. Herewether

Are onomy Laboratory

Department of Electrical and Computer EnBineerin E

University of Illinois

Urbana, Illinois

A preliminary search has begun for evidence of tides in the 1-hr averase

line-of-sisht mesospheric velocity data from the Urhana radar in the period

1978-1982m inclusive. Since the Urbana antenna has only a single pointin 8

direction, 1.6 de 8 away from vertical toward the southeast, observations are

restricted to the southeasterly component of those velocities. Since observa-

tions are only available for a fraction of a day due to the absence of nisht-

time ionization in the Urbana mesosphere, it was decided to adopt an unusual

procedure in the search| namely, to perform a Fourier analysis in the vertical

direction and look for rotation in phase of vectors representln 8 spatial fre-

quency components. Propagatin 8 tidal modes would then show as vectors with a

net rotation corresponding to their downward phase velocity.

Figures 1 and 2 show 5-year monthly averages of hourly mean horizontal

velocitles inferred from the Urbana data. Consistent diurnal variation is seen

for a number of months. These data were analyzed for vertical spatial periods

of 3, 4.5, 6. 9, 12, and 24 kin. When plotted as a function of time of day,

many of the phasors tended to show a net rotation_ for example, Figures 3 and 4

show data for January and June at a period of 24 kin.

The sense of rotation of a spinning vector in the complex plane can be

determined objectively by computing the signed area swept out by the vector in

moving from point to point. This calculation, performed on two separate com-

ponents, indicated downward motion in 8 out of 12 months for the 9-kin component

and in II out of 12 months for the 24-kin component. A comparison of the magni-

tudes of the 6 modes showed that the primary component was the 24-kin component,

a result confirmed by the tidal models of Porbes.
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3.2.2 GRAVITY WAVES IN SEVERE WEATHER

S. A. Bowhill and S. Gnanalingam I_ '_• (_i

Aer onomy Laboratory _'

Department ot Electrical and Computer Engineering

University of Illinois

Urbana, Illinois

During 1983, the Urbana radar operated essentially avery day gathering

stratospheric and mesospheric gravity-wave data, for two hours centered around

local noon. This paper presents some preliminary analyses of those data.

Figure 1 shows plots of the noon gravity-wave amplitude for April -

December 1983, derived by subtracting the hourly mean for each day and averag-

ing the resldual minute-by-minute data. Considerable variability is seen from

day to day and with season in both the stratosphere and mesosphere. Strato-

spheric data have been revised using the Tukey algorithm (BCWHILL and

GNANALINGAM, 1986).

Annual average climatology is shown in Figure 2 between the stratosphere

and mesosphere. On average, the rms gravity-wave velocity is about 15x larger

in the mesosphere than in the stratosphere.

Figure 3 shows the relationship between the stratospheric and mesospheric

gravity-wave amplitudes on a daily basis. Correlation between them is fairly

strong, indicating that much of the variation in mesospheric wave amplitude is

produced by gravity waves propagating from the stratosphere.

With a view to determining the role of severe weather in producing gravity

waves, two tests were made. In the first, the wind speed measured at two near-

by radiosonde stations, Peoria and Salem, was correlated with the stratosphere

gravity-wave intensity at Urbana. Figures 4 and 5 show the results for May and

August lw83. Although the gravity-wave intensity fluctuated greatly from day

to day, there is little if any correlation with the stratospheric wind speed.

This suggests that orographic forcing is not a factor in generating gravity
waves in Urbana.

On the other hand, Figure 6 shows a scatter plot of gravity-wave intensity

vs the heights of the highest cloud tops associated with precipitation within

100 miles of Urbana. A clear correlation is found between cloud top heights

exceedlng 20,000 ft and an increased gravity-wave amplitude in the strato-

sphere.

Two examples are now shown of the correlation of gravity-wave intensity

with radar summary charts. Figure 7 shows a set of summary charts for May 7,

1_83, wlth strong convective activity centered over Urbana starting at 1235

CST. Figure 8 shows an explosive growth of stratospheric gravity waves shortly

following 1230 CST, suggesting that convective activity was the cause of the

gravity waves seen.

On the other hand, Figure 9 shows summary charts for September 9, 1983,

wiuh no convective activity within about 1000 km of Urbana, but Figure 10 shows

strong wave activity in the upper stratosphere. It is noticeable that there is

a strong wind shear between 12 and 13.5 kin, evidenced by the change in mean

level of the line-of-sight velocity measurements. The fact that the Urbana

antenna is tilted at an angle of 1.6 deg to the southeast suggests the exist-

ence ot a strong shear in the southeasterly velocity just above 12 kin, and this

is probably responsible for the generation of the gravity waves seen at alti-

tudes up to 22.5 kin.
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In June, 1983, the STATE (Structure and Atmospheric Turbulence Environ-

ment) rocket and Poker Flat MST radar campaign was conducted to measure the

interaction between turbulence, electron density and electron density gradient

that has produced unusually strong MST radar echoes from the summer mesosphere

over Poker Flat, Alaska (PHILBRICK et el., 1984). During the campaign, the

Poker Flat MST radar was operating with a spatial resolution of 300 m and a

time resolution of 1 1/2 to 3 minutes to obtain radial wind velocities along a

vertical beam and two oblique beams directed 15 ° off-zenlth and toward azimuths

of 334°E (the 'north' beam) and 64°E (the 'east' beam). Several rocket salvos

were launched consisting of passive spheres, electron density probes and

accelerometers. In this paper, we present the analysis of radar wind

measurements and a concurrent wind and temperature profile obtained from a

rocket probe carrying a three-axis accelerometer. The two data sets provide a

fairly complete (and in some cases, redundant) picture of the breaking (or more

correctly, the saturation) of a large-amplitude, low-frequency, long-wavelength

internal gravity wave. The data show that small-scale turbulence and small-

scale wave intensity is greatest at those altitudes where the large-scale wave-

induced temperature lapse rate is most negative or most nearly unstable, but

the wind shear due to the large-scale wave is a minimum.

A brief review of linear gravity-wave theory will be presented in the next

section as an aid to the identification of the gravity-wave signature in the

radar and rocket data. A more complete review of gravity-wave saturation

theory can be found in FRITTS (1984). Analysls of the time and height cross

sections of wind speed and turbulence intensity observed by the Poker Flat MST

radar will follow. Then, the vertical profile of temperature and winds

measured by a rocket probe will be examined. Finally, the use of the

independent but complimentary data sets provided by the rocket and the radar

will be discussed and implications for theories of wave saturation will be

presented.

*Currently at the Cooperative Institute for Research in Environmental Sciences

(CIRES), University of Colorado, Boulder, CO.
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ABBREVIATEDGRAVITY-WAVETHEORY

Applicationof the linear perturbation method to the i_equations of motion,

continuity and thermodynamic energy produces gravity-wave solutions with waves

of the form eZ/2He -i(kx + mz - ket) where H is the density scale height,

k (= 2w/k ) and m (= 2_/%_) are horizontal and vertical wave numbers,

c (= w/k)Xis horizontal p_ase speed and x, z and t represent horizontal and

vertical distances and time. For simplicity, it is assumed that the wave is

propagating in the x direction. The ez/2H factor maintains a constant energy

flux for waves propagating vertically through the atmosphere with density

decreasing exponentially with height. Mean quantities will be denoted by

overbars, perturbation quantities will be primed and subscripts (except on %)

will represent derivatives with respect to the subscript.

Substituting solutions of this form in the equations yields 'a dispersion

relation

N (1)
m = _- C

where N is the Brunt-Vaisala frequency defined by N 2 = _ ___8(g is the
8 _z

acceleration due to gravity and @ is potential temperature) and u is the mean

horizontal wind in the direction of wave propagation. This is a simplified

dispersion relation obtained by assuming an intrinsic frequency, w (= k(u-c)),

far from the inertial frequency, f, and from N, or f << w << N, assuming that

the waves are hydrostatic (i.e., k << m) and also by neglecting vertical shear

of the horizontal wind and neglecting terms of the order of I/4H 2 which

implies tha_% < 4ZH_90 km. The approximate dispersion relation yields an

estimate of S--z from measurements of N and vertical wavelength.

Since radars and rockets measure two orthogonal, horizontal wind

components and temperature, relations between these variables are needed to

concisely identify a gravity wave. A relation between horizontal and vertical

velocity perturbations comes from the continuity equation

u' = _ m w' (2)
k

u' and v' (the transverse wind component) are related by

V' = if u' (3)
W

which comes from solution of the horizontal component equations of motion.

This relation demonstrates that as w approaches f, the transverse wave

perturbation component increases and the perturbation velocity vector traces

out an ellipse. Such elliptical waves are known as inertio- or rotary-gravity

waves.

Finally, from the thermodynamic energy equation relations for temperature

perturbations are obtained:

u'e u'T
z z (4)

8' = - i _ T' = - i--_--

With these relations for temperature variables, a saturation limit on wave

amplitude can be obtained. When, (8 +. 8').z < 0 or @z' --< - 8z the atmosphere

is convectively unstable. Taking derzvatlves gives

mu__i'_ <-e (s)
N z - z
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substituting for m = N/u-c we obtain

lulzI -cl (6)

Thus, whenever the wave perturbation velocity exceeds the intrinsic wave phase

speed, convective instabilities are initiated in that portion of the wave field

where 8 z' f - 8z which also corresponds to that point in the wave field where

u' is maximum in the direction of wave propagation. Thus, the wave breaks down

where the velocity perturbation is a maximum and the shear is a minimum. In

the case of rotary waves, there is a shear of the transverse component at the

point where u' is maximum. This transverse shear contributes to lowering the

local Richardson number and instabilities can develop at amplitudes smaller

than _-c (FRITTS and RASTOGI, 1985).

From the above discussion, a possible scenario for a propagating wave is

that it will grow in proportion to ez/2H as it ascends until it reaches the

saturation amplitude of 5-c. At that height, turbulence will be produced by

instabilities, which will prevent the wave from growing further and hence the

wave amplitude will be fixed at the saturation amplitude. This scenario was

originally proposed by HODGES (1967).

Wave structure will be determined using the above relations and different

aspects of the data. From both the rocket and radar measurements of the

horizontal winds, the direction of wave propagation can be obtained. Both

radar and rocket data yield estimates of the vertical wavelength and thus

approximate intrinsic phase speeds from equation I. Then it is possible to

check the saturation condition with equation 6. The rocket probe provides an

additional check on the saturation condition since 8' and 8 z' can be

observed.

POKER FLAT MST RADAR DATA

The horizontal winds observed by the Poker Flat radar near the mesopause

on June 15, 1983, are shown in Figure i. The plotted vectors are computed from

15-minute averages of the oblique, radial winds that have been converted to

horizontal by assuming the vertical wind is zero for a 15-minute average.

Notice also, that only measurements at locations where the signal was

significantly above the noise floor were used in the averages. Thus, it is

possible to see two regions of strong signal propagating downward with time

near 1400 and 2100 AST (Alaska Standard Time) which are separated by a blank

region of no signal. This blank region implies either that the 3 m (radar half

wavelength) component of turbulence was weak or that the electron-density

gradient was weak or both.

The wind pattern in the latter half of the day reveals the presence of an

inertio-gravity wave since the wind vectors rotate clockwise with time at any

given height and also rotate clockwise with height at any given time. This is

the sense of rotation corresponding to an upward propagating wave with c > u or

a downward propagating wave with c < u in the Northern Hemisphere. Estimates

of 5 by direct observation and u - c from equation I reveal that c > _,

implying upward energy propagation.

A quantitative picture of the wave came from least squares fitting of sine

curves to the time series of radial velocities measured at each height in each

beam is shown in Figure 2. These fits gave the amplitude and phase (or time

of maximum) and the best fit period of the wave. The period was found to be 7

hrs. Combining the phase and amplitude parameters from the two orthogonal

beams revealed the fact that the rotating wind vector traced out an ellipse

with a maximum amplitude of 38 m/s horizontal with the major axis of the

ellipse along a line from 50 ° to 230 ° . In principle, knowledge of the time of
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maximum vertical velocity would determine the direction of wave propagation but

during the STATE campaign the Poker Flet MST radar's Doppler velocity

resolution was insufficient to reliebly measure the small vertical velocity

component of this wave. The propagation direction wes determined through use

of the rocket data es will be mentioned below.

Measurement of the change of phase with height, apparent in Figure 2, led

to an estimate of 19 km for the vertical wavelength of this wave. With our

estimate for N of 0.03 red/s from the rocket-measured temperature profile and

the observed value for m, u-c is found to be 90 m/s using the approximate

dispersion relation. This implies that the wave amplitude is at about 40_ of

the saturation amplitude. Thus, it appears that this wave is not large enough,

by itself, to produce the turbulent m_xing of the electron-density gradient to

which the MST radar is sensitive. However, the wave amplitude, shown in Figure

3, is not growing exponentielly with height, implying that some of the wave

energy is being dissipated in the 82-89 km region.
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NIKE-HYDAC ROCKET DATA

At 2051 AST on June 15, 1983, a Nike-Hydac rocket boosted an instrumented

sphere to an altitude of about 75 kin. The sphere continued in free flight to

an altitude of 130 km. Data were obtained from both the upleg and downleg

flights providing a continuous profile of winds and temperature from 75 to 130

kin. The one instrument in the sphere relevant to this study was a 3-axis

accelerometer used to measure accelerar/ons due to density changes and changes

in the winds. The temperature profile was obtained through integration of the

measured density profile.

The resultant meosphere/lower thermosphere temperature profile is shown in

Figure 4. There is a deep temperature minimum of 130°K at the summer mesopause

near 86 kin. The wind component profiles obtained from the accelerometers

appear in Figure 5. Again, the presence of an inertio-gravity can be inferred

from the wind data since the wind vector rotates clockwise with height above

about 90 kin.

130 F _---

110 F

100 F

90

8O

70

6O

I
100 150 200 250 300 350 400 450

T (OK)

I

500

Figure 4. Temperature profile obtained _ accelerometer

sphere at 2055 AST, June 15, 1983. Note the cold

summer mesopause with a temperature of 130°K near 86

ks.

Before attempting to fit sine waves to the temperature and wind profiles,

the data were differenced to remove linear trends such as the steady increase

of temperature with height in the lower thermosphere. The differenced profiles

appear in Figure 6. Fits were only made to the data above 85 km to avoid any

influence the notch at the mesopause might have on wave amplitude or phase.

The best fit vertical wavelength was found to be 30 kin. Combining the

wave amplitudes and phases from the wind data led to the conclusion that a wave

with an amplitude of 82 m/s was propagating towards 6 ° or 186 °, with the

maximum velocity occurring at 92 kin. The propagation direction can be
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Figure 6. Differenced data from the profiles of Figures 4 and 5. Note the

large variance in all three profiles at heights of 85 and 115 km.
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determined through use of the temperature data and the fact that the most

negative temperature gradient will occur at the height at which the

perturbation velocity is in the direction of propagation. This occurred at 85

km where the wind vector is directed towards 2950 . Thus, the two direction

estimates from the rocket data bracket the direction inferred from the radar

data. Uncertainties in the rocket data, principally the uncertainty introduced

when removing the linear trend in the velocity profiles without actually

knowing the mean wind profile, produce large uncertainties in the wave

direction. However, the location of the most negative temperature gradient

coincides with a wave velocity maximum in the radar data directed towards 230 °.

This fact and the nearly constant propagation direction profile in Figure 3

suggest that 230 ° is the most probable direction of wave propagation.

The wave amplitude and u-c inferred from the vertical wavelength imply the

wave is near 75% of saturation amplitude. The percentage of saturation

amplitude from the velocity estimates agrees rather well with the degree of

saturation from the temperature measurements. The ratio of the perturbation

temperature lapse rate to that of the mean plus adiabatic lapse rate gives a

figure of 73% of saturation amplitude. The analysis by FRITTS and RASTOGI

(1985) yields a saturation amplitude of 0.82 (u - c) due to the transverse

shear of the wave and the corresponding decrease in the local Richardson

number. Thus, this wave was very near saturation at upper heights. This

seems to contradict the radar data that suggested the wave was at only 40% of

saturation amplitude. However, the radar data are centered near 85 km while

the wave parameters from the rocket data were computed for the region from 85

to 130 kin. The wave amplitude increase with height is consistent with the

radar data in Figure 3.

Another discrepancy between the two data sets is the vertical wavelength

of 19 km from the radar data and 30 km from the rocket data. This difference

is to be expected since the steep temperature gradient above the mesopause and

larger values of N act to suppress vertical motion and lead to a compression of

vertical wavelenghts relative to the less steep gradients and smaller values of

N in the thermosphere as can be seen from the approximate dispersion relation

(equation I).

The wave parameters are summarized in Table I along with 95% confidence

limits from the least squares fitting of sine waves. The larger values of

- c, in Table I come from use of a more complete dispersion relation than

equation I, which has been used in the preceding paragraphs.

DISCUSSION

Analysis has shown that both the rocket payload and the radar were

observing the same low-frequency (7 hr period), long-wavelength (19-30 km),

large-amplitude (.4 - .8 of saturation amplitude) inertio-gravity wave. Both

data sets also exhibit manifestations of wave saturation or breaking.

The variance of the difference profiles of Figure 6 is much greater at

heights of 85 and 115 km than elsewhere and this is true for all three

profiles. These heights are also the heights at which the wave-induced

temperature perturbation lapse rate is most negative and the atmosphere is most

nearly unstable. The increased variance appears to be due to the presence of

smaller scale wave activity.

The radar data show that the regions of greatest S/N coincide with the

locations of the most unstable lapse rate and of the maximum velocity

perturbation in the direction of wave propagation as can be seen in Figure 7.

The contours are of S/N averaged over both oblique beams. The solid lines mark
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Table I

Large-scale wave characteristics on June 15, 1983

Radar data Rocket data

Data window 1200-2400 AST 2055 AST

82 - 89 km 85 - 130 km

Period 7 hr

l 19 km 30 km
Z

u' 38 + 5 mls 82 + 9 mls

T' 59 + 5 °

T' (using u' and

polarization relations) 20 ° 69 °

propagation dir. 230 _ 10 ° 186 or 295 Z 55 °

assumed N 0.03 rad/s 0.023 rad/s

- c 121 m/s 110 m/s

c 151 m/s

u' / _- c 0.26 0.75

Tz' / (Tz + g/Cp) 0.73

u' / v' 1.48 1.98

intrinsic period

using U - c 8.74 hr

using u'/v' 9 hr 6.67 hr

the location of the most negative temperature gradient determined from the

rocket temperature data (to be at 85.4 km at 2055 AST) and the vertical phase

speed estimated from the radar data. Clearly, the largest radar signal

strengths (and presumably the largest 3 m turbulence intensity) come from

regions determined by the near saturation of the inertio-gravity wave. Recall

that the single wave by itself was not large enough to saturate and produce

turbulence, hut FRITTS (1985) reported a numerical simulation demonstrating

that a superposition of waves can lead to saturation, even though none of the

waves possess saturation amplitude independently. Thus, gravity-wave

saturation near the mesopause involves a broad spectrum of internal gravity

waves.

This phenomenon of largest S/N appearing where the wave field is most

nearly unstable and also where the perturbation velocity vector is in the

direction of wave propagation allowed the determination of wave parameters for

a 3-hr period wave on June 17, for which temperature measurements were not

available.
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Figure 7. Contours of S/N averaged over both oblique

radar beams. Crosses are locations of the maximum

amplitude of the 7-hr inertio-gravity wave. Dot
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from rocket data and solid line indicates motion

of that lapse rate with the phase speed of the 7-

hr wave.

Both of these cases imply that the regions of intense mixing of the

electron-density gradient are closely coupled to the saturation of larse-scale

inertio-gravity waves. The scenario developed by BALSLEY et al. (1983) of

gravity waves being vertically compressed as they approach the summer mesopause

and thus approaching instability thresholds, holds for the inertio-gravity

waves observed during STATE.

This study has benefited tremendously from the combined data sets obtained

by rocket and MST radar. Future analysis of mesospheric dynamics and chemistry

should involve different, yet complimentary data-acquisition methods, i.e., the

radar provides a time history of winds while rockets provide a more extensive

height profile of winds and temperature. Substituting a lidar for the rocket

measurements would permit acquisition of a very complete picture of gravity-

wave dynamics.
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3.2.4 OBSERVATIONS OF THUNDER WITH THE ARECIBO VHF _%DAR

D. N. Holden and M. F. La;sen "_--_

Department of Physics and Astronomy

C1 em son University

Clemson, SC 29634-1911

An experiment was carried out at the Arecibo Observatory in Puerto Rico in

August 1985 to study Doppler velocities in a thunderstorm environment with a

beam pointed 2.5 ° off-vertical. We have detected two types of echoes

associated with lightnin 8. The first is associated with scattering from the

llghtnlng channel itself and has characteristics similar to those observed

previously with meteorological radars. The second appears to be due to

scattering from the turbulence organized by phase fronts of an acoustic wave

generated by lightnin 8. The observation described here isconslstent with a

wave traveling at a velocity near the speed of sound and having a vertical

phase velocity component of 40 m/s.

INTRODU CT ION

A number of investigators, including LIGDA (1950), ATLAS (1958), HOLP_S

et al. (1980) and MAZUR et al. (1984), have observed transient echoes

associated with lightning at shorter wavelengths typical of meteorological

radars (e.g., S band). These transient echoes are generally attributed to

scattering from the plasma in the lightning channel itself, as described by

DAWSON (1972). The plasma is expected to move with the surrounding air, and,

indeed, the transient echoes at S band (MAZUR st al., 1984) and our

observations at UHF have mean Doppler shifts typical of the air motions inside

a cloud and the spectral widths are in agreement with the broadening expected

due to the effects of atmospheric turbulence.

ROTTGER (1981), GAGE et al. (1978), and FUKAO et al. (1985) have already

shown that both the precipitation echoes and the "clear air" echoes due to

scattering by turbulent variations in the refractive index can be detected at

wavelengths near 6 m. The relative contributions of the two scattering

mechanisms depend on the radar wavelength, the intensity of the turbulence, and

the intensity of the precipitation, but usually it is not difficult to separate

the effects since the precipitation and air motions will be different, except

for the smallest droplets.

There have been very few observations of Doppler velocities in a

thunderstorm environment at wavelengths longer than a few tens of centimeters.

Exceptions include the experiments of LARSEN et al. (1982) at UHF and those of

ROTTGER (1981), GAGE et al. (1978), and FUKAO et 81. (1985) at VHF. In most of

the experiments, the coherent integration has been sufficiently long to exclude

the observation of effects on a time scale comparable to the scale of lightning

or acoustic waves. In August 1985, we carried out an experiment with the new

VHF radar located at the Areciho Observatory in Puerto Rico in which the raw

pulse-to-pulse data were recorded for later analysis. The observations show

what we believe is the first detection of acoustic waves generated by

lightning.

DESCRIPTION OF THE DATA

The VHF radar with a frequency of 46.8 MHz and UHF radar with a frequency

of 430 _z were operated on five separate afternoons in August 1985. We will

focus on the VHF radar data for the afternoons of August 4th and August 7th.
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The VHF transmitter operates at 50 kW peak power. The system uses the 300-m

diameter dish, of which the Yagi feed at the focus illuminates 200 m for an

effective beamwidth of less than 2 ° . The beam was pointed at 2.5 ° zenith angle

in this experiment and operated in one of two data-taking modes. The first

used a l-_sec pulse length and coherent integration online to give an effec-

tive sampling time of 92 msec. The second mode used a 2-_sec pulse length and

an interpulse period of 750 usec. The raw data were then recorded on magnetic

tape in this mode, so that the IPP and sampling interval were the same, or we

could coherently integrate off line to produce a smaller Nyquist frequency if

desired.

An electric field change meter and two tipping-bucket rain gauges were

also installed at the site and operated in conjunction with the radar

measurements. The field change meter was used to determine the time of

occurrence of lightning, as well as a qualitative estimate of the distance of

the discharge from the radar.

DOPPLER SPECTRA

Figure 1 shows an example of Doppler spectra over a range of heights

obtained with Mode I when a thunderstorm was overhead. The heights in range

gates 48 through 81 show a contribution primarily from the "clear air" scatter.

These spectra are wider than the spectra observed in a nonconvective

environment. The upper heights, e.g., gates 82 to 95, show spectra that are

broadened to such an extent that it is difficult to discern a peak. The power

profile at the right of Figure I shows that these heights are characterized by

high rather than low power levels.

The maximum unambiguous velocity using Mode I was +8.7 m/s. The

lightning-associated spectra have widths which are of t_e order of the spectral

window since the power is essentially constant across the window. A possible

explanation is that the mean Doppler velocity is much greater than the maximum

resolvable velocity. We expect that the spectral width would scale in same way

with the mean velocity and would account for these observations. Although a

large velocity would cause aliasing, the aliasing itself would not account for

the increase in the width of the spectra. We infer that lightning was present

in the beam when only same of the range gates show the broad spectra, as in

Figure 1.

An example of the spectra obtained using Mode II is shown in Figure 2.

The increased time resolution made it possible to attain much larger

unambiguous velocity determinations. We found no evidence of lightning in the

beam on the days when data were taken with Mode II. However, the electric

field change data did show evidence of more distant lightning discharges.

Figure 2 shows such spectra recorded at the same time as a more distant dis-

charge. Of particular interest are the features with velocities near +_30 m/s

in gates 19 to 23 which appear only for the time required to produce the

spectra (less than 4 sec). The change in sign of the vertical Doppler shift

between gates 20 and 21 could be attributable to vertical phase variation in

the wave or to the geometrical relation between the observing angle of the

radar and the location of the source, as we will show in the next section.

INTERPRETATION OF MEASURED VELOCITIES

The signals measured at VHF will have a component due to the scattering

from the lightning channel itself, a component due to the backscatter from

refractive index variations, and a component due to the scatter from liquid or

frozen droplets. The first does not appear to affect the observations on

August 4th, based both on the characteristics of the spectra and the electric

field change records which did not indicate any lightning nearby. It is
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POINTS PER SPECTRA = 32 FILE NUMBER = 1
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Figure 1. VHF Doppler spectra integrated for nine seconds, with spectra plotted

for gates 44 through 91 and a height profile of mean velocity, total power,

and noise level for 256 gates. Positive Doppler velocity (toward the radar)

is to the right of center, each spectra is scaled to its own peak.

Note the large variance in the upper gates (above 90) as compared with the

lower ones.

unreasonable to expect that either solid or liquid precipitation will travel at

velocities close to 40 m/s since terminal velocities, even for hail, are less

than 20 m/s (PRUPPACHER and KLETT, 1980) and would be only downward directed;

further, no precipitation was recorded by the rain gauges.

Vertical motions of 40 m/s inside the cloud cannot be excluded absolutely

but appear unlikely. It would be easier to explain the observed velocities as

being due to the vertical projection of a near-horizontal acoustic phase

velocity. However, it cannot be that we are scattering from 3-m acoustic

waves, because in that case only waves propagating parallel to the radar be_,

contribute to the backscatter. Also, a wavelength of 3 m is not consistent

with the wave properties derived below. A possible explanation is that 3-m

irregularities are acting as a tracer of the motion of the acoustic front.

The observations can be interpreted in terms of the dispersion relation

for acoustic-gravity waves (YEH and LIU, 1974).

2 (1 _a2/_ 2)kh2 (I - _b2/_) + kz2 = k ° - •

The behavior will be complicated by the background temperature gradients and
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Figure 2. VHF Doppler spectra taken in mode II (see text). Note the large

Doppler shift in gates 19 through 23. The spectra are integrated for 3.8

seconds, the anomalous echoes did not appear in the previous spectra nor in

the next. The time of these spectra is coincident with a lightning

discharge as indicated by an electric field change meter.

other effects not accounted for in this simple form of the dispersion relation.

Here, k =_/c , _ = Co/2H is the acoustic cut-off frequency, and_0 .O a

is the Brunt-Vazsala frequency. The local speed of sound is c , the scale
O

height is H, and k and k are the horizontal and vertical wave number
• Z

components, respectively. The background parameters were calculated from the

San Juan radiosonde data closest to the time of the observations.

We can only look at the behavior of the wave solutions in certain limits

since we do not know the horizontal wave number. The first limit corresponds

to a horizontal wave number that is much smaller than the vertical wave number

which we calculate from the power profile to be k = 2w/2400 m. The solution

for the wave period then gives a value of T = 7.9 s z which is on the acoustic

branch of the dispersion relation. The total phase velocity is close to the

speed of sound as determined from the sounding and has a large horizontal

componen t.

If we assume that the horizontal and vertical wave numbers are comparable

in magnitude, one solution corresponds to a period of 7.3 rain which is in the

gravity regime, the other solution corresponds to a period of 5.6 s which is

also on the acoustic branch. However, the phase velocity of the gravity wave

is much less than the observed velocity, and the observation could only be
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explained if the mean air motion over the pulse volume was of the order of

30-40 m/s.

A point source at some distance laterally will produce an acoustic wave

that is propagating more or less horizontally above the vertically pointing

radar. A wave traveling at the speed of sound (%300 m/s) can produce a

vertical component of the phase velocity of _30-40 m/s if it enters the pulse

volume at a large zenith angle, say 85 ° . Also, there would be upward and down-

ward velocity components above and below the height corresponding to the height

of the source. Figure 3 shows the geometry of a single source, displaced

horizontally 6 km and downward 0.2 kin. The downward displacement accounts for

the larger upward velocities observed in the upper range gates. The

temperature profile to the right indicates an inversion at an altitude of

around ii kin. The inversion may have provided some ducting of the acoustic

wave which would explain the appearance of the anomalous echoes in only a few

ga tes.

OONCLUS ION

Experiments carried out with the 46.8-MHz Arecibo radar during August

1985, have shown that there is a component in backscattered signals produced in

connection with lightning events that are not observed at shorter wavelengths,

e.g., S band. There are many unknowns in the analysis of these new echoes, as

detailed above, but is plausible that the echoes are due to scattering from

refractive index variations associated with acoustic waves generated by

IRADAR BEAM

WAVE FRONTS

VERTICAL VELOCITY

COMPONENTS

13 km(=I)

12

DU _TI_
ISOURCE

iI

I0

\
t • | |

-69 ° _40 ° _20 °

Temperature - Celsius

Figure 3. Schematic representation of lightning produced acoustic wave

as measured by vertically pointing VHF Doppler radar. The distance

from the source is estimated to be 6 kilometers, horizontally, where

the angles have been enlarged for the sake of clarity. The tempera-

ture profile on the right is taken from the San Juan radiosonde.

Note the inversion that occurs at approximately 11 km msl.
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lishtnin 8. The data taken when lightning was some distance from the radar

shows a pattern of positive and nesative velo¢itles with amplitudes on the

order of 20-40 m/s. The obse_vatlons can be explained if the velocity is the

line-of-sight component of the acoustic phase velocity traced by 3-m

irregularitles and the source was some 6 fun _ay. The data taken when

lishtnin 8 is in the beam are more difficult to interpret, partly because in

that particular data-takin 8 mode, a smaller value for the maximum unambisuous

velocity resulted in aliaslng of the Doppler spectra. We cannot rule out that

acoustic waves were responsible for these echoes, as well.
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3.2.5 THE PRCU ST RADAR : FIRST RESULTS
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CNET/CRPE

4 Av. de Neptune

94107 St Maur des Fosses, France

Two campaigns took place in 1984 with the PROUST Radar operating in a

bistatic mode, the transmitting antenna pointing at the vertical and the

receiving one, 1 ° off the vertical axis. The antenna beam intersection covers

an altitude range between 3 and 9 km. A complete description of the radar

characteristics can be found in BERTIN et al. (1986). The first of these

campaigns are analysed here.

1. LEE WAVES OBSERVATION DURING AN "AUTAN WIND" SI_3ATION.

The "Autan" wind is a strong southeasterly wind observed in the southwest

of France, generated by a typical synoptic situation: high pressure over

Scandinavia associated with low pressure over Spain. Radiosonde measurements

yield a horizontal wind contribution of at most 0.2 m/s along the radar line-

of-sight. The dashed line in Figure lb gives the observed vertical wind

profile, and the vertical line, the estimated horizontal wind contribution.

The observed wind can be regarded as mainly due to the vertical component.

Over the whole range of observed altitude, a downward wind is detected with an

amplitude that decreases from 1.2 m/s (at 3 kin) to 0.25 m/s (at 7.2 kin). The

horizontal bars give the error on the vertical wind, inferred from the Doppler

shift estimation. This profile shape might be interpreted as due to the

interaction between "Autan" wind and "Massif Central" topography. In order to

test this assumption, the lee wave model of QUENEY (1948) is used (Figure la).

This model gives a downward vertical wind above St Santin up to 7 kin. For

comparison, this theoretical wind profile is also plotted in Figure lb. A good

agreement is found between observation and theory, the systematic difference

between the two profiles being probably due to the horizontal wind contribu-

ti on.

2. OBSERVAT]DN OF WAVE - TURBUL_CE INTERACTION IN A STORMY WARM FRONT

On June 6th, 1984, a stormy wa,m front was crossing over St Santin. The

echo power profiles associated with this front show an intense turbulence

observed both on the refractive index (signal-to-noise ratio) and on the

vertical wind fluctuations (spectral broadening). Figure 2 shows the spatio-

temporal evolution of the radar echo intensity and Doppler shift in the

altitude range 3-10 kin. In each gate, the echo power (S/N ratio expressed in

dB) is scaled according to a dashed code. The Doppler shift is scaled in m/s

on the vertical axis, while the local time is scaled in hours on the horizontal

axis. The contribution of the horizontal wind is, in this experiment, never

greater than 0.1 m/s. The mean value of the Doppler shift gives evidence of a

global upward wind of about 1 m/s during the front crossing. Associated with

this global upward movement, a very active turbulence gives rise to the

observed radar echoes.

2.1 Estimation of the energy dissipation rate. For the strongest echoes

(occurring in gates n ° 6 and 7), a spectral broadening of about 0.5 m/s is

observed. It is noteworthy that the spectral broadening due to the

deformations introduced by the antenna beam geometry (and detailed in

SPIZZICHINO, 1975) is estimated to be never greater than 0.1 m/s. In these

conditions, the observed spectral widths give an estimation of the rms value of

the turbulent wind fluctuations w' along the vertical. The energy dissipation

rate e can he easily inferred from w' by using the following expression
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proposed by WEINSTOfX (1981).

= 0.4 w'2_B (I)

where _B is the Brunt-Vaisala frequency.

Figure 3 shows the Brunt-Vaisala period (BVP) profile, obtained from

radiosonde data. Fir_11y, relation (1) yields an energy dissipation rate value

in the range

1.10-3 < E < 2.10-3 m2s-3

for the strongest echoes observed in gate n°7. This is a typical value for a

very active turbulence (LILLY et al., 1974).

2.2 Waves and turbulence. Besides the global upward movement of the air

along the front, oscillations are observed in the vertical wind intensity,

period and amplitude of which vary versus altitude. In gates n°8 to 10, oscil-

lations with a range period of 8-9 minutes are clearly observed, while a 3-

minute period appears in gates n°6 and 7 just after the strong intensification

of the turbulent activity mentioned above. Comparison between these periods

and the BVP profile plotted in Figure 3 exhibits a striking agreement. This

observation is consistent with theoretical studies on gravity waves generated

by turbulence in stratified fluids. WEINSTOCK (1978, 1981) has shown that, in

a stratified atmosphere, the time evolution of the vertical velocity spectrum

implies the emission of gravity waves, generated by the vertical motion of the

air particles, with a frequency _K given by:

_°K = mB KH (2)
-K--
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Figure 2. Spatio-temporal evolution

of the radar echo power on June 6,

1984.

where K is the wave number and _ its horizontal component. The good
correlation betweem BV and observed frequency seems to indicate that the wave

propagation is mainly horizontal. These propagation characteristics are also

found by METALS (1984) with a numerical model.

CONCLUS ION

The first results analysed above show the capability of the PR_JST Radar

to measure the turbulent parameters and study the turbulence-wave interaction.

In its present configuration (bistatie mode and 600 m vertical resolution), it

has been necessary to make some assumptions that are known not to be truly

fulfilled: homogeneous turbulence and constant vertical wind intensity over

a 600-m thickness. It is clear that a more detailed study of the interaction
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between wave and turbulence will be possible with the next version of PR_ST

Radar (30-m altitude resolution and monostatic mode) that will soon be

achieved.
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3.2.6 SIMULTANEOUS FINE STRUCTURE OBSERVATION OF WIND AND TEMPERATURE PROFILES

BY THE ARECIBO 430-_z RADAR AND IN SI%'J _ASUR_HENTS
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H" Teitelbaum2' and R" F" W°°dman3N 8 _ F m" I 0 4 4 6
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INTRODUCTION ;

The study of _he interaction between waves and turbulence in the

troposphere and lower stratosphere requires continuous fine structure

observation of both wind and temperature profiles. The radar technics (ST

radars) allow a continuous observation of wind profiles with a vertical

resolution of at least 150 m, while balloon-borne measurements of temperature

and wind are potentially able to provide a spatial resolution as short as 0.1 m

along the balloon trajectory. The use of balloon-borne technics, concurrently

with radar observations, is necessary to understand the generation mechanisms

of turbulence and to improve our knowledge about the radar measurement physics

FRITTS et al., 1984_ THOMAS et al., 1985).

EXPERI_NT

A simultaneous campaign of balloon and radar measurements took place on

March 14-16th, 1984, above the Arecibo 430-MHz radar. This radar was operatin 8

with a vertical resolution of 150 m following two antenrm beam directions: 15 °

from the zenith, respectively, in the N-S and E-W directions (WOODMAN, 1980).

The balloons (5-m diameter) were equipped with sonic anemometers (accuracy of

0.05 m/s) and temperature sensors (accuracy of 0.1 K). The vertical velocity

of the balloons was of about 4 m/s. One of the three balloons, launched

during this campaign, flew only 3 km apart the radar beam in the altitude range

14-15 km (Figure I).

RESULTS

We analyse here the main results concerning the comparison between the

flight and simultaneous radar measurements obtained on March 15, 1984.

i) The radar return power profile (S/N ratio in dB) exhibits maxima which

are generally well correlated with step-like structures in the potential

temperature profile (Figure 2). These structures are generally considered as

the consequence of the mixing processes induced by the turbulence.

2) A good correlation appears in the altitude range 12.5 - 19 km between

wind shears induced by a wave structure observed in the meridional wind and the

radar echo power maxima. This wave structure is characterized by a vertical

wavelength of about 2.5 Pun, and a period in the range 30-40 hours. These

characteristics are deduced from the twice daily r_insonde data launched from

the San Juan Airport by the National Weather Service (ROE, 1981).

OONCLUSION

These results have pointed out an example of the interaction between wave

and turbulence in the upper troposphere and lower stratosphere. Turbulent

layers are observed at locations where wind shears related to an internal

inertia-gravity wave are maxima. Wind and turbulence radar measurements will

allow to obtain the temporal variation of this interaction and to estimate the

amount of kinetic energy dissipated by this wave. A comparison between the
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energy dissipation rate deduced from the velocity variance and the spectral

width of the radar echoes is now in progress.
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3.2.7 COMPARISON BE_/E_ S.T. RADAR AND IN SITU BALLOON btEASURI_qENTS ,/
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A campaign for simultaneous in situ and remote _rvation of both

troposphere and stratosphere took place near Aire-sur-l'Adour (in southeastern

France) on May 4, 1984. The aim of this campaign was a better understanding of

the physics of radar echoes. The backscattered signal obtained with an ST

radar both at the vertical and 15 ° off vertical is compared with the velocity

and temperature measurements made in the same region (about I0 km north of

the radar site) by balloon-borne ionic anemometers and temperature sensors.

Radar Description Balloon Characteristics

Frequency: 47.8 MHz (I = 6.3 m)

Antenna: coaxial collinear, 2560 m2

Beamwidth: 8.8 °

Range resolutions: 300, 750, 2400 m

Duty cycle: 0.5 to 1%

Diameter: 20 m

Ascending velocity: 3 to 5 m/s

Ionic anemometer, accuracy: 0.02 m/s

Temperature sensor, accuracy: 0.01 K

Balloon trajectory: given in Figure 1

The detailed analysis of the results obtained is not yet achieved. We present

here some preliminary results.

I. RADAR RESULTS

Typical examples of radar power return are given in Figure 2, in oblique

(Figure 2a) and vertical (Figure 2b) directions. The vertical line at -10 dB

corresponds to the limit of detectability. The signal-to-noise ratio is 5 to

I0 dB stronger in the vertical than in the oblique direction. An enhancement

of the radar power return is observed in the lower stratosphere both in oblique

and vertical directions, but in the latter direction, the e_hancament is

affected by a temporal variability.

2. BALLOON RESULTS

A comparison between velocity and temperature variance profiles is given

in Figure 3 and suggests the following comments :

- As a general rule, the velocity variance is much smaller in the

stratosphere than in the troposphere because of the hydrostatic stability in

the former. On the other hand, temperature variance is far greater in the

stratosphere than in the troposphere. This is the consequence of the

atmospheric stratification.

- Six turbulent layers (labelled from I to 6 in Figure 3) are clearly

observed both in velocity and temperature profiles.

- In the stratosphere, maxima in temperature variance are not always

associated with maxima in velocity variance. In these regions, the temperature

fluctuations are not compatible with the classical turbulence theory, although

they contribute to the radar power return.

The temperature gradient profile obtained from the balloon-borne

temperature sensors (Figure 4a) exhibits a rather complex structure in the

stratosphere: very strong gradients may arise in very thin layers (few meters

width). The horizontal extent of these thin layers is not known but, as a

general rule, it is observed (Figure 4b) that in regions where the mean
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gradient (over 150 m) is highly positive, the standard deviation of the local

gradients is important, its value being of the sane order as the mean gradient

itself.

3. COMPARISON BEEWE_q RADAR BALLOON RESULTS

3.1 Oblique direction. The theoretical radar reflectivity n(k) and the

C 2 parameter have been estimated (under the classical quasi-isotropy
n

assumption) from the temperature fluctuation spectra computed in successive 30-

m width layers The amplitude of the spectra for the value k = 4_/% gives,
• . . . O

after integration throug_ the approprlate radar welghtzng function, an

estimation of (k) and Cn . The following expressions (OTTERST_q 1969) are
use d :

_(k) = 5/3 (7/8) koSn(k )

n(k) = 0.38 C 2%-1/3
n

In (I), 8n(ko) is the normalized one-dimensional spectrum of turbulence,
while in equation (2), a k spectrum is assumed.

The _(k) profile so obtained is compared in Figure 5 with the radar

results. For this comparison, the _(k) values calculated from balloon

measurements are systematically divided by t_m. It can be seen on this figure

that radar and balloon n (k) profiles exhibit a remarkably similar shape• This

good general agreement confirms that the radar echo power is strongly

correlated with the amplitude of the temperature fluctuation spectra. However,

as shown in Section 2, the assumption used in equations (i) and (2), (isotropy

of the turbulent field and spectra in k-5/3) for calculating the radar

reflectivity, are certainly not always fulfilled. This discrepancy with

respect to the classical theory may explain the systematic difference between

the _ values respectively calculated from radar and balloon-borne measurements.

In fact, the one-dimensional spectrum S (k) of temperature fluctuations
• . ° _ , °

along the balloon tra3ectory xs an integral in the Fourler space and in a plane

perpendicular to the k ° vector. Note that all these contributions are coming
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from k vectors greater or equal to k . On the other hand, the radar samples

the three-dimensional spectrum #(k) °t the particular mode k in the radar

radial direction. So, the observed difference between radar°and balloon

estimation of _(k) could be the consequence of the three-dimensional spectrum

anisotropy for k values greater than k ° i.e., for wavelength X < 3 m. However,
this assumed small-scale anisotropy is in contradiction with turbulent fields

generally observed that appear to be quasi-isotropic for scales smaller than

I0 m (BARAT and BERTIN, 1984). Consequently, the above assumed small-scale

anisotropy could be associated with the nonturbulent fine structure of the

temperature profiles observed in stratified fluids. This hypothesis is

supported by the balloon observation of strong increase of the temperature

gradient variance in highly stratified regions (see Figure 4b).

3.2 Vertical direction. The observed radar signal is 5 to i0 dB stronger

at the vertical than in the oblique direction but is affected by a greater

variability. The intensification of the echo power at the vertical is

generally interpreted as the result of a partial reflection on stable layers in

the stratosphere. The particular thermal structure of the stratosphere

observed in Figure 4a and 4b may explain the two main characteristics of the

vertical radar return power profile:

- spatial stability of the enhanced echoes which occur in regions where

the mean temperature gradient exhibits maxima

- temporal variability of these enhancements which could be explained by a

limited spatial extent of the thin layers where the strongest gradients occur.

An estimation of the radar reflection coefficient (GAGE and BALSLEY, 1980)

computed from the temperature gradient profile is given in Figure 6. In this

estimation, the contribution of the individual layers have been incoherently

added in the radar resolution range. The shape of this profile is in general

agreement with the radar vertical profiles of signal-over-noise ratio. This

result, obtained with simultaneous measurements, confirms the strong correla-

tion betwee_ mean stratification and strengthening of radar vertical echo power

already mentioned by GRE_q et al. (1980). Moreover, the detailed temperature

profile shows that these regions of strong stratification are also regions of

highly layered temperature gradient (see Figure 4b), leading to an increase of

reflection coefficient in the vertical direction.
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CON CLUS ION

In situ measurements clearly indicate that the temperature fluctua-

tions are not always consistent with the standard turbulent theory. Never-

theless, the assumptions generally made (isotropy and turbulent field in k)

and the classical formulation so derived for radar reflectivity (equations

1 and 2) are able to reproduce the shape of the radar return power profiles in

oblique directions. Another significant result is the confirmation of the role

played by the atmospheric stratification in the vertical echo power. It is

important to develop these simultaneous in situ and remote experiments for

a better description of the dynamical and thermal structure of the atmosphere

and for a better understanding of the mechanisms governing clear-air radar

reflectivity.
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A computer program has been teste_ and documented (WARNOCK and VANZANDT,

1985) that estimates mean values of C - in the stable free atmosphere from

standard National Weather Service balloon data or an equivalent data set. The

program is based on the statistical model for the occurrence of turbulenc_
developed by VANZANDT et al. (1981). Height profiles of the estimated C

agree well with profiles measured by the Sunset radar with a height resolution

of about 1 km. The program also estimates the energy dissipation rate e, but

because of the lack of suitable observations of e, the model for e has not yet

been evaluated sufficiently to be used in routine applications.

MODEL

There is considerable evidence that in the free atmosphere there are many

thin horizontally stratified turbulent layers embedded in the large-scale

laminar flow. They are thought to be due to local dynamic shear instabilities

in regions where the large-scale flow itself is stable (BREXHERTON, 1969;

ROSENBERG and DEWAN, 1974; WOODMAN, 1980; BARAT, 1982; VANZANDT, 1983; GOSSARD

et al., 1984). The value of the Richardson number, Ri, describes _he stability
of the flow; it is defined as the rati_ of the static stability, N , to the

square of the vector wind shear, S, i.e., Ri = N2/S 2 where N is the Brunt-

Vaisala frequency. In most regions Ri is greater than its critical value,

which is usually taken to be 1/4, and the flow is dynamically stable.

In the model, we make the following basic assumptions consistent with the

above scenario: (i) the fine structure in N 2 and S2 is horizontally

stratified and is superimposed on their large-scale mean vertical profiles.

This leads to fine structure in Ri; (2) turbulence occurs where the local

small-scale value of Ri <_ 1/4, so that thin horizontally stratified turbulent

layers are formed. Because the fine structure is not observed directly, we

estimate the occurrence of turbulence indirectly by using a statistical

approach. We parameterize the fine structure of S2 and N 2, and therefore,

Ri, in terms of the large-scale observable data. Because the fine structure is

thought to be due to a spectrum of gravity waves (VANZANDT, 1982), the

parameterization equations are consistent with gravity-wave theory. The

thickness of these layers is usually a few tens of meters.

COMPARISONS WITH RADAR DATA

Vertical profiles of model C 2 have been compared with profiles

measured by both radar and optica_ remote sensors. VANZANDT et al. (1978,

1981) found good agreement between profiles measured by the well-calibrated ST

Sunset radar and an earlier version of the model; furthermore, they found that

the model correctly tracked rapid changes of C 2 measured during the

passage of a jet stream over the radar site. _AGE et al. (1978) found satis-

factory agreement between an earlier version of the model and profiles measured

at four different radar sites operating at UH_ and VHF. More recently, GREEN
et al. (1984) compared model profiles of C measured simultaneously by the

• . n

Sunset radar and by the double star sclntlllometer operated by Jean Vernin of

the Universite de Nice. Excellent agreement was found between the radar and
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model profiles; however, at times the scintillometer measurements were less

than both the radar and model values.

In all of the above comparisons the model C 2 profile was derived from

a single balloon sounding. WARNOCK et al. (1985) c_nducted an observing

campaign during both the winter and summer of 1982; they compared the model and

radar measurements of the minimum, median, and maximum of 12 winter profiles

and 22 summer profiles. The model profiles agreed well with the data in both

magnitude and variability; futhermore, the calc_ations gave insight into the

meteorological conditions responsible for the C n variability.
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Recent work on the spectra of vertical velocity oscillations due to

gravity waves in the troposphere, stratosphere and the mesosphere has revealed

a typical feature which we call the '_runt-Vaisala cutoff". Several observers

(RASTOGI, 1975; ROTTGER, 1980a,b; ECKLUND et al., 1985) noticed a spectral peak

near the Brunt-Vaisala frequency. This peak often is characterized by a very

steep slope at the high frequency part, hut a fairly shallow slope towards

lower frequencies. Some example spectra of stratosphere observations are shown

in Figure I. This distinct spectral shape (most clear at the upper height

22.5 km) can be explained by the fact that the vertical velocity amplitudes of

atmospheric gravity waves increase with frequency up to their natural cutoff at

the Brunt-Vaisala frequency. ROTTGER and IERKIC (1985) showed that this peak

around the 4-6 rain period is very definitely due to gravity waves. VANZANDT

(1982) suggested that the total spectra of vertical velocity variations is a

manifestation of a universal spectrum of gravity waves.

RASTOGI (1975) found that the upper cutoff frequency of his mesospheric

observations is consistent with the Brunt-Vaisala frequency deduced from model

temperature profiles. ROTTGER (1980 a,b) compared the cutoff directly with the

profiles of the Brunt-Vaisala frequency deduced from radiosonde temperature

profiles of the troposphere and stratosphere. The spectrum-contour plot of

Figure 2 shows a typical example, indicating the consistency of the cutoff with

the Brunt-Vaisala frequency.

The observed spectral shape (Figure I) almost exactly resembles the model

spectra (Figure 3, vertical = 0 °) of SCHEFFLER and LIU (1985), when one

disregards here the low-frequency cutoff at the inertial frequency in the

model. It was pointed out by FRITTS (1984) and VANZANDT, LIU and GAGE

(personal communications, 1985) that Doppler shifts can substantially distort

the spectra. LIU and SCHEFFLER (personal communication, 1985) recently did

some model computations and showed that the spectral energy is redistributed

through the spectrum due to a Doppler shift. Although Liu and Scheffler used

the Boussinesq approximation in their simplified calculations to determine this

effect of the Doppler shift, it is reasonably evident that it will also be

revealed in the full wave solutions. The Doppler shift is most pronounced for

just those waves with frequencies very close to the Brunt-Vaisala frequency.

We assume that the distribution of gravity-wave phase velocities is

isotropic in azimuth with respect to the wind velocity (within a suitable

observation period). Then about one quarter of the waves are shifted to higher

frequencies, one quarter to lower frequencies and two quarters are not very

little shifted because their phase velocities are (exact or almost)

perpendicular to the wind velocity. The effect is that the spectrum is well

smeared out, but the peak at the Brunt-Vaisala frequency still remains

unshifted (due to the perpendicular waves) although it becomes less

distinguishable from the spread-out background spectrum. Another effect, wave

steepening due to amplitude growth of gravity waves can also have an influence

on the spectral shape. It was pointed out by WEINSTOCK (1985) that the wave

*On leave from Max-Planck-lnstitut fur Aeronemie, Katlenburg-Lindau, West

Germany.
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measured with the SOUSY VHF Radar (see

ROTTGER. 1981. for details). The large

rick,arks on the log scale indicate the

position of the spectral peak, which is

supposed to be at the Brunt-Vaisala

frequency.
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velocity steepens before it breaks. The steepening is because of harmonics

which also tend the spectrum to be shifted towards higher frequencies. A cut-

off above the Brunt-Vaisala frequency, however, is still apparent.

This effect may have influenced the velocity spectra observed by ECKLUND

et al. (1985) during disturbed conditions (high wind), but their spectral power

increased conspicuously, which may be attributed to spill-over from the

horizontal velocities through a wide antenna beam width or sidelobes. The

spread-out expected without the power increase can be noticed in the spectra of

heights 13.5 km and 16.5 km in Figure I, where a substantial amount of spectral

energy if found at periods of a few minutes, i.e., at frequencies higher than

the Brunt-Vaisala frequency. (This is particularly evident when one compares

the spectra of different heights.)

Figure 4 shows the profiles of the mean wind U and temperature T. We

notice a wind maximum of 22 ms -I at 13 kin, and s gr°dual decay of the wind

velocity down to a few ms-I at 20 kin. It was found by ROTTGER and IERKIC

(1985) that the gravity waves at the 4-6 min period have phase velocities of

about 40 ms-I and horizontal wavelengths of about I0 kin. A wind velocity of

20 ms-I can consequently yield a Doppler shift towards higher or lower

frequencies by up to almost a factor of two. The low wind velocity of a few

ms-I above 18 km has only a negligible influence on the spectral shape. This

effect of cutoff-steepening during low-wind velocities is clearly noticed when

comparing Figures I and 4. The peak near the Brunt-Vaisala frequency is rather

seen at z = 13.5 kin, but it gets more salient with height. It is also shifted

towards lower frequencies with height. Since a Doppler shift only widens but

does not shift the peak, this frequency shift can be attributed only to a

change o_ the Brunt-Vaisala frequency itself, which is equivalent to a change

of the vertical temperature gradient. This is quite apparent in Figure 4,

where we notice a highly stable temperature profile, i.e., a large Brunt-

Vaisala frequency, between 12 km and 16 km, and a lower-stability profile,

i.e., lower Brunt-Vaisala frequency, above 16 kin.
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Wethusregardthemeasurementof the frequency of the peak in a vertical

velocity spectrum to yield most directly the Brunt-Vaisala frequency from MST-

radar measurements. Knowing the Brunt-Vaisala-frequency profile, one can

deduce the potential temperature profile, if one has a calibration temperature

at one height. However, even the uncalibrated profile will be quite useful,

e.g., to determine fronts (defined by temperature inversions) and the tropo-

pause height. It has to be noted, however, that this method fails for super-

adiabatic lapse rates when the Brunt-Vaisala frequency is imaginary. Examples

can he found in the spectral plots published by ROTTGER (1980b). The applica-

tion of this method will also be difficult when the wind velocity is too high,

causing the Doppler effect to smear out the total spectrum and blur the Brunt-

Vaisala cutoff. A similar deficiency will also appear if the gravity-wave

distribution has a maximum in wind direction.
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The determination of the turbulent energy dissipation rate or the eddy

diffusion coefficient from radar observations can be done through the

turbulence refractive index structure constant, deduced from calibrated echo

power measurements, or through the turbulent velocity fluctuations, deduced

from the echo spectrum width. Besides the radar parameters, power and

spectrum width, the first approach needs knowledge of profiles of temperature

(and electron density in the mesosphere) and the fraction of the radar volume

filled with turbulence, and the latter approach needs knowledge of the

temperature profile, namely, the Brunt-Vaisala frequency. HOCKING (1985b) has

recently reviewed these techniques. WEINSTOCK (1981a) has shown that the

energy dissipation rate is of turbulence in the stable free atmosphere:

e = 0.4 • <W2> " _ (i)
B"

The mean squared velocity <W2> can be directly reduced from the width of the

radar power spectrum, provided that the effects of wind shear and beam width

broadening are negligible. It is shown by ROTTGER (1985a) that also the Brunt-

Vaisala frequency _R can be estimated from radar observations. Thus, the

energy dissipation _ate e can be directly deduced from radar data without the

need of any supplementary data or assumptions. The eddy diffusion coefficient

K, similarly is given by radar observations (e.g. WEINSTOCK, 1981b).

0.8_

K = _B_ = 0.32 <W2>/_B (2)

The factor of 0.8 in Equation (2) is not well known yet, however.

Mesospheric data were taken during an ATMAP campaign, in November 1981,

with the SOUSY VHF Radar at the Arecibo Observatory using an average power of

6 kW on 46.8 MHz and a height resolution of 1.2 km, applying an 8-bit

complementary code. The main dish of the Observatory was used as an antenna

yielding a half-power beam width of 1.7 ° . The beam was pointed 2.3 ° off the

zenith such that a quasi-vertical velocity was measured, allowing to

investigate short-period gravity waves. The beam was kept fixed at the E- or

N- direction for about one hour, such that also the mean hor-izontal wind could

be measured.

Figure 1 shows the average horizontal velocity profiles, and Figure 2

shows the spectra of the quasi-vertical velocity variations deduced from

velocity time series (see ROTTGER, 1985a). We notice fairly low horizontal

velocities smaller than 20 ms -1, and we also notice a clear cutoff of the

spectra at periods of a few minutes. Following the arguments of ROTTGER

(1985a), we assume that this cutoff is at the Brunt-Vaisala frequency. Since

the mean wind velocities were fairly low, only a small Doppler shift did result

and the spectra mostly indicate a clear cutoff. This is also seen in the

spectra intensity plots of Figure 3. To accentuate the consistency of the

cutoff with height and time, the spectra intensities are normalized separately

for each hour and altitude. The cutoff deduced from Figure 3, which is assumed

to be consistent with the Brunt-Vaisala frequency _B" is shown in Figure 4.

*On leave from Max-Planck-lnstitut fur Aeronemie, Katlenburg-Lindau, West

Germany.
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Figure i. Average profiles of zonal (U) and

meridional (V) winds in the mesosphere.

Time (numbers) is AST.

This is an average over 8 hours of mesospheric observations from 08 to 16 UT.

Since we have not observed an apparent anisotropy of the wave phenomena, i.e.,

the E- and N-bean spectra were not significantly different, data of all 8 hours

were combined in Figure 4 to yield the average mB" We clearly see a

significant increase of the average _ with height above 77 km. This
increase is expected to be an indicat_Eon of the mesopause, which we estimate

from these data to be aroun_d 80 km. Furthermore, we can deduce the profiles of

mean square wave velocity <W2> from the velocity time series, and the mean

square turbulent velocity <W2> from the spectral widths (average over 50 s).

The latter deduction can be done without applying corrections, since beam width

and wind shear broadening effects are estimated to be small (see HOCKING,

1985b).

%

Since the mean square wave velocity <W2> is about constant with height

and does not follow the exponential increase (continuous curve in Figure 4), we

assume that the waves were dissipated (see also ROTTGER, 1985b). This is

consistent with other mesospheric observations (e.g., FRITTS et al., 1984). If

we assume that the gravity waves are dissipated into turbulence, we would

assume an increase in the energy dissipation rate. This quantity can be

deduced from the mean square turbulent velocity and the Brunt-Vaisala frequency

profiles (see Equation (1)). The energy dissipation rate is proportional to

the eddy diffusion coefficient, which is shown in Figure 5. It apparently has

a maximum between 70 and 78 km, where the wave velocity stays almost constant.

Above 78 km, the eddy diffusion coefficient is small and constant. This is



175

NOV. 21. 1981

12A$T 13AST
, .................. ; -_,.,;...................
:e : ul e

.'1 '. ml e
,s I I I Ii

IN ii i I

76.8 ." --" , /
• /

2Z_

..... r'T"T"I .......... r'T"T"I .......

75.6 _":",-..-."",m I'I _ram,,,,,,,,m,
m i m
;u i mlmml ilmllml

I. ; "--'...................... _ ...................
_ '_ .-- i

:m , i : "'
74.4 ,,,, , , Z I: ,,mmmm i

lem i : Ill m

"I I II Im :

! : 1
: i Il

i i--. i
........................ : I,_ ..............

Z/kin
;;'i....................: ,;. ,; --'....................

=of i = E :
IM_um • _

..... ..-.,.,,..,,.o6 .......,,,...,,.. ,.......,,..,..,,,,

.....................•l• .,,"--'.....................1, ,i;"--"...................,1
lee I I

_ ,-, •• '_ i_.8 ,,,- ; ,m,

mm_mee : _ • :

-: .............................................. ; _ .................... .,.
illmu

, .ms |
| n I69.8 m._m

,.i. _., ,-- l "" '
I ilmmm II/ z

68.4

,,,,,..,.,,,.,.,,,,,,,
mid
m
I
u
ill
I

_____e

....r'T"T"r'T"
13 4 25

,,,,.,,..,,.,.,,..,.,,.,

:IF.
I

m .k
I m

.... r'T"l'"r"r"

13 4 25.5

TI_

HAST
1"'"'; ............... ;-- 1.0
1.-" I
lalll
ml

_T,.r,,.,,L ao

:.JJ
_.,..._- oo

13 4 25

P/re' s':

Figure 2. Spectra of quasi-verEical velocity.

averaged over 54 minutes. P = 1 m2 s-2

corresponds to a power density of 3.2 • 103

m 2 s-2 /Hz.



176

Z/kin

i,_'" ' ,.,

OF poOR _, ;,.,_,...:i_-'_

NOV. 21, 1881

9o_ ....................... ,If, ....................... I ,,,,,,,,,,,,.--,.,,-,I....................... If,...,,,,,.,,.,....................... ,,.;--
lelmoiM4tNu_lee*(, ii! !I '' I is|ulNlzlckce||eloluecc!! z SIt

!• :ueel4_|utia a¢lINal!

_4_ i, ........................I,.,,,O,¢,,,I,,'O"OII'¢'¢¢', ;' l,.O,_...........................,,,_, ,,1.,,,¢'C1 Z,I,..,.LCC,,,,,,,_.................,,|eO|lIHIIIl|'l l_(ll(i|(m|
I.

IO_lOlllelss ii II | |O0|II|II(I|_SIH;IS(I I_ _ IgIQqlOilOl_lflaa¢i£Ce ell
|IBII||I|I:ICI IltlIIC°¢l |llQIl_olllIcsaSsI_l|¢ • lOiXl_s_c.|¢o aH l

| IOIQIllOIIOO_Ile_IJ_II
llellllN_'oa !
ioooeleee,, t
leH0el0RC= t

leel_iiinuiI_*( =IIC

I
_ 08

,I
_oJ

.... I'"I'"T'T"r"

iiIii1_1_1 i{111 _1 iIi111

_', Iltelteetll_(I.i i l. : tt _. |lltl{ciClltlllll It: licit{ill.lit=
IlU=IIl(=== lll0l¢lll.¢ J =1 " IIII!1 _IIleC
sleSllll_(_=:.¢:c ,: Zlllleluolil¢l|l¢l.ct i Z001tClIII.. == ,

IlIe_¢*_|=c_ _ t I¢lioile¢(,
liiesIS| =cl¢ t IIII01,II_ ,

I II014_e4_,

Iil=ln:=_¢¢ _=c, _ ! :,ItLulIIIlI'ln a,,¢¢¢1
IllII|II _ * I¢¢111¢ "" ¢¢ - I _el

Tll

I I

10 I I 12
i :ll'l¢ 1ll40141!'1¢ I I(¢ I I I

II '
.... r-r'T'r"l ....... r'T"T'T"f'"

t=I.=HHIHH,0H*IHI_ .aHNHHIH_IH=a,_:=a_Oq..............,, ,, ..-Jl. , ,"*'*":_'" .........,
IISIIIIC_ZlC(¢ ;C= t¢,l I Z ZelUleCCIMI _O|¢l tile!

| |llllOlgllll ii{ll c_l II0_011{

_ olll_ [11: 1 1lille I I tl_l _ll_ I I _1{ ii I_lHlO_IIIlOl_g_.l l_'i |Ill011011 _l_lglc_{ S
iiiil_i:illliili II_ I lllOIIlIIIIiil_l I ilI_I01II _ ii It I
IIOIilI{II_I=;I¢IIIII(I = IIIIIIIIIIl_l I¢(i i1

:_1 i_ll_llllll{(l i i{(1111 llOlll_Olll [ i I _ _ 1 Ii I IIIII_I_{C I II 1

!

_1 llllllllll( 1 I I IIIIlilll¢ I {i l{c i IiI
l

Ilgll:_'llS'l _ IlnlllIIllllII } IealeOla(le{i|lglll;_ _ :_. _ IC¢¢1¢1q(?{ JIll01111( I

:'"**'"_'_"_.• ' ', ,,c,,,'""".......,,,,c:.,,., ', I'*'"' ..... '

• II,,-,II ':IllllllII Ill{ i_:ll i ill ;1111111 i¢1 i • i{ill Ill 1
IIIIQIIQI(I" li_!'{liii : IIIIIII; i{I I IIIlilll I_1 t

l I_lllll{(( I _(i i | IIIIlllII :l'{ I[
I z x I I x

• _I i
091 13

: : I l

.... I::,I:=:zI,Ni=HI ....... I=,=It,Nl=, ul'" I ....... i,,,la,,,i-ui.Hi=.

13 4 2.5

T/rain.

' L
leeei.ii(i
lltllll.t, i =

........'-i
I 14 ,'-
I 'z

....I'T'T'T'r"

;¢ge{!ln¢oeNle*,¢ll l
II_lleC I i llll lilCtiI( II
I !
It_11111111_¢(_11 elli ,I
IIIIIIIIl{l*lll{llfl{lll|
IIIIiOllll (1(11{|1{111

I I
Ilillll II i(1_1 Iii II

I(III0_0111 i(_1
IIIIIIII iii i "
llll_OllIt((IIl{llI(i ;

' LZOI_10lell 1¢I¢ In

IlilllllI_{lll] ¢IIHlllilI.{ _ .I I
III0011(IILII_ I
I I

I
I 15

.... r'i'"r'i"r"
13 4 2_

Figure 3. Spectra intensity plots. Time is in AST;

even hours with beam at 2.3 ° zenith angle to the

east and odd hours to the north.

, i • i

•*T *_

_*o-_

Z4m _2"

/S£,

/2_P

_4

uo z._o"= ]._o"_

_e/.,"

I * i i

/

<it½1mz _z <wz>Im z _

Figure 4. Profiles of average (8 hours) estimate

of Brunt-Vaisal_ frequency __, mean square

wave velocity <_2> and mean _quare turbulent

velocity <W2>. The continuous curve in the

middle diagrams indicates the exponential

increase.

,:o



177

EDDY DIFFUSIONCOEFFICIENT
I I I I I

_m 792.

I l

I II 1

86,4" #/

8?..8-

75.6-

72.0-

6R4-

o ;o _ 3b 4b sb so

K/m 2 s-4

Figure 5. Profile of mean eddy diffusion

coefficient (solid line) deduced from

Figure 4. The dashed lines is from

HOCKING (1985).

quite consistent with the observation that the mean wave velocity again starts

to increase with height above 78 km.

In Figure 5, also the mean eddy diffusion coefficient (dashed line) from

HOCKING (1985a) is included for heights above 80 kin. It is about a factor of 2

larger than our values and it appears to be in the minimum of the mean values

given by HOCKING (1985a). Since our data are averages over one day only, they,

however, may not be representative for an average energy dissipation rate but

also large variations around mean values may occur. Since we are fairly

confident on the exact and well-defined deduction of the spectrum width, a

Brunt-Vaisala frequency 2 times smaller than our deducted _B would be neces-

sary to increase the eddy diffusion coefficient K. Such a Iow Brunt-Vaisala

frequency (_ 10-2 Hz) cannot be found from our spectra. We therefore

conclude that our profile of K is the most exact estimate available from radar

observations.
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3.3,4 THE RELATION OF GRAVITY WAVES

AND TURBULENCE IN THE MESOSPHERE

Jurgen Rottger*

Arecibo Observatory

P.O. Box 995

Arecibo, Puerto Rico

Gravity-wave saturation in the middle atmosphere is widely assumed to be

due to the increase of wave amplitude or from the encountering of a critical

level such that convective and/or shear instability limits the wave growth

(e.g., FRITTS, 1984). The growth of wave amplitude first results in a

steepening of wave velocities, i.e., in the generation of harmonics before the

wave eventually breaks into turbulence and gets saturated. As pointed out by

WEINSTOCK (1985), the saturation of the wave is accompanied by a near adiabatic

lapse rate and turbulence.

VHF MST radars with suitable sensitivity can detect turbulence in the

mesosphere _f the electron density and its vertical gradient is sufficiently

strong. It is unquestionable from many experiments that the radar-detected

turbulence is intermittent in space and time. Figure I shows an example of

layers of mesospheric echoes detected with the SOUSY VHF Radar at the Arecibo

Observatory (ROTTGER et al., 1981; CZECHOWSKY et al., 1984). A clear feature

in this figure is the splitting into several, periodically arranged layers.

Many authors have reported an apparent downward progression of such structures,

which is not readily apparent in Figure I, however. These discrete layers can

be due to turbulence or due to very persistent steep electron-density

gradients. We cannot imagine that the latter can endure in the daylight

ionosphere if they were not controlled by some kind of neutral a_nosphere

effect. It is often observed that long-period atmospheric gravity waves or

tides can give rise to turbulence layer generation (e.g., FRITTS et al., 1986).

The layers then should move downward which we do not observe. It is also

reported that layers occur preferably in strong wind shear regions (e.g.,

RUSTER, 1984). Figure 2 shows the simultaneously measured mean wind profiles.

These indicate a downward moving shear (trace the zero-crossings, particularly

in the meridional component), which is likely to be due to the diurnal tide.

Since the shear moves downward, we have to exclude that the observed

height-stationary turbulence layers of Figure 1 have to do with the tidal

variation of velocity or temperature.

We also cannot believe that these fairly thin and persistent layers

(better to be called sheets or laminae because of their narrowness) are

generated by short-period gravity waves. A common explanation is that gravity

wave breaking causes turbulence (e.g., FRITTS and RASTOGI, 1985) which we

should see in our records. Figures 3a and 3b show time series of spectra-

intensity plots for different altitudes. The intensity is printed in an

absolute reflectivity scale, such that the height and time dependence of

turbulence intensity (assuming no substantial electron-density profile change),

spectral width and mean radial (= almost vertical at 2.3 ° zenith angle)

velocity can be identified. We notice quite a substantial wave activity at

many different periods from 4 minutes upwards. If wave breaking would occur,

we should see an increase of intensity and spectrum width at certain phases of

these oscillations. Except occasionally in some upper heights, where some

intensity bursts are apparent (above 78 km in Figure 3b), we cannot clearly

detect such phenomena. The intermittency in space and time of the turbulence

*On leave from Max-Planck-lnstitut fur Aeronomie, Katlenburg-Lindau, West

Germany.
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of turbulence in Figure I).
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echoes appears in the majority of times and heights not related to these short-

period gravity waves. When carefully viewing the velocity oscillations, we,

however, often find clear indications of a nonsinusoidal variation. This

indicates a nonlinear steepening effect (WEINSTOCK, 1985), which transfers

energy from the fundamental into harmonics -- in our case mostly without

leading to breaking into turbulence. Another peculiar effect is seen some-

times, when a high-frequency wave is superimposed on a low-frequency wave

oscillation (e.g., at 69.6 km after 13 AST). KLOSTERMEYER (1984) has explained

similar observations at thermospheric heights to be due to parametric

instabilities.

There is apparently no distinct amplitude growth of these wave oscil-

lations (e.g., fairly clearly seen from 12-13 AST between 69.6 km and 76.8

kin, as well as in Figure 4 of ROTTGER, 1985). We, therefore, have to imply a

saturation process if we assume that these are vertically propagating waves.

Since in our case study we seldom observe a clear indication for wave breaking

into turbulence, we have to invoke other dissipation effects which limit the

wave growth, such as energy transfer into higher harmonics (nonlinear

steepening), parametric instabilities, radiative dampening or dissipation due

to kinematic viscosity and heat conduction. We also could assume that the

observed short-period gravity waves are locally generated or guided in wave

ducts, since most of the oscillations are confined to height ranges of a few

kilometers only.
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Figure 4. Height-time-intensity plots of mesospheric VHF-radar

echoes detected at the same time on two different days.

Since we cannot prove that the mesospheric turbulence layers (Figure i)

are generated by the simultaneously existing short-period gravity waves (Figure

3), we have to invoke other generation mechanisms than wave breaking. Possible

mechanisms like lateral convection (ROTTGER, 1980a), quasi-geostrophic flows at

mesoscales (LILLY, 1983) or vortical modes of motion as seem in the ocean

(MULLER and PUJALET, 1984) could be candidates. We are inclined to see a

connection of these layers or laminae with very-long-period internal waves

because of the periodicity in their vertical structure and their long mean

persistency (see Figure 5, which shows their appearance at two time periods

separated by 24 hours). ROTTGER (1980b) had proposed that such structures are

due the modulation of the mean temperature and wind profiles by internal waves.

The superposition of random or short-term wave-induced wind and temperature

fluctuations with the background profile, modulated by very-long-period waves

(quasi-inertia waves) then would yield the observed effects, namely could

explain the vertical periodicity, the long-term mean persistency as well as

some short-term variability of their intensity. Note that this phenomenon

does not need the short-term gravity waves to break into turbulence, rather

than to add a small shear of temperature variation to the background profile



modulatedby long-periodwaves (which cannot be detected with the radars), to

lead to very thin laminae where the Richardson number is smaller than its

critical value to initiate turbulence.
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3.3.5 CAN STOCHASTIC, DISSIPATIVE WAVE FIELDS

BE TREATED AS RANDOM WALK G_ERATORS?

J. Weinst ock

Aer onomy Laboratory

NOAA, Boulder, CO 80303

A suggestion by MEEK et al. (1985) that the gravity wave field be viewed

as stochastic, with significant nonlinearities, is applied to calculate

dif fusivities.

In a talk given in Boulder, REID (personal communication, 1985) described

the mesospheric wave field to be predominantly stochastic in character. In

fact, a recent paper by MEEK et al. (1985) quoted the BRISCOE (1975) descrip-

tion of the ocean wave field as "...an intermittent stochastic process with

significant.., nonlinearities", and suggested that this view should be adopted

in atmospheric studies. Others have noted the random character of the gravity

wave field as well (e.g., Vincent, Balsley).

If the Meek et al. point of view is adopted -- and account is taken that

the gravity wave field is often dissipative -- then one might be able to apply

the stochastic methods of turbulence transport theory to the gravity wave

field. That is, the wave field may be viewed as causing a random walk (of air

parcels) in the manner of turbulence: an irreversible process. However, since

the waves are not as dissipative or random as turbulence, the random walk can

only be an approximation -- an approximation that improves with increasing

dissipation and randomness.

Aside from this uncertainty, there is the obvious difference that the wave

field "eddies" (which we picture as dissipating gravity waves) are strongly

influenced by stratification whereas the neutral turbulence eddies are not.

This difference can be accounted for in expressions of turbulent diffusion by

replacement of turbulent eddies with gravity wave Fourier components. The

question that remains is whether or not such a stochastic wave model is

significant for diffusion in the mesosphere.

The purpose of our article is to calculate the diffusivity for that

stochastic model and compare with previous diffusivity estimates. We do this

for an idealized case in which the wind velocity changes but slowly, and for

which saturation is the principal mechanism by which wave energy is lost. A

related calculation was given in a very brief way (WEINSTOCK, 1976), but the

approximations were not fully justified, nor were the physical pre-suppositions

clearly explained. The observations of MEEK et al. (1985) have clarified the

pre-suppositions for us, and provided a rationalization and improvement of the

approximations employed.

The derivation begins with the diffusivity tensor D of a stochastic,

dissipating velocity field given by TAYLOR (1921) as

2

= lira < - > /2tt-_o (_t x)

om= dt<v'(x, t')v'(_, + _t' t' + t)> (i)o

I° f I1 T
- dt {i dx I L dx 2 _ dt' v'(_, t')v'(;_ t, t + t')}

o L 2 o o

where v'
(x, t') is the velocity fluctuation at point _ at time t', _t is the
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position a particle will be at time t + t' given that the particle was

previously at point x at time t' (the orbit of a particle in the combined

velocity field of me'an flow and waves), the angular brackets denote an average

over time t' and over horizontal spatial coordinates x I and x_, L is the
length scale of the spatial average and T is the time scale the time

average. The time scale T is taken to be much larger than largest gravity wave

period 2H/m(T >> 2H/m), and L is much larger than the largest wavelength under

consideration. Equation (i) also occurs in the theory of Brownian motion.

For a spectrum of gravity waves, the (stochastic) velocity fluctuation can

be represented by

t') = Zk _ exp(ik I_ x + imlt')
_i 1

(2)

v' t+t') = I v exp[ik 2 • x + im2(t + t')]
(xt' k2_2 _t '

where k I is the wave vector of a wave fluctuation, _V_l its amplitude, and

ml its frequency. Note that <(_v')2> = EY. v.*, where the asterisk
_kl_ I

denotes the complex conjugate, and we use _(-_i ) = _i to ensure that (2)

is real.

Substitution of (2) and (I), it is found in a detailed derivation that

D , the vertical diffusivity is given by
ZZ

D _ E- (3)

zz _ y k zl'I_

where w k is the vertical component of wave velocity v_, and _ is the

frequen'_y of wave _. This equation wa s derived for a_saturated wave field, and

dissipation was required for its derivation.

To generalize (3) to the case of a not completely saturated wave field, it

can be shown that H need be replaced by h ° in (3)

<WkW_*> (4)

DZZ % _Z ykzhom ,

where h is the "dissipation length" of the wave field, i.e., the length over

which t_e wave energy decay e-folds owing to saturation.

Whether or not this "stochastic wave" model of diffusion is useful for the

atmosphere we are not sure. Perhaps it may be useful as an upper bound -- the

more dissipative the waves, the more justified its application. Numerically,

the model gives values of D in conformity with chemical model estimates

(e.g., VINCENT, 1984), but _ether this is more than a coincidence, we do not

know. It is a straightforward way in which to apply the suggestion of Meek

et al. to the problem of diffusivity.



186

REFERI_CES

Briscoe, M. G. (1975). Introduction to a collection of papers on oceanic inter-

hal waves, J. Geophys. Reso. 80. 289.

Fisz. M. (1963). Probabillty Theory and Mathematlcal Statistics, John Wiley &

Sonsp Inc., Nee York, Chap. 4.

Meek. C° E., I. M. Reid. and Ao H° Manson (1985)m Observations of mesospheric

wind velocities, I. Report No. 1, Atmospherics Dynamics Group, Univ.

of Saskatchewan o Saskatoon, Saskatchewan.

Taylor. G. I. (1921). Diffusion by continuous movements. Proc° London Math

Soc., 20, 196-212.

Vincent, R. A, (1984). Gravity-wave motions in the mesosphere, J. Atmos. Terr.

Phys., 46, 119-128.

Weinstock. J° (1976). Nonlinear theory of acoustic-gravity waves: Saturation

and enhanced diffusion, J. Geophys. Res., 81, 633-652.



3. .1O   RVATION A OF 8
VARIABILITY IN THE MIDDLE ATMOSPHERE • .

David C. Fritts

Geophysical Institute and Department of Physics,

University of Alaska

Fairbanks, AK

and

Robert A. Vincent

Department of Physics

University of Adelaide

Adelaide, S. Australia

I. Introduction

The recent recognition of the important role of gravity waves in middle

atmosphere dynamics has stimulated renewed interest in their propagation and

effects. The most significant effect, perhaps, is the drag that results from a

vertical divergence of the gravity-wave momentum flux due to wave saturation.

Initial studies of this momentum flux and divergence were performed by VINCENT

and REID (1983) and REID (1984). The purpose of this note is to report on a

more recent study that addressed the gravity-wave momentum flux, and its

variability in space and time, in detail.

II. DATA PRESENTATION AND DISCUSSION

As in the studies cited above, the data used in this study were collected

with the HF radar in Adelaide, Australia. The system capabilities and momentum

flux measurement technique were described by VINCENT and REID (1983).

A major goal of the present study was to determine what portion of the

gravity-wave frequency spectrum accounted for the majority of the momentum flux

and divergence, as this has important implications for the middle a_nosphere

response. It was found that _ 70% of the total flux and divergence was due to

wave motions with observed periods < 1 hr, consistent with expectations based

on the shape of the observed gravity-wave spectrum (FRITTS, 1984). This

dominance of the momentum flux and divergence by high-frequency motions implies

a potential for the modulation of those quantities by large-amplitude motions

at lower frequencies.

A second, striking aspect of the velocity and momentum flux data is its

dramatic diurnal variability, particularly at certain levels. This variability

is illustrated with the momentum flux, computed in 8-hr blocks, in Figure 1.

Note the large negative values occurring at 0000 local time at upper levels and

the phase lag at lower levels. As indicated above, the dominant contributions

here are due to waves with periods < I hr. The variability with height and

time of the mean square velocity in the west beam and the momentum flux,

averaged over the 3-day period, are illustrated in Figure 2. Note here the

rapid growth of wave amplitude (and momentum flux) below 90 km during the 8-hr

period centered at 0000 local time.

We have performed a detailed analysis of the various tidal motions present

during this data interval and have determined that variations in the zonal wind

profile imposed by the diurnal tidal motion likely are responsible for the

modulation of the gravity-wave amplitudes and momentum fluxes. The modulation

appears to proceed as follows. For most of each 24-hr period, the tidal winds
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Figure i. Momentum flux estimates in 8-hr

blocks as a function of height for 14-

16 June. Note the large diurnal modu-

lation at upper levels and the phase

lag at lower levels. Large negative

values occur preferentially near 0000

local time.
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period.
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donot alter substantially the zonal wind shears, which are normally negative,

causing a gradual reduction in _ - c (for westward propagating gravity waves)

and a gradual constriction of the momentum flux due to such waves, as shown

schematically in Figure 3a. These are the dominant gravity waves as evidenced

by the momentum flux data presented by VINCENT and FRITTS (1985). During the

interval centered at 0000 local time, however, the tidal winds during this

3-day period acted to reverse (make positive) the vertical shear of the zonal

"mean" wind, producing an enviroement in which_high-frequency easterly wave

motions experience a considerable increase of u - c with height. Because the

amplitude needed for saturation scales as u - c, these waves now propagate

upward largely without saturating, resulting in am amplitude and momentum flux

as shown in Figure 2 (see Figure 3b). Near 90 kin, however, the waves again

encounter an adverse shear, causing a rapid amplitude reduction and a large

momentum flux divergence.

The implications of this tidal modulation of the high-frequency momentum

fluxes are illustrated in Figure 4. The diurnal tidal amplitude at 90 km is

shown in Figure 4a and reaches a maximum near 0000 local time, at which time

the momentum flux and flux divergence below and at 90 km achieve large values.

The strong diurnal variation of the momentum flux divergence results in large,

temporarily localized zonal flow accelerations which may themselves alter the

(=)

U < -.._.

2--=

90

E

v

tu

80

- 80

Figure 3. Schematic of saturated 8rarity-wave amplitude and

momentum flux in an environment with 5-c decreasing (a) and

increasing (b). Note that the implied zonal drag is very

large above 90 km in the lower figure.
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Figure 4. Schematic illustrating the effects of a diurnally

varying zonal drag on the inferred tidal structure. The

results are an altered amplitude and an advanced phase

of the apparent tidal motion.

tidal structures or at least our ability to infer the tidal amplitudes and

phases. This mechanism suggests an advance of the phase of the diurnal tidal

motion during periods of particularly large diurnal tidal amplitudes,

consistent with tidal observations made during this period. This mechanism may

also be expected to contribute to the variability of tides and other low-

frequency components of the motion spectrum at other locations.
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An analysis of short-period wind fluctuations over Poker Flat, Alaska,

obtained using the Poker Flat MST Radar is pre6ented in Figure 1. Results are

shown for the troposphere and lower stratosphere as well as for the upper

mesosphere and lower thermosphere. Contours depict various levels of wind

variance (m2s-2). These results pertain only to wind fluctuation periods

lying between one and six hours. These particular fluctuations are generally

considered to arise primarily from atmospheric gravity waves. Insofar as this

is true, the figure thus describes a general climatology of gravity waves at

high latitudes.
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Figure I. Showing the variance of short-period wind fluctuations versus height

time for 1983. Note that blank regions correspond to regions of no data.
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3.5.2 CLIMATOLOGY OF TROPOSPHERIC VERTICAL VELOCITY SPECTRA

W
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In this brief report, we show vertical velocity po_ctra obtained

from Poker Flat, Alaska; Platteville, Colorado; Rhone Delta, France; and

Fonape, East Caroline Islands using 50-MHz clear-air radars with vertical

beams. The spectra were obtained by analyzing the quietest periods from the

one-minute-resolution time series for each site. The lengths of available

vertical records ranged from as long as 6 months at Poker Flat to about 1 month

at Platteville.

The quiet-time vertical velocity spectra are shown in Figure I. Spectral

period ranging from 2 minutes to 4 hours is shown on the abscissa and power

spectral density is given on the ordinate. The Brunt-Vaisala (B-V) periods

(determined from nearby sounding balloons) are indicated by the arrows. All

spectra (except the one from Platteville) exhibit a peak at periods slightly

longer than the B-V period, are flat at longer periods, and fall rapidly at

periods less than the B-V period. This behavior is expected for a spectrum of

internal waves and is very similar to what is observed in the ocean (ERIKSEN,

1978). The spectral amplitudes in Figure 1 vary by only a factor of 2 or 3

about the mean, and show that under quiet conditions vertical velocity spectra

from the troposphere are very similar at widely different locations.

Preliminary spectra from Liberal, Kansas and Christmas Island, Kiribati

are indicated by hatched areas in Figure 1. These spectra were obtained from

time series covering only 1 or 2 days and cannot be taken as being represen-

tative of quiet periods. It should be noted, however, that the shapes and

amplitudes of the spectra from these two sites are similar to the spectra from

the four other sites displayed in Figure 1.
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3.5.3 MESOSPHERIC GRAVITY-WAVE CLIMATOLOGY AT ADELAIDE
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The MF Adelaide partial-reflection radar has beem operating continuously

since November 1983. This has enabled a climatology of gravity-wave activity

to be constructed for the mesosphere. In accordance with recommendations of

the GRATMAP Steering Committee, the data have been analysed for a 'medium-

period' range of I to 8 hr and a longer period range between 8 and 24 hr,

covering the inertio-period waves. The tidal motions have been filtered out

prior to analysis.

For the data analysed so far (Nov 1983 - Dec 1984), a number of interest-

ing features have emerged. Firstly, the wave activity at heights above 80 km

shows a small semiannual variation with season with the activity being

strongest in summer and winter. At heights below 80 km however, there is a

similar but more marked variation with the weakest amplitudes occurring at the

time of the changeovers in the prevailing circulation. If breaking gravity

waves are responsible for much of the turbulence in the mesosphere, then the

periods March-April and September-October might also be expected to be periods

of weak turbulence. These predictions appear to be supported by direct

observations of turbulence dissipation rates (HOCKING, private communication).

Another important feature of the gravity waves is that the wave field

appears to be partially polarized. The meridio_l amplitudes are larger than

the zonal amplitudes, especially in winter, and there is a small but finite

u'v---_the sign of which changes with season. By calculating the "Stokes

parameters" for the gravity-wave field, in analogy to a partially polarized

electromagnetic wave field, it is found that the degree of polarization is

about 15% in summer and 30% in winter. The polarized component is found to

propagate in the opposite direction to the background flow in the stratosphere

which suggests that the polarization arises through directional filtering of

the waves as they propagate up from below.
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3.5.4 HORIZONTAL WIND PERTURBATIONS AND THEIR R_ATION TO TRANSIENT
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Horizontal winds as measured with the Saskatoon MF radar exhibit wind

fluctuations which have preferred directions toward north or south in the

period range 0-60 rain at heights between about 60 and Ii0 kin. Longer period

perturbations (_ 1-6 h) tend to have an additional maximum of direction

frequencies in the E-W sector. The polarization effect analysed for more than

6 years shows regular changes with season.

The main features of the seasonal variations of the direction

distributions can be explained by directional filtering of vertically

propagating nonstationary gravity waves and appropriate changes of the wave

source strength and position in the troposphere. The N-S polarization of the

gravity-wave field appears to result in meridional wind reversals with height

above the mesopause.

I. Introduction

A statistical study (over height and season) of wind perturbation

directions, measured by the MF radar at Saskatoon (52°N, 107°W) is made. The

direction (mod n) of maximum perturbation is found from _N, o, and P .
The variance as a function of direction is an ellipse, and-the-axial raN_o in

conjunction with the number of wind values used defines a significance level

(by comparison with randomly generated sequences), viz. the probability that

the perturbations are not isotropic. The two kinds of perturbations used are

those within an hour (WH) with respect to the hourly mean, and differences of

consecutive hourly means (HD) occurring during a day -- the periods are

approximately i i hr, and _ 1-6 hr, respectively (data gaps within the hour

cause some smearing of the period ranges).

On the assumption that these directed perturbations are a result of

gravity waves (GW) propagating in the direction of maximum perturbation, an

attempt is made to duplicate their measured total and seasonal characteristics

with a combination of background wind filtering and (possibly) anisotropic GW

direction distributions incident on the mesosphere from below.

2. DATA

Figure 1 shows the total (over height and month) histograms (number per

I0 ° direction box) for the HD and WH perturbations with no applied confidence

level (solid line) and all data falling below 80_ confidence (dashed line).

As expected, the theoretically more isotropic ellipses are distributed more



TQTa_.;

39&7

HD. 1961

_. "r_r^_.•

4 /
=1- . ns

1_ 18o
I

Q

0

0 /.5 90 tt5 1E)

DIRECTION (degrees}

Figure 1. Histogr_ns of ellipse tilt

angle directions for long (_O)

and short (WH) period wind per-

turbations at all heights (60-

ii0 km): all data (solid line),

and data below 80% confidence

level (dashed line).

197

uniformly in direction. Also, the HD and WH data have different features;

the former having peaks in N-S and E-W and the latter one peak at _ 10 ° E of N.

Figures 2a and 2b show monthly % occurrence histograms for two years (these

have been smoothed by a i,I,I filter before contouring). The HD data show

that the E-W peak occurs mainly in the winter, whereas the N-S peak is present

most of the year. The WH data show that N-S perturbations are more likely in

the summer. Both types tend towards flatter distributions at the equinoxes.

Figures 3a and 3b divide the data into three height regions (the

confidence limit had to be discarded in order to obtain sufficient data

quantity).

3. MODELS

Five background wind filters are considered (Figure 4) by superposition of

troposphere and stratosphere/lower mesosphere wind conditions. Except in model

A, winds are assumed to vary from 0 to the maximum speed in each region. Model

A assumes a minimum speed of 20 m/s (e.g., for tropospherically generated

waves). Model A' (not shown) is the same as model A except that the minimum

speed is 0 m/s. The hatched areas in this figure indicates forbidden phase

velocities (the smallest circle excludes quasi-stationary waves in all models).

Three GW direction distributions are used: isotropic, predominantly E-W

[I + cos 4 (_- 90°)], and northward biased [I for _ = 90 ° - 270 ° , and
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Figure 4. Model filters based on background seasonal

wind characteristics. Maximum troposphere speed

is 25 m/s; maximum stratosphere/lower mesosphere

speed is 50 m/s; minimum wind speed (A only) is

20 m/s. Shaded areas indicate forbidden propaga-

tion for gravity waves.

1 + 0.3cos (¢) otherwise]. The last might simulate an increased northward flux

created by thunderstorms and tornadoes in the summer. The phase speed

distribution is Gaussian:

G(c) = exp(c2/2Oc2)

where o is 30 m/s.
c

Predicted direction distributions created by combinations of filter and

source assumptions are shown in Figure 5.

CONCLUS ION S

In such a short paper, it is impossible to discuss the results fully, but

the following points may be made. For the WH data, it appears that filtering

action by the predominant northwesterlies in the troposphere could be the cause

of the bias towards NE perturbations in the mesosphere; also the fact that this

bias is strongest in summer indicates an increase in N-S propagating waves,

possibly due to thunderstorms or tornadoes. The HD data peak in the E-W

direction is not easily explainable, unless the incident GW distribution has an

E-W bias at these longer periods.
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3.6.1 POSSIBILITY OF MEASURING GRAVITY-WAVE MOMENTUM

FLUX BY SINGLE BEAM OBSERVATION OF MST RADAR
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VINCENT and REID (1983) proposed a technique to measure gravity-wave

momentum fluxes in the atmosphere by MST radars using two or more radar beans.

Since the vertical momentum fluxes are assumed to be due to gravity waves, it

appears possible to make use of the dispersion and polarization relations for

gravity waves in extracting useful information from the radar data. In

particular, for an oblique radar beam, information about both the vertical and

the horizontal velocities associated with the waves are contained in the

measured Doppler data. Therefore, it should be possible to extract both V
Z

and V h from a single besm observational configuration. In this paper, we

propose a procedure to perform such an analysis. The basic assumptions are:

the measured velocity fluctuations are due to gravity waves and a separable

model gravity-wave spectrum of the Garrett-Munk type that is statistically

homogeneous in the horizontal plane. Analytical expressions can be derived

that relate the observed velocity fluctuations to the wave momentum flux at

each range gate. In practice, the uncertainties related to the model

parameters and measurement accuracy will affect the results.

Let us consider an MST radar configuration. For an oblique beam, the

radial velocity contains information of both _h and v z. The polarization

relations (SCHEFFLER and LIU, 1985)

_8 \k

\

w

Y
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_2__2 k +i -- k

R =_ (,,__) (x = 7) Rx k z
Z

ink2-,,,2 k -i -- k

Ry (_--w i- ) ( 7 k ) Rz
g

mbZ-'_2 (kx+ky)-i _- (kx-k _)

"'" RxRz*+RyRz* = - (_--_--_i) ks IR zl 2
(1)

On the other hand, the polarization for the observed radial velocity is given

by

R 0b = RxCOS ¢Bsin BB+Ry sin@Bsin eB+RzCOS 8B (2)

From (i) to (2), we obtain

÷

R R *+R R * = f(k,_,_B) IR0b 12xz yz

where

f =

(3)(dZ-(_ 2

(_) _kz[C°SC+sln_'i T=i (cos@-sln¢)]

=z__ol"z =i z
[khCOS(#-_B)sin8 B + _ kz coseB]2 + _ _ sin28 B sin(0-0B)

Spectral representation of the velocities can be written as a Fourier-Stieltjes

integral :

vx = f R(_,=) e i(C'_-=t) dr(C,=)

Therefore

Vy = f Ry(_,_) e i(C'_-=t) dv(_,_)

Vz = / Rz(£'=) ei(C'_-=t) dr(C,=)

V0b = f R0b(_,u) e i(C'_-_t) dv(_,m)

<Vx zV > + <Vy zV > = f (RxRz*+RyRz*)E(C,=)dC d_

= f f(_,=) IRob12 E(C,=) dC d_o. (4)
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where the relation

<dv(l_1,a)l)dg(l_2,a_2)> = E(l_l,ml) 6(l_l-l_2)6(COl-¢_2)dl_idl_2d_oldtO 2

has been used.

On the other hand, we have

<V0b2 > = f lROb12 E(f,_)d¢d_

_2__2

IRobl2 I/2.k-- hos" "slne _a)P--u_ 2

I/2
= k t _-¢B ) B- (.b--.-)

%2_=2 kh2 toi 2

+ (_) (_-) sln2(@-¢ B) sin20 B
(s)

Procedure proposed for computing the momentum flux:

->

I. Assume a model spectrum E(k, co) with several parameters, including possible

anisotropy.

2. Fit the theoretical spectrum Eok (to) to the observed radial velocity

spectrum to determine the best get of parameters for the model. This

determines the model.

3. Use this model, compute through equations (4) and (5)

Discussion:

i. This procedure assumes the spectral shape remains approximately the same at

different heights and they are due to gravity waves.

2. The spectral fitting procedure depends on how sensitive is the spectrum due

to changes of model parameters. This should be studied.

3. It is expected noise in observed spectra due to the uncertainties related to

the model parameters and measurement inaccuracy may greatly affect the

results.

4. In principle, the procedure should also apply to cases with Doppler shift.

However, unless one has information about the background wind vector, the

model may contain too many parameters for re_istic spectral fitting.
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INTRODU CT ION _ f

/

The capability of ST radars to provide direct measurements of the momentum

flux presents an opportunity for maj or advances in a_nospheric science. Some

of the issues, needsj and techniques surrounding the measurement of momentum

flux are discussed by FRITTS (1984) and SCHOEBERL (1984), among others. The

vertical momentum flux was first measured using the two-bean technique by

VINCENT and REID (1983), who used mesospheric observations. They also

presented the body force due to the vertical divergence of the vertical

momentum flux. CORNISH and LARSEN (1984) examined the vertical momentum flux

at 14.5 km over Arecibo, but did not look into the momentum flux divergence.

It appears that no other results from the troposphere and stratosphere are

available.

The purpose of this paper is to present preliminary r_esults of momentum

flux and momentum flux divergence calculations made using data from the Sunset

radar. In an attempt to illustrate changing conditions, we present results

from a day when the background wind speeds aloft changed abruptly.

DESCRIPTION OF THE EXPERIMENT

The Sunset radar (GRE_lq et al., 1985) is located in a narrow mountain

canyon 15 km west of Boulder, Colorado, and is just east of the Continental

Divide. The array antenna of this VHF (ST) pulsed Doppler radar can be steered

in the east-west or north-south vertical plane. During the experiment reported

here, five antenna beam positions were used: vertical and 15 ° to the east,

west, north, and south. Three consecutive observations were made at each beam

position at 90-second intervals and then the beam was moved. A full cycle

could thus be made each 20 minutes. The relative locations of the radar

volumes are illustrated in Figure I.

The synoptic situation early in the day chosen, January 28, 1985, was

characterized by light winds throughout the height region sampled by the radar

(from about 4 to 14 km). After about 15 UT, a weak jet stream sagged southward

with winds at i0 km over the radar increasing from i0 m/s to over 30 m/s by 18

UT. Winds at all levels above 4 km were primarily from the west; surface wind

data were not available.

The method of VINCENT and REID (1983) was used for this calculation. The

vertical momentum flux, u'w' or v'w', is found from

u'w'(z) = [V-_(8,R)- V2(-O,R)] / (2 sin 28)

where V is the radial velocity, 0 is the antenna beam angle, R is the range

and z is the altitude. Altitudes from 4 to 14 km were sampled at l-km inter-

vals. Decreasing signal-to-noise sometimes rendered the upper level useless.



Sampled
Volume

11

Antenna

ss'

Jzton[_

'7 North

East

Figure 1. Schematic depiction of the radar begms positions at Sunset.
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The calculation was made at a given height only if all begm positions were

sampled every cycle during a full hour. Averaging periods of one hour and

three hours were used; as the results are similar except that the three-hourly

values are obviously smoothed, we have chosen to present the one-hour results

in order to capture as much detail of the effects of transients as possible.

Figure 2 shows the hourly momentum flux from00-18 UT. Values for the

meridional component (v'w') are typically a few tens of cm2/s2 from about

00-09 UT, and then increase in magnitude to on the order of a m2/s2 after

09 UT. The most notable event is found below 5 km at 10-12 UT, when v'w'

reached over -20 m2/s2. The values for the zo_l component _ are

usually less than a few m2/s2 before 09 UT, although a few magnitudes

exceed 10 m2/s2. These results can be compared with the aircraft measure-

ments given by LILLY and KENNEDY (1973). They report horizontally averaged

momentum flux values of about 8 dynes/cm 2 (which corresponds with 2 m2/s 2

for mean density of 5 x 10 -4 g/cm3); although their traces of integrated

momentum flux show large variability, indicatinglocal values range far from

the mean. At 10-12 UT a maximum is found in u'w' at the same location where a

minimum was found in v'w'. After 12 UT the values of u'w' generally exceed 10

m2/s2 above 8 km, with a local minimum found at 11 km at 18 UT.

Figure 3 shows the vertical flux divergence of meridional and zonal

momentum. These results were computed from the data in Figure 2 by taking

differences across layers 1 km apart. No smoothing has been applied in an

effort to preserve as much detail in the results as possible. The units used,

10 -3 m/s2° correspond to 3.6 m/s/hour (e.g. the contour labelled

10x10 -3 m/s 2 is the same as 36 m/s/hour), in Figure 3, the large values

of zonal and meridional momentum flux divergence occur near 6 km at 10-12 UT.

Otherwise, the meridional values are nearly all less than about 3 units.

Alternating periods of large zonal values are found above 10 km at 14-18 UT.

After about 11UT, the contours of zero zonal momentum flux divergence slope
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Figure 2. Time-height section of the vertical momentum flux at Sunset on

January 18, 1985. Units: m2/s2. (a) meridional (b) zonal.

upward to the right, while at the same time the contours of zero meridional

flux slope downward to the right. The significance of this pattern, if any, is

not yet clear.

CONCLUS ION

We have presented preliminary results of the momentum flux and flux

divergence during a transient episode, as a jet stream moved over the radar.

The zorml and meridional momentum flux and flux divergences displayed remarkable

continuity with altitude in time, increasing in intensity as lee waves and

other gravity-wave activity developed while the jet stream approached. The

momentum flux values observed compare favorably with aircraft measurements made

over similar topography, at least during the early part of the day. The

accelerations due to the momentum flux divergence seem rather large at first
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Figure 3. Time-height section of the vertical divergence of the vertical

momentum flux at Sunset on January 28, 1985. Units : 10-3 re�s2.

(a) meridional (b) zonal.

glance, especially for the late part of the day. However, we note that there

may he compensating forces due to effects not considered here, such as trans-

verse circulations or, likely more important, scales of motion too small to be

resolved by these data.
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3.7.1 EFFECTS OF ANISOTROPY ON THE FREQUENCY SPECTRUM

OF GRAVITY WAVES OBSERVED BY MST RADAR

C. H. Liu

Department of Electrical and Computer Engineering

University of Illinois at Urbana-Champaign *

Urbana, IL 61801

In the investigation of gravity waves using MST radar data, model gravity-

wave spectra have been used. In these model spectra, one usually assumes

azimuthal symmetry. The effect of spectral anisotropy on the observed spectrum

is studied in this paper. It will be shown that for a general Garrett-Munk-

type spectrum, the anisotropy does not affect the frequency spectrum observed

by the vertically beamed radar. For the oblique beam, however, the observed

frequency spectrum is changed.

Let us consider a general gravity wave spectrum including azimuthal

anisotropy :

E¢_,_) . _I E0 A¢kz ) B(,._)F(_)6[_-( _2-_12 )/2 ikz[ I (1)

Next, let us consider the following two parameter model of anisotropy:

F(_) = l+a cos2(_-_0) (2)

Then it can be shown that the observed spectrum is given by (SCHEFFLER and
LIU, 1985),

where

_2__2

H(_) =--
_b2-_i 2

Ob2-O 2
+--

mb2-_i 2

cos 2e B

sin 28B[14<i-_i2/_2 )(I_ cos 2(#S-{0))]

(3)

(4)

8R: zenith angle of radar beam, _B: azimuth angle of radar beam. The
eTfects of anisotropy are included in (4). It is possible to determine a and

_0 of the anisotropy model in the following manner.

For any 8B_0 , take three beam measurements at _BI=0 °, _B2=900 and

_B3=45 ° •

Let

A - <VObl2> - <V0b22> (5)

209

B = I/2 [<V0bl2> + <V0b22>] (6)

C = <V0b32> - B (7)
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2
where<v 0 > is the variance of observed velocity fluctuation along the j-th

bj
bean positlon.

Then we have

_o "I_ tan -I (___) (8)

3A (9)a
E0cos2¢_in2e B

E , the total power associated with the wave spectrum, can be determined from

t_e spectrum, or additional vertical beam measurement.

We note from equation (4), for vertical bean, eB=0° , the anisotropy
does not affect the observed spectrum. The two parameter anisotropy model,

equation (2) is a rather simple one. It does, however, contain some of the

most important features of an anisotropic spectrum. Therefore, the results in

(3) and (4) are expected to present some of the important effects on observed

gravity-wave spectrum due to anisotropy.
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3.7.2 THE FREQUENCY SPECTRUM OF C
n

FROM MST RADAR DATA
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INTRODUCTION

In a recent study (NASTROM et al., 1986),2the variability of the

refractivity turbulence structure constant, C, was examined using

observations from the ST/MST radars at Poker _lat, Alaska, and Platteville,

Colorado. Variations of C 2 with height, season, and weather conditions were

examined. Also, the autocorrelation function and the frequency distribution of

C " were studied, and it was shown that C follces a log-normal fre-
n n

quency distribution. The interested reader is referred to that paper for

details. One of the more _entative results given in that paper is a first look

at the spectrum of log C as a function of frequency at Poker Flat. This
n

spectrum, shown in Figure 1, appears to obey a power law relation with

frequency, P(F) _ F k, with k near -5/3 at periods between about 4 hours and

6 days, and with k near -1 at shorter periods. Power law behavior of a

spectrum often helps us to infer the underlying dynamics which give rise to

this spectrum, and it is thus of some concern to establish further confidence

in the spectral shape. For example, is the shape displayed in Figure 1

representative of other altitudes or locations, and does it change with season

or background weather conditions. The purpose of this contribution is to

address these questions.

SPECTRAL ANALYSIS RESULTS

2
Figure 2 shows the spectra of C in the troposphere at Poker Flat

n
(8.2 km) and Platteville (7.3 kin) over the range of periods from about 9

minutes to 24 hours. These results are based on a larger data set than that

used in Figure 1 as indicated by N in the figure. N is the number of 9-hour or

36-hour data segments used to estimate the spectrum. The lag correlation

method was used. The lines with slopes -5/3 and -1 have been added at the same

coordinates as in Figure I to aid comparison. At both stations in Figure 2,

the spectral shape is approximately the same as in Figure 1, with a change in

slope found near the 2-4 hour period. The spectral amplitude at Platteville

is higher than that at Poker Flat at periods less than about 2 hours. Note

that all spectra show a markedly decreased slope at periods less than about 15

minutes. As discussed by NASTROM et al. (1986), this behavior may be due to

noise or aliasing, or may arise from reduced spectral fidelity due to

occasional gaps in the data (BAER and TRIBBIA, 1976).

Figure 3 shows the spectra at Poker Flat at 12.5 km for periods from about

9 minutes to 6 hours for summer (May-August) and winter (0ctober-April). There

is no obvious change with season, except that the spectral amplitude appears

slightly higher in summer than in winter.

The _esults in Figures 1-3 strongly suggest that the shape of the spectrum

of log C n is fairly universal, and shows little dependence on season,

location, or across the tropopause. As a check on possible synoptic weather

dependence, the mean spectrum was formed for the 97 cases when the background

wind speed near the tropopause was in excess of 21 m/s -1. The results, not

shown, are nearly identical to the winter results in Figure 3 and show that

strong background wind does not distort the spectrum.

The -I slope region of the spectrum was not anticipated, and warrants

further attention. Current theories of gravity wave motions and quasi-two-
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Figure 1. The variance power spectrum of log C

Poker Flat (NASTROM et al., 1985). n

at 12.5 km at

dimensiorml turbulence do not predict a -I slope region. However, due to its

robust statistical character and firm observational basis, it cannot be

ignored. Beside the present results, a -I slope region was noted by BALSLEY

and CARTER (1982) in the spectrum of radial velocities. Also, a -1 slope

region was found by NASTROM and GAGE (1983) in the wave number spectrum of

winds encountered by airplanes during and immediately after encounters with

moderate turbulence. HARRINGTON and HEDDINGHAUS (1974) noted a -I slope in

winds near the surface at periods below about 2 hours. Finally, the spectrum

of ozone in the upper troposphere shows a -I slope region at wavelengths less

than about 100 km as found by NASTROM et al. (1985), and as shown in detail in

Figure 4. These results are based on data collected during GASP from aircraft

and represent the average spectrum over N flight segments, where N is given in

the figure. Mean ozone values less than 150 ppbv or so are typical of the

troposphere.

DISCUSSION

2
In summary, the shape of the frequency spectrum of log C is fairly

universal; showing a -5/3 slope region at long periods and a _I slope region at

periods below 4 hours or so. Other meteorological data have also shown a -I
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sloperegion, indicating this signature is not specific to C 2. The -1

slope region is not anticipated by current theories. Important clues toward

understanding it may be that it is associated with rather high levels of

turbulence in the airplane wind data, and is the most apparent in ozone near

the tropopause where folding processes may contribute significantly to the

variance of ozone. LILLY (1983) predicted that two-dimensional decay spectra

propagate in wave number space with the wave number and amplitude of the spec-

tral peak following an approximately k -1 curve. When many such events are

superposed, it is presumed that the net spectrum follows k -5/3. However, it

may turn out that when intense individual events are combined, as done here,

the average spectrum retains a k -1 dependence. This issue will clearly

require more attention in the future.
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3.7.3. A STUDY OF GRAVITY-WAVE SPECTRA IN THE TROPOSPHERE AND

STRATOSPHERE AT 5-MIN TO 5-DAY PERIODS WITH THE POKER FLAT MST RADAR

R. S. Bemra, P. K. Rastogi

Electrical Engineering and Applied Physics Department

Case Western Reserve University

Cleveland, Ohio 44106

and
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i. INTRODU_N

The wind field in the middle atmosphere can be decomposed into a continuum

of spatial and temporal scales. At short time scales (of the order of 0.1-3

hr) the wind field is dominated by transient buoyancy waves with horizontal

wavelengths of a few km to several hundred km. With recent improvements in the

MST radar technique, it has become possible to measure, almost continuously,

the velocity field at fixed altitudes for periods longer than a month (GAGE and

BALSLEY, 1984; LARSEN et -1., 1982). Instrumented aircrafts provide similar

measurements along flight paths that are at least a few thousand km long (see

e.g. LILLY and PETERSEN, 1983; NASTROM and GAGE, 1983).

Kinetic-energy spectra of the horizontal wind field obtained from several

sets of such measurements show distinct power-law behaviors with frequency and

wave number over wide range of scales extending to several days in time and

several thousand km in the horizontal. A simple and direct scaling between the

frequency and wave-number spectra exists under the Taylor Hypothesis, that the

perturbations move with the mean horizontal wind without deformation (in a

statistical sense). This makes possible first-order comparisons of frequency

an wave-number spectra.

A mesoscale power-law behavior, S(f) % f+n or S(k) % k +n of the

frequency (f) and the horizontal wave-number (k) spectra (S) has been reported

in several studies with values of the spectral index (or slope) n in the

vicinity of -5/3 (see e.g. GAGE, 1979; BALSLEY and CARTER 1982; NASTROM and

GAGE, 1983, 1985). It has been suggested that the associated horizontal

velocity perturbations in the atmosphere are either a manifestation of

two-dimensional turbulence (GAGE and NASTROM, 1984) or of a universal cascade

of buoyancy waves (VANZANDT, 1982).

In this paper, we present an analysis of frequency spectra at periods of

about 5 days to 5 rain from two 20-day sets of velocity measurements in the

stratosphere and troposphere (ST) region obtained with the Poker Flat MST radar

during January and June, 1984.

In Section 2, we outline a technique based on median filtering and

averaged order statistics for automatic editing, smoothing and spectral

analysis of velocity time series contaminated with spurious data points or

outliers. The validity of this technique and its effects on the inferred

spectral index has been tested through simulation. Spectra obtained wir2n.this

technique are discussed in Section 3. The measured spectral indices show

variability with season and height, especially across the tropopause. The

discussion in Section 4 briefly outlines the need for obtaining better
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climatologies of velocity spectra and for refinements of the existing theories

to explain their behavior.

2. MEDIAN FILTERING, EDITING, SMOOTHING, AND SPECTRAL ANALYSIS OF VELOCITIES

MST radar provide measurements of radial velocity at selected ranges from

spectral moments of the scattered signal. Spectra of the scattered signals are

often contaminated with external interference, which produces spurious

estimates of radial velocities. These spurious velocity values often occur as

large, single or multiple spikes. Unless the spurious values, called outliers ,

can be successfully detected and removed, they would tend to introduce a

whitening of high-frequency components in the velocity spectra. The velocity

spectra are commonly obtained through discrete Fourier transform (DFT) of the

uniformly sampled velocity time series using the fast Fourier transform (FFT)

algorithm.

The spectrum S(f) is usually approximated by the time-averaged periodogram

[P(f)], which is the squared magnitude of the Fourier transform. Periodogrsm

provides only a distorted estimate of the spectrum. This distortion is most

severe in the presence of trends or a slowly varying mean value component and

arises due to aliasing of the autocorrelation function. Presence of a trend in

the velocity data is likely to produce spectra with an inverse-square frequency

dependence, or a spectral index n = -2. The simplest way to remove trends is

to subtract the dc value from each segment of the velocity time series before

spectral analysis. This has been done for the analysis described in this

paper.

The spectral index (n) is obtained by a least-square error fit or

regression of the form: log S(f) = n log f + c, where c is a constant. Equi-

spaced frequency points tend to become clustered at high frequencies along the

log f axis. This tends to bias n towards the high-frequency end, where the

effect of outliers is likely to be most serious. To minimize this bias, it is

necessary (i) to implement a scheme for locating outliers, and interpolating or

smoothing through their locations and gaps; and (ii) to obtain the spectra of

smoothed velocity time series in several bands of approximately equal width on

the log f axis, with a proportionate number of points in each band.

Figure l(a) shows the radial velocity time series at 10.3 km height for an

off-vertical antenna. This series was sampled at l-rain intervals over 16.3 hr

or 1000 rain. Many outliers can be seen distinctly since they clearly do not

belong with the rest of the data. If the velocity changes associated with the

outliers are real, they would imply accelerations that cannot be justified on

physical grounds. There also was a gap of about 5.5 hr near the middle.

Figure l(b) shows a filtered and interpolated time series that has been

smoothed through a 30-rain window, at 15-rain intervals. The filtering and

interpolation procedure is briefly outlined bel_a.

Since some smoothing of time series is desirable, we prefer to look at all

the N points within a smoothing window collectively. Suppose these points are

sorted by their numerical values in an ascending or descending sequence.

Outliers occur mostly near the top and the bottom of this sequence, whereas

most of the valid data points tend to be clustered about the median. Median is

a robust indicator of location with respect to outliers. If we reject x% of

the highest and x% of the lowest points, and average over the remaining then

this average will be almost unaffected by outliers. It is not necessary to

sort (or order) all the N points. Sorting is needed for only x% of the highest

and x% of the lowest values. Two types of errors can occur in this averaging

scheme Eepending on N and x: a valid data point may be mistaken for an

outlier, and an outlier may be mistaken as a valid data point. These errors

are analogous to those encountered in transmission of signals over noisy
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Figure I. (a) Unedited time series of radial

velocity for a 1000-min period observed

with the Poker Flat MST radar, showing

outliers and a 5.5-hr data gap. (b) Same

time series after 30-rain median f__Itering,

smoothing, and interpolation with cubic

splines. (Data for receiver 2, 13 June,

1984, 00 hr 00 min to 16 hr 39 min;

Hei&ht 10.33 km.)
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communicationchannels. Prior statistical information about data points and

outliers (if available) can be used to minimize these errors. An alternative

approach is to experiment with different values of rejection levels x. In the

analysis of Poker Flat data we have found that for N = 30, rejection levels x =

7.5, I0 and 20% did not produce a significant effect on smoothed averages. A

rejection level of 10% was used in subsequent analyses. For small values of

N(<10) smoothing is not desirable, but median still provides reasonable outlier

rejection. In many of the cases examined, the outlier-rejection schemes based

on median and order statistics, perform as well as a human editor.

A few long gaps can be filled by interpolation of data smoothed through a

median filter discussed above. We have used Cubic Splines (DEBOOR, 1978) as

interpolating functions. To avoid instabilities in interpolation, it is

recommended that the average slopes at the and points of each gap should be

calculated separately and used to constrain the interpolated results. Most

stable results are obtained by setting this slope to zero, e.g., by duplicating

the end points in the gap.

Figure 2 shows a composite spectrum of meridional wind obtained from

radial velocities measured along three pointing directions, one of which is

close to vertical and two are 15 deg off vertical in two orthogor_l planes.

The spectrum was obtained from 20-day long, almost continuous velocity

measurements with a l-rain time resolution. It covers a frequency range of over

3 decades for periods corresponding to 5 days-5 rain and was obtained separately

over three overlapping bands, each over a decade wide.
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Figure 2. A composite spectrum of meridional winds obtained in three

overlapping bands, each about 1 decade wide. Arrows show the

frequency range (periods about 1 hr to 5 days) over which a spec-

tral index was obtained through linear regression. Uncertainties

in the spectrum estimates are also shown. (Data for January 1 to

January 20, 1984.)
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For the low and intermediate frequency bands, first the radial velocities

were subjected to median filtering through a 30-rain running window at 15-min

intervals. The radial velocities were further smoothed for each frequency

band, and decomposed into the three orthogonal velocity components: zonal,

meridiorml and vertical. This decomposition is possible only for velocities

smoothed over time scales of I hr or more. The spectrum was then computed as

the averaged periodogran over each band. The number of periodograms averaged

was 4 for the low and 15 for the intermediate frequency band.

For the high frequency band, the radial velocities cannot be resolved into

orthogonal components due to the presence of short-period gravity waves. It is

possible, however, to combine and rescale the spectra of radial velocities to

obtain the spectra of the orthogonal components. The radial velocities were

screened through a 5-point running median filter, with the output sampled at

2.5-rain intervals. No attempt was made to interpolate through gaps.

Approximately 80-90 periodograms obtained from short continuous segments were

averaged over the entire 20-day period. The averaged periodograms of radial

velocities were combined and rescaled to obtain the spectra of orthogonal

velocity components.

The uncertainties in the estimation of the composite spectra are shown by

the error bars for each frequency band (see e.g., BLACKMAN and TUKEY, 1958 or

OPPENHEIM and SCHAFER, 1975) at one standard deviation level. The uncertainty

is smallest at the highest frequencies due to the larger number of periodograms

averaged in this band. In conventional methods of spectral analysis all the

frequency points are equispaced, and the uncertainty in the spectrum magnitude

is uniform throughout. The uncertainty in estimating the spectral index (n)

through exponential regression (linear regression of log S(f) versus log f) is

described in statistical texts (e.g., BROWNLEE, 1965). Through the use of

composite spectra the uncertainty in spectral magnitude is considerably reduced

at higher frequencies. Within an uncertainty of one standard deviation in

spectral magnitude, composite spectra provide estimates of spectral index to

within +0.I over three decades and to within +0.15 over two decades. The

composite spectra shown in Figure 2, show a distinct power-law behavior over

three decades of frequency. In this example the spectral index obtained by

regression (at 5 day - 1 hr periods) was -1.88. We have, however, tried to

obtain additional confidence in the performance of analysis methods outlined

above as follows.

The spectra and spectral slopes were also independently estimated by the

correlation method. The results obtained by the two methods were almost

identical and did not show any systematic differences. This indicates the

effectiveness of trend removal used in the periodogram method in reducing

distortions of spectra.

As an alternative check, time series for spectra with known spectral

indices were synthesized as the sum of a large number of sinusoids in random

phase. To these, random outlier values and data gaps were added with about the

same statistics as in the original data. Median filtering and spectrum

analysis of the synthesized time series recovered the spectral index to within

5% to i0_ in all cases considered. We, therefore, conclude that the departures

of spectral index from the 5/3rd shape as shown for example in Figure 2, are

significant.

3. VARIATION OF SPECTRAL INDEX WI_H HEIGHT AND SEASON

The composite spectra for several ST heights (8 - 23 km at 2.2 km step)

and for all the three orthogonal velocity components are shown for 20 days of

January, 1984 data in Figure 3. For clarity, the spectra for different heights



221

I" 8d4_dldl2h 4_hI_'15" Sm I' 8d4_dldl2h 4_hl_O'IS" S"
I0 o._ I0 '. ! ! ! r ! Ill ! ! ! ! I ! ! :! ! i ! ! I )f !

" _ zonal | 44 mertdlonal i

,n 10." __ -I _nm I _ _ .

:
1o¢ 1o -1.661

: _ ,.-2.02 _ _-1.87

1" A A 1 A A
10 " -2 -2

|0 15 I' | | I' | | | | | | Frequency (Hz)

vertical

-U. 3t_

-0.5C

...._- -0.46

"_ -0.53
-0.741-

10-

I0 IC

I0

Pokmr Fie* HST Rodem
1984 Om,I l-Oo_l 20

-2

Figure 3. Composite spectra of

zonal, meridional, and

vertical winds for 8 to 23

km at 2.2 km steps. For

clarity, spectra with

heights above 8 km have

beech displaced upward.

(Data for June 12 to July

2, 1984).

have been displaced upward by a const_t amount. The behavior of zonal and

meridional spectra is similar, with a power-law behavior extending to periods

below 1 hr. The corresponding spectra for the vertical velocities are almost

flat, with a hump between 3 hr and 24 hr at some altitudes. The spectral index

for each height is also given. There is a weak indication of the presence of a

semidiurnal (12 hr) tide in the spectra of the horizontal velocity components

(see Figure 3, zonal).

Figure 4(a) shows the profiles of spectral index for each component for

January, 1984. Figure 4(b) is a similar plot for June, 1984. The spectral

index of the horizontal components reaches a minimum value of about -2 near the

winter tropopause. A similar behavior is seen for June, 1984, except that the

minzmum value of spectral slope is about -1.4. The behavior of zonal and

meridional spectral slopes is similar. The slope of zonal spectra appears,

however, to be slightly steeper than that of the meridional spectra; the

difference in their slopes is more pronounced during summer. The spectral

index of vertical velocity is usually -0.5 to -I.0. Its height variation is

much more erratic during winter.

Therefore, we conclude that the spectral index of about -5/3 for the

horizontal velocities is exceptional. Indeed, the only case when it is close

to this value is for 12-kin altitude during January, just above the winter

tropopause.
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4. DISCUSSION

The analysis of velocity spectra described above shows that the spectral

index of the horizontal velocity components varies with altitude and season.

The spectral index tends to approach a minimum value in the vicinity of the

tropopause. The altitude variation of spectral index is similar in winter and

summer, except that the indices have higher values (less negative) in the

summer. There does not seem to be a preferred tendency for a -5/3rd spectral

slope, though this slope does occur in the 15-20 km range during winter. The

variability of spectral index of horizontal velocities is also evident in the

Poker Flat ST data ar_lyzed by LARSEN et al. (1982). On the basis of the two-

dimensiorml turbulence hypothesis, a spectral index of -5/3 is predicted for

horizontal velocity spectra (GAGE, 1979). We conclude that the observations of

spectral index reported here do not provide sufficient evidence for this

hypothesis.

The time-scales considered in this analysis range from about 5 days to 1

hr. For a mean horizontal wind of I0 m/s that is typical for winter, the

corresponding horizontal scales are 4500 km to 36 km. Mean winds during the

summer are only about 2.5 m/s and the horizontal scales are smaller by a factor

of 4. The steep slopes (-3) that have been reported in aircraft measurements

for scales longer than about I000 km (NASTROM and GAGE, 1985) have not been

discerned in the spectra reported here. It is conceivable that the assumptions

under which this simple scaling is possible are not valid at scales much longer

than a day and i000 kin.

The spectral index of vertical velocities shown in Figure 4 is typically

about -0.5 during winter. The average index is closer to -i during summer. In

both seasons, this index shows a large variability with values ranging from

-1.4 to -0.2. LARSEN et al. (1985) have reported similar values of spectral

index of vertical velocities measured at Arecibo with an average value of -I.

Vertical wave number spectra obtained by KU0 et al. (1985) using high-

resolution data from the SOUSY radar show a similar behavior, with a distinct

variation across the tropopause. According to LARSEN et al. (1985) an index of

the order of 1/3 should be expected for a universal spectrum of buoyancy waves

along the vertical direction provided that the horizontal spectra exhibit a

-5/3 slope.

The universal buoyancy wave spectrum hypothesis (VANZANDT, 1982) attempts

to seek relations between spectra of velocity components as functions of

vertical and horizontal wave number. Though our observations do not appear to

provide conclusive evidence for this hypothesis, they certainly suggest the

need for a better climatology of horizontal and vertical velocity spectra and

their comparison with improved models. SCHEFFLER and LIU (1985) and VANZANDT

(1985) have proposed models for acoustic-gravity wave spectra of radial

velocities, Doppler shifted by fluctuations in the background wind. There also

is a need for improved radar experiments to provide measurements for valid

comparisons with theoretical models.

Finally, it should be stressed that mesoscale spectra can possibly be

influenced by several mechanisms viz. two-dimensional turbulence, a universal

behavior attributed to buoyancy waves, and Doppler shifts of buoyancy waves

through variable background winds. A clear-cut distinction between these

mechanisms may not be readily possible, unless additional measurable parameters

are introduced in theoretical models.
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3.7.4 ON THE VARYING SLOPE OF VELOCITY SPECTRA

Jurgen Rot tger*

Arecibo Observatory

P.O. Box 995

Areciho, Puerto Rico

N87-10463

Spectra of zonal, meridional and vertical wind velocity, measured during a

24-hour period with the spaced-antenna technique indicate quite a variable

slope as a function of height (Figure I, from ROTTGER, 1981). It is found that

the spectral slope (lh-24h) of all three components correlates with the mean

horizontal wind velocity (Figure 2). A possible conclusion is that the

frequency dependence of power density of horizontal and vertical fluctuation

component appare_tly depends on the mean wind velocity. However, the vertical

spectra at periods larger than about 1 hour can also be influenced by

spillover (due to finite radar antenna beam width) from the horizontal

fluctuation component or by a Doppler shift.
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3.7.5 DOPPLER EFFECTS ON VELOCITY SPECTRA

OBSERVED BY MST RADARS

A. O. Scheffler and C. H. Liu

Department of Electrical and Ccmputer Engineering

1. INTRODUCTION

University of Illinois _/

Urbana, IL 61801 i _ _ '(-_]

Recently, wind data from MST radars have bean used to study the spectra

of gravity waves in the atmosphere (SCHEFFLER and LIU, 1985; VANZANDT et al.,

1985). Since MST radar measures the line-of-sight Doppler velocities, it

senses the components of the wave-associated velocities along its beam

directions. These components are related through the polarization relations

which depend on the frequency and wave number of the wave. Therefore, the

radar-observed velocity spectrum will be different from the original gravity-

wave spectrum. Their relationship depends on the frequency and wave number

of the wave as well as the propagation geometry. This relation can be used to

interpret the observed data. It can also be used to test the assumption of

gravity-wave spectrum (SCHEFFLER and LIU, 1985).

In deriving this relation, the background a_nosphere has been assumed to

be motionless. Obviously, the Doppler shift due to the background wind will

change the shape of the gravity-wave power spectrum as well as its relation

with the radar-observed spectrum. In this paper, we attempt to investigate

these changes.

2. DOPPLER-SHIFTED FREQUENCY SPECTRUM

Let us first assume that the background wind is constant, blowing in the

x-direction. In the rest frame coordinate of the atmosphere, the frequency

is related to the frequency _ of the laboratory frame through the relation

t2 - V-khVoCOS _ (i)

where k_ is the horizontal wave number, v 0 is the wind speed and @ is the
• .-+

angle tl_e horlzontal wave vector _ makes with the x-axis. Following the

derivation in SCHEFFLER and LIU (1985), the frequency spectrum of the observed

velocity fluctuations along a radar beam pointed at zenith angle 0B can be
writ tan as

EOb(aO " I ] Q(_b, fl)E(l_,f/)_(f/-ar+khVOCOS@)dRdl_ (2)

where

Q2-_i2 _D2-Q 2 _t 2 )stn2(___B)]stn20 B
Q(+,m - _ cos2OB + _ [I-(I-

(3)

E(_, _) is the power spectrum of the gravity wave in the rest frame (Lagrange

frame). We further assume that the wave spectrum has the same form as that in

the laboratory frame such that

E0 _2-_t2 1/2

E(_,(1) m _ h(kz)B(i.l)6[kh + ( _ ) Ik=l]
(4)

where
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(t-l)kz*t-I

A(kz) =

(kz*+mkz [t

B(a) = p-1 a-p % < n < %
wil-P_mbl-P -- m

(5)

Here, isotropy of the spectrum has been assumed. Equation (2), together

with equations (3), (4), and (5), yields the observed frequency spectrum of the

velocity fluctuation. We note that because of the two _-functions, the

original 4-fold integration in (2) is reduced to 2-fold which can be integrated

numerically.

3. RESULTS

Figure 1 shows an example of numerical computation for the frequency

spectrum. This is for the case where the radar beam is pointed vertically.

The Doppler effect redistributes the wave energy so that the spectrum spreads

out beyond the original limits (w., 0_) The level is depressed and a
• 2. D °

slope is introduced in the h2.gh frequency end of the spectrum. These effects

become more apparent as the background wind speed v u is increased. Figure 2

shows the result for an oblique radar beam with %=10 ° . Again, the spectrum

spreads out beyond _. and _B The redistribution of energy due to the

Doppler effect in th2.s case makes the spectrum shallower. In a certain

frequency range, the level can be higher than that for the case with no

Doppler.
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4. CONCLUSIONS

The results show that the radar-observed frequency spectrum of velocity

fluctuations due to gravity waves will be affected by the Doppler shift due to

the background wind. The numerical results are for the case of isotropic

gravity-wave spectrum in a constant background wind. The technique could be

applied to the more general cases.
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3.7.6 OBSERVATIONS OF VERTICAL VELOCITY POWER SPECTRA

WITH THE SOUSY VHF RADAR
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I. INTRODUCTION

Recently LARSEN et al. (1985) have shown that the line-of-sight velocity

power spectra measured at an oblique angle have a significant contribution from

the vertical velocity out to periods close to 1 hr, in agreement with the

earlier result of BALSLEY and CARTER (1982). The spectral slope of the

inferred vertical velocity frequency spectrum was close to -I. The inferred

vertical velocity vertical wave number spectrum had a slope that lay between -i

and -1.5. The frequency and vertical wave number spectra of the horizontal

velocities had slopes in agreement with a number of earlier studies, namely

-5/3 and-5/2, respectively.

In this study, we have used a data set taken with the SOUSY VHF radar from

October 28 to November 13, 1981, to calculate the power spectrum of the

vertical velocities directly from the vertical beam measurements. The spectral

slopes for the frequency spectra have been determined out to periods of several

days and have been found to have values near -I in the troposphere and

shallower slopes in the lower stratosphere. The value of -I is in agreement

with the value found by LARSEN et al. (1985) and BALSLEY and CARTER (1982) in

the range from a few minutes to 1 hr.

2. DESCRIPTION OF THE DATA SET

From October 28 to November 13, 1981, the SOUSY VHF radar was operated in

a mode that provided data for 12 rain every hour on the hour. The radar was

also operated continuously during three separate periods in the time span.

Each profile consisted of a l-_sec pulse sampled up to 4.5 kin, and a 2-Bsec

pulse sampled from 3.0 km to 21.0 kin. The signal-to-noise ratio was

sufficiently good to determine the winds up to 18.0 km routinely.

Below 3.0 kin, the 150-m resolution data were averaged to provide an

effective height resolution of 300 m. Also, the profiles obtained over each

12-rain interval every hour were averaged. Thus, the data set consists of one

12-min average profile every hour with height resolution of 300 m and covering

the height range from 0.6 km to 18.0 kin. Only six of the hourly profiles were

missing, and they were replaced by linearly interpolated values.

3. FREQUENCY SPECTRA

The frequency spectra were calculated for the entire time series

consisting of 360 points using the mixed radix transform developed by SINGLETON

(1967). The spectra for all heights were then averaged to produce a single

_On leave from the Max-Planck-lnstitut fur Aeronamie, Katlenburg-Lindau, West

Germany.
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spectrumcharacteristic of the troposphere and lower stratosphere. The result

is shown in Pigure 1. The spectrum shows a characteristic power law close to

-0.80.

Separate average spectra were also calculated for the troposphere only,

for the height range around the tropopause, and for the lower stratosphere up

to 18 kin. The average tropospheric frequency spectrum is very similar in terms

of power level and spectral slope to the average spectrum for the entire height

range. However the spectra in the tropopause region and lower stratosphere

both show a considerably shallower slope near -0.2. RASTOGI and B_RA (1985)

have found a similar result for the frequency spectra of the horizontal

velocities based on data from the Poker Flat radar, namely that the spectral

slope decreases near the tropopause.

4. INERTIAL WAVES

The vertical velocity/frequency spectrum in the tropopause region shows a

very pronounced peak at a period near 14 hrs, close to the inertial period.

Such a peak is not evident in either of the other two height ranges. The wave

structure is clearly evident in the reflectivity data as well (not shown) and

the phase propagation indicates a wave source in the vicinity of the tropo-

pause.

Although the peak is close to the inertial period, the actual wave period

must be slightly smaller since a purely inertial wave would not be propagating

vertically. Also, there would be no vertical velocity perturbation associated

with a wave characterized by the inertial period.
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Pigure I. Average of log power spectrum for the

a_aosphere to 70 mb.
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5. VERTICAL WAVE NUMBER SPECTRA

The 300-m height resolution of the data set is sufficient to produce

meaningful vertical wave number spectra. The spectrum for each profile was

calculated, and the average is shown in Figure 5. The spectral slope is close

to -3/2 but much shallower than the slope of -5/2 expected from the GARRETT and

MUNK (1975) predictions.

DISCUSSION

Our analysis of an extensive 15-day data set obtained with the SOUSY VHF

radar has shown the slope of the vertical wave number spectrum of the vertical

velocity to be close to -1.5, in agreement with the results of LARSEN et al.

(1985) based on data from Arecibo, Puerto Rico. Also, the slope near -I

inferred by LARSEN et al. (1985) and BALSLEY and CARTER (1982) for the

frequency spectrum of the vertical velocity at periods less than I hr has been

shown to be characteristic of the vertical velocities in the troposphere out to

periods of several days. However, the slope of the vertical velocity spectrum

as a function of frequency is shallower near the tropopause and in the lower

stratosphere.

There has been considerable discussion in the recent literature about the

roles of gravity waves and two-dimensior_l turbulence in explaining the

observed power spectra at scales characteristic of the mesoscale (GAGE, 1979;

VANZANDT, 1982; LILLY, 1983; LARSEN et al., 1985). The observed vertical

velocity spectral slopes may provide an impetus to further theoretical

development of the various ideas. The observed slopes do not agree with the

predictions of the GARRETT and MUNK (1975) spectrum which lead to a slope of
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Figure 5. Average of log power spectrum for the

atmosphere to 70 mb.

zero or +1/3 for the vertical velocity as a function of frequency and a slope

of -5/2 for the vertical velocity as a function of vertical wave number. Since

the theory for quasi-two-dimensional turbulence has not been developed

sufficiently to include the effects of vertical velocities, no comparison can

be made with the observations.
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3.7.7 MESOSPHERIC WAVE NUMBER SPECTRA FROM POKER FLAT MST

RADAR MEASUR_ENTS COMPARED WITH GRAVITY-WAVE MODEL

Steven A. Smith* and David C. Fritts
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and

!

Thomas E. VanZandt

INTRODUCT ION
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This paper presents the results of a comparison of mesospheric wind

fluctuation spectra computed from radial wind velocity estimates made by the

Poker Flat MST radar with a gravity-wave model developed by VANZANDT (1982,

1985). The principal conclusion of this comparison is that gravity waves can

account for 80% of the mesospheric power spectral density.

Two different hypotheses have been advanced in recent years to explain the

origin and behavior of mesoscale (one to thousands of kilometers) wind

fluctuations. One hypothesis is that these fluctuations are manifestations of

two-dimensional (2D) turbulence (GAGE, 1979; LILLY, 1983). Two-dimensional

turbulence consists of turbulent eddies with wind fluctuations constrained to

occur primarily in a horizontal plane. The other hypothesis is that the

observed wind fluctuations are due to a broad spectrum of gravity waves

transporting momentum vertically (DEWAN, 1979; VANZANDT, 1982, 1985).

Both theories claim similar shapes for frequency and horizontal wave

number spectra of horizontal wind fluctuations. Thus, observations that both

frequency and horizontal wave number spectra follow power laws with an exponent

of -5/3 cannot be used to determine what portion of the wind fluctuation energy

spectrum is attributable to either type of motion.

There is a need to partition the spectrum between gravity waves and

stratified, 2D turbulence in order to study the interaction of the fluctuations

with the environment and to determine the horizontal and vertical transport of

energy. For example, gravity waves are capable of vertical transport of energy

and momentum and knowledge of gravity-wave flux at a given height would lead to

estimates of mean flow drag, wave saturation and vertical transport of heat and

chemical constituents at other altitudes.

Our approach to partitioning the spectrum has been to identify that part

of the spectrum that is consistent with VANZANDT'S (1985) gravity-wave model as

being due to gravity-wave motions. We have used vertical wave number (m)

spectra to avoid the ambiguities mentioned earlier.

In the next section, a brief review of VanZandt's gravity-wave model

formulation and the extension of that model to wind fluctuations along any

oblique path will be presented. Then, spectra of vertical and oblique (15 °

off-zenith) radial winds measured near the summer mesopause by the Poker Flat

*Now at Cooperative Institute for Research in Environmental Sciences,

University of Colorado, Boulder.
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MST radar will be described. Finally, the comparison between the observations

and the model will be made and the implication that gravity waves dominate the

fluctuating wind field near the mesopause will be discussed.

MODEL WAVE NUMBER SPECTRA

VANZANDT (1985) transferred the successful oceanic internal gravity-wave

model spectrum of GARRETT and M_h_ (1972, 1975) to the atmosphere. In this

model, the gravity-wave energy spectrum is assumed to be the product of two

independent factors: a frequency spectrum and a wave number spectrum. Since

the total energy spectrum is assumed to be separable, integration over

frequency yields the wave number spectrum and vice versa. These simple

manipulations are all that is needed for spectra of horizontal or vertical wind

fluctuations since the model was formulated from such observations. However,

extending the model to wind fluctuations along any oblique path requires

further use of gravity-wave theory.

Velocity perturbations measured along an oblique ray will be a combination

of horizontal and vertical perturbations. The ratio of horizontal to vertical

velocity perturbations for gravity waves is determined by the gravity-wave

dispersion relation, which in this formulation is obtained from a WKB solution

of the wave equation. With the dispersion relation and the zenith angle of the

sampling vector, a formula is derived for the measured wave perturbation in

terms of the absolute amplitude and frequency of a wave. For a detailed model

derivation, see VANZANDT (1985).

Though, as pointed out by VANZANDT (1982), there is evidence for a

uniform wave amplitude over a wide range of observing sites and seasons, we

avoid any uncertainty in the amplitude by using the ratio of spectra taken at

different zenith angles. The absolute amplitude cancels out of the ratio. If

the fluctuations are due to gravity waves, then the ratio should agree with the

ratio predicted by the gravity-wave dispersion r_ation. Thus, we are not

investigating the universality of the gravity-wave model but rather the

application of the gravity-wave dispersion relation to the observed

fluctuations.

It is important to note that Doppler shifting of the frequency spectrum

has been neglected in the model formulation, since the gravity-wave dispersion

relation used in the model assumes that the mean wind is zero. Doppler

shifting should be considered in applying the model to frequency spectra.

However, vertical wave number spectra are not affected by Doppler shifting

because the velocity measurements along a bean are made nearly instantaneously

and in a direction nearly orthogorml to the mean wind.

To apply the model to the data, the zenith angles of the radar beams, the

slope of the horizontal velocity perturbations frequency spectra and the limits

on the range of gravity-wave frequencies must be specified. The theoretical

frequency limits are the inertial frequency, f, and the Brunt-Vaisala

frequency, n. The approximate gravity-wave frequency spectra must be specified

to permit integration over the frequency component of the total gravity-wave

spectrum.

OBSERVED RADIAL WAVE NUMBER SPECTRA

Observations for this study are the radial wind velocities obtained by the

Poker Flat MST radar from regions near the mesopause. Seasonal signal

characteristics and radar system parameters are described in BALSLEY et al.

(1983). We use high spatial resolution soundings (300 m) obtained during the

STATE (STructure and Atmospheric Turbulence Environment) campaign in June 1983,

and similar soundings obtained in July, 1984. In order to minimize cross talk,
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the vertical and oblique transmitters were turned off during alternate sampling

periods. The sampling periods were approximately 1.5 minutes long. Thus,

oblique velocities were obtained over 1.5-minute periods separated by 1.5

minutes during which the vertical bean was operating.

Mesospheric wind velocities were obtained from a vertical bean and two

oblique (15 ° off-zenith) beans and from heights of 82 to 88 km. The two

orthogorml, oblique beans were directed towards azimuths of 64 ° and 334 ° east

of north and will be referred to as the east and north beans. The vertical

beam directly measured the vertical wind while each oblique beam measured the

projection of the total wind vector along the bean. This projection of the

wind vector was a composite of the vertical wind times cos 15 ° (=.97) plus the

horizontal wind along the beam azimuth, times sin 15 ° (=.26). Since vertical

sample volumes were approximately 20 km from the oblique sample volumes at

mesopause heights, the measured vertical wind did not necessarily equal the

vertical contribution to the oblique measurements. Instantaneous horizontal

winds could not be unambiguously determined with this system unless it was

assumed that the wind field was homogeneous and uniform over the region sampled

by the three beams.

Before transforming the velocity measurements to wave number spectra,

spurious points due to aircraft and meteors in sidelobes and other types of

interference were removed. An empirical editing procedure was used similar to

those described by CARTER (1983). The velocity time series from each bean and

at each height was examined for accelerations greater than 3 times a running

average of acceleration. Any points exceeding that limit were removed from

further proces sing.

In order to compute ratios of oblique to vertical spectral densities over

the greatest range of wave numbers, individual profiles were selected that

continuously covered the greatest range of heights. This height range was

limited by the vertical system which is about I0 dB less sensitive than the

oblique system. The final range of heights was also determined by the number

of resultant spectra with equal numbers of points that could be averaged

together to improve the confidence level. Thus, the height range (and

corresponding wave number range) selected was a compromise between the greatest

range available and the range continuously sampled most frequently.

The linear trend of each selected profile was removed leaving fluctuations

about the mean shear. Then the profiles were "prewhitened" by differencing

data points from successive heights. A cosine window was applied to the

differenced data to minimize power leakage across the spectra. The differenced

data was then transformed to the wave number domain using an FFT (Fast Fourier

Transform) routine. The real and imaginary coefficients were squared and added

to obtain a power estimate at each wave number. Finally, the wave number

spectra were adjusted to reverse the effect of the differencing and the cosine

windowing and then normalized such that the integrated spectra were equal to

the variances of the original profiles yielding power spectral densities.

Several power spectra were averaged together to narrow the confidence

limits for the spectra. The averaging was done over the longest intervals for

which vertical wind measurements over a sufficiently large and contiguous

height interval were available. Since the radar echoes were not continuous in

time, this averaging when signals were strong in the vertical beams means that

our observed spectra are representative only of periods during which the

intensity of 3-m scale-size, refractive index irregularities, which produce the

backscattered radar echo, was greatest. The mesospheric irregularities are due

to turbulent mixing of the electron-density gradient. Thus, the level of

turbulence and/or the electron-density gradient was enhanced during the

selected periods. Therefore, these spectra, obtained during periods of
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enhanced radar signal strength, probably represent an upper limit to average

power spectra in the summer mesosphere over Poker Flat.

Spectra from three such periods are shown in Figures 1-3. Each spectral

curve is labelled by the beam from which the velocities were obtained, with the

number of spectra in each average given in parentheses. The spectra are

plotted versus vertical not radial wave number. This means that for the

oblique data, the vertical wave number is the radial wave number divided by cos

15 °, which represents a difference of 1.04 between radial and vertical wave

numbers. We have computed 95% confidence intervals for the curve in each figure

with the smallest number of averaged spectra using the degrees of freedom for

a Bartlett spectral window and the procedure of JENKINS and WATTS (1968).

Successive velocity profiles are not completely independent so the actual

degrees of freedom are less than we have used and the confidence limits

somewhat broader.

The spectra in the figures as well as additional spectra from July 1984,

exhibit several points of similarity. The magnitudes of the oblique spectra

are generally within a factor of 3 of each other and the spectral slopes from

separate beams are approximately parallel. Indeed. an average of eight such

spectra result in equal power spectral densities for the two oblique beams as

shown in Figure 4. However, the slopes of the vertical power spectra are not

as steep as the oblique spectra and we have sought an instrumental bias as an

explanation for this discrepancy.

E

i

=

WAVELENGTH (m)

10.000 5000 2000 1000 500

I ! I i

10 4

10 5

10 2

lO'

E( \_

_N(31)

I I _ I
2(10 -4) 5(10..4) 1(__ 2(_0-_ )

WAVENUMBER (¢yclelm)

Figure I. Vertical wave number spectra for Day 165 (June 14), 1983.
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and 0530 local time. Solid lines are model curves.
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Figure 4. Vertical wave number spectra obtained by averaging all
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1984. The thin line throush the East and North spectra is

the model curve.

Research indicates that low resolution Doppler-shifted frequency spectra

coupled with the clutter rejection scheme used at Poker Flat resulted in an

increase in the maBniEude of vertical velocity spectra by approximately a

factor of 2. The computer at the Poker Flat MST radar samples the received

sisnal, then performs coherent integration, accumulates 64 coherently

integrated time series points at all heights and performs FFTs on those time

series. This results in Doppler-shifted frequency or, equivalently, velocity

spectra. In routine operation, the number of coherent integrations is set to

cover the velocity range -35 to +35 m/s for oblique sampling and -4 to +4 m/s

for the vertical velocities. Thus, spectral resolution is normally 1/8 m/s per

spectral point on vertical spectra. During the STATE campaign, however,

vertical velocities were obtained from spectra covering the ranse -36 to +36

m/s with 64 points for a resolution of about 1 m/s. The clutter rejection

scheme used at Poker Flat consists of removing the mean of the 64-point time

series gravity-wave dispersion relation, followed by a Hanning windowing of the

time series before the FFT is computed. This procedure leaves a 3-point wide

notch in the spectra at 0 m/s which is subsequently interpolated to restore

some of the signal power at dc. This procedure does remove clutter signals but

is also removes part of the signal power for velocities near zero. This

effectively pushes near-zero velocities away from zero, increasing the variance

of fluctuating vertical velocities and, therefore, artificially enhancing

vertical power spectral density. When the spectral resolution is 1/8 m/s, as

it usually is, this effect is not noticeable, but when the resolution is the
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sameas the limits of the measured vertical velocities, the power spectral

density can be enhanced by a factor of two. This enhancement is apparent in

Figure 4.

DISCUSSION

The thin solid lines in the Figures are the model spectra. The lines were

placed as follows: first a straight line was fitted to the largest amplitude

oblique spectra. Then, the model ratio was computed using N = 0.02 rad/s, f =

1.32 (10-4) rad/s (inertial period = 13.2 hrs for the latitude of Poker Flat)

and a frequency spectral slope of -5/3. Finally the computed ratio was used to

construct the expected vertical velocity spectra. The agreement between the

observed and model vertical spectra is excellent for high wave numbers in

Figures 1-3. The log (base I0) of the average observed ratio was 0.3 at the

10 -3 cycle/m point (I km wavelength), while the model predicted a log ratio

of 0.53. There is also an indication of considerable day-to-day variability

and anisotropy of the spectra in the east and north beams.

The agreement between the observed spectra and the gravity-wave model,

while not perfect, does provide justification for a gravity-wave inter-

pretation. With this comparison, we can begin to assess the relative contri-

butions of gravity waves and 2D turbulence to the fluctuation spectra.

Since 2D turbulence does not generate vertical motions, on average, the

vertical velocity spectra are primarily due to gravity waves. Then that

portion of the oblique spectra that agrees with the vertical spectra plus the

log of the model ratio is probably contributed by gravity-wave motions. The

excellent agreenent shown in the figures suggests that most of the velocity

fluctuations are gravity-wave motions and that there is little contribution

from 2D turbulence. The observed vertical velocity spectra may be twice as

great as the actual spectra due to data-acquisition processing and thus, the

actual log of the ratio between the averages of the 8 sets of oblique and

vertical spectra may be as great as 0.6. The difference between this ratio and

the model-predicted log ratio of 0.53 suggests that a surplus of up to 17% of

the probable gravity-wave spectral amplitude could be attributed to other

processes such as 2D turbulence.

The fluctuation spectra exhibit azimuthal anisotropy that varies from day

to day. For instance, in Figure 3, the north and vertical spectra are nearly

equal, implying that the north beam is recording only vertical fluctuations

while horizontal fluctuations are principally aligned east-west. With measure-

ments in only two directions, determination of the exact shape of the azimuthal

dependence is impossible. This anisotropy has an impact on the agreement

between the model and the observations, but the difference cannot be quantified

until similar measurements are made over a more complete set of azimuths.

The observed anisotropy can result from anisotropy in wave sources or from

the selective transmission of gravity waves through an anisotropic wind field

at lower levels. However, anisotropy argues against domination of the spectra

by 2D turbulence since such turbulence should produce azimuthally isotropic,

horizontal velocity fluctuations.

Isotropy is recovered when spectra are averaged for a sufficiently long

period. The average east and north spectra in Figure 4 are approximately equal

in contrast to the short-term averages presented in the other figures. These

observations seem to suggest that the fluctuation spectrum is isotropic over

long time scales but that large anisotropies can exist for brief periods. This

long term isotropy is most likely not a consequence of 2D turbulence but due to

a saturation amplitude limit to be discussed elsewhere.
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i. INTRODUCTION

A number of studies have addressed the frequency and wave number spectra

of atmospheric motions over the past two decades and have revealed a surprising

degree of consistency among different measurement techniques. This consistency

in spectral shape and power has motivated two competing theories concerning the

nature of atmospheric motions responsible for the spectral characteristics.

One theory attributes atmospheric motions primarily to two-dimensional

(essentially horizontal) turbulence (GAGE, 1979); the other identifies such

motions with internal gravity waves (VANZANDT, 1982), analogous to the motion

spectrum believed to exist in the oceans (GARRETT and I_NK, 1975).

In this paper, we adopt the view that the dominant mesoscale motions are

due to internal gravity waves and show that previous and new vertical wave

number spectra of horizontal winds are consistent with the notion of a

saturation limit on wave amplitudes. We also propose that, at any height, only

those vertical wave numbers m > m, are at saturation amplitudes, where m,

is the vertical wave number of the dominant energy-containing scale. Wave

numbers m < m, are unsaturated, but experience growth with height due to the

decrease of atmospheric density. The result is a saturated spectrum of gravity

waves with both m, decreasing and wave energy increasing with height. This

saturation theory is consistent with a variety of atmospheric spectral

observations and provides a basis for the notion of a "universal" spectrum of

atmospheric gravity waves. It should be noted that the saturation spectrum

argument has been advanced independently by DEWAN and GOOD (1985).

2. A SATURATED VERTICAL WAVE NUMBER SPECTRUM

Vertical wave number spectra of horizontal wind fluctuations from several

sources that span the height range from the ground to 130 km are plotted in

Figure i. The curve labelled "troposphere" is smoothed data obtained with the

use of Jimspheres by ENDLICH et el. (1969). This curve is an average of the

spectra from six wind profiles, acquired at roughly 2-hr intervals, from which

the average wind profile was subtracted, and has a slope at high wave numbers

of _-2.5. The best fit curve of DEWAN et el. (1984) to their stratospheric

spectra is displayed as the curve labelled "stratosphere". This curve follows

an _-2.7 power l_w (where m is vertical wave number) from a wave number of
10 -9 to 5 x I0 -_ cycles/m (corresponding to vertical wavelengths of 20 m to

I Pun). The curve labelled '_esosphere" is the inferred horizontal velocity

spectrum from the average of summer-time spectra obtained near the mesopause

with the Poker Flat MST radar as discussed by SMITH et el. (1985). The slope

of this velocity spectrum is -2.5. Finally, the thermospheric spectrum was

obtained from winds measured between 85 and 130 km with a three-axis

accelerometer sphere flown as part of the STATE campaign. This spectrum is of
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Figure i. Vertical wave number spectra obtained in four regions of the

atmosphere using a variety of different techniques. See text for

detail s.

the scalar wind speed measured by the falling sphere and was smoothed by two

passes of a three-point running average to increase the confidence level. It

was not possible to remove the mean wind from this velocity data, however.

Figure 1 shows clearly that the spectral shape and the spectral power are

very similar from the stratosphere to the lower thermosphere. This spectral

similarity can be extended to the troposphere as well by scaling the spectra to

a common value of the Brunt-Vaisala frequency, N. The data of DEWAN et al.

(1984) and the radar and falling sphere data were obtained from regions with N

% 0.02 rad/s (a Brunt-Vaisala period near 5 rain). However, a typical value of

N in the troposphere is half that in the stratosphere. The linear saturation

theory reviewed in the next section implies that spectral power should scale as

N2. Thus, an increase in the tropospheric data of ENDLICH et al. (1969) of

% 4 is required to permit its comparison with data obtained at greater heights.

Assuming that most of the spectral power is associated with vertically

propagating gravity waves, the consistency of the scaled vertical wave number

spectra with height clearly suggests that some process is acting to limit wave

amplitudes, particularly at high vertical wave numbers, throughout the

atmosphere. This is consistent with the suggestion, due to WEINSTOCK (1982),

that gravity waves are saturated throughout much of the atmosphere.
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3. LINEAR SATORATION THEORY

Linear saturation theory assumes that a monochromatic gravity wave will be

limited to that amplitude at which the wave just reaches the point of

convective instability, i.e., where

@ = 0,
z

where 8 is the potential temperature.

FRITTS, 1984)

(i)

This is equivalent to the condition (see

u' = C - 3, (2)

where u' and u are the horizontal perturbation velocity and the mean flow in

the direction of wave motion. This may be written, using the dispersion

relation for gravity waves with intrinsic frequencies _ such that f2 << m2

<< N2, as

u' : N/m. (3)

Thus, the power spectral density for horizontal velocity fluctuations inferred

by assuming that each component of the gravity-wave spectrum is individually

saturated is

E(m) = N2/2m 3. (4)

The third power of m is due to the wave number bandwidth corresponding to each

component of the gravity-wave spectrum. This spectral power is shown for N =

0.02 rad/s with a dashed line in Figure I.

The theoretical curve exceeds the power spectral densities observed

throughout the atmosphere by about 2. We believe this difference may be

attributed to the superposition of gravity waves in the atmosphere, which seems

to restrict amplitudes to less than monochromatic saturation values (SMITH and

FRITTS, 1983; MEEK et al., 1985), in good agreement with the observed power

spectral densities. Recent numerical results by FRITTS (1985) suggest a

similar reduction in the wave amplitudes required for saturation due to super-

position.

4. VARIATION OF GRAVITY-WAVE SPECTRUM WITH HEIGHT

Both the data presented in Figure 1 and the form of the analytic gravity-

wave spectrum used to fit successfully previous oceanic and atmospheric

gravity-wave spectra (GARRETT and MU_<, 1975; VANZANDT, 1982) suggest that the

gravity-wave spectrum at any height departs from a saturated spectrum at

sufficiently small vertical wave numbers. Observatiorml evidence of this

departure is most evident in the tropospheric curve in Figure 1, but may be

present in the thermospheric data as well. The departure in the analytic

spectral description consistent with a saturated high wave number spectrum

enters as a spectral break at a wave number m, via a term of the form

(I + m/m,) -3, (5)

providing limiting slopes of -3 and 0 for high and low wave numbers,

respectively.

The departure from a saturated spectrum at small vertical wave numbers in

the lower atmosphere suggests that these motions are not excited at large

amplitudes. As these motions propagate upward, however, they are expected to
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growwith height due to the decrease in atmospheric density. The results of

this process are a gravity-wave energy and a dominant vertical wavelength that

increase with height, as noted in a number of previous studies.

A model of the proposed vertical wave number spectrum and its variation

with height is presented in Figure 2. This spectrum assumes a vertical wave

number dependence given by (5). At vertical wave numbers m > m,. for which

the spectrum is assumed saturated, the energy levels are the same at all

heights. At smaller (unsaturated) wave numbers, however, the srowth of wave

amplitudes with height causes the dominant vertical scale (m, -_) to

increase accordingly. This is shown with values of the dominant vertical wave-

length (k = m_- ) of 1. 5. and 20 km in the troposphere, stratosphere.
Z x

and mesosphere, respectlvely.

Evidence of this behavior is provided by a variety of observations.

including gravity-wave energies that increase with height (BALSLEY and CARTER.

1982; BALSLEY and GARELLO. 1985) and detailed gravity-wave studies in the

stratosphere, mesosphere, and lower thermosphere showing gravity-wave scales

that increase with height (SATO and WOODMAN. 1982; BARAT. 1983; SMITH and

FRITTS. 1983; MEEK et al.. 1985; FRITTS et al.. 1985). We should expect, how-

ever. that the energy at low wave numbers, and hence m,. will be considerably

more variable than the energy at m > m,. because the gravity-wave energy at

m < m, is determined by the strenghts of various gravity-wave sources at

lower levels, whereas that at m > m, is limited _ saturation processes.
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Figure 2. Model saturated gravity-wave spectrum scaled to a common N2

at three different heights. Note the constant (saturated) energies

for large wave numbers and the increase in the dominant vertical

scale with height.
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INTRODUCTION f-

Radars are increasingly being used for determinations of the small-scale

wave and turbulence fields of the atmosphere. It is important to understand as

fully as possible the likely sources of error or bias in radar velocity

determinations. This is especially true for the determination of wave and

turbulence parameters which often rely on the measurement of first or 'second

order' deviations from the prevailing wind and therefore require better

precision and time resolution than is usually required for measurements of the

mean winds alone. The intercomparison of velocity measurements made with

differemt techniques (e.g., radar and balloon) can be expected to help

determine not only the relative effectiveness of the different methods, but

also the degree of reliability.
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SYST_ATIC AND RANDOM ERRORS IN RADAR WIND MEASUR_4ENTS

Systematic errors. In most respects, the more serious velocity errors

are systematic in origin for the commonly used Doppler technique whereby the

horizontal wind components are inferred by tilting the radar beam away from the

zenith, systematic errors are most probably caused by the aspect sensitivity of

the scattering irregularities. The effective pointing angle of the radar beam

from the zenith is a product of the actual beam pattern and the angular

dependence of the scattering, so if there is enhanced scattering from the

zenith then the effective pointing angle of the radar beam will be less than

the physical angle (e.g., ROTTGER and LARSEN, 1984). If such effects occur and

are left uncorrected, then the net effect is to bias the wind speeds to low

values. Recent multi-angle Doppler measurements made with the Kyoto MU radar

show that aspect sensitivity problems are especially severe in the stratosphere

(T. Tsuda, private communication) and that horizontal wind measurements are

biased for pointing angles of less than 8-10°; these observations support the

recommendations of the Second MST Workshop (VINCENT, 1984) that the optimum

pointing angles are between I0 ° and 15 ° . However, when using large

off-vertical angles care must be taken that any signal leakage through

vertically pointing sidelobes are also accounted for (STRAUCH et al., 1984).

Radars provide a particularly powerful means of measuring vertical

velocities (w) by observing the Doppler shifts of echoes received in vertically

pointing beams. Because of the small magnitudes of w, however, care must be

taken to remove any contamination due to the horizontal wind components.

Contamination can arise in a number of ways (ROTTGER, 1984) and may be

significant at VHF where specular reflections from tilted irregularities can be

important. Special care must be taken in inferring vertical velocities when

the transmitting and receiving antennas are separated, as would be the case in

the SA experiment. Because of the geometry, the signals will be scattered at

small angles to the vertical and the contamination will be significant,

especially at low heights where the effect is most severe (May, private

communication). ROTTGER (1984) has shown how interferometer measurements can

he used, in principle, to correct observations of w.

The major source of systematic errors in the spaced antenna technique is

likely to be the 'triangle-size effect'. If the receiving antenna size is too

small compared with the average pattern size of the diffraction pattern, then
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the velocities will tend to be underestimated. The factors which control the

pattern size are discussed in VINCENT (1984) where recommendations are made for

minimizing this effect, but more work needs to be done to understand its

cause s.

Random errors. DOVIAK et al. (1979) have discussed the factors wh_h

influence errors in Doppler measurements. The mean square error (ave) of a

radial velocity (Vr) is given by

-2(_°n)2 _3/2 o (i)
°v2 = VN 2 (_°n)2[(N/s)2 + (_)(l-e ) + nl/(2_2M)

where S/N is the signal-to-noise ratio, o is the spectral width normalized

to the Nyquist velocity, V , and M is t_e number of samples. For S/N > i0 dB

the rms error is approximat_-L[y

2 2 (_°n) 2 (2)
a _ V o e /(2M_ I/2)
v n n

while at low S/N (<0 dB) the error is approximately

Ov 2 _ (N/s)2 Vn2/(2_2M)
(3)

For example, based on data taken with the MU radar, typical fractional

errors in 90 s estimates of the horizontal wind component are about 0.07 in the

lower troposphere (S/N _ 30 dB), about 0.13 in the upper troposphere (S/N -6

dB) and up to 0.25 in the lower stratosphere with S/N _ 6 dB.

Errors for the SA method are not so easy to evaluate, but MAY and BRIGGS

(1985) have derived an expression for the random errors which is a particularly

important development for this technique. The velocities are found using the

time shifts to the maxima in the cross correlation functions (Tmax) and the
times for the autocorrelation to fall to the value of the cross correlation at

zero lag (Tx) (BRIGGS, 1984). The respective errors are:

o _ 0.5 3/2 T-I(I - 0 2)/0 m (4)
max TI/2 m

5/2 T-I/2T
o _ 0.5 TI/2 x-l(l - 0x2)/0x (5)

where TI/p is the mean fading time (proportional to the spectral width), T is

the reco_ length (proportional to M) and the correlation values (P , 0 )

are evaluated before the effects of the noise are removed. In the _eso_phere,

for SA measurements made at MF with S/N _ I0 dB and fading times 2-5 s, May

finds fractional errors in velocity of up to about 10%.

In the lower atmosphere, comparisons made with the Adelaide VHF radar

operating in the spaced antenna mode with radiosonde winds made from a site 35

km away show rms differences of about 3 ms -I.

ERRORS IN WAVE AND TURBULENCE MEASUR]_4ENTS

Wave Fluxes. The random errors cited above give some idea about the

averaging times which are required to achieve a desired level of accuracy in

measuring gravity-wave parameters. Estimates of gravity-wave amplitudes vary,

but balloon measurements suggest rms amplitudes of about 1-2 ms-I for

stratospheric inertio-gravity waves (e.g., BARAT, 1983). High resolution

rocket smoke trail measurements also give ms amplitudes of about 1 to 2 ms -I
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in the lower to mid-stratosphere (DEWAN et al., 1984) with little or no

geographic or seasonal vaxiation. VHF radar measurements in the upper

troposphere reported by BALSLEY and CARTER (1982) give similar amplitudes to

those quoted above.

There are relatively few measurements of vertical wave amplitudes in the

lower atmosphere, but unique constant-pressure balloon observations reported by

MASSMAN (1981) for the Southern Hemisphere show differences between the upper

tropical troposphere and the lower midlatitude stratosphere. Amplitudes were

larger in the troposphere (w' _ 0.2 ms-l) than in the stratosphere (w' _ 0.1

ms-l). The intrinsic periods of the wave events observed by Massman ranged

between 30 and 180 sin, so using the gravity-wave dispersion relation, the

corresponding rms horizontal amplitudes were also between 1 and 2 ms-1.

Overall, there appears to be relatively good agreement about wave amplitudes as

observed by a variety of different techniques.

An important wave parameter is the vertical flux of horizontal momentum

and particularly the zonal component, u'w'. Radar estimates can be made by

correlating u' and w' (e.g., SMITH and FRITTS, 1983) or by observing the mean

square radial velocities along two radar beams offset at an angle 8 to the

zenith (VINCENT and REID, 1982) viz:

u'w' (v12 - v22)/(2 sin 28) (6)

quantities v12, v22 which are similar inBecause the difference of two

magnitude is involved, the effects of random errors can be large.

Approximately, the error is

6(u'w') _ 2u'6u'/(sin 2e) (7)

In the mesosphere, for observations at an angle of, say, I00, u' _ 3.5

ms[_ (corresponding to a 20 ms -I horizontal rms amplitude) and 6u' _0.5

ms for a 4-min observation at 2 MHz so that to achieve an accuracy of _ I

m 2 s-2 requires about a 6-hr average. The only observations of u'w' so far

for the mesosphere are radar measurements; typically, _ % 1-5 ms-I in

magnitude. For the lower atmosphere, MASSMAN (1981)^found from balloon

measurements mean values2of 0 u---r_r of about 0.04 Nm -z in the upper

troposphere and 0.02 Nm- in _he stratosphere for freely propagating gravity

waves. The respective values of lu'w' I are 0.18 and 0.06 m2s -2. To

achieve accuracies of 0.01 m2s -I would require about 2 days of radar

observations if an rms radial velocity of u' _ 0.25 ms -I and a comparable

value for _u' are assumed. These estimates are crude and may be overestimates

of the averaging times required. REID (1981) found that mean square difference

between Doppler velocities measured in the mesosphere over 3 days by two radar

beams connected to independent receiving and digitizing systems was only 0.1
m 2 s-2.

It should be noted that the radar technique of VINCENT and REID (1982) is

not suitable for measuring the fluxes associated with topographic waves (c =

0). However, aircraft end balloon observations show the fluxes for stationary

waves can be large in the troposphere and as PALMER et al. (1985) have noted,

breaking mountain waves may be an important source of drag in the lower

atmosphere. The momentum fluxes associated with these waves are found to be in

the range 0.I to I Nm -2.

Turbulence Parameters. Radars can be used to estimate turbulence

parameters such as eddy dissipation rates (e) and diffusion coefficients (D),

in a number of ways. However, the best way appears to be via measurements of

the spectral width of the received signals, after the effects of shear and beam

broadening, as well as "spikes" due to specular reflections, are taken into
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account. These effects are relatively more important for wider beam radars and

as the mean velocity of the background flow increases. HOCKING (1985) has

recently summarized the various techniques and limitations of radar estimates

of turbulence.

For example, the spectral width broadening due to turbulence, %, is

given by

2 2 2
o = o - o
t e s

where o and o are the experimental (measured) and shear broadened width,
e s ......

respectlvely. Hocklng polnts out that in many experlmental sltuatlons e

and o are similar in magnitude so that statistical fluctuations can cause

negatSve values for otZ; these should be taken into consideration along

with the positive values, otherwise the estimates of e will be _iased too high.

Often it may not be possible to obtain reliable estimates of o t at all.

Indirect comparisons of radar measurements of e in the lower atmosphere

(_0.2 m2s-l) suggest they may be an order of magnitude greater than

aircraft estimates (e.g., SATO and WOODMAN, 1982; Lilly et al., 1974). These

discrepancies do not yet appear to have been resolved and it would be very

desirable if simultaneous intercomparisons of balloon, radar and aircraft

techniques were arranged.

TECHNIQUES FOR MEASURING HORIZONTAL WAVELENGTHS AND PHASE VELOCITIES

If the role played by gravity waves in the middle atmosphere is to be

fully understood, then more measurements are required of horizontal scales

(ix .) and phase velocity (c) since these are amongst the least well-known

gravlty-wave parameters. A number of radar techniques have been devised but

not yet widely applied. All methods measure the time for waves to pass between

horizontally separated observing locations. The main differences between

techniques depends on whether a single radar is used or a network. VINCENT and

REID (1982) used a single radar to compare the wave motions observed in one

besm with the motions measured in another, widely separated beam. Some

assumptions have to be made in analyzing the results and there is the

possibility of ambiguities for waves with _ less than the separation of the

observed regions. ROTTGER (1984) has used _n interferometric technique to

compare the wave motions observed in a radar beam pointed in two directions

close to the zenith. A network of spaced antenna stations (GRAVNET) has been

used by MEEK et al. (1985) to study scales and velocities in the mesosphere and

the results are similar to those found by VINCENT and REID (1982), while CARTER

et al. (1984) used a network of three ST radars with vertically directed beams

to investigate waves in the troposphere. An important finding of all these

measurements is that monochromatic waves occur relatively infrequently and some

way must be found of describing the rather random wave field which appears to

be the norm in all regions of the atmosphere.

SUMMARY

Considerable progress has been made in applying MST radars to studies of

wave and turbulence motions in the middle atmosphere. Where comparisons can be

made between measurements made by different techniques, the results are in

reasonable accord, taking into account the temporal and spatial separations

often involved. The usual comparisons have been between radiosonde balloons

and radar determinations of the prevailing wind, but before MST radar

techniques can be fully exploited for wave and turbulence observations, it is

necessary to understand the errors and limitations likely to be encountered.

While the use of relations like equation (i) can give some indication of the

likely errors involved in a single observation, it is essential that they be
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checked by other means. For instance, one practical method would be to find

the rms difference between velocities taken as closely spaced as possible in

time or space. It is very important that further intercomparisons be made

between as many different techniques as possible in order to test the basic

assumptions which are inherent in any measurement of velocity. To this end,

for example, the Kyoto and Adelaide atmospheric groups recently used the MU

radar to make comparisons of velocities measured by the Doppler and SA methods.

Multi-beam experiments were also made to test the assumption made in the "dual-

beam" momentum flux techniques that the wave field is horizontally homogeneous.

It is noted that most MST radar studies to date have been confined to

observations of propagating waves. It would he an important development if

these studies could be extended to investigations of orographic waves; joint

experiments with balloons and aircraft are called for and the capability of

radars to scan in azimuth and elevation needs to be exploited as well as the

use of networks in order to measure such important properties as energy and

momentum fluxes and wavelengths.
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SESSION SUMMARY AND RECOMMENDATIONS

The emphasis in this session was on velocity intercomparisons made not

only between radars and radiosondes, but also between radars operating at

different frequencies. There was general consensus that the agreement between

radiosonde winds and the radar velocities whether measured by the Doppler or

spaced antenna techniques was good. Typically, the rms differences were of the

order of 3-5 ms -1, which are generally within the limitations imposed by the

spatial and temporal differences inherent in most of the comparisons made to

date; even radiosonde packages flown on the same balloon give rms differences

of about 3 ms-1. Many comparisons have been of relatively short duration

and it is desirable that more extensive series of evaluations be made so as to

recognize and remove any sources of systematic bias which may be present in

radar wind determinations. It was agreed that where feasible, special

soundings be made in order to provide further intercomparisons that are as

close in time and space as possible.

There was much discussion on the impact of random errors on radar measure-

ments of wave turbulence paremeters. In the lower atmosphere in particular,

the random errors are likely to be of comparable magnitude to the wave

amplitudes and there was general agreement that the errors in individual

measurements needed to be assessed very carefully. Efforts should continue to

find the optimum data reduction methods. Efforts should also continue to de-

vise alternate techniques for measuring such important wave parameters as u'w'.

The dual-complementary-beem technique requires measurements from regions dis-

placed horizontally in space but the best determinations will come from

simultaneous measurements of u' and w' made in a common volume. Horizontally

displaced receiving systems could be used to look at the same scattering volume

from one or more angles other than backscatter. Such multistatic arrangements

would not only allow more direct measurements of u'w' but also some of the

assumptions of the dual-beam method to be tested.

Papers presented in this session gave further evidence of the ability of

50-MEz radars to make studies of precipitation during convective activity.

There was much interest shown in this work which appears to provide

opportunities for studies of cloud physics with low VHF radars.

Some of the most extensive discussions, both formal and informal,

concerned the optimum frequency for clear-air wind profiling. To date, most ST

radars have operated near 50 MHz, but now radars using frequencies near 400 MHz

are being, or are about to be, evaluated. While a number of factors influence

the choice of an operating frequency (including the availability of a suitable

frequency band), concern was expressed that the effects of precipitation be

taken into account when a choice is being made. Experience shows that the
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precipitation and turbulence echoes can be separated at 50 MHz but, near 400

MHz the observed signals will be from water droplets rather than turbulence-

induced refractive index fluctuations in nearly all precipitating systems.

Precipitation, no matter how light, will therefore preclude direct vertical-

bess, vertical wind measurements at the higher frequency. It probably does not

matter about measurements in strong convection. However, the direct vertical

wind data will be missing also in stratiform rain, which can be extensive in

horizontal extent. The measured vertical velocities are important in order to

convert correctly the off-vertical radial velocities to horizontal motions. It

is not possible to infer vertical air motion from horizontal measurements for 3

bess systems (I zenith beam) when the scattered signal is from water droplets.

Indirect vertical velocity measurements would require different or additional

pointing angles; however obtaining the vertical velocity from integration of

the continuity equations may not be accurate enough anyway. Thus, one cannot

expect to obtain vertical air motion in precipitation with UHF radars. Note

that this is a problem in the lowest 4-6 km in stratiform precipitation; above

this altitude, the fall speed of the particles and the uncertainty of the

vertical velocity are comparable. The determination of network-type vertical

velocities by objective analysis techniques is still possible but will be valid

for the scale of the network spacing.

Concern was expressed that, before large-scale networks of wind-profiling

radars be established, the relative merits of operating in either the lower VHF

or lower UHF bands be fully assessed. It may well be that an intermediate

frequency near, say, 200 MHz is optimum.
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4.1.1

INTRODU CT ION

AN EVALUATION OF ERRORS OBSERVED IN THE MEASUREMENT

OF LOW WIND VELOCITIES

S. R. Williams and D. W. Thomson

The Pennsylvania State University

Department of Meteorology

University Park, PA 16802

Measurements of low wind velocities ([VNI = 0 to 6 m/s) with a VHF wind

profiler can be difficult if ground clutter,-or other biases in the system

dominate in altering the position of the perceived peak in the calculated power

spectrum. A variety of methods for "ground clutter" suppression are used in

profiler systems today (CORNISH, 1983). Typically, dc offsets are removed

before the spectra are calculated. Several other techniques for editing are

used for clutter suppression after the spectra are calculated. One of these

methods called "zero suppression" takes the spectral value of a selectable

number of points (N) on each side of 0 velocity (one point on either side, in

this study) and sets them equal to the mean value of the points exterior to the

specified N points on either side of 0. Our analysis done with the PSU VHF(1)

radar, shows that this zero-suppression method can systematically bias

horizontal winds (V_) below 6 m/s. With the zero suppression, an artificial

increase in absolut_ wind velocities occurs when the spectral peaks fall

within the + N points of the FFT (personal communication, Strauch, 1985). We

have also established that the method artificially decreases the absolute wind

velocities inferred from spectral peaks that are outside but near the

suppressed region. In the remainder of this short report we show comparisons

of wind profiles observed with and without zero suppression. The range of the

biased velocities extends to about + 6 m/s. Biases have been deduced to be

as much as 2 m/s, but more commonly they are on the order of 1.0 m/s.

OB SERVATIONAL METHOD

In this study, comparative observations were made using only the high

resolution (Az = 270 m) mode. Nine separate first moment calculations were

averaged together (STRAUCH et al., 1985) for each range gate (24 gates). In

the standard observational sequence, 12 such velocity profiles are averaged

together to create the reported hourly profile. To obtain the data for this

study, the radar was shut off momentarily to manually switch the zero

suppression from "ON" to "OFF". A 90-sec observation was then immediately

taken after each such change in order to fairly compare the velocity profiles

with and without zero suppression.

The first measurements were performed on August 12, 1985, when a single

90-sec observation with this suppression was immediately followed by an

observation without it. This was made before we were strongly suspicious that

such biases were of sufficient magnitude to be of substantial importance. By

taking the first-moment calculations and plotting then as a function of height,

one can readily show the bias introduced by the suppression (Figure I). The

corresponding power spectra (each of which is an average of 9 spectra) are

shown in Figures 2a,b. The horizontal axis is scaled in FFT points, and the

vertical axis represents the relative reflected power at each individual range

gate. The topmost spectrum corresponds to the 8.60 km MSL range gate; the

lowermost to 1.94 km MSL. The two hack marks indicated on each spectrum

indicate the FFT points at which the velocity peaks first reached the noise

level. In Figure 2a, the velocity peaks picked seem to lie just outside the

suppressed area which can be seen as the "flat tops" near 0 velocity. Figure

2b shows the corresponding spectra evaluated without zero suppression. They
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were taken approximately two minutes later. The "notch" evident at 0 velocity

is a consequence of the dc removal.

Since typical magnitudes of velocity variations between two 90-sec

observations can be as large as the bias seen in Figure 1, a single comparative

observation as recorded on August 12 would not be statistically significant.

Thus, following our initial observation of the possible bias, we waited for the

appropriate weather conditions for a second "low velocity" day; it occurred on

September 15, 1985. Data were recorded during two observation periods on

September 15: labeled Period 1 (04:17 to 04:47 Z) and Period 2 (12:23 Z to

12:45 Z). In Period 1, six comparisons with and without zero suppression were

taken. The average wind profiles for the component in each beam are plotted in

Figures 3a,b. The histogrsm of absolute values for velocity differences

(Figures 4a,b) show the average bias to be % 1 m/s. During Period 2, although

the velocities had changed appreciably, the bias still remained between 0.79

to 0.91 m/s on the average as seen in Figures 5 and 6.

A bias of fl m/s in an absolute sense is small, but in relative terms this

bias can easily be as much as 50 percent of the observed velocity. Further-

more, it could produce a substantial fraction of the rms error associated with

the radar when its measurements are compared with conventional wind soundings.

The error could be of particular significance when the radar is being used for

estimating derived parRmeters such as temperature advections which are depend-

ent upon the calculated vertical wind shear. On the other hand, referring back

to Figures 2a, b, it can be seen that the present zero suppression can be help-

ful in the uppermost gates in which the signal-to-noise ratio is normally

lower. Perhaps a gate-number-dependent zero-suppression technique should be

applied which would take into account the number of each gate as well as the

characteristics of each site's ground-clutter pattern and typical variations

in S/N ratio, etc.
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INTRODUCT ION

One of the important and almost unique capabilities of the MST radar

technique is the measurement of the vertical component of wind velocity.

Measurements of vertical velocity are routinely made at many ST and MST radars

both from scattering due to turbulence and quasi-specular reflection. Not only

is the vertical velocity of great significance in itself, but as shown by CLARK

et al. (1985), often the vertical velocity is required for accurate

determinations of horizontal velocity.

However, for a number of years, there have been doubts about the accuracy

of vertical velocities measured with quasi-specular reflections (GAGE and

GRE_, 1978; ROTTGER, 1980, 1981). The concern has been that the layers

producing the quasi-specular echoes might have small tilts as show in Figure

la. Because of the quasi-specular reflection process, this hypothetical tilt

would control the effective zenith angle of the radar antenna beam so that a

small component of the horizontal velocity would be included in what was

assumed to be a truly vertical beam. It is the purpose of the research

reported here to test the hypothesis that there is an effect on the wind

velocities measured on a vertical antenna beam due to a long-term tilting of

the stable atmospheric layers that cause quasi-specular reflection.

Gravity waves have been observed to cause short-term tilting of turbulent

layers (HOOKE and HARDY, 1975), and specularly reflecting layers (ECKLUND et

al., 1981). In both cases, the effect was a wave-like deformation of

atmospheric layers with a period of a few minutes. This geometry is shown in

Figure lb. Because of this influence of gravity waves, it was expected that

there would be short-term variations in the vertical velocity.

EXPERIMENTAL METHOD

The Sunset radar (GRE_ et al., 1986) was used for the experiments

described here. This radar is located west of Boulder, CO, just i0 km from the

Continental Divide as shown in Figure 2. Because of the mountain environment,

there is frequent mountain lee wave activity above the radar. It was

anticipated that the lee waves would exaggerate the tilting of the atmospheric

layers causing a bias in the measured vertical velocities. It was also

expected that the intense gravity wave associated with the mountain environment

would increase the variance of the velocity measurements. The radial component

of wind velocity was measured using five antenna beam positions, vertical and

15 ° from the vertical in the east, west, north and south. The geometry of the

radar volumes is shown in Figure 3. An example of the radial velocity measured

with the east and west slanted beams is shown in Figure 4. An estimate of the

vertical component of wind velocity, W can be derived from the two slant
• ° e .

beams, assuming no gradlents of horzzo_al veloczty,

Wew = (Ve + Vw)/C°S Z
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where Z is the angle from the zenith and V and V are the radial veloci-

ties measured on the antenna slanted to th e east Wnd west, respectively

(VINCENT and REID, 1983). It has been established that echoes observed with

antenna beams slanted away from the vertical are from turbulence scatter

(VANZANDT et el., 1978). Therefore, W can be always assumed to be measured
W

from turbulence scatter. On the other _and, velocities measured with the

vertical beam, W can be from turbulence scatter or quasi-specular echoes,v rll
depending on the ra_:tltude and the time. Only the data from the antenna beam

positions in the east-west vertical plane are presented here.

Figures 5-8 are XY plots comparing. W err and IW The range resolu-
tion was 1 km and the data were obtazned _rom _- _w_ above sea level.

The coordinates of each plotted point (N _ and W ) were calculated from
the medians of 9 - . . . vert _w12 zndlvzdual radar records over one hour for each altitude

and antenna beam direction. Only the measurements with valid data from the

vertical beam and both slant beams are plotted. At a particular time and

altitude, if the hourly median echo power from the vertical beam exceeded that

of the slant beams by a factor of three, the data point was plotted as an "X"

to signify that the echo from the vertical besm was quasi-specular, else it was

plotted as an "0" to signify its origin in turbulence scatter. Each of these

plots typically contains 24 hours of data. Before plotting, the entire data

set was carefully hand-edited to eliminate echoes from aircraft.

To provide a measure of long-term bias, the median (W - W ) for
• velt

the cases when the echo on the vertical beam was quasl-specular, tue_rbulence

scatter and total cases inclusive are tabulated in the lower right-hand corner

of each plot.

RESULTS

Figure 5 represents a day with very light winds and has the least scatter

about the X = Y line of the four cases presented. Note that the scatter of the

points where Wverr is from a quasi-specular echo is about equal to that of

the points where W . is obtained from a turbulence echo and that the bias

of the points assoVlea_ed with quasi-specular echoes is only 1 cm/s.

The winds were higher on the days represented by Figures 6-8, the range of

W associated with turbulent echoes is larger. Even so, the scatter of

pVmen_s about the X = Y line where W is from quasi-specular or turbulent
vert

echoes is still about the same. However, the long-term W err - New is
about 10 cm/s for both turbulence scatter and quasi-specular reflection.

DISCUSSION

The following tentative conclusions can be drawn from the four examples

presented:

1.

2.

The behavior of the vertical component of wind velocity measured

with quasi-specular reflection or with turbulence scatter is not

markedly different, either in the hourly median or the daily median

(Wve - W ). The similarity of the scatter of Wvert .- _ew
when_he vee_tical beam received a quasi-specular or a turoulence

scatter echo puts a limit on the errors in the measurement of W
• vert

due to the tilting of stable layers by gravity waves. This slm_.tarity

of behavior is also evidence that N _, measured with either type
e

of echo is the vertical component o_ _at wlnd velocity in agreement

with WATKINS and JAYAWEERA (1985) and RIDDLE and BALSLEY (1985).

The daily median W - New for either type of echo is not more
than a few cm/sec, vert
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XY Plot of Hourly Median Vertical Velocities from mdata/mIFebl.85

N(v] vs N(ew) only
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3 Even in the mountain enviror_ent, W - W , computed from• ver .
hourly medians of radial velocity are _plca_ly less than + I m/s.

Roughly, the uncertainty in the computation of horizontal components

of velocity using hourly medians, but uncorrected by the vertical

velocity, would be W cos 15°/sin 15 ° , or typically less than + 4

m/s. The observed scatter of the hourly medians of W - W -
vert

could be due to horizontal gradients of vertical veloclty (_RK et

al., 1985) and/or by velocity perturbations due to gravity waves.
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4.1.3 METHODS FOR VERIFYING THE ACCURACY OF WIND PROFILES

R. G. Strauch

Boulder, CO 80303 %2

Most of the verification tests of the accuracy of winds measured by UHF or

VHF radars have been made by comparing the radar data with radiosonde-measured

winds. The results usually "show general agreement" and differences are

attributed to the "lack of temporal and spatial simultaneity." There have not

been extensive or routine comparisons of radar-measured winds with radiosondes

or other wind measurements. One of the reasons that routine radlosonde/radar

comparisons have not been made is that the agreement that is obtained depends

on the particular wind field that is being observed. This is also true for

comparisons with other wind measurements such as those obtained by lasers

because the instruments are measuring the winds in fundamentally different

ways. For example, the Doppler radar and Doppler lidar do not measure the mean

radial velocity of the aemosphere in the resolution volume, but rather measure

the reflectivity-weighted average of the radial velocity. This is ignored when

the measured radial velocities are converted to horizontal winds. The

reflectivity weighting depends on the distribution of refractive turbulence for

the clear-air radar and depends on the distribution of aerosols for the lidar.

Also, the resolution volumes are usually very different. Another problem in

making comparisons is the lack of a standard or truth. Winds measured by

radiosonde are often regarded as the true wind; however, in tests where two

radiosonde packages were flown from the same balloon, the vector winds measured

by the two trackers had rms differences of 3.1 m/s (HO_NE, 1980). Winds

measured by radar or lidar will have much better precision. Therefore,

comparisons of radar-measured winds have been made with several types of

measurements not only to verify radar data but also to seek a satisfactory

comparison method.

Three of the comparisons that have been made with Colorado Profiler radars

are summarized below:

Radar/Radiosonde

The 915-MHz radar wind profiler at Denver's Stapleton Airport is located

adjacent to the radiosonde launch site of the National Weather Service. Hourly

averaged winds measured by the radar can be compared with the twice-daily

radiosonde winds. Figure 1 illustrates a comparison that "shows general

agreement." Note that in this case the 915-MHz radar did not have enough

sensitivity to measure the winds in the core of the jet and that above the jet

the radiosonde track was lost. If random cases are examined, poor agreement

can also result. However, if the time-helght cross section of radar-measured

winds shows spatial and temporal changes such as illustrated in Figure 2, poor

agreement should be expected since the instruments would be observing very

different wind fields. Data from radar and radiosondes are available for two

years, and these comparisons are continuing.

Radar/Lidar/Radiosonde

In March 1984, a series of comparisons were made with an infrared lidar

(10.6 micrometer wavelength), the 915-MHz radar, and radiosondes. The lidar

can measure winds with fixed telescope pointing, the same as the radar, or it

can do 360-degree VAD (velocity-azimuth-display) scans. Figure 3 illustrates

radar/lidar comparisons. Note that the data are plotted as radial velocities

at 75-degree elevation angle. Radar and lidar data are from 10-minute
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Figure 2. Example of wind profile obtained with 914-MHz

radar during frontal passage.

averages. The results of these comparisons (LAWR_qCE et al., 1985) show rms

differemces of about 3 m/s for horizontal wind comparisons for both lidar/

radiosonde and lidar/radar. The radar and lidar data sometimes show changes

in horizontal wind component speed of several meters per second between 10-rain

averaging periods.

Radar/Radar

A brief radar/radar comparison of wind measurements was made at

Platteville (STRAUCH et al., 1983) using the 50-M_z radar and a 3-cm wavelength

meteorological Doppler radar during precipitation. This comparison showed

"good agreement. " Since January 1985, there have been two profilers colocated

at Platteville; a 50-MHz and a 405-MHz system. Both operate in the same modes

and measure hourly-averaged winds. In one comparison, shown in Figure 4, the

rms difference of horizontal wind components measured at 6.8 km MSL was about I

m/s for a 5-day period. In general, the comparisons "show good agreement", but

the data from the 405-MHz radar are much noisier than from all other profilers.

This is believed to be caused by antenna sidelobes, and more of these compari-

sons will be made after the antenna performance is improved.

There are other comparisons that could be made to attempt to quantify the

accuracy of radar wind profiles. Some of these are:

Radar/Aircraft

Routine comparisons of radar-measured winds and winds measured by

commercial wide-body jet aircraft equipped with the Aircraft Communications and

Reporting System (ACARS) could be made. These aircraft have inertial

navigation systems and can derive wind data along the flight track when the
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track is a straight line at constant altitude. These data have not been used

for profiler comparisons; they are a potential source of data at altitudes

where wind speed is usually high. The aircraft-measured winds may be accurate

enough to calibrate the profiler or check the pointing angles of fixed-beam

profiles. Research aircraft could also be used for comparison but systematic

comparisons would be too costly.

Radar/Meteorological Inference

Wind data from a network of radar wind proffers can be used to calculate

divergence and vorticity; a case study was performed by ZAMORA and SHAPIRO

(1984), and these calculations were "in agreement" with divergence and

vorticity calculated from the radiosonde network. A comparison of winds or

quantities derived from wind data obtained by a network with radiosonde data

may yield a better accuracy determination than comparisons of individual

profiles because the differences in temporal and spatial averaging will be less

important when averaging over large areas. Data from a radar network could

also be tested for accuracy by initializing models with current radar-measured

winds and comparing model predictions with later data. This type of comparison

should be tried in simple terrain (such as Eastern Colorado, where two 50-MHz

profilers are collecting data routinely) and in simple flow regimes.

Radar/Scannin_ Radar

A fully scannable clear-air radar measuring wind profiles with VAD

analysis at various elevation angles may be the best standard available for

radar wind data. It would be especially valuable for calibrating fixed beam

systems that use temporal integration rather than spatial integration to obtain

representativeness and whose actual pointing andes are difficult to measure.
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The antenna pointing angles of a scanning syst_n can be checked using the sun

as a source. The scanning system would operate at UHF to keep antenna size

manageable and so there would be no pointing uncertainty due to aspect

sensitivity. The effects of vertical motion and divergence on radar-measured

winds could be assessed. Plans are being made to convert a relatively

low-power 405-MHz radar to a scanning system that should be able to measure

winds in the clear air to 7-10 km. It is hoped that such a radar would provide

data that would be accepted as "true" wind data because it would have temporal

resolution of about 5 rain and height resolutions of less than i00 m as well as

continuous scanning. In addition to calibration of other profilers, such a

system would be a mesoscale wind profiler with many potential applications as a

stand-alone (as opposed to part of a network) wind profiler.
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4.2.1 A COMPARISON OF THUNDERSTORM REFLECTIVITIES MEASURED AT VHF AND UHF

/0 , /
Department of Physics and Astronomy _ _,

Clemson, SC 29631 . '

J. Rot tger*

INTRODUCTION

Arecibo Observatory

P. O. Box 995

Arecibo, PR 00613

In this paper, we compare observations of thunderstorms made with two

radars operating at different wavelengths of 70 cm and 5.67 m. The first set of

observations was made with the UHF radar at the Arecibo Observatory in Puerto

Rico, and the second set was made with the Max-Planck-Institut fur Aeronomie

VHF radar in the Harz Mountains in West Germany. Both sets of observations

show large echo strengths in the convective region above the -10°C isotherm.

At UHF, precipitation echoes dominate. At VHF, there appears to be a contri-

bution from both the precipitation echoes and the normal echoes due to scatter

from turbulent variations in the refractive index.

A number of simple theories can be used to calculate the relative

contributions of radar scatter from "clear air" and from precipitation in a

cloudy atmosphere as a function of frequency (see, e.g., BATTAN, 1973). The

theoretical predictions indicate a wavelength to the -4 power law dependence

for scatter from raindrops. GOSSARD and STRAUCH (1981) have labeled this

"incoherent scatter", and the scatter from turbulent variations in the

refractive index has been called coherent Bragg scatter. The latter is

expected to vary as the wavelength to the 1/3 power. Additionally, strong

Fresnel scatter or reflection due to refractive index stratification has been

found at VHF (e.g., ROTTGER, 1980b). However, the exact wavelength dependence

of the reflective process is not known. The few detailed studies of the

scatter from clouds at lower frequencies such as UHF and VHF have shown the

echo strengths to he larger than expected, based on the theoretical predic-

tions. Examples of such observations are given by SMITH (1964), NAITO and

ATLAS (1966), CHERNIKOV (1968), GAGE et al. (1978), and GRE_ et al. (1978).

The most detailed discussion of the problem has been given by GOSSARD (1979)

and GOSSARD and STRAUCH (1981).

Some of the earlier explanations of the enhanced reflectivities dealt with

a possible organization of the precipitation on a scale comparable to half the

radar wavelength due to turbulent motions within the cloud. Thus, the

reflected radar signal would have both a coherent and an incoherent component.

GOSSARD (1979) used results from a numerical cloud model developed by CLARK and

HALL (1979) to improve the estimates of the dielectric fluctuations caused by

water vapor and raindrop spectrum variations within the cloud. He concluded

that, for reasonable values of the various parsmeters, organization of the

precipitation by turbulent motions could not account for the observations.

However, the variations of the thermodynamic variables and the coupling to the

water vapor densities through nonlinear dynamics could produce significantly

*On leave from the Max-Planck-Institut fur Aeronunie, Katlenburg-Lindau,

West Germany.
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enhanced cloud reflectivities, although the calculated enhancements were

still too small to explain the observations.

GOSSARD and STRAUCH (1981) used experimental data from an FM-Od radar to

study the contributions from "incoherent scatter" and '_Bragg scatter" in

winter clouds in Colorado. Their results showed no significant departure from

the classical predictions, but they could not conclude anything about the

stronger summertime convective storms. Also, they suggested that some of the

enhancements in reflectivity that have been reported in the literature could be

associated with entrairnnent and mixing of dry air near the edges of the cloud.

So little data exists and, with the exception of the work by GOSSARD

(1979), little has beem done to improve the theory of scattering from clouds at

long wavelengths. Since the theory of scattering from clouds at long

wavelengths is uncertain, it is particularly important to have as much

observatior_l data as possible taken with different instruments. In this

article, we will present data from two separate thunderstorm observations made

in the Stmuner of 1978 and in the Fall of 1979. The first experiment was

carried out with the SOUSY VHF radar located in the Harz Mountains in West

Germany and operating at a frequency of 53.5 MHz. The second experiment was

carried out with the 430-MHz Arecibo Observatory radar located in Puerto Rico.

Although the observations were made in different parts of the world, in

different climates, with different radars operating at different frequencies,

there are significant similarities. Also, this comparison of the scatter at

wavelengths of 70 cm and 5.67 m from cumulus clouds is the only such comparison

of which we are aware.

THE SOUSY VHF RADAR OBSERVATIONS

The SOUSY VHF radar is operated by the Max-Planck-Instltut fur Aeronomie

and is located in the Harz Mountains near Bad Lauterberg. The radar frequency

corresponds to a wavelength of 5.67 m, and the nomlnal height resolutlon is 150

m (see, e.g., ROTTGER, 1980a). The radar was operated during the early part of

June 1978, when the flow over western Europe was characterized by a stable,

anticyclonic air mass. On June 1 and 2, air mass thunderstorms developed, and

some were reported near the radar site. In the evening of June 2, 1978, data

were obtained after 1851 GMT, and, for almost two hours, a thunderstorm was

immediately over or near the radar's location. ROTTGER (1980a,b) has

described the experiment in greater detail.

The vertical velocities measured by the vertically pointing radar for the

period from 1851 GMT until 2040 GMT on June 2, 1978, are summarized in Figure 1

(local Middle European Time is GMT minus one hour). The shaded areas indicate

upward velocities, and the contour intervals are I m/s. The dark, solid bars

show the times and ranges at which radar echoes from lightning were detected.

A detailed discussion of these echoes is outside the scope of this paper, but

we assume that they are likely due to scattering from the ionized lightning

channel, although Bragg scattering from acoustic waves may occur, too. The

lower part of the figure shows the measured mean pressure changes at the site

and a subjective estimate of the rainfall intensity as a function of time. The

thunderstorm symbol indicates the presence of lightning, and the open circle

shows a period of clear sky overhead.

In Figure 2 we show the mean quasi-vertical velocity w, the echo power P

ar_the rms velocity fluctuations o during the final period from 2011-2041

GMT. The effective reflectivity, _ue to scattering from turbulent refractivity

variations and partial reflection from coherent discontinuities in the

refractivity, is proportional to the power P multiplied by the square of the

range. It is normally a measure of the temperature and humidity variations

in the radar volume. Note that an uplift of the reflectivity pattern from
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about 7.5 to 10.5 km occurs within a 10-minute period at the beginning of the

period shown in the figure. The reflectivity pattern then remains nearly

stationary in height after about 2025 GMT. The behavior of the echoes is

consistent with the vertical development of the thundercloud until it reached

the height of the tropopause at 10.5 kin, if we assume that the gray-shaded

region represents the thundercloud region. Two indications support this

assumption: (1) the high reflectivity band above 10.5 km at 2011 GMT

presumably is the radar-detected tropopause (e.g., ROTTGER, 1980b), and (2)

lightning echoes, which originate within the cloud, are detected only within

the gray-shaded region. The final uplift of the high reflectivity regions in

the tropopause level is connected with mean upward velocities of s_e meters

per second. The strongest turbulence, viz., regions of large rms fluctuations

in velocity, occurs in and above the regions of strong upward velocities.

A more detailed analysis of the Doppler spectra shows that, in addition to

the relatively small upward velocities, sometimes large downward velocities

occur simultaneously. Figure 3 shows 12 consecutive vertical velocity profiles

obtained at 2-minute intervals with the SOUSY VHF radar. Actually, the figure

represents gray-scale plots of the Doppler spectra as a function of range gate.

The darker impressions indicate stronger signal strengths. The spectra for

each range gate are normalized to their peak value. Thus, the extent to which

the noise is suppressed is an indication of the signal-to-noise ratio.

Each profile shows a small fluctuating vertical wind component with an

amplitude no greater than a few m/s over the altitude range from 3.0 to 12.0

kin. However, before 1900 GMT, while the thunderstorm is above the radar,

there are secondary peaks in the Doppler spectra between 2.5 and 9.0-kin

altitude. The secondary maxima have associated velocities between a few m/s at

the upper end of the altitude range and 10-12 m/s at the lower end. The power

associated with the secondary echoes has a maximum value of more than 10 dB

above the noise level and is comparable in magnitude to the "clear air" or

"small velocity" echoes which are seen to persist after the cloud has passed

out of the radar beam. Around 7.5 km altitude at 1851 GMT, the secondary peak

is even stronger than the small velocity part of the spectrum, as shown by its

suppression resulting from the normalization. The height range where the

secondary echoes occur is above the -20°C isotherm as determined from the
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Hannover radiosonde data which were taken some 100kmnorthwest of the radar

site at 1200 GMT.

Double peaked spectra of VHF radar echoes from a large cumulus cloud were

also reported by GREEN et al. (1978). They found it difficult to interpret

these double peaks, although they t_atatively concluded that an updraft and a

downdraft existed simultsneously within the radar volume. They interpreted the

secondary echo as being from precipitation but found that the measured

reflectivities were too large by an order of magnitude.

430-MHz THUNDERSTORM OBSERVATIONS AT ARECIBO

The experiment at Arecibo was carried out in September of 1979 using the

430-MHz radar at the Arecibo Observatory. The radar frequency corresponds to a

wavelength of 70 cm. The radar is steerable within an angular range less than

20 ° off vertical, but during the experiment, the beam was pointed vertically

during the entire observation period. At the beginning of the experiment, the

intertropical convergence zone (ITCZ) was located unusually far north. A wave

disturbance in the easterly flow passed over the island on September 13 and 14,

1979, and organized the convection that developed over the island due to the

strong diurnal heating cycle. On September 14, there was thunderstorm activity

over the radar from 1430 AST until 1750 AST. LARSEN et al. (1982) have

described the experiment and some of the earlier results in greater detail.

The radar reflectivities are shown in Figure 4 for the period from 1430 to

1730 AST. No renormalization of the power for range-square dependence is

necessary since the near-field (Fresnel region) for the Arecibo 430-MHz radar

extends out to more than 100 km altitude. The Arecibo 430-MHz radar thus

illuminates in the troposphere and stratosphere, a region with a horizontal

diameter equal to the 305-m diameter of the dish antenna. As in Figure 2,

Figure 4 clearly shows the cross section of a cumulus cloud, including the



284

Figure4.

1640

anvil near the tropopause at the end of the afternoon. It is unusual to have

such a long-lived thunderstorm, but in this case the combined effects of the

easterly wave, the local topography, and the heating contrast between the land

and the ocean must have produced favorable conditions for maintaining the cloud

in a nearly statior_ry position. Care has to be taken in interpreting the data

because the radar was not scanning during the experiment. Therefore, Figure

4 shows effects due to both advection of the cloud over the radar and the

temporal evolution of the cloud in the course of the afternoon, just as in

Figure 2.

Figure 5 shows a sample of five consecutive profiles of the vertical

velocities measured with the radar. The vertical and horizontal axes are the

same as in Figure 3, but the power is shown in contours rather than as a gray-

scale plot. The contour interval is 3 dB. The echoes in the troposphere are

very broad, and "x's" have been used to indicate the locations of the maxima in

the power spectra. Typically, the echoes in the troposphere would have

approximately the same width as the echoes seen in the region above the

tropopause near 15 km.

The vertical velocity profiles observed at Arecibo once the cloud was

overhead are very similar to the vertical profiles for the "precipitation"

echoes observed with the SOUSY VHF radar. The echoes have small velocities

near the tropopause and become more negative toward lower altitudes. In this

case, the downward velocities attain magnitudes as large as 8 m/s. Note that

around 7-8 km the measured Doppler shift is so large that the velocities become

aliased and appear as large positive velocities. Data cannot be obtained below

an altitude of 5.7 km due to the receiver protection system for the 430-_z

radar. Therefore, we do not know if the downward velocities become larger at

lower altitudes.

In the Arecibo data set, there is no evidence of a "low velocity" signal

from the "clear air", as there is in the SOUSY VHF radar data taken at a longer
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wavelength. We have examined the Doppler spectra from the UHF radar in detail,

and there is no evidence of a double peak. Of course, that may not be

surprising since the echo strength of the signals shown in Figure 5 are of the

order of 60 dB. The difference in the signal strength just above the tropo-

pause near 15 km and the signals in the cloud just below the tropopause is

approximately 30 dB at UHF but only 10 clB at VHF. The signal strength

increases further by another 30 dB before it attains maximum values near 10-kin

altitude. The radiosonde ascent from Sen Juan, located 80 km east-northeast

from the Arecibo radar, showed that the a-,osphere was conditionally unstable

from ground level to the height of the tropopause, and the lowest height where

data were obtained with the radar corresponded to a temperature of -10°C. The

temperature decreased further to -20°C at 400 mb or 7.6-kin altitude.

Therefore, we do not expect much liquld precipitation or liquid cloud droplets

in the height range of the radar measurements.

Figure 4 shows that the echoes attain their largest magnitude near the

center of the cloud and taper off at the edges. Therefore, the enhancements

cannot be due to large refractivity gradients created by mixing of dry and

cloudy air near the outside of the cloud. The largest magnitudes occur in what

is typically the updraft region of the cloud, the right half of Figure 4, while

somewhat less intense echoes occur in the region usually associated with

downdrafts, the left half of Figure 4. The same is also true for the VHF

observations as shown in the middle frame of Figure 2.

GRAVITY WAVES G_ERATED BY THE STORMS

Both the SOUSY VHF radar observations and the Arecibo observations show

that gravity waves were generated by the convection once the upward development

reached the height of the transition from the unstable lapse rate in the

troposphere to the stable lapse rates in the lower stratosphere (ROTTGER,

1980b_ LARSEN et al., 1982). The grevity-wave motions are evident in the

sample profiles shown in Figures 3 and 5. In Figure 5, the downward phase

progression of the waves can be seen in the altitude range from 15 to 22 kin.

The downward phase progression implies upward group velocity for a packet of

gravity waves. Figure 1 also shows some evidence of downward phase progression

in the altitude range between 10 and 13 km as can be seem in the tilt of the

helght/time contours of the vertical velocities.

DISCUSSION

In all, there are a number of similarities between the two data sets in

spite of the differences in the conditions and locations used for the

observations. Both radars detect a "precipitation" echo that shows vertical

velocities close to zero near the tropopause and increasing negative velocities

at lower heights. The VHF radar also detects the clear-air component of the

vertical motion. Finally, both sets of radar observations showed that gravity

waves were generated in the 1 ower stratosphere in connection with the cumulus

convection.
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INTRODU CT ION

A study of thunderstorms was made in the Summer of 1985 with the 430-MHz

and 50-MHz radars at the Arecibo Observatory in Puerto Rico. Both radars use

the 300-meter dish, which gives a beam width of less than 2 degrees even at

these long wavelengths. Though the radars are steerable, only vertical beams

were used in this experiment. The height resolution was 300 and 150 meters for

the UHF and the VHF, respectively. Lightning echoes, as well as returns from

precipitation and clear-air turbulence were detected with both wavelengths.

Two tipping bucket rain gauges, an anemometer, wind vane, and electric field

change meter provided additional data to complement the regular meteorological

balloon soundings taken at San Juan, some 70 kilometers to the east.

Large increases in the returned power were found to be coincident with

increasing downward vertical velocities at UHF (Figure I), whereas at VHF the

total power returned was relatively constant during the life of a storm. We

attribute this to the fact that the VHF is more sensitive to scattering from

the turbulence-induced inhomogeneities in the refractive index and less

sensitive to scatter from precipitation particles. On occasion, the shape of

the Doppler spectra was observed to change with the occurrence of a lightning

discharge in the pulse volume. Though the total power and mean reflectivity

weighted Doppler velocity changed little during these events, the power in

Doppler frequency bins near that corresponding to the updraft did increase

substantially within a fraction of a second after a discharge was detected in

the beam. This suggests to us some interaction between precipitation and

lightning.

THE EXPERIMENT

During the past year at the Arecibo Observatory, a 46.8-MHz transmitter

and receiver was installed which illuminates the 300-meter dish. The peak

power available is of the order of 50 kilowatts, with a maximum duty cycle of

2%, and a minimum detectable signal around minus Ii0 dBm. The feed is located

2.1 degrees inward from the 430-MHz feed. Some of the first data taken with

the new system were of the tropical thunderstorms that form over the island in

the summer months.

The Doppler spectra at VHF show much of the structure of the thunder-

clouds. Most of the received power is assumed to be from the scattering pro-

cesses associated with turbulence, which manifests itself as a very large in-

crease in the variance of the Doppler spectrum. This is indicated in Figure
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POWER VS. HI. RND TIME

tilE END TIME IS 1434048

TilE DRIR DRIE IS 216
NO. OF INCOIt INIEG, IS 5

POINIS PER SPECIRR: 64
NO. OF TIME POI_I_ IS 89
TilE TRPE NRME IS RO5Z9

HI OF LOg (;RTE 5.0 KM-MSL

Figure i. A three-dimensional representation of the zeroth moment

(Z direction) of UHF Doppler spectre. Slant range (in this

case, height) increases toward the upper right, time increases

toward the lower right.

2 where the lower gates have returns in them from a thundercloud, where the

upper gates do not. Some of the transient features that we observed in the

spectra indicate the presence of precipitJation and occasionally, lightning.

The scattering process from lightning is not fully understood, since an

enhanced echo during a discharge could conceivably originate from a number of

sources. One of these is the scatter from the ionized plasma channel itself,

and another might be the scatter from the intense gradients in refractive index

that surely must exist as a result of the shock wave that is produced by the

flash.

During some of the campaign, the 430-MHz radar was also operated. Though

the two systems were never operated simultaneously (indeed, with the 2.1 degree

separation the two beams do not share the same pulse volume), some comparison

of the features of the spectra at the two different wavelengths can be made.

The most conspicuous difference between the observations at the two frequencies

is the effect of the presence of precipitation in the beam. Only during

periods of intense rain does a significant contribution to the echo at VHF

appear; the returned power is increased by the precipitation less than 5 or I0

dB. In fact, the presence of precipitation in the pulse volume does not

guarantee that the power returned will be greater than when the precipitation

is not present. This is shown in Figure 4 when a comparison of the power in

gates 56 through 67 is made with the power in gates 71 through 80. At UHF, the
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Figure 2. VHF Doppler spectra integrated for two minutes, with

spectra plotted for gates 44 through 91 and a height profile

of mean velocity, total power, spectral peak, and noise level

for 128 gates. Positive Doppler velocity (toward the radar)

is to the right of center, each spectra is scaled to its own

peak and noise level. Note the large variance in the lower

gates as compared with the upper ones.
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situation is quite different, there are large changes in the reflectivity

(greater than 20 dB) that occur in time intervals of the order of a few

minutes. These changes are almost invariably associated with downward vertical

velocities that is indicative of precipitation (i.e., velocities around 5

meters per second). The variance of the spectra at both frequencies is seen to

increase significantly with the onset of convective activity, sometimes as much

as a factor of four or so. The transient echoes associated with lightning are

also quite different from one frequency to the other. At IPHF, the returns

usually appear at Doppler frequencies that are consistent with the vertical air

motions, and show a variance that is not atypical of that found in a thunder-

storm environment. This implies that the principal scattering mechanism is

that of scattering from the lightning channel itself (which is assumed to

move with the mean wind). At VHF, lightning in the beam often completely

flattens the spectra, as though there is a feature present that has an

extremely high Doppler shift and proportional width. This might be consistent

with the radar detecting the acoustic wave (thunder) which would have a Doppler

velocity of the order of 300 meters per second. Of course, this large shift

would be aliased many times around the 5 Hertz Nyquist frequency of the system.

Another explanation is simply receiver saturation• though there is some

evidence that this is not the case.
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Figure 3. Doppler spectra plotted as a function of time at

UHF for range gates 21 through 24. The distinct change

in the character of the spectra, about halfway through

the sequence is coincident with a lightning flash

observed in the beam.

The shorter sampling time of the UHF radar allows a very detailed look at

any interaction between the hydrometeors in the clouds and lightning.

Occasionally, when lightning is detected in the beam, there is a significant

alteration of the Doppler spectra that occurs shortly after the discharge, as

is shown in Figure 3. The mean reflectivity weighted Doppler velocity does

not change appreciably, nor does the total power. There are, however,

substantial increases in reflectivity that occur in certain frequency bins. If

the velocity that the lightning echo appears in can be assumed to be the

velocity of the air motion, then the increases that are observed happen in

frequencies that correspond to small downward velocities relative to the wind

field. This can be interpreted in two ways: one, a reorientation of the

scatterers as a result of the electric field change that accompanies the

lightning, or a growth of the very small cloud particles to larger sizes. It

is the latter of the two explanations that is the most plausible, since the

changes in the spectra are more or less permanent, that is, of the order of

tens of seconds. If there was a simple reorientation of the particles, the

random wind field would rearrange them in a time that would be on the order of

the time to independence which, in a thundercloud, is less than a second.

The presence of precipitation in the Doppler spectra at VHF can provide

much information about the cloud microphysics if the precipitation peak is

sufficiently separated from the clear-air peak (see Figure 4). In this case,

the clear-air part of the spectra can be approximated (by a Gaussian, say)
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Figure 4. Same parameters as in Figure 2. Here, the

smaller peaks that appear to the right of the main

peak are the result of scattering from intense

(> 50 mm/hr) precipitation.
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which, when subtracted from the total spectra, leaves just the contribution due

to the precipitation. Subtracting the clear-air velocity nc_ leaves the fall

velocity of the drops in still air, then through some terminal velocity-

diameter relation, the drop size distribution can then be derived from the

spectra.

The new VHF system has good sensitivity, which should make it a valuable

addition to the other frequencies that are available at the Arecibo facility.

The near proximity of the 430-M}{z feed immediately suggests that dual

wavelength experiments could be performed, unfortunately, that is not the case,

unless large-scale features or long time scales are to be investigated. Even

though there is only 2.1 degrees separation between the two beans, with the

tremendous inertia that the receiver platform has, it would take about one

minute to swing the feed this angular distance. In a convective environment,

this is entirely too long as the entire pulse volume can be exchanged in less

than I0 seconds during thunderstorms. The construction of a VHF feed that is

concentric with the 430-MHz feed would make the Arecibo facility truly unique.

Given that an absolute calibration was available for both systems, dual

wavelength methods could then be used to study a variety of phenomena:

turbulence, drop size distributions, and other effects. In the meantime, more

experiments done with the new system will increase its reliability and

versatility.
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INTRODU CT ION

In principle, the interferometer analysis determines the radial velocity

and direction of single scatterers provided that each has a sufficiently

different Doppler frequency to permit separation by spectral analysis. In

fact, scatterers will not have constant radial velocity, and their Doppler

frequencies as well as their directions will be modulated by their horizontal

motion. Thus, there is a tradeoff between the poorer resolution but less

"smeared" scatterers on shorter records and the higher resolution (longer)

records.

Three or more non-collinear scatterers are sufficient to determine the

wind.

EXPERIMENTAL APPARATUS

Figure 1 shows the antenna arrays used, N-S linear is transmitted and E-W

linear is received. The recording system, designed by D. G. Stephenson

(GREGORY and STEPHENSON, 1972), records raw (8 bit) data simultaneously for 2

channels at 24 height gates and sends it directly to an incremental tape drive.

This permits a maximum transmitter pulse rate of 15 Hz, which gives a final

sample separation at each antenna of 0.2 sec. At this rate, there is one pulse

droppea every 12 sec (8640 bytes) while a block gap is written on tape. Data

can be recorded for up to 8 hr (I tape) in this fashion.

The in-phase (I) and quadrature (Q) outputs of the coherent receiver are

5 ° in error; this will result in a weak _-27dB) sidelobe at the negative

Doppler frequency of any signal and is not expected to affect the present

results.

ANALYSIS

The data to be discussed consist of 3.6-min lengths starting every 5 min.

The I and Q amplitude sequences for each antenna are first tapered along 10% of

their length at each end by a cosine function to reduce sidelobes, and then

Fourier transformed (1024 points). The cross spectra (which are not smoothed)

for pairs of antennas yield the phase differences, A_, to be used in angle of

arrival. These are corrected for cycling delays caused by the recording

technique of sampling each antenna in rotation. Since there are only 3

receiving antennas, there is no over-determination of phase, and the only basis

left for selecting single scatterers is by peaks in the power spectra. The

criteria for selecting Doppler frequencies are: that all antennas should show

a local peak in the power spectrum, and that the average (dB) power of the

selected peak should be at least 5 dB greater than the average power near the

Nyquist frequency, and within 30 dB of the power of the strongest selected

peak.

The phase differences at the selected frequencies are then corrected for

unequal antenna cable lengths, and an attempt to correct for phase folding is

done. Phase folding occurs beyond a real zenith angle of about 30 ° (depending

on azimuth) due to the l-lambda spacing of the receiver array, and must he
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Figure I. Receiving and transmitting arrays.

considered because of the transmitter antenna sidelobes at 45°; it will affect

both the calculated zenith and azimuth angles. The correction procedure is to

check whether the three A_ add to zero -- if they do not, then the A¢ with the

maximum absolute value is modified by 360°; if the resulting sum is still non-

zero, the peak is rejected. This method is not foolproof, since scattering at

very large zenith angles can fold two of the A_ and look immediately accept-

able. The only real solution is closer antenna spacing, and the use of loop

antennas to reduce the subsequent increase in coupling.

DATA

A sample record is shown in Figure 2. The left side shows power spectra

for the three antennas and selected peaks are marked at the bottom (originally

3 colours). The right side plots the direction (zenith angle is log scale with

origin = I) and the horizontal component of velocity calculated on the

assumption that the real vertical component is negligible. Figure 3 shows

relative power versus zenith angle. The number of cases are printed on the

plot. Also shown is the theoretical transmitter beam pattern (one way) for the

N-S plane. Phase folding is probably responsible for the partial filling of

the theoretical null in this pattern; little difference was seen when the

azimuths were divided into two parts, one looking towards the sidelobes and the

other between them.

FULL CORRELATION ANALYSIS

Data were averaged in threes (giving t = 0.6 sec) before performing

lagged complex correlations. The magnitudes of the correlations were used to

calculate apparent (from just the time lags of the peak correlation) and true

(using. in addition, the width of the mean auto and the magnitudes of the peak

cross correlations) velocities. The mean vertical velocity is found from the

slope of the autocorrelation phase near zero lag. The correlations for the

data used in Figure 2 are shown in Figure 4.

VELOCITY FROM INDIVIDUAL "SCATTERERS"

This is found by a least squares fit of a 3-D or 2-D (horizontal) velocity

vector to the data, which minimizes the squared error in radial velocity. The

squared error is first weighted by the power of the Doppler peak relative to

that of the largest peak power in each record. In practice, the resulting
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emanating from the scatterer symbol.

vector was found to be relatively independent of the actual weighting used. A

lower zenith limit of 5 ° was used to reduce error due to inaccurate cable

length corrections, and an upper limit of 15 to avoid cases of phase folding (a

zenith angle of 50 ° can fold back to 22°). In addition, an upper limit of 40

m/s was placed on the radial velocity -- this also acts as a power limit, since

spectra peak near zero frequency.
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for the record shown in Figure 3.

V_.OCITY COMPARISON

Table 1 lists the velocities for the record shown in Figures 2 and 4.

TABLE 1

Comparison of velocities for 1 record (82 km, 1984: 277/1845Z).

speed (m/s) direction (E of N) vertical (m/s)

interf erometer analysis

(12 Doppler peaks)

3-D 58 132

2-D 56 123

correlation analysis

apparent 45 123

true 32 145

The mean velocities for 1 hour of data (12 records) are shown in Figure 5;

most records have correlation Vz values, fewer have apparemt, and fewer still,

true velocities. The interferometer value was found by one fit to all the

individual scatterers found in the hour. Because the height variation for

constant range over 5°-15 ° zenith is within the height resolution of the system



297

I

(3 kin), no adjustment was made to get real height. Also shown are the mean

values (9 km resolution) from the real-time analysis (non-coherent) system.

DISCUSSION

Figure 5 shows that the "apparent" speed agrees with the interferometer

value, but the "true" velocity is about half the latter. If it can be shown

that the chosen Doppler peaks represent actual single localized scattering

regions, then the "true" velocity is in error. This cannot be shown with just

one record, because a peak in the spectra can be translated either as a single

scatterer, where the A_ represent the angle of arrival and the Doppler

frequency defines the radial velocity, or alternately as a Fourier component of

a rigid pattern, where the A_ represent the wavelength and propagation

direction, and the Doppler frequency is related to the phase speed of the

"wave". The latter concept gives the "2-D" velocity mentioned previously if it

is assumed that the '%cave" is a frozen-in component of a rigid pattern - viz.

its calculated velocity is only a component of (and thus, in general, smaller

than) the real horizontal velocity.

In theory, the use of a larger receiving array does not help to resolve

this ambiguity; however, it does increase the degrees of freedom used in the

peak selection (effectively a coherence criterion).

Another situation in which peaks may be mistaken for single scatterers is

when signals due to several real scatterers overlap in the same frequency bin,

either simultaneously or sequentially in one record. Figure 6 shows contours

of constant Doppler frequency in space, assuming a constant horizontal veloc-

ity. Scatterers positioned anywhere on one contour will have the same radial

velocity/Doppler frequency and their radial velocity varies linearly with time.

(The plot has assumed constant range; constant height, which is more realistic,

bends the contours near the ends -- about 5_ change in X at 15 ° zenith.)
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Figure 5. Comparison of interferometer and correlation analysis

(apparent and true) horizontal speed and direction and

vertical speed over one hour (84:277/1815-2015 GMT). Also

shown are the mean winds for the real-time wind system.
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Figure 6. Contours of constant

radial velocity as a

function of horizontal

distance from the zenith.

A simple numerical model shows that the sum of signals due to any set of

scatterers (random phase and constant radial velocity over the "record length")

placed along one of these contours results in a calculated scatterer located

somewhere on the same contour; so there should be no bias in the resulting

velocity due to lack of frequency resolution. Also, the composite scatterer,

if tracked, moves with the same velocity.

Cases where two or more scatterers "scan" across one frequency bin at

different times during a record are more difficult to analyze. Some local

Doppler peaks will result just because the spectrum is not smooth. A more

complicated model is required to see the effects. It appears that the

positions of calculated scatterers would be unrelated to those of the real

ones.

Finally, it is interesting to note that the vertical velocities shown in

Figure 5 from the correlation method seem to have a smoother height profile

that those from the individual Doppler peaks. Correlation techniques are more

computarionally efficient, and may even produce a more satisfactory value of

_z.

OONCLUS ION

From these limited experimental data, it appears that the velocity found

from the combined interferometer peaks agrees well with the "apparent velocity"

from correlation methods, but the "true velocity" is a factor of 2 smaller.

This difference might be resolved by searching for "scatterers" showing regular

movement between adjacent records, and this is the subject of the accompanying

paper.

REFER_qCE

Gregory, J. B., and D. G. Stephenson (1972), High altitude winds from radio

reflections, Canadian Research and Development, March/April.
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4.3.2 COMPARISON OF MEDIUM FREQUENCY PULSED RADAR INTERFEROMETER AND

CORRELATION ANALYSIS WINDS. 2.

C. E. Meek, I. M. Reid, and A. H. Manson

Institute of Space and Atmospheric Studies

University of Saskatchewan

Saskatoon, Canada S7NOW0

INTRODU CT ION

The preceding paper compared the mean instantaneous velocity of a group of

scatterers with those found from correlation methods and concluded that it

agreed well with the apparent velocity (which assumes a rigid isometric

diffraction pattern on the ground). In order to test whether the chosen

Doppler peaks represent localized scatterers in motion, as opposed to some sort

of integrated composite, an attempt has bean made to determine the change in

position of single "scatterers" over a series of sequential records.

From Figure 6, in Paper I, it can be seen that single scatterers moving

with a constant horizontal velocity have theproperty that their Doppler

frequency/radial velocity varies linearly with time, and has the same slope no

matter where the scatterer is physically (this assumes constant range rather

than constant height, but is a good approximation near the zenith). Also,

assuming isotropic scatter, the power should be roughly constant, apart from

transmitter antenna beam width considerations.

EXPERIMENT AND ANALYSIS

This experiment, unlike Paper I, empl_s a four-antenna system (Figure i)

which has 1 degree of freedom in phase. Due to equipment limitations N-S

linear transmission and E-W linear reception are used. The Doppler frequency

peak selection criteria are that at le_t two of the four power spectra should

have a local peak, and that the normalized ph_e discrepancy,

3 3

N_D = I _(_i- _4)/llll_i - _41i=l "=

should be less than 0.3. An rela_ve power criterion sim_ar to that of Paper

1 is used. Since there are four antennas, the basic time st_ is 4/15 sec.

The record length is 256 points (approx. 68 see).

EXPERIMENTAL DATA

The raw data consist of half-hour lengths of complex amplitudes in which

the receiver gain setting is constant at a given height (i.e., range gate).

The records are spaced by 72 sec, giving %22 records per run. After

scatterers have been identified, they are collected in height (rather than

range) bins and plotted. Because different ranges, as originally measured, may

have different gains, the power is defined to be the average peak power

relative to the maximum spectral power in the original spectra. Plots are made

of the position of the scatterers in each nominal height bin (which may include

several range gates).

Figure 2 is the only example found so far in which moving "scatterers" can

be perceived. The dashed line separates scatterers with +ve and -ve radial

velocity. Also shown on this diagram are the vector displacements expected

between records from the simultaneous 3-D and 2-D (horizontal) velocity vector

fit to all scatterers in the half-hour, and that found from the real-time wind

system ("true"). [The sense of in-phase (I) and quadrature (Q) signals was

determined from this figure, and this is the easiest way because reversing I
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Figure 1. Transmitting antenna

and 4 antenna receiving

array.

and Q flips the scatterer azimuths by 180 ° but also changes the sign of the

radial velocity_ so the horizontal velocity is unaffected.]

The letters A, B, C, .... ,L show the positions of scatterers in successive

records, and the size indicates their strength (_8 dB full range). The two

sequences of interest are A-B-C and E-F-- -H(although there are two possible

candidates for H in the latter). The position of C is uncertain because it is

very near the zenith, and thus more affected by small phase errors in the

system. Table 1 lists the characteristics of these particular scatterers.

With only one such example, speculation is easy; for example, suppose that

the slgnal is not from an isolated point scatterer, but is a moving reflection

point on a scattering layer perturbed by a wave. This would explain why the

two sequences follow almost the same path. The period of the wave (the time

between "B" and "F") is then 4 x 72 sec (= 5 min), and the wavelength can be

estimated from the horizontal speed (%53 m/s, found from "A" assuming that the

radial velocity is totally due to the horizontal phase velocity of the wave) to

be 15 km. The fact that the direction doesn't agree with that of the '_ind"

also suggests a wave. Missing elements of sequences may be a result of a

patchy scattering layer, which is moving with the background wind.

This is a very simple model, one would actually expect the reflection

point to move relative to the wave as it passes over; but these complications

will be left for future work.

Figure 3 shows a case in which the scattering seems to be coming from the

same location (E-region heights) for the full half-hour. A stable wave

perturbation in a "sheet of tin" could produce this effect provided that the

ground pattern wavelength, I_, was of the order of several times the array

spacing, D, and the ground phase speed, V_ , sufficient to give a non-zero

Doppler frequency in the spectrum. Approximate values for these are given by:

I_ = D = fD 1sin(zenith) ; V

where fD is the Doppler frequency; however, in this case, there should also

be a peak with the opposite Doppler frequency 180 ° away in azimuth. Another
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TABLE 1

Calculated powers and positions of the selected Doppler peaks plotted in

Figure 2 (all from the 82 km height gate). '_Norm." is the normalization factor

from the mean power in the original raw amplitudes. "Pmax" is the maximum

spectral power (after normalization) in any single antenna spectrum, "Pwr" is

the mean power (over all antennas) at the selected Doppler frequency. N_D is

the approximate normalized phase discrepancy.

Time Plotted Norm. Pmax Pwr V-rad Zenith Azimuth N_D

symbol (dB) (dB) (dB) (m/s) (deg.) (Deg E of N)

1831:00 A 41.6 -3.2 -4.8 -6.92 7.3 135.5 0.15

A -5.4 -5.93 7.4 133.2 0.15

1832:12 B 43.7 1.7 1.0 -1.98 4.3 134.3 0.05

1833:24 C 38.2 -0.2 -1.8 -0.99 i.i 49.5 0.05

1834.36 D

1835:48 E 42.9 -1.8 -2.6 -8.90 8.3 122.3 0.15

1837:00 F 42.2 -i.I -2.9 -3.96 4.4 128.9 0.15

1838:12 G

1839:24 H 41.0 -1.4 -2.6 0.99 2.9 -38.5 0.05

H -3.8 6.92 5.7 -112.7 0.25

possibility is a tilted totally reflecting layer (about 7 ° tilt), but this

cannot explain the non-zero Doppler frequency (median = % 5 m/s); the scatter

location should either move _ 3 km horizontally every record, or move out of

the height gate radially within _ i0 min, and it does neither. A gradual

electron density change below the height of reflection would create a Doppler

shift, but it requires a very large change (which would also affect the

reflection height) to get 5 m/s.

Something like a large-scale distortion of the atmosphere which "high

lights" individual scatterers by focussing or tilting them as they pass through

at the background wind speed is required to explain these data -- the

scatterers are moving, but they are only seen in one direction.

CONCLUSIONS

The lack of success in tracking individual scatterers seems to suggest a

short lifetime (as found by JONES, 1984). If this is the case, then the

present experiment is not able to resolve the difference found between the

correlation analysis "true" velocity and the interferometer value. On the

other hand, it appears that the interferometer may be of some use in tracking

way es.



N8T 11 0476

4.3.3 MESOSPHERIC WIND MEASUR_I_ENTS USING A

MEDIUM-FREQUENCY IMAGING DOPPLER INTERFEROMETER

303

G. W. Adams

Center for Atmospheric and Space Sciences

Utah State University

Logan, Utah 84322

and

J. W. Brosnahan

Tycho Technology, Inc.

P. O. Box 1716

Boulder, Colorado 80306

This paper presents some wind results from a medium-frequency radar

operated as an imaging Doppler interferometer. We used ten independent

antennas, together with the mesospheric wind motions, so that we could

Doppler-sort and then echo-locate individual scattering points. We determined

the three-dimensional location and radial velocity of each discrete scattering

point. Mean winds were then determined by a least squares fit to the radial

velocities of the ensemble of scatterers.

Figure I shows a two-dimensional map of the scattering surface at 85 kin,

with the radial velocity indicated for each scattering point 6_ 's have phase-

decreasing Doppler; +'s have phase-increasing Doppler). Notice that most of

the points in the northern half of the sky are approaching the radar, while

those in the southern half of the sky are going away, consistent with a south-

ward-directed mean (and mainly horizontal) flow as indicated by the wind clock.

Notice also that there is considerable structure in the radial-velocity dis-

play, particularly near the zenith. We show below that the vertical velocity

shows a 6-minute period consistent with the local Brunt-Vaisala period.

Figures 2 and 3 show several altitude profiles of the direction and

horizontal components of the wind, spaced approximately every 30 minutes.

Notice the spiral behavior of the direction vector, indicating a vertical

wavelength of 40 km (if we ignore the results below 65 kin). The component

profiles give results that seem physically plausible and seem to have sensible

time histories.

The remaining figures show a variety of vertical velocities at 2-minute

resolution (I minute on; i minute off). Figure 4 shows a 28-minute time

history of the 80-kin vertical velocity. The vertical velocity is seen to be

periodic, with a period of about 6 minutes. Notice also that the oscillation

appears well-centered about zero, even though there is a 30 m/sec eastward wind

and a 5 m/sec southward wind. This tends to support our analysis that the

method used here is immune to many of the difficulties associated with

bean-forming techniques, in particular, contamination of the vertical component

by the combination of horizontal winds, finite beam widths, and off-vertical

scattering.

Figures 5 and 6 show the time histories at 66 and 86 km, respectively.

The vertical velocity at 66 km shows a 20-minute periodicity (less neatly

sinusoidal than Figure 4), while the 86-kin plot is less regular yet. Both the

66-kin and the 86-kin results appear, as did the 80-kin curve, to be centered

around zero, with no obvious upward or downward bias in the results, in spite
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of a 20 m/sec northward component at 66 kin. (Both horizontal components are

close to zero at 86 Pun.) " These results are generally promising. Considerable

improvement could be effected with more appropriate processing algorithms,
which we hope to implement soon.
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4.3.4 COMPARISON OF REFLECTIVITY AND WIND PROFILES MEASURED ON

46.8 MHz AND 430 MHz AT THE ARECIB0 OBSERVATORY

/
Jurgen Rottger*

Arecibo Observatory _ _ _ ('. ,)_,.,P. O. Box 995 V l,,5/!" ,"
ej

Arecibo, Puerto Rico

First comparisons of troposphere and stratosphere radar experiments at UHF

and VHF were done at the Arecibo Observatory in April 1980 with the 430 MHz

radar and the 46.8-MHz radar. Comparisons of echo power, i.e., non-range

corrected reflectivity, were described by ROTTGER et al. (1981). Taking into

account differences in the average transmitter power, bandwidth, aperture

illumination and sky noise temperature as well as near field correction and

wavelength dependence of the scattering model, it was found that the average

signals (at 12 ° zenith angle) at VHF were by about i0 clB stronger than at UHF.

This was explained by a diffuse reflection process, favoring the longer

way el ength s.

A more detailed comparison of signal power/reflectivity profiles at IPHF

and VHF is shown in Figure 1 (left diagram). The UHF operations and analysis

were made by M. Sulzer and T. Sato, using the 430-MHz transmitter with 150 kW

average power. The VHF operations were with the transportable SOUSY VHF radar

with 160 W average power (e.g., ROTTGER et al., 1981). The profiles in Figure

I are shifted with respect to each other along the abscissa, to obtain a best

fit of the average profiles. The absolute power difference, thus, cannot be

read from the graph. The variation of power with altitude is fairly well

correlated on both frequencies. The fact that power peaks occur at about the

same altitudes on both frequencies indicates that the same (turbulence) layers

were seem. However, the peak-to-peak power fluctuations are smaller on VHF than

on UHF. The UHF radar, because of its higher power aperture product, yields

echoes up to larger heights, although the VHF radar pointed closer to the

zenith (ZE = 6.5 ° on VHF, ZE = 12 ° on UHF).

In Figure I (right hand diagram), we compare the velocity profiles

measured on both frequencies with the Doppler beam swinging mode. On VHF, the

antenna pointed at 6.5 ° , and at 12 ° , on UHF. In general, the velocity profiles

(only the zonal component u was measured on both frequencies) are equivalent.

The VHF profile, however, shows more fluctuations with height than the UHF

profile, although the latter was recorded with 150 m resolution instead of 300

m resolution on VHF. We have to compare carefully the analysis routines used

on both frequencies to come to a final conclusion on this difference. However,

we also may regard this as an effect of diffuse reflection at VHF which causes

non-Gaussian Doppler spectra with superimposed spikes.

More detailed comparisons of 430-MHz and 46.8-MHz radar experiments will

now be possible at the Arecibo Observatory (see ROTTGER et al., 1986, and

HOLDEN et al., 1986), with the same data-acquisition and analysis routines.

*On leave from Max-Planck-Inatitut fur Aeronomie, Katlenburg-Lindau, West

Germany.
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5.0 MST RADAR NETWORKS AND CAMPAIGNS:

SESSION SUMMARY AND RECOM_NDATIONS

Jurgen Rottger*

Arecibo Observatory

Box 995

Arecibo, Puerto Rico

The session dealt with discussions of scientific reasons for campaigns and

networks, as there are for instance: the determination of sources of propaga-

tion and dissipation of atmospheric disturbances and waves. Also measurements

of different parameters with different methods and instruments, particularly

the use of radars operating at different frequencies, was felt to be very use-

ful. Special campaigns for comparison of different methods using the same sort

of instruments or complementary instruments, e.g., radar and radiometers, were

also deemed to be of special interest. Suitable combinations of instruments

could be: MST radars, incoherent-scatter radars, low- and medium-frequency

(partial reflection) radars, meteorological radars, acoustic sounders, micro-

barographs, radiosondes, radiometers, multifrequency MST radars, lidars, satel-

lites, rockets, balloons, aircrafts and gliders.

Some dominant campaigns in which MST radar were or will be included in

addition to many other instruments, are: ALPEX (Europe), COLDFRONTS

(Australia), FRONTS, GALE, MAP/WINE, MAC/SINE, MAC/EPSILON, MESOGERS, PRESTORM,

TOGA, STATE and WAGS. Two networks are presently in operation: Colorado

Wind profiler and Penn State University Network.

A new idea of tutorial projects was brought up, since it was felt that

exchange of experience and mutual training of researchers and operators of

radar science and those of meteorological science would be most essential. It

was particularly suggested that during any such experiments, project or

campaign scientists of both these disciplines should cooperate as closely as

possible.

Another way to improve mutual understanding of problems and to facilitate

interpretation of radar results and the a_mosphere phenomena would be to hold

training courses, schools or seminars. It was strongly recommended by the

workshop participants to work on plans for preparing and holdlng such courses

to train meteorologists and radar scientists and v.v. Particularly the

experience gained and the comprehensive material collected during the three

workshops on technical and scientific aspects of MST radar would be a very
useful basis for such courses.

*On leave from Max-PlancK-Institut fur Aeronemie, Katlenburg-Lindau, West

Germany.
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5.1.1 AN ANALYSIS AT MESOSPHERIC COHER_T-SCATTER POWER

_qHANCEMENTS DURING SOLAR FLARE EVENTS

ABSTRACT

J. Parker and S. A. Buwhill

Department of Electrical and Computer Engineering .....) \w/_'__/J-

University of Illinois _ _\_!Urbana, IL 61801 '

/

Solar flares produce increases in coherent-scatter power from the

mesoaphere due to the increase in free electrons produced by X-ray photo-

ionization. Thirteen such power enhancements have been observed at Urbana.

When such an enhancement occurs at an altitude containing a turbulent layer

with constant strength, we may estimate the relative enhancement of electron

density from the enhancement in power. Such estimates of enhanced electron

density are compared with estimates of the X-ray photoion/zat/on at that

altitude, deduced from geostationary satellite measurements. It is found that

possible types ion-chemical reaction scheme may be distinguished, and the non-

flare ion-pair production function may be estimated. The type of ion-chemical

scheme and the nonflare ion-production function are shown to depend on the

solar zenith angle.

INTRODUCTION

It has, of course, been known for some time that solar flares produce an

increase in ionization in the D region. This flare-time enhancement in

ionization results in an increase in coherent scattered power which has bee_

assT-,ed to account for an exceptionally full set of good mesospheric velocity

measurements during the event of April 11, 1978, 0800 CST at Urbana (MILLER et

al., 1978), and also measured directly for the event of January 5, 1981, at

1218 AST at Arecibo (ROTTGER, 1983).

However, the processes linking the solar X-ray enhancement to the co-

herent-scatter power increase involve many unknowns. Photoionization by X-rays

may be considered as the driving function of a set of ion-chemical reactions

which finally determines the electron-density profile; this profile must then

be advected by turbulence to produce the scattered power. Many details of

these processes can only be deduced indirectly.

This paper describes how models of these processes may be constructed

which account for some of the features of the power enhancements observed

during solar flares, Early work along these lines may be found in PARKER and

BOWHILL (1984).

COHER_T SCATTER DEPENDENCE ON ELECTRON DENSITY

The radar scattering cross section is proportioned to the mean-square

fluctuation of the retraetive index _. At VHF:

2 2
n = i - Ne2/¢ m_

o

where N is the electron concentration, e and m the charge and mass of the

electron, e the permitivity of free space, and _ the angular frequency of the
O

impinging wave. The right-hand term is small compared to unity, eo fluctua-

tions in _ and N are proportional. Further, if the electron concentration

increases in a scattering volume by a constant factor, the mean-square fluctua-



311

tion in electron density A_

<AN2> = (N,) 2 _ N 2

due to turbulence will be

where N' is the vertical gradient _f the electron density N. Thus, the scat-

tered power P is proportional to N- within tlme-scales where the turbulence

is characterized by constant mean-squared statistics. (This assumes no time-

lag due to turbulent advection; we shall demonstrate below that this holds at

least some of the time.

Finally, when we divide the flare-time scattered power P at a given

altitude by the pre-flare power P we obtain
0

P/Po = (No + AN)2/No 2

which implies

AN/N o = _TF ° - i

D-REGION FLARE EFFECTS OBSERVED AT URBANA

Table 1 displays features of 13 solar flare events which produced enhanced

scatter, the enhancement shown for the altitude range 60-75 kin. The sizes of

the peak X-ray fluxes from two detectors on the GOES II satellite are shown for

comparison. No correlation of X-ray event size and coherent-scatter power

enhancement is evident. This is probably due to the wide variability of tur-

bulant strength and the nonflare ion-production rate from one flare event to

another. This suggests the need for a more sophisticated analysis.

MODELS RE_ATING SOLAR X-RAYS AND ELECTRON DENSITY

Given the GOES II X-ray measurements, we may calculate the X-ray ion-pair

production rate qx at a given altitude as follows. First, we must estimate

the X-ray spectrum from the two data points provided by the GOES detectors at

each time. This may be done by assuming a power law spectral form:

@ = AX B

(see for example ROWE et al., 1970) and solving for A and B based on the wave-

length response characteristics of the X-ray detectors (published in DONNELLY,
1977).

This form of the X-ray intensity @ (k) is used to calculate the desired

ion-palr production function qx according to Chapman theory. Constants

necessary for this calculation are the average air absorption cross sections

o=(l) and the ionization efficlencies for X-rays n (l)from BANKS and KOf_IERTS

(_973), and the scale height H and average air density M from the US STANDARD

ATMOSPHERE (1976).

The relationship between q (= q + o) and N is perticularly unclear
O iX

in the lower D region. If we assume over_ll charge neutrallty, an unchanged

ratio of negative ions and positive ions, and unchanged proportions of the re-

combining species, we may derive the followlng (MITRA, 1974):

q = _N 2

where the constant of proportionality_ is called the effective recombination

coezficient (call this Case A). MITRA (1974) also proposes (Case B)

q = BN
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Table i. X-ray flare events producing measurable coherent-scatter radar

power enhancements at Urbana between April 1978 and December 1983.

61.5-75 km

pk flux x 10-5w/m2 pk CS power

yr mo da cst SID Ha 0.1-0.8r4n 0.05-0.4nm dB above P o

78 04 ii 0820 3+ NA 20 3.5 7.7

80 05 21 1510 3 3B 14 3.2 29.8

80 05 28 1354 2+ 2B 12 2.0 3.5

80 11 13 1324 2+ 1N 4.2 0.7 11.2

80 11 14 1239 2+ 1B 2.4 0.4 13.8

81 01 27 0947 2 1B 4.6 1.3 6.1

81 05 05 0809 3 3B 12 3.3 2.8

81 08 03 1425 2+ 1N 7.1 1.8 10.1

81 i0 14 IIII 2+ 1B 30 11 7.4

82 03 31 1626 2+ NA 7.5 1.7 4.9

82 06 02 0953 3+ NA 10 2.9 17.4

83 08 13 1215 1 2B 5.2 0.9 3.7

83 08 21 1159 1 2B 2.2 0.3 6.8

as a possible relationship, given other conditions. Both relationships require

chemical equilibrium, which may or may not hold during a flare. If not, the

relationship is far more complicated, but a model by THOMAS et al. (1973) pre-

dicts delays in the lower D region between peak q and peak N of up to 14 min-

utes, increasin 8 with decreasing altitude (Case D).

DISTINGUISHING CHEMICAL SCHEME TYPES AND ESTIMATING NONFLARE ION-PAIR FRO-

DU CT ION

To distinguish between these three possibilities (and possibly others) at

a given altitude we may assume each possiblity in turn, compare qx at each
time with AN/NO from the coherent-scatter data, and find the best fit. To

simplify this comparison, note that Case A implies P=q, so that we may

estimate qx/qo as

qx/qo = P/Po - 1

For Case B, q and N are proportional, so that

qx/qo = _- i

If we make two plots, one for each of these estimates of qx/qo against the

same values at q from the satellite data, the result woul_ be a line of

unit slope only _or that case which is correct. If the points of the initial
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part of the flare (ascendin 8) do not lie alon 8 the same path as those of the

decay phase of the flare, we may have Case D, or possibly a time la& due to

turbulent advection.

The result of this technique is shown in _igure i, for the flare of Nov-

ember 14. 1980, end the scattered power from 70.5 kin. The plot of upper left

shows a close fit to a line, but not of unit slope. The plot of upper right

shows a fairly close fit to a line of slope 1. We may conclude q = BN, and

more: note that the intercept of this llne with the log (qx/qo) = 0 line

implies _th,_t when q_ = qo" log (qx) = 0.3. Thus we may estimateqn =
0.5 cm-_s -_. The l%wer plot shows the log scattered power anti,he estimate

of qx based on the satellite data. The coincidence of the peaks of these
curves validates the chemical equilibrium hypothesis, and demonstrates that

there is no lag due to turbulent advection.

COMBINED RESULTS FOR SEVERAL FLARES

Figure 2 shows the type of power enhancement found for each altitude for

each of seven flare e_ents, arranged in order of decreasin 8 solar zenith engle.

The symbol E represents extremely large enhencements (some as much as 30 dB)

which cannot be accounted for by this model. Als0, note that the altitudes

showing no response seem to proliferate downward with increasing solar zenith

angle. This is not what Chapman theory predicts for ionization, and so pos-

sibly indicates a variability in existence of turbulent layers. Some events,

particularly at high zenith angles, show delays (Case D), with delay increasin S

with decreasing altitude. Note, however, that a delay may be either a chemical

or turbulent mixin 8 effect.
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Figure I. Flare-time scattered power enhancement and estimated

electron production rate qx due to flare X-rays at 70.5 km
for the November 14, 1980 event.
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Figure 2. Types of response at each mesospheric altitude for each

flare: A) q = _N 2. B) q = 8N. AB?) Probably A or B, but plots

are ambiguous. D#) Delayed effect, with peak power following q

by # minutes. E) Extreme response, power increase greater than

cases A or B. CN) Coincident flare-time power response, but

unable to fit to A or B model due to comparable nonflare

fluctuations in power at that altitude. CR) Coincident response

well above nonflare base power, but unable to fit to A or B

models due to large fluctuations on the order of the one minute

sample time. --) no detectable response.

Figure 3 shows estimates of qo made by this technique. When the

interpretation was unclear between Case A and Case B, but equilibrium seems to

hold, a dashed horizontal line indicates the range of possible q_ estimates.

Note that the estimates for qo fall into two clusters, correspoUnding to small

and large zenith angles. Also, the values of qo for large zenith angle are

smaller, as expected. Also, q generally increases with altitude for a given
O

flare eZfect, also as expected. We may conclude that the estlmate of qo has

some degree of reliability, although its absolute accuracy is not estimated

hers.

DISCUSSION AND CONCLUSION

By using models for the uncertain links between the causal X-ray emissions

and the coherent-scatter power enhancements, we have gained insights into fea-

tures which are not otherwise clear. Often one model fits the data better than

others, and so we are able to choose between some features of ion-chemical

schemes. When no existing model fits the data, as with the extreme power

enhancements shown in Figure 3, it is unclear which part of the analysis should

be modified: an extreme enhancement may be due to an unknown ion-chemical

scheme, or may be due instead to some unknown condition which allows P to

increase faster than N 2. This suggests further research.
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Figure 3. Estimates of q_ made by finding intercept of log (qx) vs

log (qx/qo) plots with line log (_)_ 0 for each altitude and

flare event which shows type A (q =aN _) or type B (q =BN)

response. Horizontal dashed lines represent the span between the

type A estimate at q and type B estimate at q at altitudes
• O . O

where the cholce between type A and type B _s ambiguous. The

estimate of qo by RATNASIRI and SECHRIST (1975) is reproduced for
comparison.

Only altitudes with steady turbulent layers produce useful data, so

altitude gaps are inevitable. However, the coherent-scatter radar technique

compares favorably with earlier methods of observing changes in N during solar

flare, such as partial reflection and wave interaction. The temporal and

spatial resolution are excellent for the coherent-scatter technique, and the

relative changes in N may be measured accurately.
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INTRODU CT ION

Due to their capabilities of measuring wind profiles in the troposphere

and stratosphere with a good time and height resolution whatever are the

weather conditions, ST radars are well adapted to carry out atmospheric

research in many fields as well as to fulfill the meteorological forecasting

needs. That explains the development, all over the world, of such instruments.

The examples presented in this paper came from previous and future

national or international campaigns planned in France. The VHF ST radar

(Provence) from the LSEET participated in ALPEX 82, FRONTS 84 and MESO-GERS 84,

and a network of ST radars will take part in the FRONTS 87 campaign.

ST RADAR NE_JORK AND SCIENTIFIC CAMPAIGNS

Most of the scientific goals, which may be studied by ST radars, have been

already mentioned (LARSEN, 1983; ROPER, 1983_ FRITTS etal., 1984; GELLER,

1984). We may note:

-Even if a network of ST radars can operate by itself for dynamical

studies, complementary data are usually necessary for most scientific

investigations (radio soundings, microbarographs, precipitation radar,

satellite imeges...). Most of them are available but generally not obtained

at the same time or location.

-Even if one radar can contribute usefully to a campaign (cf FRONTS 84,

MESO-GERS 84), a minimum of 3 radars is required for most of the spat/o-

temporal investigations (horizontal extent and variations of the phenomena,

wave directions1 spectrum...).

So, the main difference between a research ST network working by itself

and integrated in a specific campaign is essentially the duration of the

experiment and the kind and number of instruments involved and working

simultaneously.

Table 1 gives a list of some scientific topics which may be studied during

specific campaigns involving the participation of other instruments in order to

get a global and detailed view of the phenomena under study. In the next sec-

tion, some examples of such campaigns are given.

These different topics impose the working characteristics of the ST radars

and their relative position and spacing in the network. The time resolution is

fixed by the expected time scales of the phenvmena under study and the height

resolution by their spatial scales and by the thickness of the turbulent layers

(10 - 300 m). In connection with sodars for boundary layer observations, the

lower altitude explored by the ST radar has to be less than 400 m; in

connection with balloons for stratospheric observations, the upper altitude has

to be higher than 12-15 km. The spacing of the radars acts as a filter in the
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horizontal scales involved. In ALPEX 82, for small horizontal scale (50 kin)

studies the spacing was about 5 kin, in FRONTS 87 for mesoscale studies, it will

be about I00 km.

PREVIOUS EXPERIFENTS

In France, some experience has been acquired during the last 3 years

concerning the integration of ST radar in scientific campaigns.

(I) During ALPEX 1982, 3 ST radars operated in the vertical mode in the

Rhone Delta (ECKLUND et al., 1983) as a result of a collaborative effort

between the Aeronomy Laboratory from NOAAand the LSEET (Toulon - France).

The main objective of the ST radar experiment was the study of short scale

gravity waves from vertical velocity measurements. These observations could

also contribute to the ALPEX objectives on Genova gulf cyclogenesis (B_UN et

al., 1985a) and local winds.

From this experiment, CARTER et al. (1984, 1985) determined the horizontal

wavelength, the phase velocity and the propagation direction of waves. Some

conclusions concerning this network are listed:

-The coherence between radar sites was very good while the coherence

between heights separated by more than 2 Pun was generally quite poor. That

does not permit a reasonable calculation of vertical wavelengths.

-With radar spacing of roughly 5 Ion, waves with horizontal wavelengths

less than I0 km could be aliased and appear to have longer wavelengths. Since

most observed waves had measured wavelengths around 10-20 km, it is possible

that some of these are eliased.

-The fact that only vertical observations were made, limited the waves

that could be detected to periods less than about 2 hr due to the weakness of

the vertical wind induced by the waves of greater periods.

(2) During FRONTS 84, in the southwest of France, a ST radar was

operating in the vertical mode during 2 months in coordination with other

instruments (RONSARD cm radar, RABelAIS mm radar, balloons, airplane, radio-

soundings, meteorological ground network .... ). The observations have been

focused in fronts and related phenomena, especially gravity waves, tropopause

breaks and coordinated observations of clouds and their surroundings by

different techniques.

Among all these instruments only the ST radar is able to provide

continuously wind profiles with a good height and time resolution whatever

the weather conditions (clouds or clear air, precipitation or not). In the

experiment FRONTS 84, the ST radar has been useful:

-Inside the storm, to extend the other radar observations at altitudes

higher than the ones observed with the precipitation radars;

-Outside the storm, to determine continuously the dynamical field and its

perturbations as a function of time and altitude;

-Due to the capability of VHF radar to get large echoes from the tropo-

pause level, to observe the behavior of the tropopause, its breaks.., and to

locate the breaks relative to the fronts (LARSEN and ROTTGER, 1982).

Sometimes, waves associated with a front have been detected. As an

example, on June 3, 1985, a wave of about 40 mln period is observed during

several hours (BRUN, personal communication).

The comparison between these different sets of data has just begun.

(3) During MES0-GERS 84, with general objectives related to the boundary

layer studies and orographic effects, the ST radar was operating in the

vertical mode down to the altitude of 1.2 km to complement and extend sodar

observations.
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The main studies which will be carried out with the sodars and ST radar

concern gravity waves and the relationship between surface stress and

convergence or divergence effects associated with mesoscale systems.

Particularly, with ST radar, it is possible to point out if the energy is

propagating upward or downward and also to observe the entrainment effect

associated with an inversion layer when it takes place at an altitude too high

for sodars.

As the upper limit of the boundary layer has a diurnal variation and also

varies with meteorological perturbations in the altitude range of 0.5 to i kin.

it will be suitable for a ST radar to be able to observe at least down to 400

mo

In this campaign, various interesting events occurred: "Hortense"

hurricane, different kinds of frontal systems and fair weather conditions. ST

radar data are needed to interpret them in a more complete way. This variety

of phenomena is a good opportunity to estimate the contribution of ST radar to

boundary layer physics.

(4) In 1984, two campaigns involving balloon experiments and ST radars

took place. In the first one, which involved the 430-MHz radar of Arecibo, the

payload consisted of a thermistor and a sonic anemometer (THOMAS et al., 1985,

1986). In the second experiment, which involved the VHF ST radar from LSEET

during FRONTS 84, the payload consisted of a thermistor and an ionic anemometer

(DALAUDIER et al., 1985, 1986).

In these cooperative experiments, the radar observations give the temporal

variation of wind profiles and turbulent layers while balloon measurements

provide the fine structure of wind and temperature profiles. These

simultaneous in situ and remote experiments are important for a better

description of the dynamical and thermal structure of the atmosphere (DALAUDIER

et al., 1985, 1986; THOMAS et al., 1985, 1986) and also for a better

understanding of the physical mechanisms producing the clear-air radar echoes

(DALAUDIER et al., 1985, 1986).

(5) In conclusion, the preliminary results already obtained show the

interest of ST radar in cooperative campaigns for a better understanding of

some meteorological problems. Each of these experiments has been very

instructive but none was really satisfactory: only the vertical wind was

measured, only one radar was working during FRONTS 84 and }_SO-GERS 84, and

during ALPEX 82 the Rhone delta was not always documented by other techniques.

Then taking into account all of these arguments, the use of ST radar will be

optimized in other campaigns. A more comprehensive experiment is planned in

1987 with a network of 3 ST radars operating both on the vertical and horizon-

tal components of the wind.

A PLANNED EXPERI_NT - FRONTS 87

FRONTS 87 is a French - U.K. campaign which will take place in France aud

D.K. on both sides of the Channel from October to December 1987. Its

scientific goal is the study of active cold fronts in a nearly flat zone. The

objectives are:

-To acquire mesoscale data sets concerning dynamics, thermodynamics and

microphysics. The network of ST radars with a spacing of about I00 km will

provide wind vector profiles, the altitude of the tropopause, the mesoscale

flow, its horizontal gradient and divergence or convergence;

-To acquire continuous data sets in order to get the three-dimensional

structure of the front and its enviroement under some stationary assumptions.
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The instruments participatin 8 in this campaign will be: ground-based

meteorological networks, radiosondes at 3-hr intervals, aircraft dropsondes to

produce profiles of temperature, humidity and wind, aircraft in situ

observations equipped to carry out dynamical, thermodynamical and microphysical

measurements, cm and mm radars, Doppler acoustic radars, lidar...and also

images from Meteosat and NOAA satellites.

The network of ST radars is one of the first priority of this experiment.

For this purpose and future scientific campaigns, a network of ST radars are

under study (PETITDIDIER et el., 1986).

CONCLHSION

These examples point out an evolution in the use of ST radars for

dynamical studies. At first, they have been workin 8 by themselves with the

adjunction of radiosonde data. Then networks have been built or under study

and have been used to get horizontal parameters. From now, it appears that ST

radar networks will be neturelly included in cooperative campaigns. Only

national or international scientific campaigns are able to conduct simultane-

ously all the experiments necessary to obtain an overview of a specific topic.
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The papers presented in this session describe radar systems using two

different wind-measuring techniques: the partial-reflection drift technique and

the MST (or Doppler beam-swinging) radar technique.

The partial-reflection drift technique, first implemented by FRASER

(1965), has been shown to work in the troposphere and lower stratosphere and in

the mesosphere and lower thermosphere, at frequencies from about 2 to 50 MHz.

In practice, however, it is regularly used only in the mesosphere and lower

thermosphere at frequencies near 2 MHz. The advantages of this technique

include relatively small operating costs and 24-hour operation above about 80

km.

The MST radar technique was independently invented at least three times,

by Woodman in 1970 in Peru using a 6-m radar (WOODMAN and GUILLEN, 1974), by

DoBson in 1969 in the U.S. using a 10.7-cm radar (DOBSON, 1970), and by

Browning and coworkers in 1971 in the U.K. also using a 10.7-cm radar (BROWNING

et al., 1972). As far as I know, all of the radars described in this session

derive from the pioneering work of Woodman. The early S-band systems were not

operated for long, perhaps because of high operating costs. Almost all recent

S- and UHF-band systems have utilized radars developed for other purposes in

order to avoid the high cost of S- and UHF-band antennas. The only exceptions

are the Wave Propagation Laboratory 915-_z radar at Denver and their 405-MHz

system under development for operational use (see the paper by STRAUCH).

The advantages of the MST radar technique are: good spatial resolution,

relatively large zenith angle, and consequent simple geometrical interpretation

of the signal. The disadvantages are the converse of the advantages of the

partial-reflection drift technique.

Since the last MST Radar Workshop in May 1984, several new radars have

come into operation, at Penn State, Christmas Island, Chung-li, and Arecibo

(VHF), other radars have been augmented, and the planning of several other

systems has materially progressed. We look forward to hearing about these

developments.
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6.1 RECENTRESULTSATTHESUNSETRADAR

J. L. Green, J. M. Warnock, W. L. Clark, and T. E. VanZandt

Aer onomy Laboratory

NOAA

Boulder, CO 80303

The Sunset radar is a VHF, pulsed Doppler (ST) radar located in a narrow

canyon near the Sunset townsite 15 km west of Boulder, CO. This facility is

operated by the Aeronomy Laboratory, ERL, NOAA, exclusively for meteorological

research and the development of the MST and ST radar technique. A description

of this fac41ity can be found in GRE_ (1983) and GRE_2q et al. (1984).

In January-February, 1985, as in the previous year, the Sunset radar was

use_ to measure winds as a part of a multisensor study of aircraft safety

sponsored by the Federal Aviation Administration. The FAA will use this broad

data set, in part, to evaluate the response of altimeters used on commercial

aircraft to mountain lee waves.

A technical report, WARNOCK and VANZANDT (1985), has been prepared to

facilitate the use of a statistical turbulence model (VANZANDT et al., 1978).

This report contains complete [ORTRAN listings of the model and instructions
for calculating profiles of C from routine National Weather Service

n
r_winds onde data.

The Sunset radar is being used to test new equipment and operating

concepts to be used in the proposed Flatland radar. Since both the existing

system and the proposed system are similar and modular in design, a new

subsystem under development can be substituted with a minimum of inconvenience.

For example, a new Transmit/Receive switch was developed by imbedding it in the

Sunset system, whose operating characteristics are well known. (GRE_ and

ECKLUND, 1986).
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6.2 THE PROPOSED FLATLAND RADAR

J. L. Green, K. S. Gage, T. E. VanZandt,

Aeronomy Laboratory

Boulder, CO 80303

and

G. D. Nastrom

Control Data Corp

Minneapolis, MN 55440

INTRODUCTION

The Aeronomy Laboratory of NOAA has proposed to the National Science

Foundation to construct a VHF ST radar near Urbana, Illinois for meteorological

research. For the reasons given below, this site has been selected because it

is located in flat terrain far from mountains.

An effort will be made to involve faculty members from university

departments of meteorology and atmospheric sciences in experiments with this

radar. It is believed that the combination of the Aeronomy Laboratory's

experience with this type of radar, the meteorological expertise of the univer-

sity faculty members and the meteorological consulting experience of Control

Data Corp will be very productive in the further development of this technique

as a meteorological tool. A university, private industry, and government

effort is envisioned.

A wide range of experimental studies can be made at this radar as can be

seen in the diverse subject matter covered in this Workshop on the Technical

and Scientific Aspects of MST Radar. However, only three of the proposed

experiments are emphasized here as examples.

DESCRIPTION OF RADAR

The Flatland radar will be a flexible ST radar configured for

meteorological research. Its characteristics are summarized in Table i.

Continuous, unattended operation is anticipated. As this is a fourth or fifth

generation radar, many features that have been found to be desirable in

previous research will be incorporated in its construction. For example, its

receiving system is designed to have a dynamic range of I00 dB to maintain

linearity over the wide range of reflectivities encountered by an ST radar, and

will be calibrated against a standard. The array antenna of the Flatland radar

will be electronically steerable in the east-west and north-south vertical

planes. It is anticipated that initial operation will be with five antenna

beam positions as shown in Figure i. This configuration has been tested at the

Sunset radar and found to have many advantages. Velocities measured with

redundant beam positions can be compared as in CLARK et al. (1983) or GRE_ et

al. (1986). The use of redundant beam positions has been found to be crucial

to the interpretation of ST radar data near convective storms and will provide

a better spatial average of both reflectivity and velocity. The rapid

electronic steering of the radar antenna will allow i0 s (one Doppler spectrum

per range gate) of data to be accumulated on each of the five beam positions

each minute. These spectra will be saved in the on-line computer memory and at

the end of a five-minute period, median spectra for each range gate and each

direction will be recorded on magnetic tape (RASTOGI, 1984; GRE_, 1986). This

rapid scan will prevent the aliasing of most gravity-wave modulation of radial

velocity since the Nyquist period will be 2.5 min. This data-acquisition
scheme is shown in Figure 2.
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Figure I. Location of bean positions. The relative location of

the radar volumes at an arbitrary altitude corresponding to

five radar antenna bean positions.
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Figure 2. Aquisition of data (one cycle) at the end of the observation

cycle the median spectra for each range gate of every antenna

position is individually calculated.
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THE MEASUR]_4ENT OF SYNOPTIC-SCALE VERTICAL Vk_.OCITIES

One of the many experiments that can be performed with the Flatland radar

is the measurement of the small vertical velocities associated with

synoptic-scale meteorology. This velocity is the atmospheric variable most

closely linked with weather, except perhaps moisture, yet it has been almost

impossible to measure it directly. The Flatland radar, sited in very flat

terrain, offers an opportunity to measure vertical velocity directly and

continuously.

In a recent study (NASTROM, 1984), it was found that the time-averaged

vertical motion over the Platteville, Colorado ST radar compared favorably with

the computed synoptic-scale vertical velocity under certain synoptic

conditions: when the prevailing winds were from the west, across the Rocky

Mountains, the meteorological noise was too large to prevent computing a mean

vertical velocity with sufficiently small statistical uncertainty, or else

standing lee waves made the radar site unrepresentative of the large

geographical area of the synoptic-scale system. In either case, it was a

signal-to-noise problem induced by the mountains. A similar situation was

found in the ALPEX data from Southern France (CARTER et al., 1984), i.e., when

the winds were off the sea, the measured and computed vertical velocities

agreed favorably, but when the winds were across the mountains, the agreement

was poor or uncertain. Thus, we can conclude that at ST radar stations near

the mountains, the synoptic-scale vertical velocity can be measured only under

restricted conditions. These statistics suggest that it is probable that such

a measurement can be made at the proposed Flatland radar which would be

situated in very flat terrain far from mountains. As mentioned above, the

proposed radar will also be capable of measuring the horizontal components of

wind in the troposphere and lower stratosphere which can be used to sense the

synoptic-scale systems.

COMPARISONS WITH THE URBANA RADAR

The Aeronomy Laboratory of the University of Illinois operates the Urbana

radar. This radar, with its large power-aperture product, has made many

observations in the stratosphere and mesosphere (ROYRVIK and GOSS, 1983). It

is anticipated that the specialized meteorological measurements by the proposed

Flatland would be compared to those of the Urbana radar in a study of

troposphere-stratosphere-mesosphere coupling as in BOWHILL and GNANALINGAM

(1986).

EXPERI_NTS IN COOPERATION WITH THE CHILL RADAR

A large Doppler microwave radar, the CHILL radar is located a few km from

the site of the proposed Flatland radar (MUELLER and SILHA, 1978). This radar

is operated by the Illinois State Water Survey. Since this microwave radar can

measure the location and velocity of hydrometeors and the VMF ST radar can

measure clear (or cloudy) air velocities, simultaneous observations by these

two radars of stratiform or convective weather systems would provide unique and

valuable meteorological information.

ADDITIONAL STUDIES

The radar data set recorded for the synoptic-scale vertical velocity

experiment in a geographical region free from orographic effects would also be

useful for studies of clear-air turbulence (VANZANDT, 1983; NASTROM, 1984),

gravity waves (VANZANDT, 1986), transport of momentum by gravity waves (NASTROM

and GRE_2q, 1986) tropopause morphology (VANZANDT and VINCENT, 1983; GAGE et
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al., 1984)andtropopauseheight (GAGE and GRE_, 1982). This continuous data

set could be used for the compositing of synoptic and mesoscale systems under

various synoptic conditions. There is an intriguing possibility of estimating

the thermal structure of the a_nosphere from a combination of radar wind

velocity and satellite radiance measurements (GAL-CHEN, 1986).

An effort will be made to attract experimenters with a wide range of

meteorological sensors to special observational periods held at least once

a year. Many of the additional capabilities inherent in the design of the

proposed radar (variable altitude resolution, additional antenna positions, and

real-time access to profiles of wind velocity and tropopause altitude) can be

used, as required, in support of these experiments.

TABLE 1

Characteristics of the Flatland Radar

Location

Frequency

Wavelength

Ant enna

Type

Size

Feed

Steerability (initial)

Transmitter

Peak power

Average power

Range Resolution

Operation

South of Urbana, IL

40.475 MHz

7.41 m

Two collocated arrays of

coaxial, collinear dipoles

60 m x 60 m

Tapered to reduce sidelobes

Five preset beam positions

Vertical, 15 ° from the

vertical to the north, south,

east and west

100 kW

2kW

Variable 150 m to 2.4 km

Continuously sequence through 5

antenna positions.
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6.3 CURRENT STATUS OF THE POKER FLAT MST RADAR

B. B. Balsley .,-

Aeronomy Laboratory

National Oceanic and Atmospheric Administration

Boulder, CO 80303

An earlier brief report on the status of the Poker Flat, Alaska, MST radar

appeared last year in MAP Handbook 14. The purpose of the present note is to

bring that report up to date.

The Poker Flat MST radar ceased normal operations in Apr_ 1985, following

more than six years of almost continuous data taking. Analyses of these data

have already yielded over ninety research papers, five Ph.D and two MSc.

dissertations.

The radar is now being configured to measure gravity-wave momentum flux in

the troposphere, lower stratosphere, upper mesosphere, and lower thermosphere.

The major change to the system involves modifying the antenna array to enable

both (orthogonal) oblique beams to be automatically steered. GWMF data will be

obtained on pairs of vertically symmetric beams in the manner described by

VINCENT and REID (1983). Current funding is sufficient to complete this

modification and to operate in this new mode until Fall 1986.

An additional effort is underway to prepare an archive of the existing

six-year Poker Flat data set. This archive, when complete, will be transferred

to the National Center for Atmospheric Research (NCAR) for use by anyone in the

scientific community.
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VHF Radar Wind Profilers are being installed on two tropical Pacific

islands to continuously monitor winds aloft for many years. The islands are:

Ponape, East Caroline Islands (158°E, 7°N)

Christmas Island, Republic of Kiribati (157°W, 2°N)

One purpose of this experiment is to study wind fluctuations on time

scales betweem minutes and days, to determine the longitudinal character of

these fluctuations, and to examine their relationship to climate variability.

A second purpose of the experiment (Christmas Island only) is to provide six-

hourly wind profiles via satellite to the scientific community for Project

TOGA (Tropical Ocean Global Atmosphere).

The Ponape wind profiler has been operating for fourteen months using only

e vertically directed antenna. A multibesm system will be installed later this

year.

The Christmas Island radar has just been installed and will be placed in

full operation soon. This system will have three antenna bean positions, and

will continuously measure the total wind vector. It will be the first wind

profiler to provide satellite-transmitted data to a data dissemination center.

Both systems will operate in the low VHF band (= 50 MHz), have I00 m x

i00 m COCO antenna arrays, and have a peak transmitted pulse power = 30-50 kW.
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6.5 RECENT PROGRESS IN THE URBANA MST RADAR

S. A. Bowhill

Aeroncmy Laboratory

Department of Electrical and Computer Engineering
University of Illinois

Urbana, IL 61801

Since the 1984 Workshop, several improvements have been put into effect at

the Urbana radar, which operates at 40.92 MHz with a peak power of about 1.2 MJ

into a I00 x 120 m phased array antenna.

A new accelerated data-acquisition system has been put into operation

(BOWHILL and RENNIER, 1986). This permits continuous data acquisition at 60

altitudes from I0 to 90 km, and has also improved the efficiency of the

receiving system by a factor of two.

A new beam-steering system has been installed (BOWHILL and MER_JETHER,

1986) which now allows rapid switching between two beams, thereby giving both

components of the wind velocity. These beam directions have been calibrated

against radiosonde calculations.

The new transmit/receive switch described at the 1984 Workshop (YU, 1984)

has been assembled and is in course of installation in the radar.

With these changes, the radar is in regular operation for two hours every

day around local noon gathering stratospheric and mesospheric data. Special

campaigns are mounted in addition under severe weather conditions.
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6.6 COLORADO WIND PROFILERS -- _ b!

NOAA/Em_/WPL
Boulder, CO 80303 /_

The Wave Propagation Laboratory (WPL) has operated a network of wind

profiling radars in Colorado for several years. The current configuration of

this network is shown in Figure I. The 50-MHz profilers at Fleming and Flagler

are %_o-beam systems with 50 m x 50 m collinear-coaxial antenna arrays that are

phased to generate pointing angles 15 degrees off zenith toward the north and

east. An identical system was installed near Norman, OK in May, 1985. The

915-MHz radar at Denver is a three-beam system. In addition to the same point-

ing angles that the 50-MHz systems have, this radar has a zenith-pointing posi-

tion to correct for the effects of vertical velocity on the data obtained with

off zenith pointing, particularly in stratiform precipitation. This antenna is

an offset paraboloid with three offset feeds. The 50-MHz system at Platteville

is also a three-beam system (with the same pointing positions as the 915-MHz

system) with I00 m x I00 m collinear-coaxial antenna arrays. The 405-MHz

profiler is a two-beam system; the antenna is a phased array with Yagi-Uda

elements. The 405-MHz radar started operating in January, 1985. All radars

operate continuously and unattended to supply hourly-averaged wind profiles to

a central computer in Boulder in real time. A complete description of the

radars and their data processing is given by STRAUCH et al. (1984).

During the past year several hardware and software changes have been made

to improve reliability. Lightning protection was added on the primary power at

the input to the equipment housing and lightning protection (surge suppression)

was placed on the telephone lines and computer-telephone data lines. An

annoying problem of restart after extended power fail was solved by adding a

remote computer reset; previously, the on-site computer had to be reset

manually after some power fail events.

We plan to continue to operate this research network to provide wind

profiles for operatiorml (NWS and FAA) and research meteorologists and to

continue to evaluate the performance of various wavelength systems. Some of

the changes that are planned are as foll_s:

i. The 405-MHz radar will be replaced with a more sensitive radar whose

characteristics approximate those of a planned 30-station network to

be installed in the central US late in this decade. The antenna will

have 5-beem pointing positions.

2. The 50-MHz off-zenith pointing antennas at Platteville will be replaced

and a switching system will be added so that four beam-pointing

positions will be available.

3. We are studying what hardware changes would be needed to add a high

resolution (chirp pulse) mode to the 915-MHz radar. This mode would be

used to examine the reflectivity structure of radar scattering at 4- to

10-km altitude with 15-m resolution.

4. A collinear-coaxial element will be evaluated at 405 MHz. If the

characteristics are suitable a full antenna array will be built.

5. A transportable 405-MHz system with a fully steerable 6-m diameter

antenna is being considered. One of the uses of such a system would

be to calibrate fixed beam systems.

6. The Denver and Platteville data are sent to the central computer on

dedicated telephone lines; the other sites use dial-up transmission.

The data handling will be modified so that Doppler spectra or spectral

moments can be transmitted on the dedicated lines and archived by the

central computer.
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Figure i. The Colorado wind profiling network.
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WIND PROFILER DEMONSTRATION SYST_

R. B. Chadwick

NOAA/ERL/WPL

325 Broadway

Boulder, CO 80303

The National Oceanic and Atmospheric Administration (NOAA) has started

procurement of a 30-station demonstration network of Doppler radar wind

profilers to be deployed in the central United States by 1989. Present plans

call for twenty-four 405-MHz radars end six 50-MHz radars. The purposes of

this demonstration network are: 1) to assess the impact of a large wind

profiler network on meteorological forecasting_ 2) to test wind profiler

hardware designed especially for commercial production and widespread

deployment_ 3) to provide wind data for research progr_ns involving weather

phenomena in the central United States.

The radars will be designed and built by industry under a competitive

procurement process. The first step in the procurement is the purchase of two

405-MHz prototype radars and a request for proposals was issued on August 27,

1985. Contract award is expected by March 1986, with delivery of two prototype

radars by October 1987. Installation of production models should begin by mid-

1988 and be completed by mid-1989.

The radars will operate continuously and unattended with a 6-minute data

cycle. During this cycle spectral moment estimates will be made for two range

resolution modes on each of three antenna pointing positions. These data will

be sent to a central hub computer on land lines. In addition, hourly averaged

wind profiles will be calculated and transmitted to the hub computer using the

GOES satellite. The Profiler antenna pointing positions will be toward zenith,

and about 15 degrees off-zenith in orthogonal planes. From this, East, North,

and vertical wind components can be determined. The hub computer will ingest

data from the demonstration profiler network and from other research profiler

systems. Wind profiles will be calculated, checked for temporal and spatial

consistency, broadcast to authorized users, and archived. An important part of

the program is the assessment of the data and hardware performance, and will be

conducted by the National Weather Service (NdS).

The radars are required to have a mean-time-between-failure of six months.

They will have modular construction so that maintenance can be performed by

field replacement of defective modules. The data messages will include

thorough system status checks. Automatic restart after power fail, lightning

protection, and other features needed for operational radars are required.

Radar parameters for the 405-MHz units are listed below. Certain specific

items such as the type of antenna and type of transmitter are left to the

contractor to decide. Also the contractor is to decide the details of the

transmitted signal waveform.
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Required Antenna Par-meters

Number of be-ms

Beam elevation angles

Beam switching speed

On-axle gain

3 dB beam width

Antenna sidelobes (ref. to on-axis gain)

0 >45 °

45 ° > 0 > 5 °

5o > 0

3

1 @ 90 °. 2 @ 75 °

<0.4s

> 32 dBi

< 5 °

< -20 dB

< -25 dB

< -40 dB

Frequency

Bandwidth

Operating noise temperature

Pulse width

Average transmit ted power

Pulse repetition period

First gate

Last gate

Number of range gates

Range resolution

Range gate spacing

Required Transmitter-Receiver Far"meters

High Mode

405.25

0.2

235

6 2/3

1500

153 1/3

7.5

16.25

36

i0O0

250

Max horizontal velocity (component) 90

First range ambiguity 183

Law Mode

405.25 _z

0.8 MHz

235 K

1 2/3 _s

375 W

100 _s

0.5 km

9.25 km

36

250 m

250 m

60 m/s

120 km
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6.8 R_4OTE T_4PERA_JRE PROFILING IN THE TROPOSPHERE AND STRATOSPHERE BY THE

RADIO-ACOUSTIC SOUNDING TECHNIQUE

/_/ _" _. Nobuo Matuura)Yoshihisa Masuda)and Hisao Inuki

Radio Research Laboratory

Koganei-shi) Tokyo 184, Japan ,',f_

The application of radar to study of the atmospheric phenomena is carried

out by receiving echoes from precipitation and atmospheric inhomogeneities or

structure caused by turbulence and atmospheric gravity waves. A somewhat

different kind of radar application is the radio-acoustic sounding technique as

presented here, in which Doppler frequency shift of radar echoes returned from

the atmospheric spherical wave structure, in association with travelling

acoustic pulse transmitted from the ground, is detected to give the speed of

sound, and hence the atmospheric temperature, as function of altitude.

The experiment presented here aims at temperature measurement in the

troposphere and stratosphere by the radio-acoustic sounding technique with the

Radio-Acoustic Sounding System (RASS) consisting of the MU Radar, completed in

November 1984, at Shigaraki, Shiga) Japan, by the Radio Atmospheric Science

Center of Kyoto University (peak power 1 _d, radio frequency 46.5 MHz) and a

movable high-power acoustic transmitter provided by Radio Research Laboratory

(acoustic power 100 W, acoustic frequency around 100 Hz variable).

TWo basic conditions to be satisfied for receiving echoes by RASS in an

efficient power are the followlng: one is the Bragg condition with respect

to the radio wavelength k r (= 6.45 m) and the acoustic wavelength Aa, i.e.,

k r = 2Ao, and the other is the perpendicularity between the radar besm and the

acoustic wave front. The Bragg condition can be kept from failure owing to

height variation of the acoustic wavelength arising from temperature variation,

by sweeping the acoustic frequency from pulse to pulse. The latter condition,

which is influenced by the atmospheric wind, can be kept partly by changing the

direction of the radar beam and partly by changing location of the acoustic

transmitter.

Successful experiments were carried out in March 1985, and August 1985o

of remote temperature profiling in the troposphere and stratosphere, attaining

with the maximum measurement altitude of about 20 km beyond the tropopause in

the August experiment.



6.9 THE PENN STATE DOPPLER NET,,4ORK PROGRESS REPORT

S. R. williams and R. Peters N87 .10489
The Pennsylvania State University

Department of Meteorology ....

University Park, PA 16802

At the Second Workshop on Technical Aspects of MST Radar, the software and

hardware implementation for the PSU network was discussed (THOMSON, 1984).

Delayed delivery of RF equipment and signal processing components resulted in

modification of our original timetable. It was determined that the best

approach for implementin B the second VHF radar would be when the first VHF

radar was in reliable and unattended operation. In Table 1, a short summary

of the specifications for the three radars is shown. Experiences, plans and

improvements for the PSU network are summarized belc_¢.

A. VHFI 50-MHz 2/3 beam radar located 15 km south of State College, PA

I) This system became fully operational June 27, 1985. The sole reason for

system failures since the onset has been ac outages which are prevalent

in this area. Battery back-up and computer-controlled auto-restart of

the transmitters (microprocessor controlled) has circumvented this

problem.

2) Initial performance statistics done by FRISCH et al., WPL on August 1985

data, indicate very good performance by VHFI. On Beam #I, the next to

last range gate (16.8 km MSL) was able to make a wind measurement 99% of

the time, while Beam #2 was able to measure the wind at this height 85%

of the time. The difference between these two beams is either a bad

element or a loss in relay switches in Beam #2 or a noise source in one

of the sidelohes. Samples of radar data from VHFI are shown in Figures 1
and 2.

3) Future changes on VHFI will be the implementation of a vertical beam.

One of the antennas will be phased switched in order to orient the beam

to vertical. Software and hardware are in hand, but will not be utilized

until our 2nd unit VHF2 is operatiorml.

B. VHF2 50-MHz 2/3 beam radar to be located in NW Pennsylvania near Clarion, PA

I) The process of site location and acquisition is underway for an identical

50-MHz system. This site will be the 2nd point on an equilateral

triangle positioned over west central Pennsylvania.

2) All hardware and software components have bean delivered. Expected

initial turn-on of VHF2 is early 1986.

C. UHFI portable 440-MHz 2/3 beam radar to be initially located in SW

Pennsylvania near Somerset, PA

I) This system is ready for installation pendln 8 the delivery of the RF

components purchased from Tycho Technology, Inc.

2) Site selection for UHFI will commence as soon as VHF2 is operational.
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Table 1 Specifications for Penn State ST radars

Item

_ype

L oca ti on

Frequency

Bandwidth

Peak Power

Pulsewidth

Ant enna :

Type

Dimensions

Angle(s)

On Site Computer

On Site Processin 8 at

PW=

Time Domain Aver.

Spectral Aver.

Max. Radial Vel.

Spectral Vel. Reeol.

Height Spaein 8

VHF1 and VHF2

Pulsed Doppler

1: S of State College

2: NW of Dubois

1 : 49.80 MHz

2 : 49.92 MHz

300. I00 KHz

30 kW

3.67. 9.67 _sec

Phased Array CoCo

50 m x 50 m

75 ° and 90 °

Data General Eclipse

3.67 _s or 9.67 _s

--400 or _- 125

8 or 16

+ 15.7 m/s or + 19.6 m/s

0.49 m/s or 0.31 m/s

290 m or 870 m

UHF1

Pulsed Doppler

SR of Johnstown

405 MHz

1 MHz. 300 kHz,

70 kHz

3O kW

1, 4, 16 _sec

64 7-element Yagis

8mx8m

75 °

Date General Eclipse

1. 4. 16 _s

112. 70, 35

16, 32, 64

18.25 m/s

0.29 mls

100, 300, 800 m
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6.10 THE ADELAIDE MF PARTIAL-REFLECTION RADAR AND VHF ST RADAR:

A PROGRESS REPORT

R. A. Vincent

Physics Department

University of Adelaide

Adelaide, South Australia 5001

THE M_ PARTIAL-REFLECTION RADAR

The MF partial-reflection radar has been running continuously since

November 1983, with data being analysed in real time. The spaced antenna

technique has been used routinely to produce a climatology of the mean

circulation, atmospheric tides and gravity waves. Since the beginning of 1985,

the system has also been used as a Doppler radar to measure the spectral widths

of the mesospherlc echoes. This has enabled the turbulence dissipation rates

to be detezmined by the technique discussed by HOCKING (1983). Also, since

January 1985, observations of gravity-wave momentum fluxes, u'w' and v'w' have

made for a period of about 4 days each a month with the dual-beem technique

described by VINCENT and REID (1982).

THE ST RADAR

The ST radar, which operates at a frequency of 54.1 MHz and is located

adjacent to the MF radar, has been used for a number of investigations of the

lower atmosphere. In particular, it was operated in the spaced antenna mode to

measure winds in November 1984, in conjunction with a large cooperative

campaign organized to study the propagation of cold fronts across SE Australia.

Observations have also been carried out in collaboration with the Australian

Bureau of Meteorology into the structure of the more intense end deeper cold

fronts which occur in late winter. The vertical, as well as the horizontal,

winds have been studied. There is good agreement between the upward velocities

observed prior to the passage of the fronts (up to 0.2 ms-l) and the magni-

tudes calculated from the convergence of air into the front.

From the start of 1985, Doppler beam-swinging measur_ents have also been

undertaken to measure the upward flux of horizontal momentum. As the beam can

be steered only in the EW plane, this restricts the observations to the u'w'

fluxes. After testing several pointing angles, a basic angle of 11 has been

used.

The radar system is being continually upgraded. Solid-state transmitters

are being installed in order to increase the mean power by a factor of about

50. The transmitters are very efficient (60_) and compact. To make full use

of the high duty factors available (up to 20_), a complementary phase coding

scheme is being implemented.

REFE R_ CE S

Hocking, W. K. (1983), On the extraction of atmospheric turbulence parameters

from radar backscatter Doppler spectra I, Theory, J. Atmos. Tart. Phys.,

45, 89-102.

Vincent, R. A., end I. M. Reid (1982), HF Doppler measurements gravity-wave

momentum fluxes, J. Atmos. Sci., 40, 1321-1333.
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The ST radar called PROUST (Prototype de Radar pour 1'Observation en UHF

de la Stratosphere et de la Troposphere) is located at Saint Santln (44o39'N;

2o12'E, altitude: 351 m) in the southwestern part of France, a place devoted

to the ionospheric incoherent-scatter radar transmitter facility. It works at

935 MHz using the same klystron and antenna as the incoherent-scatter radar.

The use of this equipment for ST work has required some important modifications

of the transmitting system and the development of receiving, data processing

and acquisition devices. This work has been planned in several stages. In the

first stage (1984, 1985), the radar worked in a bistatic mode with a height

resolution of 600 m and a time resolution of 46 s. The main characteristics of

the radar is given in Table 1.

TABLE 1

Frequency 935 _z

Allotted bandwidth + 5 _z

Pulse peak power T40 kW

Transmitting Antenna 2000 m 2 (Near field)

Receiving A_ten_a (Parabolic) "95 m 2

Pulse length 4 _s

Pulse repetition frequency 156.2 _s

Number of gates 32

As the angle between the transmitting and receiving directions is 1 °, the

vertical wind is mainly measured. In any case, an estimation of the horizontal

wind contribution may be obtained through radiosonde data. Two campaigns were

carried out and their main results are given by BERTIN etal. (1985).

In 1985, the phase stability of the transmitter-receiver set has been

improved and the coding and decoding system, which leads to a 30-,, height

resolution, implemented (PETITDIDIER etal., 1985a). Table 2 gives the

specifications of this "magnifier" mode.

T_LE 2

Pulse width 4 _s

Number of subpulses 20

Subpulse width 200 ns

Code Quasi-complementary

Coherent integration number 128

Coherent integration time 20 ms

FFT 256 points

Spectral resolution 3.1 cm/s

Maxlmal vertical velocity + 4 _s

In a first step, onl_ 32 gates out of the 640 decoded ones, are recorded

in order not to modify the data recording device. These 32 gates are consti-

tuted by 4 groups of 8 gates in succession which may be located anywhere in the

range of altitude. In September 1985, all the equipment was tested at Saint

Santin. A calibration was carried out and showed that, with a spectral wind

resolution of 0.8 cm/s and an amplitude of the artiflcial dopplerized signal 50

dB below the maximum value detectable, it is possible to detect a wind of about
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i_2_qn/_, _During the campaisn, only very weak Cn2 (10 -18 at 2 kin) were

. observed due to the stability of the weather.

FUTURE DEVW OP_NTS

Spectrum Computation On-line. So far, only the real and imaginary time

series are recorded on magnetic tapes and the spectra are computed off-line.

The next step is the computation in real time of spectra using the Texas

Instruments TMS 320 slgnal processor and a FFT algorithm. The implementation

of this device is under tests and the first campaign is planned at the

beginning of 1986.

Monostatic Mode. As shown in Figure 1 and confirmed by experiments,

in the bistatic mode the energy budget of the system, klystron and antenna,

does not allow observation of echoes above 9 kin. But in the monostatic mode,

it should allow stratospheric observations. The next step, planned for 1986,

will be to transmit and receive on the large antenna.

monostatic

I bistatic

Figure 1. Variation of C 2 as a function of altitude using the model of
VANZANDT et ,I. (1978_ and 105 rawinsonde data from Bordeaux (France) from

PETITDIDIER et al. (1985b). The curves O--0 and +--+ indicate the minimum

of C detectable as a function of altitude in monostatic and bistatic mode.

respectively, for a peak power of 140 kW, and the curve -- in monostatic

mode for 50 kW peak power.

REFE R_ CE S
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6.12 THE PROV_C_ ST RADAR

M. Crochet

Laboratoire de Sondages Electromagnetiques

CNRSIUniversite de Toulon _ \_/z83100 Toulon, France _

INTRODUCTION ._

Since the ALPEX Campaign in 1982, when 3 ST radars have been operating in

Camarque as a cooperative effort of the Aeronomy Laboratory of NOAA, CO and

the LSEET from Toulon, a 50-MHz VHF ST radar has been developed° improved and

operated during different experiments.

OPERATING CHARACTERISTICS

- Successive frequencies :

- RF pulse width

- Peak power

- Antenna

- Minimum range

48.85 MHzo 47.8 MHzo 45 MHz

1, 2, 4, 16 Us

50 kW

3 x 60 x 60 m 2 coco antennas

Ikm

MAIN OBJECTIVES

- Physics of the measurement by ST radar by coordinated experiments with

other instruments (balloons, lidar, sodar, cm and mm radars, scidar).

- Investigation of gravity waves with ST radar networks and coordinated

experiments (Fronts 84 - Fronts 87).

- Investigation of mistral and jet stream.

PR_ IMINARY RESULTS

- Gravity waves studies during "ALPEX 82"

- Jet stream and jet streaks "PROV_CE 84"

- Gravity wave studies during "FRONTS 84"

- ST radar - CAT balloons comparisons "MAI 84"

- Multifrequency radar comparisons "FRONTS 84"

FUTURE EXPERI_NTS

- Jet stream and mistral investigations from 2 stations in the south of

France.

- Gravity waves and Fronts studies with 3 ST radars during the cooperative

experiment "FRONTS 87".

- Multifrequency investigations

- Site comparisons in the south of France
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6.13 THE INSD* AND DMN** NETWORK OF ST RADARS
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M. Petitdidier 2, V. Klaus 1, F. Baudin 3, M. Crochet 5,

G. Penazzl 4, and P. Quintyl

1CNRM - 42 Avenue Gustave Coriolis - 31057 Toulouse Cedex - France

2CRPE - 4 Avenue de Neptune - 94107 Saint Maur des Fosses Cedex - France

3CRPE - 38-40 Avenue de General Leclerc - 92131 Issy les Moulineaux - France

4INSU - 4 Avenue de Neptune - 94107 Saint Maur des Fosses Cedex - France

5LSEET - 639 Boulevard des Armaris - 83100 Toulon - France

Due to their capabilities of measuring wind profiles in the troposphere

and stratosphere with a good time end height resolution, ST radars are well

adapted to carry out atmospheric research in many fields as well as to fulfill

the meteorological forecasting needs. In France, a VHF (Provence - CROCHET,

1985) and a UHF (Proust - BERTIN et al., 1985) ST radar are working for

research purposes and two networks are projected (PETITDIDIER et al., 1985).

The INSU Network (3 radars) has been proposed by scientists working in

tropospheric and stratospheric physics end will be devoted to research in

connection with other instruments (meteorological radar, lidar, rawlnsonde,

balloon...). The spacing between the radars and their relative locations will

depend on the topic under study. In the same way, the time resolution is

imposed by the expected time scales of the studied phenomena and the height

resolution by their spatial scales and by the estimated thickness of the

turbulent layers (10 - 300 m). As these radars will work during simultaneens

measurement campaigns, as ALPEX 82 or FRONTS 84, they must be transportable.

Table I summarizes the main characteristics of such radars.

The DMN network has been proposed in order to equip the French

meteorological station network with ST radars. Basically, its specifications

are determined by the requirements of the World Weather Watch as it concerns

the time and height resolution as well as the range of altitudes. Table 1

gives the main characteristics of such radars. However, measurements of other

parameters, available for ST radars as vertical wind and the altitude of the

tropopause, or high time resolution data may not be completely excluded as they

are interesting for meteorological research and could be used in future weather

prediction (GAGE and SCHLATTER. 1984).

TABLE 1

Minimum ,I titude

Maximum al ti rude

Height resolution

Research

300 m

12 - 15 km

150 - 300 m

Wind component vertical

Met eor ol oEy

300 m

20 km

600 m up to 12 - 13 km

I measure every 50 mb

2 km at 12 km

4 km at 20 km

hot iz ontal

horizontal

Time resolution several minutes 1 h

Tropopause altitude yes --

*INSJ: Institut Natiorml des Sciences de l'Univers

**DMN: Direction de la Meteorologie Natiormle
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In order to carry out these 2 projects simultaneously, the different

institutions involved have coordinated their technical and financial

investments for a better efficiency. The first stage is the realization of a

prototype fulfilling the specifications of the 2 projects. This radar is under

study and should take part in the experiment '_ronts 87".
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6.14 INVESTIGATIONS OF THE LOWER AND MIDDLE A_IOSPHERE AT THE

ARECIBO OBSERVATORY AND A DESCRIPTION OF THE NEW VHF RADAR PROJECT

J. Rottger*, H. M. Ierkic, R. K. Zimmerman, and J. Hagen

P.O. Box 995

Arecibo, Puerto Rico

INTRODUCTION _ _ _r._ _,

The atmospheric science research at the Arecibo Observatory, particula_y

the research of the lower and middle atmosphere, is performed by means of

(active) radar methods and (passive) optical methods. The active methods

utilize the 430-MHz radar (e.g., WOODMAN, 1980a; TSUDA et al., 1985), which is

normally used for incoherent scatter investigations of the ionosphere

(including the D reglon/masosphere, e.g., MATHEWS, 1985), the S-band radar on

2380 MHz (e.g., WOODMAN, 1980b), which is normally used for investigations of

planets and asteroids, the bistatic HF radar (GONZALES end WOODMAN, 1984),

which is normally used as heating facility to modify the ionosphere, and a

newly constructed VHF radar. The applications of the 430-MHz radar, the S-band

radar and the HF radar were described by WOODMAN (1983). The VHF radar was

particularly designed as an MST radar, although it also can be used for heating

diagnostics. The VHF radar development was based on earlier experiences with a

VHF radar system transported temporarily to the Observatory (e.g., ROTTGER et

al.D 1981), and will be described in more detail in this report.

The passive methods performed at the Observatory include measurements of

the mesopause temperature by observing the rotational emissions from OH-bands

(e.g., TEPLEY, 1985). The feasibility to use a lidar system to investigate the

lower and middle atmosphere at the Arecibo Observatory is presently being

studied. It would provide a valuable complement to the existing radars to

measure temperature and trace constituent profiles.

Besides the present VHF radar, which is operated with the 1000-ft dish as

antenna, an additional VHF system has been proposed. The proposal, submitted

to the Natiorml Science Foundation, has been suspended, however. Such a

stand-alone facility could operate continuously without interrupting other

experiments carried out at the Observatory. The implementation of this system

would be based on the presently existing radar transmitter end receiver. It

could be set up in a valley close to the Observatory using a separate antenna

system and should have an average power-aperture product of about 5.107

Wm 2, as well as a stand-alone radar control and data acquisition unit.

The scientific goals for such a system are presented elsewhere in this

proceedings (ROTTGER et al., 1986). It is foreseen that continuous

investigations of the neutral atmosphere in the tropical/subtropical zone of

Puerto Rico will encompass such topics as: hurricanes and tropical storms,

waves in the easterlies, quasi-inertial waves, tides and short-period gravity

waves and their generation mechanisms such as shears in the subtropical jet

stream and deep penetrative convection, momentum flux from the troposphere to

the mesosphere due to gravity waves, kinetic energy spectra due to waves or

turbulence, and land-sea breeze, lee waves and local convection. For the

investigation of almost all of these processes, the island of Puerto Rico is a

preferred site, and an ancillary VHF radar system should he built near the

Arecibo Observatory to conduct such observations.

*On leave from Max-Plenck-Institut fur Aeronomie, Katlenburg-Lindau, West

Germany.
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THE AO VHF RADAR

The new Arecibo Observatory VHF radar operates on 46.8 MHz with a 50 kW

(peak) transmitter made by Tycho Technology Inc. The system uses the 1000-ft

reflector with a newly designed feed antenna. The existing radar control and

data-acquisition system is used in addition to additional control and monitor

instrumentation which was particularly developed for the 46.8-MHz radar. The

average power-aperture product is 4.107 Wm 2. The system is set up in two

locally separated units: the radar control, signal detection, data-acqulsition

and monitor instruments are on the ground in the control room building. The

transmitter and receiver frontends are located on the antenna platform 130 m

above the dish in carriage house 1, to which the feed antenna is mounted.

Whereas the carriage house part of the system is permanently configurated,

experimenters have to set up for every experiment the different instruments

needed in the control room.

ANT_NA

The 46.8-_z feed presently is a twin 2-elsment antenna which is located

on the downhill side of carriage house 1. Figure 1 shows the arrangement of

the feed antenna on the platform. Its driven elements are 9.3 m below the

paraxial surface and their center is at 5.3 m distance from the closely

neighboring 430-MHz line feed. The clearance of 5.3 m was found to be

sufficient for negligible coupling with the 46.8-MHz feed. The 46.8 MHz is

outside the caustic of the 430 MHz as well as the closest feed of carriage

house 2 (1667 MHz). The impedance and radiation pattern of the 46.8-MHz feed

was obtained by computer modeling, proving that the coupling with the nearby

feeds is negligible to the impedance. However, influence to the radiation

pattern could occur. The 5.3-m distance provides sufficient mechanical

clearance to the surrounding guy wires.
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Figure 1. Schematic view (not to scale) of the carriage

houses CH1 and CH2 with the 430-MHz, the new 46.8-

MHz and the 1667-MHz feed. The dashed lines give

the caustics of the two line feeds.
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Theheight of 9.3 m below the paraxial surface was also obtained by

computer modeling a point-feed above a spherical reflector. It was optimized

to obtain maximum system gain for the chosen twin-Yagi feed antenna. The

dimensions of the twin-feed antenna were designed to provide an elliptical

illumination pattern of the spherical dish reflector (Figure 2a). The half-

power beam width in the E-plane is 78 ° and in the H-plane, 62 ° . Since for

pointing, the zenith angle is changed in the H-plane, spillover is minimized

and the gain is kept almost constant out to maximum zenith angles of _ 17.81 °.

The selected illumination pattern and the height of 9.3 m below the paraxial

surface corresponds to a (theoretically deduced) effective aperture of

43000 m 2- equivalent to 41-dB gain or 1.8 ° half power beam width. The

effective aperture of 43000 m 2 is very close to the maximum aperture of 45000

m 2 which can be achieved with a 46.8-MHz point feed. The phase center of the

twin feed is 2.16 ° downhill of the center of the 430-MHz line feed. This

permits pointing the 46.8-MHz beam to zenith angles from -2.16 ° to + _ 17.84 °,

including the zenith direction. The twin feed was designed such that radiation

in the horizontal direction would be minimized. The VSNR of the feed (with

balun) is better than 1.22 within the bend 45.8 MHz to 47.1 MHz. Since the

return loss of the feed antenna is greater than 10 dB within the frequency

range + 5 MHz off the center frequency, it can also be used for offset

frequency receiving (plasma line measurements for heating experiments).

Although the absolute sensitivity of the 46.8-MHz antenna system could not yet

be measured (because of interference problems and preferred radar operation), a

drift scan indicated a beem width of 1.8 ° (see Figure 2b). The system

sensitivity, estimated from the preliminary drift scan is expected to be larger

than 10K/Jy. However, more correct pointing beam pattern and sensitivity

calibrations have still to be performed to investigate pattern distortions due

to coupling.
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Figure 2. a) Illumlnatlon pattern of the spherical I000 ft dish

by the 46.8-MHz point feed. @ is the zenith angle, the 60 °

circles denotes the rim of the dish. H and E denote the H-

and E-plane of the feed, which is moved in zenith angle in

the H-plane. b) Relative power (P , = 3 corresponds to

approximately 3000 k) measured by are_rift scan through the

radio source 3C123. This yields a preliminary half power

beam width of 1.8 ° of the 46.8-MHz antenna system.
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The method to determine the optimal parameters of the 46.8-MHz antenna

system is described in more detail in this proceedings by IERKIC et al. (1986).

TRANSMITTER-RECEIVER

Figure 3 shows the setup of the transmitter/receiver unit which is located

in carriage house i. Essential additions to standard MST radar systens are the

calibration noise injection into the receiver frontend, and the digital data

link which allows to transmit the HV power supply and final amplifier status as

well as the measured forward and reverse transmitter power values down to the

control room. The nominal transmitter peak power is 50 kW at 2Z duty cycle.

The rise and fall times of the total transmitter system are 0.4 _s which allow

proper use of pulses as short as 1 _s. The decoupling attenuation of the T/R

switch (transmit-receive switch) and the pin diode SPST switch is 50 dB and

their insertion loss is 2 dB. This will be improved by changing the pin diode

switch which presently courses the main contribution of 1.8 dB to this loss.

The noise figure of the receiver frontend is better than 0.5 dB on 46.8 MHz, it

is increased by 0.5 dB at 4.30 MHz and 53.3 MHz. The calibration noise

injection is presently set to 1690 K.

The received 46.8-MHz signal is amplified and sent to the control room via

a 600-m lon8 coaxial cable. All control and monitor signals are sent via ocher

cables between the control room and carriage house.

RADAR CONTR_ AND DATA PROCESSING

Figure 4 shows a block diagram of the instruments in the control and

computer room. Two phase-coherent signals on 23.4 MHz and 70.2 MHz are used to

TURN ON_ HV POWER SUPPLY

XMTR, CNTRL. SYS_E[ M

^ CONTROL

___ LINK

TTL NOISE PULSE

XMTR DA_

46.8 MHz RETURN

TTL T/R PULSE

DIGITAL _ H V POWER SUPPLY

DATA _ XMTR, STATUS
LINK

DUAL PEAK OET.

6KV.

FINAL S T/R

46.8 MHx

B.R FILTER

46 dB

COUPLER

12 V. DRIVER

DIODE

SWITCH

NOISE

DIODE NOISE

INJECT
COUPLER

1.2.1
F AMPLIFIER

23 dS

RG-17

CABLE

50 KW

BAZOOKA

BALUN

TW IN

I000 FT. DiSH

Figure 3. Instruments of the AO VHF radar located in the carriage house 1 on
the platform.
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Figure 4. Instrt_ents located in the control- and computer-room on the ground.

transmit the control signals (T/R switch, phase modulation, and receiver noise

calibration) via a coaxial cable to the carriage house. These three control

pulses are generated in the Synchronous Progrsmmahle Sequencer (radar

controller), which is in turn controlled by the Harris 100 computer. Single

pulse and any choices of complementary codes with interpulse phase flips

(instrumental dc-eliminatlon can be used). The RF pulse is derived from a

combination of the noise calibration and T/R switch pulses. The pulses are

checked in a hardware unit to see if limits of duty cycle (2Z RF, 5_ T/R) or

pulse length (200 _s) are exceeded. The 70.2-MHz signal carries the noise

calibration and the phase modulated RF pulse, and the 23.4-MHz signal carries

the;T/R pulse. These signals are mixed in the system control link (Figure 3)

to yield the 46.8-MHz radar pulse.

The received 46.8-MHz signal is converted to the standard 30-MHz

intermediate frequency and further to baseband. The planetary radar decoder is

used for analog-to-digital conversion (10 bit), on-line decoding and coherent

integration (max. 32 interpulse periods) of the quadrature signal. The output

(a string of 16 bits selected from the 20-hit accumulator of the planetary

decoder) of complex raw data for 2 x 256 range gates is fed to the Harris 100

computer, where it can be further coherently intergrated if desired. From the

Harris 100 computer, the data are dumped on diFk or tape (presently 1600 bpi,

later to be changed to 6250 bpi). Also a real-time display of spectra, mean

Doppler and power profiles will be provided.

PresentlY, only the raw data are dumped, since these are regarded more

suitable than power spectra for system performance checks and some special
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experiments. Power spectra could be computed on-line by using the array

processor. This procedure would become necessary when also the 430-MHz radar

will be used with the same radar control and acquisition software or for longer

runs with the VHF radar to save tape.

FIRST RESULTS OF THE AD VHF RADAR

System definition and equipment development started in November 1984,

(only the trsnsmitter was purchased and further existing hardware was used), it

was immediately followed by development of radar control and data-acquisition

software utilizing the new Harris operating system, VOS, instead of the earlier

DMS. Detailed tests of hardware and software took place in the second quarter

of 1985, and first atmospheric echoes were recorded on tape on July 26, 1985.

Figure 5 shows a quick-look display (we acknowledge the software

preparation done by D. N. Hol_en during his stay at the Observatory as a summer

AO-VHF-RADAR

_L__ _L_L__L_Z_L_

_L_I_L-._L_L_L__L_L_L__L_L_L__o,
_L_L_L__L_A_L__L_Z_L__L_LL_,,,

i
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Figure 5. Sample of a real-time quick look plot of the AO VHF radar,

displaying 48 normalized logarithmic spectra, and power profiles

of dc - component, spectral peak, and noise as well as Doppler

frequency of spectral peak. These spectra and profiles are

showing results of a test run to check the system performance.
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student), which is designed to monitor the data quality and later shall be

attached to the system for real-time monitoring. It permits display of 48

normalized spectra of selected range gates and the total power profiles of the

dc component, the spectral peak and the noise as well as the Doppler frequency

of the highest spectral peak outside zero frequency. The display of Figure 5

presents results of a test series to measure the encoding/decoding properties

and the spectral purity of the system. At gate 25, it shows the decoded (4

bit) transmitter pulse. These results prove the acceptable quality of the

system, although improvements are desirable (e.g., suppression of code

sldelobes). In particular, the graphs of Figure 5 indicate the sidebands of

the transmitter pulse are more than 52 dB down at frequencies larger than

2.10 -2 Hz. We regard this as an essential requirement because the system,

due to the elevated feed antenna, intrinsically suffers from strong ground

clutter. This would drastically hemper the data analysis if it were to spread

out from zero Doppler shift.

Figure 6 shows a few sample spectra which indicate that the Doppler spread

of the ground clutter on 46.8 MHz is apparently much less pronounced than that

on 430 MHz (see SATO and WOODMAN (1980), who explained the spreading on 430

MHz due to fading by propagation effects). This evidence can be more directly

seen in the profile of Figure 7, which proves that the difference between

dc power and the (non-zero frequency) spectral peak is always larger than 40

dB. However, the absolute power of the ground clutter is severely large.

Particularly in the lower ranges out to about 4-5 kin, we will have some

difficulties to avoid receiver saturation and to separate ground clutter from

normal atmosphere echoes.

It also has to be mentioned here that the noise level frequently increases

drastically due to interference in the radar band. We have partly identified

the type of interference (spread-spectrum and narrow-band communication). It

AO- VHF- RADAR

I I I

I ! I

I l I

I I I

I I I

-2.6 O

I I I

! I I

I I I

I I I

! I !

I I I

0 +2.6
AflHz

Figure 6. Selected spectra of tropospheric ranges obtained with

vertical beam. Note that the power spectra are logarithmic

and normalized to the maximum power in each range gate. The

total power range changes between 60 dB and 90 dB.
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appears impossible to eliminate this kind of interference with the presently

used antenrm setup. Only operation during noninterference hours or the use of

a shielded phased array (at least for reception) would solve this problem. The

latter solution was envisioned as phase 1 of the stand-alone VHF radar system

which has been proposed to NSF.

Figure 7b shows profiles of more elaborate paremeters, total power,

spectral peak, mean velocity and noise, which were obtained (due courtesy of

Larsen, Holden and Ulbrich) during the first application of the new VHF radar

in experiments proposed by visiting scientists. The atmospheric echo power in

this case was abnormally high because the echoes were from convective clouds.

During this experiment HOLDEN et al. (1986) also used the 430-MHz radar with

single pulse, end the results should be found elsewhere in this proceedings.

SUMMARY AND OUTLOOK

In addition to continuing use of the 430-MHz and 2380-MHz radars to study

waves and turbulence with improved data takin 8 programs and higher rsege

resolution (on 430 MHz), we anticipate increased use of the 46.8-MHz radar.

Besides improving this radar to make it more user-friendly, two further feeds

are planned to allow fast besm steering, particularly to study in a better way

gravity waves and turbulence and their interaction with the background wind.

Several experiments with the 46.8-MHz radar are presently being conducted

have been proposed, or are scheduled: the measur-,ent of momentum flux due to

gravity waves (Woodman, Cornish, Ierkic, Rottger), measurements of wave number

spectra of tropospheric stratospheric and mesospheric velocities (VanZendt,

Rottger, Ierkic, Mathews, Ying), determination of the influence of the Doppler

effect on frequency spectra of tropospheric, stratospheric, mesospheric

velocities (Liu, Scheffler, Franke, Rottger, Ierkic, Mathews, Ying), range-

Doppler study of shear instabilities in the MST region using fine-resolution

techniques at Arecibo (Rastogi, Rottger, Ierki¢), changes in cloud-droplet

spectra associated with lightning (Larsen, Holden, Ulbrich), and further

investigations of the scattering/reflection mechanism of 46.8-MHz radar echoes

from the tropical troposphere and stratosphere (Rottger, Ierkic). It is

foreseen, on the other hand, that strong attempts will continue to obtain funds

for installing and operating a stand-alone 50-MHz radar facility for MST

studies at the Arecibo Observatory.
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It was decided that the Chung-Li VHF radar would be used in dual-mode

operation, applying Doppler beam-swinging as well as the spaced-antenna-drift

method. The original plans of this radar were discussed by BROSNAHAN et el.

(1983). The total system was developed and constructed by Tycho Technology Inc.

in Boulder, CO, under supervision of the Department of Atmospheric Science of

the National Central University in Chung-Li, and the National Science Council

of the Republic of China, advised by an international advisory committee. In

May 1985, the radar was set up at the campus of the National Central University

in Chung-Li and the first echoes were recorded on May 29, 1985.

The design of the radar was based on a proposal by ROTTGER (1981) to use

three phase-coherent transmitters feeding three separate antenna modules with

vertical beams; each can be used as the three receiving antennas of the spaced-

antenna-drift and interferometer method (see Table I). In the Doppler bess-

swinging mode, either of the three antennas can be steered independently to

five directions (vertical, 12 ° off-vertical to north, south, east or west) or

all three antenna modules can be steered into the same direction. Three

antenna modules of 64 four-element Yagis are used (see Figure i), which are set

up in a T-shape. The total aperture is about 2500 m2. Three transmitters

(Tycho MST-50-TX-3), each with a peak power of 50 kW, can be operated at a

duty cycle of 2% and shortest pulse length of 1 _s. The final power-aperture

product should be close to 107 Wm 2. Each transmitter has its own transmit/

receive switch, from which the received signals are fed to three independent

receiver ADC and preintegrator channels. The ADCs can be set optionally to 8,

I0 or 12 bits accuracy. The preintegration is done in a new high speed signal

processor (BROSNAHAN and WOODARD, 1984) and it allows coherent additions up to

32 bits. Through a multichannel bus, the coherently integrated raw data for up

to 400 range gates are transferred to a Codata 3300 computer from where they

are dumped on tape (Cipher F880 tape drive). The Codata computer with the

preintegration signal processor can be used later for on-line decoding and/or

further data processing. The radar control is performed by a system synchro-

nizer (Tycho MST-50-1APC) which generates also complementary codes (up to 16

bits) and controls the antenna beam steering. The raw data on tape are analysed

with the CYBER-720 and the VAX 11/750 computers at the University campus. The

latter computer is used also for image processing of power and velocity plots

(e.g., ROTTGER et al., 1986). More technical details of the Chung-Li VHF radar

will be presented elsewhere by BROSNAHAN et al.

During the first system tests, the radar was operated with one vertically

beaming antenna module, one transmitter and one receiver channel. Single pulse

operation with shortest pulse length of 1 _s was tested at a duty cycle up to
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Table 1.

Chung-Li VHF Radar

National Central University, Chung-Li, R.O.C.

Dual-Mode: Doppler beam swinging and spaced-antenna

at 52.0 MHz

transmitters, each 50 kW (peak),

1 ps shortest pulse (compl. code),

2% duty cycle,

phase coherent.

antenna modules

of 64 four-element Yagis each,

2500 m 2 total effective aperture,

vertical and four off-vertical

directions.

independent receiver -- and

preprocessor channels

(max 400 range gates each)

system synchronizer,

Codata computer

Cipher tape drive

(transmitters, receivers, antennas, system

synchronizer and preprocessor made by

Tycho Technology, Inc.)

IZ. It was shown during the acceptance tests that this system configuration,

comprising less than 1/10 of the final system sensitivity, is suitable for

quite a variety of experiments, although improvements of the system performance

are necessary, such as elimination of some digital noise, receiver saturation

at short ranges and occasional data transfer failures, besides the addition of

antenna beam steering. Using the vertical beam, ground clutter was not a

problem, although the facility is built on a flat area sloping into a large

valley with many buildings and power lines. Also, high mountains at about 20

km distance did not show up as strong clutter. Part of the time, interference

was encountered and echoes from aircraft spoiled some range gates for a small

fraction of time.

Figure 2 shows some first spectra of tropospheric signals detected with

the vertically beaning Chung-Li VHF radar. The ground clutter was obtained

from a longer time series and was subtracted before the spectra were computed.

Range gate KH=6 corresponds to 3-km altitude, the range gate separation is 300

m, thus, range gate 25 is at 8.7 km. The spectra are normalized which can be

seen by the noise level varying from gate to gate. They show the well known

features of narrow and broad spectrum width due to dominance of scattering or

partial reflection. Figure 3a shows the distribution of signal plus noise

power as a function of height. Due to receiver transition effects (causing an

attenuation out to delays of 40 ps (= 6 km range)), the absolute power at the

lower heights is incorrect. However, a layered structure is clearly noticed.

A first physical result, which we regard as a new finding, is the lack

of an enhanced echo from the tropopause (the enhanced power in the upper range
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Figure 1. P a r t  of the antenna f i e l d  of the Chung-Li VHF radar, 
cons i s t ing  of 192 four-element Yagi antennas. 

ga t e  40 i s  due t o  preprocessor or  da t a  t r a n s f e r  problems. 
height w a s  between 12 km and 13 km. but no echo was seen a t  these a l t i t udes .  
This evidence w a s  checked a l s o  with o ther  pulse schemes. 
communication, 1985) reported an ana lys i s  of MU-radar observations where he 
apparently d id  not  f i nd  such c l e a r  i nd ica t ions  of the  tropopause as seen i n  
mid- and high-lati tude observations (e.g., ROTTGER. 1981). The l a t i t u d e  of 
the  MU-radar (35ON) and of the  Chung-Li radar  (25ON) a r e  i n  the  region of t h e  
tropopause break separa t ing  the  t rop ica l  and midlati tude tropopause. Since 
the  tropopause i s  d i s s imi l a r  here  as compared t o  higher l a t i t u d e s ,  w e  would 
expect i ts  c h a r a c t e r i s t i c s  with respect  t o  VHF radar reflectivit ies t o  be q u i t e  
d i f f e ren t .  
tropopause echo with the  Chung-Li VHF radar .  

The tropopause 

rmKA0 (personal 

This may be a poss ib le  reason why ue did not  see the  enhanced 

In  Figure 3b. t h e  d i s t r i b u t i o n  of r ad ia l  velocity i s  displayed. Single 
ve loc i ty  da t a  were deduced ( a f t e r  ground c l u t t e r  and instrumental  
dc-elimination) f r an  4 sec averages of the  f i r s t  l ag  of t he  complex auto- 
c o r r e l a t i o n  function. The d i s t r i b u t i o n s  i n  Figure 3b c l u s t e r  around zero  
ve loc i ty  wi th  rms v a r i a t i o n s  of about 10 cm s-1. The mean r a d i a l  (ve r t i ca l )  
ve loc i ty  i s  close t o  zero,  as  expected, and it increases continuously i n  t h e  
upper troposphere up t o  10 cm s-1 a t  11 km al t i tude.  
ve loc i ty  t i m e  series ind ica t e s  that part of t h e  velocity v a r i a t i o n  is due t o  
short-period gravi ty  waves. Above range ga te  34. the  ve loc i ty  estimates are 
random. which i s  expected because the s igna l  had disappeared i n  t h e  noise. 

Analysis of the  

We regard  our f i r s t  tests and observations as w e l l  a s  the  results of the  
preliminary analyses t o  prove the relevance and app l i cab i l i t y  of t he  Chung-Li 
VHF radar .  
atmosphere. 

It w i l l  comprise another e s s e n t i a l  tool t o  study t h e  subt ropica l  
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INTRODUCTION

Two improvements have been made to the radar system in the last year, one

is the addition of O/X made capability to the full antenna array used in the

real-time wind system, and the other is the development of a coherent receiver

-- a temporary arrangement until a fully engineered model is completed.

X-mode should be useful in reducing interference at night, and should also

increase signal strength since the reflection coefficient is greater than

0-mode and its absorption minimal. It was found that running O-mode in daytime

resulted in a loss in data at lower heights, probably because of the reduced

reflection coefficient, so the system was set to choose between linear N-S and

X-mode (transmission is fixed linear N-S), alternating between X and linear

every 5 rain at night with a separate set of gains maintained and updated for

each mode. Preliminary results (1 month) show negligible difference between

the two, based on the number of wind values obtained. The reasons for this are

still under investigation; possibly there are enough ionospheric absorption

events to reduce the effectiveness of X-mode at this location.

The addition of a coherent receiver significantly expands the experimental

capabilities of the system in terms of phase measurement for interferometer

experiments (two papers in this proceedings), and coherent integration for

extending the useful height range of the spaced antenna system downward. Also,

it allows measurement of mean Doppler shift which can be used to determine

vertical velocities. One such system has already been set up.

REAL-TIF_ Vz SYSTEM

Figure 1 shows a schematic diagram of the system. The transmitter antenna

is also used for reception, resulting in a theoretical half besm width (3 dB)

of I0 °. Normal operation employs 4-point coherent integration (at 32 heights)

giving a final At of 0.533 sec before accumulating autocorrelations (32-point

integration can be done with a slight increase in At). Full 8-bit multipli-

cation is used. Present selection criteria are fading rate (width of auto-

correlation) and phase curvature near zero lag. It can be shown that the

slope of the phase at zero lag is a weighted average of the radial velocity of

the separate scatterers. A reasonable estimate of vertical velocity, Vz,

should be obtained if scatterers are uniformly distributed in azimuth over the

number of records averaged. At present, the records are 4.5 rain long; this is

not a system limit but is necessary so that the gain-height pattern, which is

only set once for a record, can follow signal strength variations. Records

can be almost as short as required -- a run of 90-sec records with 32-point

integration has been done (but the number of heights analysed by the C64 has

to be reduced for very short records). Figure 2 shows an example of hourly

mean data from the system. At 85 kin, data are a little erratic because it is

one of the heights (every fourth) where a gain change is made when necessary.

COHER_T REAL-TIF_ WIND SYSTEM

Figure 3 shows a schematic of the proposed system. The maximum

transmitter pulse rate is 60 Hz, which allows 32-point coherent integration

when there is a receiver for each antenna. More importantly, the new receivers
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Figure 3. Schematic diagrsm of the proposed coherent reel-time wind

system.

will be able to change gain very rapidly, so that the best gain can be set for

each height gate. (The present receiver gain control precedes the IF filter,

and results in filter "ringing" with some loss of data at the height after a

gain change; consequently the gain is set for groups of 4 heights, which means

that only one height in four has optimum gain.)

Coherent integration will be done in software with a phase-flip system to

remove dc offset, and the sign bit of the result kept to represent the

amplitude -- giving an instantaneous conversion to binary sequences. A second

microcomputer, probably an Apple, which appears to be marginally fast enough,

will do the required auto- and cross correlations. Numerical analysis will

probably require two Commodore 64s.

Figure 4 compares complex amplitude and complex bit amplitude correlations

for one height. Three-point coherent integration was used. There is some

minor degradation of the correlations when using bit amplitudes.

FABRY-PEROT INTERFEROMETER

The Institute has recently procured a new scanning Fabry-Perot system

from D. Rees (U.K.); this operates under computer control, and partial

reel-time processing is incorporated. Filters including 630 _m (F region), 558

nm (F, E region) and OH bands (upper middle atmosphere) may be used, leading to

atmospheric temperatures and winds. Special cooperative experiments with the

MF radar are already planned to try to locate the height of the green-line

emission; and using the OH data, relate thermal winds to temperatures, and

gravity-wave effects to data from the radar "GRAVNET" system.
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6.1 7 STATUS OF MENTOR, BRIGHTON, AND MAPSTAR RADARS

G. W. Adams

Center for Atmospheric and Space Sciences

Utah State University

Logan, Utah 84322

MENTOR

MENTOR (Meteor Echoes; No Transmitter, Only Receivers) is a proposal to

measure meteor winds by receiving pulses scattered out of ST radar beams by

meteor trails. One virtue of this approach is that an ST radar network becomes

also a mesospheric wind network with the addition of a single passive site. A

proposal to build a MENTOR receiver and field it initially in Colorado is

pending with the Air Force Office of Scientific Research.

BRIGHTON

The Brighton, Colorado, (Boot Lake) field site was home for the NOAA/NSF

HF radar (a digital ionosonde) and the 2.66-MHz imaging Doppler interferometer,

which was an enhancement of the HF Radar. The field site has been dismantled.

The HF Radar is now at the Los Alamoe National Laboratory.

MAPSTAR RADAR

AFOSR/AFGL is conducting a four-year study of mesospheric wave effects by

measuring infrared (vibrational OH) emissions and medium-frequency radar

scattering. A new radar is being constructed; it differs from the Boot Lake

system primarily as follows:

New Radar Boot Lake Radar

Frequency: 2 MHz 2.66 MHz

Power: 150 kW 50 kW

Deployment: Portable Permanent
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6.18 PROPOSED UK VHF RADAR

A. J. Hall

Rutherf oral-Appleton Laboratory

Chilton, Didcot, Oxon, UK

Progress towards the establishment of an MST radar in the UK has continued

at a low level because of the reaources presently available.

Certain components including an antenna phasing control network, digital

pulse shaping and some preprocessing logic are being developed in anticipation

of full funding from April 1986, onwards.

A frequency of 46.5 MHz, within a UK reserved military band, has been

agreed with the authorities for use on a noninterference basis.

The site in South Wales referred to in a previous report, MAP Handbook 14,

1984, pp 356, is now required for at leest a further three years by the present

holder for work incompatible with a VHF radar. Since we cannot accept this

delay, another site, much nearer to Aberystwyth, is being considered. The

radar equipment will be housed initially in a transportable container to speed

up the installation process.
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One of the major objectives of the Indian Middle Atmosphere Programme is

to investigate the motions of the middle atmosphere on temporal and spatial

scales and the interaction between the three height regions of the middle

atmosphere viz., mesosphere, stratosphere and troposphere. Realizing the fact

that radar technique has proved to be a very powerful tool for the study of

earth's atmosphere, the Indian Middle Atmosphere Programme (IMAP) has

recommended establishing a MST radar as a national facility for atmospheric

research. The major landmarks in this endeavour to setup the MST radar as a

natioeal facility are as follows:

The first major step was the constitution of a National Committee on MST

Radar in July 1981, by the Chairman of the Advisory Committee for Space

Sciences (AD00S) of the Department of Space. User scientists from different

national laboratories like the Physical Research Laboratory, Ahmedabad; Nation-

al Physical Laboratory, New Delhi; and Space Physics Laboratory, Trivandrum;

the different Indian universities involved in atmospheric research, as well as

engineers with experience in design and development of radar systems, drawn

from the Department of Space, the Department of Electronics, Tata Institute of

Fundamental Research, Bombay, and public sector industries like the Electronics

Corporation of India, Hyderabad and Bharat Electronics Limited, Bangalore,

participated in the deliberations of this National Committee. The Committee

submitted its report in early 1982, generating the user requirements and

identifying the major specifications for the subsystems for the Indian MST

radar.

Based on this, the Chairman of ISRO and the Secretary, Department of

Space, made a decision in middle 1982 to entrust the overall responsibility for

the design, development and commissioning of this radar system to the public

sector undertaking M/s. Bharat Electronics Limited. The overall responsibility

for establishing this national facility rests with the Department of Space,

identified as the Nodal Agency with financial contributions coming from

differemt departments of the Government of India, like the Department of

Electronics, the Department of Science and Technology, and the Council of

Scientific and Industrial Research, etc.

The Chaizman of ADOOS constituted a committee in the middle of 1982 for

site selection. This had representation from the user scientists, the

Frequency Management Office of the Department of Space and M/s. Bharat Elec-

tronics Limited. The Site Selection Committee, after considering various

locations, recommended a site near the temple town of Tirupathi in the state of

Andhra Pradesh. Some of the important considerations which formed the basis

for this selection are the following: 1) proximity to a university or a

national scientific laboratory, 2) remoteness to industrial activity, 3) avail-

ability of natural shielding, and 4) moderate separation from the geomagnetic

equator, so that the facility could be used to study the ionosphere at the same

time and not get saturated by the equatorial electrojet.

The toughest challenge in trying to establish the MST radar as a national

facility in India continues to be the frequency and siting clearance. Out of

th six candidate sites surveyed by the Site Selection Committee, five have to

be rejected in view of possible interference to existing VHF communication

facilities, radio astronomy groups or military installations. After

considerable deliberation by inter-agency groups, the WPC, a wing of the
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Ministry of Communications (connected with frequency clearance), Government of

India, have tentatively sanctioned the operating frequency of 53 MHz with an

operating bandwidth of 1 MHz (3 dB) with severe restrictions on the type of

emission and spectrum usage.

The siting clearance is still awaited as there is an objection from the

point of view of possible interference to the international air traffic over-

flying the chosen site. Based on this objection, a second site at Tirupathi

has been studied. Once the siting clearance is obtained, work on the facility

is expected to start in full awing.

Table I gives the salient features and the important system level para-

meters for the Indian MST radar facility.

It is also contemplated to establish a SODAR at the MST aite for the

investigation of 0 to 5 km height range in detail, and a lidar to cover the

stratosphere region. Plans also exist for using the MST system with its large

power aperture product for the study of the ionosphere in the incoherent

backscatter mode. Figure 1 gives a simplified block diagram of the Indian

MST radar. Figure 2 gives an artist's impression of the proposed MST site

showlng the antenna array and the control building. Figure 3 shows a subarray

feeding network.

It can be concluded that when this facility is fully established, it will

provide valuable data on the middle atmosphere over lower latitudes in the

Indian Ocean region, not only for Indian scientists, but for atmospheric

scientists all over the world who are interested in global modelling of the

middle atmosphere.

Table I

Indian MST radar system specifications

Type of syst_n : Pulse Doppler

Operating frequency : 53 MHz

Operating bandwidth : I MHz

Power aperture product : = 7 x 10 8 win2

SUB SYST_4S :

ANT_NA:

Type

Gain

Beam width

Beam switching

Pointing accuracy

Sidel obe level

Maximum tolerable

Antenna gain towards

the horizon

: coaxial col linear/Yagi

: 36 dB (Min)

: 3 ° + 0.3 °

: (a)--zenlth

(b) + 20 ° E-W from zenith

(c) _ 20 ° N-S from zenith

(d) = 12 ° due north from zenith

: + 0.1 ° for zenith beam TBD

_or other beans

: 15 dB below main lobe (design

goal 20 dB)

: +IdB

Additional null : additional null at 12 ° north

during normal MST operation
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Null depth : 40 dB

Polarization : 2 orthogorml polarizations

ADDIT]DNAL REQUIRemENTS :

1) The antenna system should be capable of being used

separately either in ST mode or MST mode.

2) The antenna system should have provision for time

delay compensation when excited with coded wave-

forms to avoid code smearing on the antenna axis.

3) Provision to use antenna in SA mode at a later

stage.

TRANSMITTER

Configuration

Peak power

Average power

Duty ratio

Bandwidth

Pulse width &

wave form

(e) Uncoded

(b) Coded

PRF

Spurious signal output

T/R switch isolation

Limited input to Rx

RECEIVER SYSTEM

Preamplifier

Frequency

Bandwidth

Noise figure

Gain

Maximum input signal

handling without

saturation

Overload recovery

RECEIVER

IF

Local oscillator

: (a) 24 modules of = i00 kW

each are combined to generate

a peak power of 2.5 M_ and

average power of 60 kW for

the radar. Specifications of

individual module is enumer-

ated below.

(b) Pulse width and PRF will

be selected such that the

averaged power is maintained

at < 60 kW.

: 100 kW + 10%

: 2.5 kW _ 10%

: 2.5%

: 1MHz

: I, 2, 4, 8, 16, 32, 64, 128 usec

: 16 _sec 32 _sec Complementary

code using _ _ phase modulation

(BPSK) with subpulse length of 1

_sec

: 62.5, 125, 250, 500, IK, 2K, 4K,

8K PPS selectable

: 2nd and 3rd harmonics and spurious

output should be 60 dB below funda-

mental

: 50 dB (design goal 60 dB)

: + 13 dBm

53 MBz

5 MHz + 10%

3 dB or better

20 dB + 1 dB

+ 4 dBm

7 psec

30 MHz

Frequency to suit 53 MHz

carrier using USB or LSB
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Total gain : 110 dB (Min)

Dynamic range : 70 dB (Min)

Deviation of linearity : + 1 dB

over the 70 dB dynamic

range
IF bandwidth (3 dB) : 1 MHz

Video bandwidth : 1.2

pulse width

I & Q video amplitude : + 2 V P P
VSWR : T.5:1

Local oscillator

stability

(1) Short term : 1 x I010 (for 15 rain)

(2) Long term : 1 x 109 (for 36 hrs)

SIGNAL PROCES SING

The signal processing system consists of:

(1) The system synchronizer unit which generates all the

baseband waveforms for waveform generation, triggering,

gating and clock generating and timing under the control

of the overall system control.

(2) Data acquisition unit which digitizes I & Q channel

outputs, performs coherent integration, decoding, sweep

integration, FF transform and velocity estimation.

(3) System controller & data processor unit which controls

all the subsystems based on the system operating modes

selected, coordinates the data acquisition, processing,

real-time display, recording and generation of hard copy

out put s.

The important specifications of these three units are listed

below :

SYST_4 SYNCHRONIZER UNIT :

PRF

Range gates

Basic clock

62.5, 125, 250, 500, 1000, 2000,

4000, 8000, PPS (selectabla)

: 150 m, 300 m, 600 m, 1.2 km, 2.4 km,

4.8 km (selectable)

: 10 MHz

DATA ACQUISIT]DN UNIT :

Type of A/D converter

Sampling rate

Data resolution

Anal og input

Number of range slots

for _T transform

Number of points for

spectral estimation

Maximum velocity

Velocity resolution

Spectrum integration

period

Flash converter

2 MHz

12 bits (desirable)

10 bits (essential)

+ 2 volts

_4 maximum

64, 128, 256, 512

12 (11.75) m/sec or

24 (23.5) m/sec or

47 mlsec (selectable)

0.182 or 0.09 m/sec

(selectable)

Selectable from 5 sec to

10 m/n in suitable steps
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Type of signal processor : Dedicated FFT processor

SYST_ CONTROLLER

FunctionS:

(I) Mode control for 811 subsystems like transmitter,

receiver and signal processor

(2) Antenna control, for beam position, polarization,

etc.

(3) Data display, storaEe and archiving and hard copy

generation.

Type of computer

Operating system

Peripherals and

storage devices

Power supply

: General purpose minicomputer

based on 16-bit _processor

chip.

: Real-time operatin E system,

with multitaskin 8 feature

: (1) CRT terminals with colour

graphic capability

(2) Hard copy device for

terminal

(3) Graphic printer

(4) Magnetic tape drives

(5) Floppy disk drives

(6) Winchester hard disk

drives.

: 400V3 _ac
50 Hz

Antenna Array

Phasing Network

-- T/R Switches 8

Preamplifiers

I I

I I I

I I I
I I
I I I

___ Transmitter
Modules

Receiver

Coherent

Oscillator

Control

and

Processor 6

FFT

±

c.)

O3

Figure 1. Simplified block diagram: Indian MST radar.
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It is proposed that a new versatile ionospheric and atmospheric scatter

radar be constructed in northern Scandinavia through a multinational

collaborative effort. The new facility, tentatively named HISCAT (High

frequency, High power, High latitude, Heating and Ionospheric Scatter

facility), should be used for scientific investigations of: the physics of the

neutral (middle) atmospherel fundamental plasma phenomena, natural or

artificially induced in the ionospherel electrodynamic conditions at high

altitudes above the auroral region and in the polar cap ionosphere: plasma

waves in the solar atmosphere (if technically feasible).

The system should thus be able to operate as a MST radar, a so-called

ionospheric modification ("heating") facility, incoherent-scatter radar,

coherent-scatter radar, and solar radar. It would complement the existing

facilities EISCAT, Heating, STARE, SGUSY, and ESRANGE also located in northern

Scandinavia and should be operated in close coordination with these.

Basically, the new facility should be a device that can operate

simultaneously on several frequencies in the frequency range 5-50 MHz not

covered by other instruments. It should comprise: powerful transmitters,

capable of delivering a total average power of several megawattsl an advanced

phased antenna array of high gain (30-40 dB) forming one or two steerable and

wall collimated beemsl an advanced data collection and analysis system.

It is proposed that the facility be located out on the ESRANGE field to

facilitate real coordination with sounding rocket experiments, minimize

interference, and obtain a suitable geumetry for coordinated experiments with

EISCAT.
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All of the existing radar systems fully dedicated to clear-air radar

studies use some type of phased-array antenlm. The aim of this session is to

communicate developments in array design and application. The suggested

subtopics for this session are listed below along with a brief discussion of

each subj ect.

BEAM-STEERING TECHNIQUES INCLUDING FEED NE_WORKS AND PHASE SHIFTERS

Clear-air radars built to date have varying degrees of beam-steering

flexibility, depending on the planned research goals (and the available

funding). The simplest clear-air radar arrays use fixed beams (hard wired),

and the most complex use computer-controlled phase shifters that can steer the

beam to any position within 20 to 30 degrees of the zenith in a few micro-

seconds. In general, increased beam-steerlng flexibility requires more

complicated feed networks with additior_l phase-shifting hardware and

assoclated control and testing circuitry.

SIDELOBE CONTROL, GROUND-CLUTTER SUPPRESSION AND LOW ALTITUDE COVERAGE

Sidelobe reduction in clear-alr radar arrays is important for two major

reasons. First, if the atmospheric reflectivity is very nonuniform

horizontally, unwanted echoes from regions of high raflectivity in the

sidelobes may override the wanted echoes from the main lobe of the array.

Specular reflections from stable layers and scattering from isolated

rainclouds are examples of regions with high reflectivity that may cause

problems. The second reason that sidelobe reduction is important involves

clutter from nonatmospheric targets. Echoes from airplanes, cars and the sea

surface may override the atmospheric echo. In addition, the Doppler shifts

from these objects may be nearly the same as the Doppler shifts from the wanted

atmospheric targets making it difficult to filter out the unwanted clutter.

Ground clutter may also be so strong that it overdrives the receiver at fixed

ranges. The above problems suggest that at least under some circumstances it

may be important to reduce the antenna array sidelobes.

The goal of most of the clear-air radars built to date has been to get

useful data from the highest possible altitudes. However, for some

applications (particularly wind profiling) continuous measurements from the

ground upward are desired. Most clear-air radars operating in the lower VHF

band do not obtain data below several kin. It would be very useful if this

lower altitude coverage could be extended downward. Reasons why these radars

do not work at lower altitudes are not very well established at this time but

may include the following problems: leakage of frequency-coherent energy from

the transmitter after the pulse (turn-off problem); reflection of energy within

the array with an intensity that overdrives the receiver for a finite time;

reflection of energy from the nearby ground (ground clutter) that overdrives

the receiver.
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ARRAYS WITH INTEGRATED RADIATING ELEMENTS AND FEED NETWORKS

Most clear-air radar antenna arrays use a large number of radiating

elements. This means that the feed network is generally complex, consisting of

at least one feed cable per element. This approach makes it possible to steer

the beam to a large number of positions, since the phase of each element can be

controlled separately. However, if only limited or no bess steering is

required, the antenrm system can be simplified by using designs that physically

integrate the radiating elements and the feed network. These designs are

generally either traveling wave or resonant structures. The traveling wave

structures have the property that bess position is controlled by the operating

frequency. Beam steering by frequency scanning or stepping might be attractive

for some clear-air radar applications. However, since most radars operate at a

single, fixed frequency, the resonant structures seem to be most applicable for

clear-air radar use. The Franklin and coaxlal-collinear arrays are examples of

structures that drive a number of radiating elements end-to-end from a single

feed point. The grid or chain array is a structure that allows a large square

array to be driven from a single feed point.

ANALYSIS OF THE OOAXIAL-COLLINEAR ANT_NA

The earliest clear-air radar experiments were conducted at the Jicamarca

Radar Observatory in Peru. This radar uses coaxial-collinear elements made of

rigid metal tubes and rods with the inner and outer conductors interchanged at

half-wavelength intervals. Antennas using the same design but made of ordinary

flexible coaxial cable have been widely used in clear-air radar arrays for the

past 10 years. In spite of their widespread use (and usefulness), a number of

questions still remain about how these antennas work and whether or not the

design could be further optimized. Several studies of the coaxial-collinear

antemna are currently in progress and the results from these studies may lead

to improved designs in the future.

USE OF ARRAYS WITH MULTIPLE BEAMS

The usual way to form multiple beams with an array antenna is to use phase

shifters in the feed network to form one beam at a time. There is currently

some debate about how many beams are required to adequately describe the wind

and wave fields in the atmosphere. A practical problem of using too many beams

is that for dwell times of a minute or more (required to get adequate

sensitivity) the cycle time around a large number of positions is so long that

short period wave activity cannot be measured. One way to overcome this

problem is to use an interferometer array to form a number of beams

simultaneously. If the wind field is fairly uniform over the beams, the

Doppler shifted echoes from each bess are separated in frequency and can be

uniquely identified. This approach can be used for special studies when the

reduced sensitivity is not a problem and when simultaneous measurements of

velocity and signal to noise are required on a number of separate beams.

ARRAY MEASURemENT AND TESTING

It is difficult to measure the antenna patterns of large area array

antennas because the near field often extends to altitudes that cannot be

reached by airplanes. Even in those cases when airplanes can be used to map

the patterns, it is difficult to know or control the position of the airplane

with sufficient accuracy. Most array patterns have been measured by using

satellite beacons or cosmic radio sources. Radiating elements in the array can

also be probed for relative phase and amplitude, and the resulting measurements

can be used to compute the antenna patterns. The important pattern parameters

are beam position, beam width and sidelobe levels. It is desirable to know

the sidelobe levels over the entire hemisphere, since in some antenna designs

unwanted high level sidelobes can occur far from the main beam.
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7.1.1 THE NOAA TOGA ANT_qNA ARRAY

W. L. Ecklund, D. A. Carter and B. B. Balsley

Aer onomy Laboratory

NOAA

Boulder, O0 80303

NOAA's Aeronomy Laboratory has recently installed a 100 by 100 meter array

antenr_ with limited beam steerin E on Christmas Island as part of the TOGA

(Tropical Ocean and Global Atmosphere) prosrsm. In this report, we describe

the array and the associated besm stearin 8 and indicating hardware. The array

consists of center-fed 48-dipole coaxlal-collinear antenna strings. Thirty-two

of these strings are installed parallel to each other at one-half wavelength

spacing to make a 100 by 100 meter array. A second set of 32 antenna strings

are physically superimposed perpendicular to the first set to form the other

polarization. The TOGA antenna strings are aligned north-south and east-west

geographic.

Figure 1 shows the feed network for the TOGA array. Each string of 48

dipoles is indicated at the top of the figure by numbered open circles. The

antenna strings are fed in a repeating pattern of 8 (a spacing of 4 wave-

lengths) by equal lengths of transmission line. Antenna strings 1, 9, 17 and

25 are fed through phase shift module 1 in the field box. Strings 2, 10, 18,

and 26 are fed by module 2, etc. In this way, only 7 phase shift modules

provide 5 usable beam positions (vertical, and 15 or 30 degrees east and west

of the zenith). In the initial TOGA installation, one polarlzation is switched

between vertical and 15 degrees east of zenith. The other polarization is

hard-wired to 15 degrees north of zenith, but a second field box can be

installed later to provide steering in the north-south direction as well. A

coaxial SPDT vacuum relay selects either the east-west or north-south array.

• Each basic phase shift module consists of 2 SPDT vacuum relays mounted in

a block with clamp fixturee to attach 2 fixed lensths of RG-213 coaxial cable.

Seven of these basic modules allow any 2 of 5 beam positions to be selected.

Addition of a second module set in series (in the same field box) provides 4

positions. One set of cables in the seven modules and the fixed cable shown in

Figure 1 are cut for identical phase shifts to form the vertical be-re. The 15-

degree east beam is formed by switching in a second set of cables in modules 1

through 7 that are longer than the vertical set by progressive one-eighth wave-

length increments.

The phase shift modules and the polarization switch are driven via a

multiconductor cable by the bean selector-indicator box located in the

equipment shelter at the edge of the array. Beam positions can be selected by

computer control or by manual control from either the shelter or the field box

located in the center of the array. Beam positions and possible vacuum relay

faults are indicated by logic circuitry located in the field box. The position

of each SPDT vacuum relay is monitored by checkin 8 continuity of the

transmission line center conductor through the 2 or 4 SPDT relays in each

module and the polarization switch to the shorted quarter-wavelength stub shown

in Figure 1. This position information is decoded, indicated in the field box

and equipment shelter, and compared with the selected position. Any

discrepancies (indicating a relay problam) are indicated by fault llghts. The

beam position and fault lights are read and logged by the system computer.
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7.1.2 BEAM STEERING SYSTEM

S. A. Bowhill and K. O. Merewether j _ _ _.

Department of Electrical end Computer Engineering _ ! [i I "2_'_'

University ofIlllnOiSurbana,IL 61801 { _ _

This paper describes a simple technique for steering th_ be,,, of a

multimodule phased-array MST radar antenna. The Urbana radar antenna consists

of six modules, each having 14 elements in the northwest direction and 12

elements in the northeast direction. The antenna is constructed on a ground

plane tilted 1.61 deg from horizontal in the southeasterly direction. This has

made it possible to measure horizontal velocity in the southeasterly direction

by averaging the line-of-sight velocity over a 1-hr period to minimize gravity-

wave contsmlna ti on.

It is clearly desirable to be able to point the antenna in multiple

directions, so as to derive all components of the horizontal velocity. This

has been done on an experimental basis by adding parallel-wire line to the feed

for the southwest module pair, and subtracting it from the northeast pair,

thereby achieving a southward tilt of the antenna, and conversely to achieve a

northeast tilt.

The calculated E-plene (i.e., northwest)patterns of Figure 1 show the

extent of beam degradation for slewing angles of up to 4 deg. The beam can be

steered 2 deg or perhaps 3 deg without serious degradation of the pattern

(remembering that the sidelobes are reduced by an equal factor during

transmitting and receiving). The scheme shown in Figure 2 was therefore

devised. The incoming power is connected to a rotor with two silver-plated

copper brushes in contact with a stator consisting of two semicircular silver-

plated copper strips, spaced so as to match the entenea impedance. The

northeast and southwest module pairs are connected to the ends of the stator,

while the center module pair is connected to the rotor.

With the rotor in the central position, all three module pairs are fed in

phase. If the rotor is turned to one side, the phase of the energy for one end

module pair is increased, and for the other is decreased, thereby steering the

antenrm beam away from the broadside direction. The rotor is motor-driven, and

the stopping points are located by mlcroswitches running on a cam.

It is proved posslble to steer the besm through most of the available

range without adversely affecting the VSWR seem from the transmitter. No

problems have arisen from burning of the contacts. The entire assembly is

surrounded by a water-proof plastlc enclosure.

Calibrating the antenna direction can be accomplished by observing radio

sources, though there are an inadequate number to cover -11 directions. An

easier way is to measure the direction and magnitude of stratospheric winds

with the radar, and compare the results with radiosonde observations. When

this was done for the broadside direction of the Urbana antenna, a zenith angle

of 1.13 deg was found rather than the theoretical value of 1.61 deg based on

land surveys and phase measurements. We believe that the discrepancy arises

from aspect sensitivity of the stratospheric echoes.

For various assumed values of the aspect sensitivity in dB/deg, and the

calculated antenna pattern, it is possible to calculate the effective pointing

angle of the antenna, defined as that angle which would give an identical

location for the centroid of the power spectrum if aspect sensitivity were

absent. The results for the Urbana antenna are shown in Table 1. The apparent
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Table 1

Aspect Sensitivity

clB/deg

Apparent zenith angle

deg

0 1.610

0.2 1.534

0.4 1.461

0.6 1.391

0.8 1.323

1.0 1.258

1.2 1.196

1.4 1.137

1.6 1.081

1.8 1.027

2.0 0.976

2.2 0.928

2.4 0.882

2.6 0.838

2.8 0.797

3.0 0.758

pointing angle of 1.13 deg corresponds to an aspect sensitivity of about 1.4

clB/deg, in agreement with measurements using steerable antennas. This

calibration procedure was repeated for 2 off-axis pointing directions, and the

results are shown in Figure 3. The spread of the points is primarily due to

geographic separation of the radiosonde station, Peoria, from the Urbana radar.

Using averaged apparent steering directions, eastward and northward winds

were calculated for special radar runs simultaneous with 14 balloon launches at

Peoria and results are presented in Table 2. Overall, agreement is quite good,

with the differences perhaps due to spatial separation between the sites.

500 °

270 _

240 °

330 o 0 ° 30 ,_ 60 °

210 ° 180" 150 °

)0 o

120 o

Figure 3. Derived pointing directions for the Urbarm array.
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Table 2

Derived wind components at Urbana
using two antenna pointing directions.
Thetal = 18.63 Phil= 1.3580
Theta2 = 72.96 Phi2= 1.2084

12 KM
|mm_m=_ffiffi==gffiL- ==©

b'RBANA RAWIN

-.5873 -1.446

11.125 17.339

5.5465 2.5889

24.164 22.038

-2.198 2.8252
19.799 17.837

5.7387 5.4837
31.344 37.774

15.674 17.164

15.383 18.790

4.2922 4.3600

19.845 17.474

-2.397 -.0249
6.8860 8.4099

-3.817 -6.986
1.3133 1.3707

-8.342 -11.82
1.0480 2.1902

-12.10 -11.i0

-1.076 -2.895

-I1.49 -12.62

4.8336 9.0953

-7.397 -14.67
7.4801 4.2345

-22.60 -15.88
28.369 23.326

-2.867 2.0799

27.989 39.555

13.5 KM
:=----.----.----==_=ffiffilffi=_== =

URBA_;A RAWIN

1.5808 1.0404
13.539 19.462

3.5606 .53753
21.892 21.383

-2.257 -.1694

18.216 16.459

4.2904 -.4858
27.477 15.632

12.025 2.0885
15.417 14.126

1.9227 -2.027

17.599 14.317

-I .770 .99704
9.1101 11.948

-4.930 -7.927

2.2294 5.4140

-7.964 -11.41
1.9593 5.6119

-12.09 -9.506

• 45044 7.2896

-11.89 -8.592
4.7323 10.229

-9.865 -8.368
8.1176 11.085

-20.50 -10.44
24.408 19.578

-1.886 -4.536

32.225 24.645

=----== =----=----_._.----==_._--=

URBANA RAWIN

2.8033 1.4338

14.356 14.519

2.8057 -.5222

18.765 17.092

.08998 -3.100

14.176 13.231

3.9420 -.2071

22.764 10.407

8.2250 2.1394
13.891 10.065

-.1922 -.4517

13.369 9.7595

-2.905 -2.734

9.6625 11.365

-6.513 -4.134

2.4217 6.1854

-5.263 -6.792

4.3792 5.5951

-9.781 -7.917

3.7955 7.4039

-i0.02 -5.854

5.1024 9.8518

-i0.04 -5.991

6.2928 I0.673

-8.912 -1.524
20.483 14.168

•16551 -.9604
26.251 26.192

16.5 I_
==_--------==--._----------------m--m

URBANA RANIN

2.3258 3.3039

12.766 12.593

2.1243 -.2309

14.875 12.847

-.9411 -.3125

9.5989 9.2747

3.8307 -1.925

17.886 10.199

3.4321 1.7042
7.9296 8.5212

-1.961 -.0696

9.4240 9.7397

-4.350 -2.185

7.8260 8.9983

-4.205 -3.159
3.2352 4.6962

-3.824 -5.471
4.7528 5.9317

-7.884 -6.163
4.8583 6.6538

-7.837 -2.884
4.2017 7.1716

-4.389 -6.240
5.2882 4.3031

-.5903 -I.152
16.244 14.714

-1.210 -6.753

20.176 16.631

18 KM
================

URBANA RANIN

2.3131 .15253

10.103 8.7386

3.8776 3.9760
9.9010 6.6173

-1.154 -2.915
5.4083 4.8515

1.4106 -1.619

11.754 7.0154

1.4943 -.1256

7.4322 3.5978

-2.951 -3.140

7.3270 7.0525

-3.555 -2.491

5.2935 4.4955

-2.846 -4.901
2.5401 2.83

-2.110 -2.613

5.7361 6.1581

-4.251 -3.703
3.2644 1.8060

-4.609 -6.105

5.3166 3.8154

-5.249 -4.971

3.4041 4.4764

-3.218 -5.137
9.1429 7.0708

-1.443 -.3137
13.200 3.5863
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7.1.3 DETERMINATION OF U, V, AND W FROM SINGLE STATION DOPPLER

RADAR RADIAL VELOCITIES

W. L. Clark, J. L. Green, and J. M. Warnock

Aer oncmy Laboratory

National Oceanic and Atmospheric Administration

Boulder, CO 80303

INTRODUCTION

The ST/MST clear-air Doppler radar, or wind profiler, is becoming an

important tool in observational meteorology because of its capability to

remotely observe dynamic parameters of the atmosphere. However, there are

difficulties, which have long been recognized in work with precipitation

sensitive Doppler radars, in transforming the observed radial velocities into

meteorological wind components. As WALDTNJFEL and CORBIN (1979) put it "...

the problem lies in the fact that one would like to know as much as possible

about the wind vector field, whereas a single-Doppler radar yields only one

wind component, the radial. Every attempt to gain some knowledge of the vector

field, therefore, must compound the data field with additional hypotheses or

simplifications. " In this paper, we review how this problem has been treated

in the past, and recast some of the analysis to a form more suited to the high

elevation angle, fixed beem ST radar profiling techniques. We then examine the

diagnostic abilities of a number of fixed beam configurations with reference to

a linear wind field. The results, in conjunction with other work which treats

problems such as the effects of finite sample volumes in the presence of

nonhomogeneous atmospheric reflectivity (e.g., KOSCIELNY et al., 1984), have

implications important to the design of both individual MST/ST radars and

MST/ST radar networks.

B ACKG ROUND

The use of pulse Doppler radar to measure horizontal winds seems to have

been first suggested in the literature by PROBERT-JONES (1960) in connection

with a 3-cm precipitation sensitive system. LHERMITTE and ATLAS (1961)

suggested the VAD (velocity azimuth display) method of retrieving the mean

horizontal velocity from radial velocity data taken in horizontal clrcles

centered along the vertical of the radar site. CATON (1963) and BROWNING and

WEXLER (1968) confined the analysis to a horizontal plane to deduce mean

convergence, stretching and shearing deformation as well as the mean horizontal

velocities from VAD observations. All of these authors treated only the

stratiform situation, where _w/_x = _w/_y = 0.0.

EASTERBROOK (1975) examined the processing of data in a conical sector,

wherein values are estimated at a point not centered on the radar. In this

case, although five parameters of the wind field can be extracted, the mean

horizontal velocity is contaminated by vorticity and cannot be independently

determined.

The papers by WOODMAN and GUILLEN (1974) describing results using the

Jicamarca incoherent-scatter radar, and GREEN et al. (1975) describing the

results from the prototype VHF ST wind profiling radar at Sunset, Colorado,

mark the arrival in the literature of VHF clear-air Doppler radars as important

wind profile measurement tools. These radars are generally fixed-multibeem

systems, utilizing large elevation angles consistent with wind height-profiling

through the troposphere and into the lower stratosphere, as opposed to the

conventional meteorological radars, which usually have a single rotating beam,

and utilize low zenith angles consistent with measuring winds at low heights.
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Because precipitation sensitive Doppler radars work under conditions of

relatively high signal to noise, a practical radar may utilize a rotatable dish

antenna. Then it is natural to apply data-redundant least squares techniques

taking advantage of the easily produced circular symmetry, such as the VAD

technique (BROWNING and WEXLER, 1969). Although clear-air Doppler radars must

work with the much .poorer signal-to-noise ratio provided by echoes from

irregularities in the refractive index of the air itself, special high

performance clear-air radars are able to create sufficient power-aperture by

using very high power to allow use of a rotatable dish antenna. Under these

conditions, VAD techniques can be used in clear air, as demonstrated by

PETERSON and BALSLEY (1979). They used the Chatanika 23 cm Doppler radar to

compare the accuracy of VAD, VED (velocity elevation display), and direct

vertical probing in measuring w, the vertical wind component. They found

direct measurement with the vertical beam superior to the other two methods.

With typical ST radars, however, the power-aperture requirements couple

with economic considerations to dictate large, immobile antennas for economical

systems. It is not practical to steer these antennas by physically moving

them, and though electronic beam steering methods are available (GRE_ et al.,

1984, CLARK and GREEN, 1984, FUKAO et al., 1985), they have not yet been

generally applied. Thus, each beam position is expensive to implement, so that

economical ST systems are designed to obtain the minimum amount of data to

measure the wind components with as little bias as possible.

CLARK et al. (1985) show the significant bias reduction obtained in u, v

estimates over mountainous terrain obtained by adding a vertical beam to

measure w. It will be apparent from the next section that the addition of

additional beams can reduce the bias even further when stratiform conditions

prevail. However, as discovered in the previous work with precipitation

sensitive radars, it is not possible to eliminate bias completely with single-

Doppler radar techniques. The following discussion will try to clarify the

nature of this bias, and serve as an aid in design of economical ST radar

systems.

THE G_ERAL SCALING EQUATION FOR A LINEAR WIND FIELD

We adopt the usual Cartesian coordinate system x, y, z, representing

distances to the east, north and zenith, respectively, with origin at the

center of the radar antenna (Figure I). The primary assumption applied to the

wind field is linearity in the region about (x , y , z ), the point in
O O.

space at which the flow parameters are to be determlne_. The vector distance

to a measuring volume from the antenna is defined as

; = + y3+

where i, j, and k are the usual unit vectors. The wind vector at _ is

ul+ +

where it is assumed

u = u ° + (X-Xo)U x + (y-yo)Uy + (Z-Zo)Uz

v = v ° + (X-Xo)V x + (y-yo)vy + (Z-Zo)V z

w = Wo + (X-Xo)Wx + (Y-Yo)Wy + (Z-Zo)Wz

The x, y, z subscripts denote partial differentiation (e.g., u = _u/Bx);

u o, Vo, and w ° are the primary parameters we wish to measure, _eing the

values of u, v, and w at the point (Xo, Yo" Zo)"

(l)
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Often at this point in the analysis, a transformation to polar coordinates

convenient to the operation of a radar is made. Instead, we will stay in

Cartesian coordinates to facilitate the analysis. If we intend to make

measurements of wind velocity at points (Xo' Yo' Zo) for large ranges not
centered on the radar antenna, it would be necessary to consider the curvature

of the earth (DOVIAK and ZRNIC, 1984, p 261). Here we confine analysis to

profile measurement directly above the antenna, where z is identical to height.

The mean radial velocity v_ observed within a sample volume at a given

is related to the wind vector _ _here by the dot product

+ -_ (2)
rv = v,r = Ux + vy + wz

r

Inserting the linear flc_ relations of equation (1) into equation (2), we

get the general relation relating the paremeters of the linear wind field,

which we would like to measure, to the observed Vr'S:

rvr = (Uo + u(X-Xo) + uy(Y-Yo) + Uz(Z-Zo))X

+ (v ° + Vx(X_Xo ) + Vy(y_yo) + vz(Z_Zo))y (3)

+ (w o + Wx(X-X o) + Wy(y-y o) + Wz(Z-Zo))Z
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Equation (3) is an arrangement of the general scaling equation

convenient for developing sample location strategies. Much of the rest of the

paper is concerned with describing seine of these strategies. First, however,
we will examine a second arrangement of the scaling equation in which general

characteristics of solution are more apparent:

rv
r = x [Uo-UXo-UyYo-UzZo]

+ y [Vo-VxXo-VyYo-VzZ o]

+ z [Wo-WxXo-WyYo-WzZ o]

+ x2[u x]

+ y2 [Vy]

+ z2[wz]

+ xy[Uy + vx]

+ xz[uz + Wx]

+ yz[vz + Wy]

(4)

This is a linear equation with nine parameters (the quantities in brackets),

which may be solved from simultaneous observation of v at nine spatially
independent locations. Of these nine parameters, onlyrthree correspond

directly to the twelve paremeters that specify the linear wind field. The

other six are couples of these parameters, so that, in general, only linear

combinations may be found. Specifically, solution of equation (4) for any

given position (x , y . z ) provides: ÷1)the parameters necessary to
describe the dive°gen°e o_ the flow V. v = [u ] + Iv ] + [w ]l 2) the

additional three par-meters [u + v ], [u +Xw ], a_d [v _ w ]

necessary to specify the defor_atio x of t_e fl_; and 3)Zpara_eters containing

Uo, Vo, and w ° coupled inextricably with spatial derivatives.

PROFILING: MEASUR_24ENT OF THE WIND FIELD ALONG THE VERTICAL

In volumes directly above the radar we have that x = Yo = 0.0, so
equation (3) becomes o

= + + (Z-Zo)Uz]rvr x[uo+ xux yUy

+ y[v o + xvx + yVy + (Z-Zo)V z]

+ + (Z-Zo)Wz]+ z [w° + xwx yWy

Once again, this equation may be rearranged to give

rv
r = x[u° - ZoUz]

+ y[vo - ZVz]

+ _[w° - ZoWz]

+ x2[ux]

+ y2 [Vy]

(5)

(6)
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+ z2[Wz]

+ xy[Uy + Vx]

+ xz [uz + Wx]

+ yz [vz + Wy]

where the bracketed terms represent the nine parameters that may be evaluated.

The difference between this equation and equation (4) is the disappearance of

all but the vertical shear terms from the first three parameters, leaving Uo,

v , and w coupled only to u , v , and w , respectively. From theo
last two %erms we see that z z z . .when the stratlform conditlon is present (i.e., w

and w may be neglected), u and v z may be evaluated, thus allowing x

unbiased solution for u ° an_ v O.

VERTICAL BEAM MEASUREMENT OF w and w
o z

Heasurements made with a vertically pointing beam are particularly simple

to analyze, since they only contain information on two of the linear flow

parameters : w and w . Inspection of the scaling equation with x = y = 0
O Z

shows that the observed v is identically w , the vertical velocity
O

component at height z . Furthermore, the vfhlues of v observed at two
• o . r

closely spaced helghts, z ° and Zl, yleld Wz, so that

W = V
O ro

and

w I = Vrl

V -
ro Vrl

W
z z - z_

O I

(7)

W
Z

Thus a vertlcal±y alrectea Deam allows unbiased determination of w

in the presence of linear flow. o

and

OBLIQUE BEAMS

Assuming that w and w have been determined using a vertically
z

pointing beam, we ma9 treat these values as knowns and move them to the left

side of the equation. It is then convenient to define the quantity V r as

V = rv - z[ - z ] - z2w
r r Wo oWz z

which contains only known quantities. Then we can write equation (6) as

V = X [U Or -- ZoUz]

+ y IVO --ZOVZ]

+ x 2 [Uxl

+ y2 [Vy]

+ xy[Uy + Vx]

(s)
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+ = [uz + wx]

+ yz[vz + Wy]

This is the general overhead scaling equation when the vertical velocity and

vertical velocity shear are known or negligible. It has seven parameters,

requiring seven spatially independent observations for solution.

0RTHOGONAL VERTICAL PLANES

If measurement of the deformation of the flow is not required we can

require all beams to be either in the xz or yz vertical plane. Then either

y = 0 or x = 0 for all beams, so that the fifth term of equation (8) dis-

appears. Under these conditions, equation (8) divides into two independent

equations. For y = 0

V
r

_--= [u° + ZoUz] + x[ux] + z[uz +w x]
(9)

and for x = 0

V

__r_r= + y[Vy] + z[v z + Wy]y [Vo + ZoWy]

In each plane, we now have three unknown parameters, requiring three spatially

independent observations for solution. Thus, considering both planes and the

two vertical beam observations used to evaluate V , eight independent

observations are needed altogether when using ort_ogonal vertical planes. This

does not mean we need eight different beams, since observations may be

independent if they are separated in range along a beam. This technique will

be considered in the next section.

SINGLE BEAM ANALYSIS

It would be very efficient if equation (9) could be solved by utilizing

observations in three sample volumes along a single beam. However, such a

scheme cannot lead to complete solution since z and x are not independent,

being related by

z = x ctn@

where 8 is the zenith angle of the beam. For example, in the xz plane

substituting for z using this relation yields

Vr = x [Uo-ZoUz] (i0)

+ x2[ux + ctne (uz + Wx)]

The number of parameters is thus reduced to two. While u is still biased byo
z u , the stratiform approximation no longer allows solution for u_,

• -> -+
w_iZh is now coupled to both u and u . Thus, nelther u nor V.v may be

measured in unbiased form in t_e presenceX of u . o
Z

CONSTANT HEIGHT ANALYSIS

Starting again with equation (5), the vertical shear terms may be

eliminated if we require that all observations be for z = z (i.e., constant

height analysis), giving o
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rvr =x[u o+ XUx +yUy]

[v° + yVy]+y + xv x

+ Z o[W ° + xw x + yWy]

Gathering like terms

rvr = Zo[Wo]

+ X[Uo + ZoWx]

+ x2[Ux]

+ xy [Uy + vx]

+ y[vo + ZoWy]

+ y2 [Vy]

This is a linear equation with six unknowns. The bias to u and v is now

the z w and z w terms, respectively, so that once again t_e stra_i-
O X . •

form approxlma_1_n allows solution for u and v .
o o

USE OF THE VERTICAL BEAM

(11)

(12)

It is easy to see that for a vertically pointing bess (i.e., x = y = o),

v = w (13)
r o

Thus, w is measured directly, with no bias.
O

USE OF ORTHOGONAL VERTICAL PLANES

Restricting bess positions such that either x = 0 or y = 0 splits equation
¢4 _% " • •

rv r - ZoW o = x[u O + ZoW x] + x2[Ux ] (14)

and

rv r - ZoW O = y[v ° + ZoWy] + y2[Vy]

Thus, two besss in the xz plane plus two beams in the yz plane plus a vertical

bess yield [Wo], [u° + ZoW x], [v° + ZoWy], [Ux], and [Vy].

DISCUSSION AND CONCLUSIONS

The ability of ST radars to measure vertical velocity is unmatched at the

present time by any other technique. It is straightforward and without bias,

even if the linear wind field assumption is poor. Only under fiscal restraints

of the most severe kind, or for very special purposes, should this beam be left

out of ST radar systems, since this parameter is not only of general interest,

but is necessary to remove bias from u and v measurements (CLARK et el., 1985).

The key parsseters to uncoupling terms in the scaling equations are w

and w.. Whenever the stratiform condition, which states that these two x

parameters are negligible, is satisfied, a five-bess ST radar may determine

unbiased (with reference to a linear wind field) values of u, v, and w for

sample volumes directly above the radar. Furthermore, the divergence and

partial deformation of the flow may be determined.
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Three-beam systems can determine w and w , but are unable to obtain u
.z e

and v wind components uncontaminated by vertlcal sheer terms, even when th

stratiform condition is satisfied.
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7.1.4 A 405-MHz, 5-BEAM PHASED ARRA_ ANTENNA

Daniel C. Lira,# /1_"_8

WavePropagationL=borsto , C7"2*
Boulder, CO 80303 _ / /

.#_L"

The Wave Propagation Laboratory has completed the _esign and construction

of a phased array antenna for use at 405.25 MHz for atmospheric wind profiling.

The steering geometry of the sequentially switched beam is shown in Figure 1.

The Yagi-Uda antenna elements are arranged on a square grid whose axes are

45 ° with respect to the cardinal directions. For a given steering angle this

allows an element spacing /2 larger than that required for a broadside steered

array. This feature helps minimize element interaction and reduces the number

of elements required to populate a given aperture. This geometry is shown in

Figure 2.

By constraining the phase difference between rows of identically phased

elements to an even, integral submultiple of 360 °, symmetries appear in the

phasing maps which reduce the switching hardware. In this design, for example,

the element spacing, X of Figure 2, is .91 X and A@ is 60 ° resulting in an

oblique beam direction of 15 ° from vertical. ODly 15 RF coaxial transfer

switches are used to synthesize the required 18 phase combinations for north,

east, south, and wast steering. These 18 signals are labeled A through R in

Figure 3.

The vertical bess is generated by switching around the four bess circuitry

of Figure 3 resulting in identical phasing on all of the elements. Requiring

36 RF coaxial SPDT switches, the vertical bess alone is more expensive than

the four cardinal beams.

After the 18 slgnals are synthesized they are split and distributed about

the array while maintaining proper phaslng because of the symmetries. Uneven

power splitter/combiners ere used for ssplitude tapering. A sehematic of the

whole antenna is shown in Figure 4, and a map of the quasi-circular array in

Figure 5 shows the placement of seven each of the 18 phases for a total of 126

elements. The antenna characteristics are listed in Table I.

Computer simulations were employed in the design process. Antenna

patterns from the simulations are shown for the north and vertical directions

in Figure 6. Antenna pattern measurements by aircraft are planned to veri_

the performance.

A NOAA Technical Memorandum detailing the design and computer techniques

is planned for 1986.
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Table 1

405-MHz phased array antenna

Number of steering directions:

Oblique beam directions:

Azimuth :

Elevation:

Gain:

One-way 3 dB beam width:

Effective aperture:

Peak power:

Average power:

Technol ogy :

5

4

0 °, 90 °, 180 °, 270 °

75 °

30 dBi

6 °

44,.2
60,000 W

6,000 W

126 5-element Yagi-Uda radiators

51 RF coaxial switches with indicators

I 1:18 high power reactive splitter/combiner

18 1:7 uneven reactive splitter/combiners

low loss foam distribution cables
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7.2.1 LOW-ALTI_DE COVERAGE OF ST RADARS

W. L. Ecklund

Aeronumy Laboratory

NOAA

Boulder, CO 80303

Clear-air ST radars are now widely used for atmospheric research and wind

profiling. Most attention to date has been directed toward extending the

altitude coverage of these radars as high as posslhle. It is also desirable to

extend the coverage as low as possible, but low altitude coverage has not

received much attention (probably because it is not very glamorous). Any

improvement in the low altitude coverage of existing wind profiling radars

would be useful. In this note, we list the approximate lower limits of some

existing ST radars, end then briefly speculate on what establishes these

llmits.

Table 1 lists the low altitude coverage (height above ground) of a number

of different radars. The values for the WPL (NOAA-Wave Propagation Lab) radars

were obtained from STRAUCH (private communication). The table shows that the

915-MHz radar has the best low altitude performance. The 50-MHz radars show a

fairly wide range of low altitude coverage depending on antenna size, pulse

width and transmitter configuration. The 800-meter coverage in France was

obtained by using the driver stage of the transmitter (peak power about 3 kW)

instead of the final stage (peak power about 40 kW). Tests in France showed

that the minlmum system range was about 500 meters when transmitting into a

dummy load. The receiver in the Liberal, Kansas, 50-MHz radar was saturated

out to e range of about 2000 meters when transmitting 40 kW peak power pulses

into the antenna.

The results from France suggest that decreasing the peak power might

improve low altitude performance. It is clear that system recovery time is

increased when the transmitter is switched from a dummy load to the antenna.

This may be due to internal reflections in the antenna or to intense nearby

ground clutter. It is suspected that internal reflections may be the problem,

since the low altitude coverage of the Liberal, Kansas, radar (I00 by i00 meter

antenna) is poorer then the coverage of the Colorado network radars (50 by 50

meter antennas). System recovery time has also been observed to he limited by

significant "mounts of nearly coherent energy leaking from the transmitter into

the receiver after the main transmitter pulse is turned off. This problem

might be solved by using a better TR/ATR switch or by using a transmitter with

a significantly wider bandwidth.

Table 1

Denver. CO (WPL) 915 I00 1 300 200

Liberal. KS (AL) 50 I0,000 2,4 - 2100

Colorado (WPL) 50 2500 3 1700 1400

France (LSEET) 48 2500 1 - 800

Radar location Freq. Antenna Pulse width Low alt. Coverage (m)

(organization) (MHz) (m2) (microsec.) (always) (sometimes)
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7.2.2 FURTHERCONSIDERATIONSREGARDING

ANT_qNA LAYOUT FOR THE UK MST RADAR

A. J. Hall and J. D. Gilbert

Rutherf oral-Appleton Laboratory

Chilton, Didcot, Oxon, UK

In the orlglrml description of the proposed UK MST radar, MAP Handbook 9,

pp 387-397, an arrangement for powering 100 antenna subarrays from 10

transmitter modules was described having octantal symmetry. The arrangement

permitted a very approximate radial power tapering for sldelobe suppression

with no waste of available R¥ pulse power.

It has bean appreciated since then that a better focussing may be achieved

in the receive mode by any of several different arrangements without reducing

the effectiveness of the transmission scheme.

One such connection scheme is shown in Figure 1. By tailoring the

contributions of signal from the elements within approximate concentric

circlesp Figure 2, a more acceptable approach to e Dolph-Tchebycheff tapering

may be achieved in the receive mode.



400

.. I
• • %. • • • • • • • • I

*" '7' a

• 0 • %.% • • • • • • •

% /
i---- ---'-%-- "1 I

| % p"

I "% i ,/A /
% I /

i % l/ '//_

• 10 • I • 6 * • "_ • :3 • • / "* E T
l i /I I_1

I ---_.--1---7 / i 8 / t
I ] ' i // , I I

• • I • • • it 9 I • / 5' I _ l •

I / I

I / j i I/I I \/ I

I // ! i

• ,.o/, • * L_. , I
/I "- _._ 1 J ' HI

/ I 5 " _ | .Lit

/ ' -'-\ ! ' - /LI'

/ ' ....... \_- .... J Y I _J*

_/ " I

I 9 ,

I ,,

j _% ...... ..i

Figure I. Plan of 10 x 10 array of quads (4 yagis)

each numbered region powered from one transmitter

amplifier unit.

m

2 _------

i

Rx

Figure 2.



N87-10505

7.3.1 THE GRID ARRAY ANTENNA

W. L. Ecklund

Aer onomy Laboratory

NOAA

Boulder, CO 80303

511
401

The purpose of this note is to call attention to the grid array as a

possible useful antenna design for UHF clear-air radars. This type of antenna

integrates radiating elements and the feed network into a single structure so

that a fairly large array can be driven from a single feed point. TIURI et al.

(1974) described the chain antenna and parallel strings of chain antennas that

they called grid antennas. Their designs were fed at one end and terminated at

the other so that the beam was scanned along the chain as the frequency was

varied. They built and tested a 635-MHz 8rld array using this traveling wave

design. A more extensive analysis of the grid antenna is given by CONTI et al.

(1981). They used the array as a resonant (broadside) radiating structure at

fixed frequency. In addition, they devised a way to taper the array

illumination for sidelobe reduction.

Figure 1 has been adapted from CONTI et al. (1981) to demonstrate the

basic principle of the grid array. Conductors are arranged above a ground

plane in a repeating, staggered array of connected rectangles. Each

rectangular element is approximately one by one-half wavelength in size. The

arrows in Figure 1 show the currents on the conductors at resonance. Note that

the vertical elements are all in phase, and that the currents on the horizontal

conductors reverse at one-half wavelength intervals. This causes the vertical

field components to add and the horizontal components to cancel, forming a

vertically polarized beam in the far field. The grid array shown in Figure 1

can be expanded in both vertical and horizontal directions about the feed point

by adding additional rectangular conductors. The array illumination can be

tapered by making the central conductors larger (lower impedance) than those

near the edges.

The grid array antenna would seem to be useful for UHF clear-air radar

applications where a single broadside beam is required. The design eliminatas

the feed network and would provide a thin, panel-like antenna that could be

easily built and transported,
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INTRODUCTION

7.4.1 SIMULTANEOUS MULTIBEAM SOUNDING OF WIND AND TURBULENCE I#

q_

E. Brun and M. Crochet _-

/ .
Toulon 83100, FRANCE

and

W. L. Ecklund

NOAA

Boulder, O0 80303

Most clear-air radars use an antenna with either a few fixed beam

positions or one that can be steered to a number of beam positions, one

position a{ a time. For spatial studies of parameters that can change rapidly,
such as C (related to turbulence) or wind flelds influenced by short-

n

period waves, these conventional radars may be severely limited. The problem

is that the fixed-beam radars do not cover enough positions and the steerable

radars may not be able to cover the entire field of interest in a short enough

time period. In this report, we present preliminary results from a brief

experiment that suggests a way to overcome some of these space-time problems in

clear-air radar research.

In September 1984, a typical clear-air radar antenna located in France was

modified in a simple way to produce a number of beams simultaneously. In the

following paragraphs, we describe the radar, the modifications and the

resulting beam patterns. We then show spectra obtained with the multibeem

array and present some results on the spatial variations of reflectivity.

Finally, we summarize both the positive and negative aspects of using a

multibeam antenna array for clear-alr radar studies.

EXPERI_NTAL AR RANG_MENT

A 47.8-MHz clear-air radar (Provence) was installed at Termes d'Armagnac

(West of Toulouse) as part of a coordinated experiment called Fronts 84. The

radar used a 50 by 50 meter antenna comprised of 16 strings of coaxial-

collinear antennas and phase shifters, so that the beam could be directed

either vertically or 15 degrees east of the zenith. The 16 strings of antennas

were spaced one-half wavelength apart, and groups of 4 adjacent antennas were

fed by separate branch networks and phase shifter sets that were in turn fed by

the main 4 to 1 branch and phase shifter set. In this way, antennas 1 to 4, 5

to 8, 9 to 12 and 13 to 16 were fed by separate branches.

In this experiment, the connectorized feed lines were changed so that the

main 4 to 1 network and phase shifters fed only 4 selected strings of antennas

out of a total of 16. For a spacing of 2 wavelengths between strings, we

connected antennas I, 5, 9 and 13, and for a spacing of 2.5 wavelengths, we

used antennas I, 6, II and 16. Figure I shows the calculated multibeam antenna

patterns for 3 of the arrangements. The top pattern is for a spacing of 2

wavelengths with all four antennas in phase, and the middle pattern is also for

a 2-wavelength spacing but with a progressive phase shift between antennas (the

same phase shift that is used to form the 15-degree east beam in the full

array). The bottom pattern is for a 2.5 wavelength spacing with all antennas

in phase.
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EXAMPLES OF MULTIBEAM DOPPLER SPECTRA

The data presented here were obtained over a one-day period (9 to 10

September, 1984). The radar was operated with all 3 beam configurations shown

in Figure i, and representative Doppler power spectra from each configuration

are shown in Figure 2. The wind was blowing from the west during this period,

and the spectral peaks due to each antenna beam are clear in the spectra

displayed in Figure 2. These spectra were obtained at different times and

heights, and the radial velocity scales are not the same on all three spectra.

Note that the largest peak in each spectrum has been set to full scale. The

point we want to make with Figure 2 is that if one has knowledge of the wind

profile in the plane of the beams it is possible to identify the Doppler shift,

spectral width and echo power associated with each beam by the relative

position of each peak on the Doppler spectrum. The wind profile can be

obtained from the oblique beam of the full array or by some other method such

as balloon soundlng.

r

i SPACING = 2_.

PHASE SHIFT=0 °

SPACING = 2_.

PHASE SHIFT=75 °

SPACING = 2.5_.

PHASE SHIFT=0 °

Figure I.
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EXAMPLES OF SPATIAL VARIATIONS IN ECHO POWER

For most of the short experimental period, we used the 5-beam

configuration shown at the bottom of Figure I. In Figure 3, we show a sample

spectrum obtained with this arrangement. The peaks in the spectrum have been

labeled I through 5. Peaks I and 5 are from the symmetrical antenna beams with

zenith angles of about 52 degrees and peaks 2 and 4 are from the symmetrical

be"ms with zenith angles of about 23 degrees. Peak 3 corresponds to the

vertical beam.

Figure 4 shows a set of 3 spectra obtained over a 17-minute period that

demonstrate large differences in the relative echo power observed in peaks 1

and 5 (peaks 2, 3, and 4 are just visible in the spectrum taken at 7:45 UT).

Since the spectra were obtained from a range of 7 kin, peaks 1 and 5 correspond

to scattering volumes at a height of about 4.3 PJm and with a spacing of about

ii km horizontally (peak 5 to the west, peak 1 to the east). In the first

spectrum at 7:28 UT, peak 5 is larger than peak 1 by a factor of about 5 in

power, at 7:43 UT peak 5 is smaller than peak I by a factor of 5 and at 7:45 UT

peak 5 is slightly larger than peak 1. These differences in echo power at two

regions separated by about 11 km horizontally are very dynamic, suggesting a

good deal of_spatial structure in the related turbulence refractivity structure

constant (CnZ).

The spatial variations of echo power in 2 sets of symmetrical beams are

displayed as a function of time for a 12-hour period in Figure 5. The ratio of

echo power from peaks I and 5 is shown in the top plot, and the ratio of peaks

2 and 4 (Figure 3) is shown at the bottom. Ratios smaller than 1 have bean

inverted and assigned negative values. Peaks 2 and 4 correspond to scattering

volumes at a height of about 6.4 Pun, separated by a horizontal distance of

about 5.4 km. Peaks 1 and 5 correspond to volumes at about 4.3-km altitude,

separated by about 11 kin. Since the scattering volumes in the upper and lower

plots are not at the same heights, we do _t expect to see similarities in the
2 ratios due to patterns of enhanced C moving across the beams. We note,

however, that both ratios range from near_y plus to minus I0 showing that the

relative echo power in each pair of symmetrical beams varies by a factor of 100

(20 dB) during the 12-hour period.
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EXAMPLES OF HEIGHT VARIATIONS IN ECHO POWER

In addition to the dynamic horizontal differences in echo power just

presented, the multibeam radar also shows interesting differences in echo power

on the different beams as a function of altitude. Figure 6 shows power spectra

as a function of range taken with the 3-beam antenna. The central peak is from

the vertical beam and the peaks on either side are from the symmetrical beams

with zenith angles of about 30 degrees (see Figure I). Note that the relative

echo power in the vertical and oblique beams changes markedly as a function of

height. At a range of 2.8 Pun, the oblique peaks dominate the vertical peak and

at 5.2 km the opposite is true. This simultaneous comparison of vertical and

oblique reflectivlties can be used to infer the relative contributions of

specular reflection and turbulent scatter as a function of height. The oblique

peaks in Figure 6 correspond to heights lower than the range shown on the

ordinate because of the slant range correction required for the 30-degree

zenith angles of the oblique beams.

Figure 7 shows power spectra as a function of range taken on the 4-beam

antenna. The spectra on the left were taken with a transmitted pulse length of

16 microseconds (2.4 km range resolution) and the spectra on the right were

taken with 1-microsecond pulses (150 m resolution). Note that the 4 spectral

peaks corresponding to the 4 beams are clearly evident at the lower heights in

the left panel, but in the right panel the peaks are intermittent with height.

This seems to indicate that the observed scattering is due to relatively thin

layers of enhanced reflectivity. Since the spectra in the right panel of

Figure 7 were taken with 150-meter resolution but are displayed at only 600-

meter range intervals, it is not possible to trace the differences in the peaks

at the inherent 150-metez resolution as a function of height. This example

does, however, demonstrate the possibility of using the multibeam system to

explore reflectivity structure with good height resolution.

SUMMARY

In this report, we have shown some preliminary results from a clear-air

radar modified to operate with simultaneous multiple antenna beams. We think
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this approach has promise for special studies of turbulence and waves that

require good spatial and temporal coverage. The technique should be ideaS for

momentum flux measurements. If one of the multiple beams is directed

vertically, it is possible to compare both echo power and radial velocity on

vertical and oblique beams at the same time. We have shown how an existing

full array can be simply modified to provide multiple beams. It should also be

pointed out that if the wind in the plane of the beams can be obtained by some

other method, the multibeem antenna can be very simple, consisting of only a

few antenna strings. This antenna would be inexpensive and easy to transport

and install. Addition of a second set of antennas perpendicular to the first

set would give up to 4 simultaneous azimuths if 2 transmitters were employed.

In addition, the relatively low elevation angles of some of the symmetrical

beams provide lower altitude coverage than is available from the normal, nearly

vertical beams (but with poorer altitude resolution).

A major disadvantage of the multibeam array for clear-air radar use is the

reduced sensitivity due to the decreased antenna collecting area. A simple

antenna, such as the one used in this experiment, would probably limit the

height coverage of most ST radars to the lower troposphere. Another problem is

the requirement to know the wind in the plane of the antenna beams. It might

also be difficult to uniquely assign all of the spectral peaks to their

correspondlng antenna beams if the wind field changes rapidly with height. The

last problem is that multibeam data reduction is complicated by the fact that

different peaks in a spectrum taken at a fixed range correspond to different

heights depending on the corresponding multiheam zenith angles.
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USING A PHASE-S_ITCHED INTERFEROMETER

R. A. Vincent, B. Candy, and B. H. Briggs

Physics Department /_Y
7

University of Adelaide _ _i__ _ ;-_ _ii'_
Adelaide, South Australia 5001 _ j i

It is desirable for many reasons to know antenna polar patterns and

efficiencies accurately. In the past, calibration measurements have been made

using balloons and aircraft and more recently satellites. These techniques are

usually very expensive. We show that under certain circumstances it is

possible to use a simpler and inexpensive technique by connecting together the

antenna %under test with another antenna (not necessarily the same) to form a

phase-switched interferometer as first described by RYLE (1952).

For two antennas separated by a distance d in the EW direction and with

respective amplitude polar patterns of the form E1 (8) and E (8) the
interference pattern is given by z "

P(0) = klk2El(8)E2(8)cos(_d/_) (i)

Here k I and k are constants determined by preamplifier gains end

cable losses. If z point radio source drifts through the center of the beams

then the envelope of the interference pattern is determined by the combined

polar patterns of the antennas_ if one antenna is much larger than the other

then P(@) is essentially determined by the larger antenna and its pattern can

be so measured and compared with the theoretical pattern. We have applied this

technique to measurements of the polar diagram of the co-co transmitting array

(dimensions of 16_ x 16_) used with the Adelaide VHF radar (BRIGGS et el.,

1984). The second antenna was one of the yagi receiving arrays (4% x 4_).

What does not so fez appear to have been recognized is that this technique

can also be used to measure the effective area and hence the efficiency, of

arrays. This is because E(8) is proportional to /A, where A is the effective

area such that the received power can be written

P12 = klk2(_ )1/2 (2)

Suppose that the first antenna is replaced by a third antenna of known

area e.g., a dipole located _/4 above a perfect ground, then

P23 = klk2(%_) 1/2 (3)

The ratio of (2) to (3) gives the ratio of the areas for antennas 1 and 3

in terms of the ratio of the measured interferometer powers. In principle,

this technique is very simple. It does require a suitable radio source which

gives measurable powers when using small antennas (e.g., dipoles) and since

dipoles have broad patterns, radio sources with similar right ascensions but

different declinations to the primary source can be a problem. These problems

can partly be overcome by filtering the interference pattern. Measurements of

the efficiencies of the Adelaide antennas are in progress.
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7.5.2 USE OF THE SUN TO DETERMINE POINTING OF ST RADAR BEAMS

A. C. Riddle /"
• /

Cooperative Institute for Research in Environmental Sciences _" "[

University of Colorado
Boulder, CO 80309 _ _! %_

Verification of the beam-pointing direction for ST radars i's "a technically

difficult problem. Consequently it is not usually done. For measurement of

horizontal winds, the lack of precise knowledge of the beam-polnting direction

is usually of little consequence as any errors cause only a small uncertainty

in the measured velocity. However, instantaneous vertical velocities are

typically more than an order of magnitude less than horizontal velocities

and average vertical velocities are more than two orders of magnitude less than

average horizontal velocities. Hence even small pointing errors (< 10 -2

radian) for vertical beams can result in large errors due to contamination by

horizontal winds. Experimental confirmation of pointing accuracy using the

measured winds is difficult but has been achieved where horizontal and vertical

winds are measured at the same site (BALSLEY and RIDDLE, 1984; RIDDLE and

BALSLEY, 1985).

Sited at Ponape, Federated States of Micronesia, is a ST radar with only

a vertical beam. However, because of the equatorial location (+ 7°N) the sun

passes through the beam for a few days twice a year. The passage of the sun

through the beam in April 1985 was used to determine the pointing of the beam.

The analysis below suggests that the beam is within II arc rain (.003 radian) of

vertical. Already this is a useful confirmation of verticality. Improvement

of the measurement by a factor of 3 or 4 should be easily achieved and will be

very useful for equatorial ST radars. It should be noted that this measurement

refers only to the receive beam. For radar operation the effective beam is a

combination of the transmit and receive beam.

The ST radar at Ponape operates at 50 MHz and collects spectral data about

every 80 seconds. From each set of spectra an estimate of the background noise

can be obtained. For the days of solar passage through the beam, 2 hrs of

noise values were computed. The 40 minutes of data at each end of the computed

interval were used to remove any linear trend in the noise values. The center

40 minutes contained the solar transit which caused a maximum of 3-dB enhance-

ment. The noise fluctuations were about 0.5 dB.

By fitting a Gaussian enhancement to each of 13 days of noise data, 13

estimates of the effective bean longitude were obtained (Figure la). The

difference between the effective longitude and the site longitude is an

estimate of the off-vertical pointing angle. The average estimate was 7 arc

min with a formal error from the dispersion of individual values of 5 arc min.

The whole data set was also fitted by a two-dimensional Gaussian (Figure Ib) to

produce both effective longitude and effective latitude estimates. For this

fit, the longitude error was 5 arc rain and latitude error II arc rain. A formal

value for the error of the pointing-angle estimate was obtained by repeating

the fitting process after adding more noise to the data and amounted to 2 arc

rain.

The actual determinations of the effective longitude and latitude of the

beam are given in Table I. The formal errors in determining the off-vertical

pointing angle are only a lower bound to the errors because no account has been

taken of systematic errors. Consequently, we prefer to use the actual

estimated off-vertical angles as an estimate of the accuracy of our beam

pointing. The largest of these estimates was II arc rain.
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TABLE 1

April 1985 positions determinations

Longitude Latitude

Ponape site 158 ° ii.5' 60 57.4'

Individual fit 158 ° 4.2 + 5' --

Overall fit 158 ° 6.8 + 2' 7 ° 8.9 + 2'

In passing, it should be noted that the fitting process also determined a

half power width for the bean of 3.2 ° . The expected width for a uniform

aperture is 3.1 ° , so the fitting process also confirms that a fairly uniform

aperture illumination has bean achieved.

The main source of error in this pointing-angle estimation procedure is

currently the high level of fluctuation of the noise values compared to the

enhancement of noise due to the sun. In addition to its direct contribution

the fluctuations also mask other effects described below. It is a very simple

matter to reprogrsm our observations at Ponape to more closely emulate a radio

astronomy receiver rather than a radar receiver. By reprogramming, we expect

to be able to reduce noise fluctuation to well below 0.1 dB while enhancing the

time resolution. We should then see clearly several other potential sources of

error.

The noise level in the data is almost entirely due to the radio sky and

varies during 24 hours by about 3 dB. The linear trend removal described above

removes some of this variation. With lower noise fluctuations a better removal

of the variation would be possible. The noise level also fluctuates from

day to day due to varying atmospheric attanuation (mainly in the ionosphere)

and receiver gain variations. These variations would also be easier to

recognize and remove with lower noise fluctuations. Another potantial error

source is the inherent ass_ption that the 50-MHz sun is symmetric about the

solar center. However, during this observing period there were no substantial

active regions on the sun and no major flares. Hence we do not anticipate any

problems from this cause, even at the arc minute level. Even in more active

phases of the solar cycle there is not likely to be a major problem. GRAF et

al. (1971) have analyzed the radio centroid at 9.1-cm wavelength over several

years. They suggest rms centroid displacements of several arc minutes.

However, at 50 MHz the quiet sun (the stable symmetric component) is much

hotter (5 x 105 K vs 2 x 104 K) and the slowly varying component

(associated with the moving active regions) less intense (2 x 106 K vs 107

K). Hence the centroid variations should be reduced to negligible values.

Errors due to solar meter wavelength radio bursts should also be easier to

detect with lower noise fluctuations.
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Add end um

Data from the September 1985 transit have been received. The sun was

discernable on 15 days of data. Those days were subject to the same analysis

as for April 1985, and the mean of the individual fits for longitude was 158 °

11.3'. An overall fit gave 158 ° 7.6'.

The September 1985 analysis revealed a timing error in the April 1985

longitude fits. To correct that error 5.4' must be added to the fitted

longitudes in Table 1, making those fits even better.

The final 4 days of the September 1985 transmit were obtained using the

radio astronomy mode of observation described in the text. The expected

reduction of noise to better than 0.1 dB was achieved.
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Y 7.6.1 MDNITORING OF THE MU RADAR ANT_NA PATTERN

BY SATELLITE OHZORA (EXOS-C)

Toru Sato 1, Yasuhiro Inooka I, Shoichiro Fu.,_ao2, and Susumu Kato 1

IRadlo Atmospheric Science Center

Kyoto University

Uji 611, Japan

2Department of Electrical Engineering

Kotot University

Kyoto 606. Japan

INTRODUCTION

As the first attempt among MST type radars, the MU radar features an

active phased array system (KATO et al., 1984; FUKAO et al., 1985a,b). Unlike

the conventional large VHF radars, in which output power of a large vacuum tube

is distributed to individual antenr_ elements, each of 475 solid-state power

smplifiers feeds each antenna element. This system configuration enables very

fast beam steering as well as various flexible operations by dividing the

antenna into independent subarrays, because phase shift and signal division/

combination are performed at a low signal level using electronic devices under

control of a computer network. The antenna beam direction can be switched

within 10 _sec to any direction within the zenith angle of 30 °.

Since a precise phase alignment of each element is crucial to realize the

excellent performance of this system, careful calibration of the output phase

of each power amplifier and antenna element has been carried out. However, it

is necessary to confim the total performance by measuring the radiation

pattern of the whole array from distant places where the antenna far field

condition is satisfied.

Among various aircrafts which may be used for this purpose, e.g.,

airplanes, helicopters or balloons, artificial satellites have an advantage of

being able to make a long-term monitoring with the same system. An antenna

pattern monitoring system for the MU radar has been developed using the

scientific satellite OHZORA (EXOS-C) which was launched on February 14, 1984.

OHZORA has an almost circular orbit with the apogee of 815 km, perigee of 350

km and a high inclination of 74.6 ° , which are quite suitable for the purpose of

monitoring.

A receiver named MUM (MU radar antenna Monitor) on board the satellite

measures a _ signal of 100-400 watts transmitted from the MU radar. The

received signal strength is transferred to the tracking station (Kagoshima

Space Center of ISAS; KSC) through a telemetry channel. The overall antenna

pattern is synthesized by integrating the data over many passes with different

zenithal and azimuthal angles.

PRINCIPLE OF THE _ASUR_4ENT

The received signal strength is affected not only by the transmitting

antenna pattern, hut also by height and attitude of the satellite, the

receiving antenna pattern and its radiation impedance. In order to remove

these factors, a small omnidirectional reference antenna is installed at the MU

radar site, which transmits a (_d signal of a frequency of 50 kHz offset from

the MU radar frequency. The level of this reference signal is compared with

the MU radar signal on the satellite, and the MU radar antenna pattern is

determined as the relative gain to that of the reference antenna. A turnstile

antenna with a ground plane in a grid structure of 5 m x 5 m is located as the

reference antenna on the top of the control building of the MU radar. Figure 1

illustrates the scheme of the measurement.



/

EXOS-C ANT paffern

C _

REF ANT

pattern

-¢
MUR ANT pattern.

Figure I. Principle of the MU radar

antenr_a pattern measurement.
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A pair of long wire dipole antennas of 40 m tip-to-tip installed for an-

other physical instrument is utilized as the receiving antenna of MUM, As the

length of this antenna corresponds to 6-wave dipoles at the frequency of the MU

radar, the receiving antenna pattern becomes quite complicated. Also, the

range of the satellite from the MU radar site varies from about 300 to 3000 kin.

In order to adapt to the expected wide dynamic range of the received signal

due to these effects, an automatic gain control (AGC) is applied relative to

the reference signal level.

The angular velocity of the satellite seen from the MU radar is 1.5°/see

at most, which is fairly slow considering the main beam width of 3.6 ° of the MU

radar antenna. Therefore, a received-signal sampling rate of 100 msec is

sufficient to make a detailed measurement of the antenna pattern. Since a

sampling rate of as fast as 2 msec is available for the data processing unit of

OHZORA, the MU radar antenna beam can be pointed up to about 10 different

directions switched periodically during one pass of the satellite, still

allowing for several contiguous samples in each beam direction. Figure 2

schematically shows this sequence.

RESULTS

In the example shown below, the MU radar antenna beam is pointed to 6

directions switched every 15.2 msec alternately when the satellite passes above

the antenna. Among these directions, five directions are pointed to different
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Figure 2. Schematic diagram of the temporal variation

of the received signal levels. The antenna be_,

switched in a sequence of A, B, C .... J in this

example. In practice, one of these beam direction

(A) is used as a timing marker by shutting down

the transmitter.

points on the expected path of the satellite, and the transmitter is shut down

for the period of the remaining direction. This shut-down period is used as a

timing marker to distinguish different be-,, directions in the off-line data

analysis.

Figure 3 shows an example of unprocessed data of such measurement. The

horizontal line around 150 digit is the reference signal level. Figure 4 gives

the theoretical (thin line) and measured (thick line) relative gains of the MU

radar antenna over the reference antenna for one of these five directions

separated from the data in Figure 3. Since the reference antenna has almost

constant gain of 6-8 dB for the elevation angles shown in this figure, this

figure is regarded as the directivity pattern of the MU radar antenna if the

above-mentioned gain of the reference antenna is added.

This figure shows that both main beam direction and gain agree very well

with the theoretical ones, indicating that both the MU radar end the MUM system

are working properly.

The sidelobe levels, on the other hand, shows some discrepancy of _5 dB

between the theoretical and measured patterns, although the positions of

sidelobes agree fairly well down to low elevation sidelobes. The consistent

offset in the gain throughout the sidelobe region seems to suggest that a

slightly larger random phase error might remain in the individual power

amplifiers and/or antenrm elements of the MU radar, which are inseparably

related in radars with an active phased array system. Apparently more detailed

and continuous monitoring of the radiation pattern, as well as careful

calibration of individual amplifiers and antennas, is necessary in order to

establish the performance of this system.
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7.6.2 APPLICATION OF A PORTABLE DISK-TYPE ANTENNA

FOR ST RADAR STUDIES

D. C. Fritts and B. J. Watkins

Geophysical Institute

University of Alaska

Fairbanks, Alaska 99775-0800

The Geophysical Institute of the University of Alaska is presently

developing a portable radar for studies of mean, wave, and turbulence motions

in the troposphere and lower stratosphere. A unique aspect of this system,

relative to other portable ST radars, is that we will be using a dish antenna.

This is possible because of the frequency at which the system will operate, 219

MHz, and due to a unique antenns design, which will permit smaller segments of

the antenna to be used for applications away from our primary operating

facility.

The primary dish will have a diameter of 150 ft and a feed-point height of

100 ft, where we will locate five Yagis to form five separate beams. The dish

will be constructed in concentric rings, each 20 ft wide, with support provided

by an aluminum radial rib structure. This will permit dish diameters in 40 ft

increments for use in portable applications.

Using the full antenns, the beemwidth will be 2 ° , with one beam vertical

and two beams in each of two orthogonsl planes at 15 ° off vertical to permit

detailed gravity-wave structure, momentum flux, and turbulence studies.

The radar will be computer driven, have an array processor for initial

data processing, and a peak power of 50 kW. We anticipate a resolution of

better than I00 m and a useful height range of 1 - 12+ km.
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METHOD TO DETERMINE THE OPTIMAL PARA}_TERS OF THE

ARECIBE 46.8-MHz ANTENNA SYSTEM

INTRODUCTION

H. M. lerkic, J. Rottger, J. B. Hagen, and R. K. Zimmerman

Areclbo Observatory

P.O. Box 995 _ 6+ _)kArecibo, Puerto Rico

J
The spherical reflector at the Arecibo Observatory (AO) offers great

advantages for the design of simple and inexpensive high performance steerable

antennas at VHF. Light and small feeds have the added benefit that they can be

quickly installed in the Arecibo platform causing almost no interruption to

other experiments that may be in progress. Acceptable (primary) antennas are,

for example, dipoles with reflectors, Yagis, loops etc. It is important to

evaluate the performance of any given feed including the effects of the

spherical reflector. In this paper, we will emphasize the optimization of two

parameters, namely, the distance below the focal point of the reflector and the

beam width of a 'point' feed. For the actual design of the feed at 46.8 MHz at

the AO we had other requirements (e.g., best performance possible over a i0 MHz

bandwidth around the carrier frequency for application in ionospheric

modification experiments) independent of MST work. Details on the antenna

mounting constraints and a comprehensive description of the new VHF radar can

be found in ROTTGER et al. (1986).

DESIGN OF (PRIMARY) ARRAY

Numerical simulation codes were used to facilitate the exhaustive

evaluation of the characteristics of the primary feeds, thus facilitating their

design. The Numerical Electromagnetic Code (BURKE AND POGIO, 1981) obtains the

solution of integral field equations that describe the currents flowing over

wires and surfaces that the user has specified. The description of the program

and the limitations that the approximations, impliclt in the algorithms, create

can be found in the reference above.

We modelled several types of feeds and decided on a simple dipole with a

reflector. To minimize spillover out of the surface of the reflector by the

illuminating feed after installation (for large zenith angles) and also to

s_newhat improve against clutter from the horizon, we decided to form an array

of two feeds side by side separated by about half a wavelength. We call this

array a twin Yagi feed. The numerical simulation provided us with the

radiation pattern in the E and H planes and the impedance. The dimensions

deemed appropriate are 3.8 m for the reflectors, 3.1 m for the driven elements

with a separation of 1.5 m and with a radius for all the elements of 1.33 cm.

The two antennas composing the array are separated by 3.2 m and fed with a

parallel transmission of 100 _impedance. The radar system requires 50 _ for

optimum matching.
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We summarize the performance of the array in the following table.

Table 1

F Gain Beam width Impedance

(MHz) (DB) E H (_)

42 8.I 75.2 53.1 54- i37

45 7.8 75.7 57.6 45 - i19

47 7.6 77.7 61.3 43 - i4

49 7.5 79.2 62.0 44 + ill

52 7.4 79.3 61.0 56 + i38

The actual enviror,,nent where the array is installed in the platform

includes the AO 430-MHz line feed. Care was taken to locate the array far

enough (out of the Caustic region of influence of the line feed) to avoid

interference (ROTTGER et al., 1986). Almost no perturbation of the array

performance was found theoretically by modelling the AO feed with a set of

wires.

PERFORMANCE OF (PRIMARY) ARRAY WITH THE AO SPHERICAL REFLECTOR

The problem of finding the gain of an antenna in front of a spherical

reflector has been treated by many workers; we follow closely the development

by CONDON (1969). To simplify the algebra, we assume that the (primary) array

main lobe is rotatiormlly symmetric and thus can be characterized by one angle

only. This approximation simplifies the algebra and is enough for our

purposes.

The far field due to the electric field distribution over an aperture can
be written as

E(_) = I/_ 2 I E(x,y) exp (i2_xsin_) (i)
dx dy

aperture

where

E(x,y) = electric field on the plane immediately above the reflector

s urf ace.

X = path length difference

= zenith angle

We rewrite this equation in terms of polar coordinates (Figure 1) to take

advantage of the rotational symmetry of the radiation pattern,

rm

i; I cost__ j (2_r 2_ rdrl2 (2)

O

rm

o

.2_r 2_e 2

E(r) Jo(--_ sin_) sin-_- rdr I
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Figure i. Geometry involved in the

computation of the antenrm gain

(adapted from CONDON, 1969).

where

e (r) = path length error of array reflected from a sphere.

rm = radius of the aperture of the reflecting surface.

Equation (2) can be readily evaluated once the primary antenna pattern is

specified since the rest of the quantities depend only on the geometry.

Following CONDON (1969), we have assumed that the primary pattern can be fitted

with a cosine square type of f_netion. This simplification makes it possible

to characterize an antenna by its beam width alone.

Using this procedure, we have computed the values of antenna aperture

shown in Table 2 for several beam widths and distances z to the paraxial sur-

face. Note from this table that for the array previously discussed with an

average beam width of about 70 °, the maximum aperture is 43000 m2 when

z = 9.3 m. The radiation diagram corresponding to this antenna is shown in

Figure 2. The half-power beam width (found from the figure) is 1.6 ° with a

sidelobe 2.6 ° off axis suppressed by about 17 dB. For comparison, the figure

also shows the diagram for the array in front of a parabolic reflector.

CONCLUSIONS AND FUTURE DEV_LOP_NTS

A straightforward procedure has been proposed to design and install simple

antennas in the AO platform facing the spherical reflector.

Further work will include relaxation of some of the constraints used in

this note (e.g., rotational symmetry, cosine square primary pattern, etc.). We

are also planning to design antennas that will allow us to monitor the same

scattering volume at two frequencies (i.e., concentrical to the 430-MHz line

feed).
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N

F=

Z*HPBM
0.5
0.8
1.0
1.3
1.5
1.8
2.0
2.3
2.3
2.8
3.0
3.3
3.5
3.8
4.0
4.3
4.5
4.8
$.0
5.3
3.5
5.8
6.0
6.3
6.5
6.8
7.0
1.3
7.5
7.8
8.0
8.3
8.3
8.8
9.0
9.3
9.5
9.8

10.0
10.3
10.5
10.8
11.0
11.3
11.3
11.8
12.0
12.3
12.5
12.8
13.0
13.3
13.5
13.8
14.0

Table 2

Antenna aperture (x 10-4m 2)

Beam width (degrees)

47.0 HHZ

30.0 55.00 60.00 65.00 70.00 75.00 80.00 25.00 90.00 95.00100.0q
2.60 2.53 2.21 1.96 1.75 1.57 1.41 1.28 1.17 1.07 0.98
2.64 2.60 2.29 2.03 1.80 1.62 1.45 1.32 1.20 1.10 1.01
2.68 2.67 2.37 2.09 1.86 1.67 1.SC 1.36 1,23 1.13 1.04
2.71 2.73 2.45 2.16 1.93 1.72 1.55 1.40 1.27 1.16 1.07

2.75 2.80 2.53 2.24 1.99 1.78 1.60 1.45 1.32 1.20 1.10
2.78 2.86 2.61 2.31 2.06 1.84 1.66 1.50 1.36 1.25 1.15
2.81 2.93 2.70 2.39 2.13 1.91 1.72 1.$6 1.42 1.29 1.19
2.83 2.99 2.78 2.47 2.21 1.98 1,78 1.62 1.47 1.38 1.24
2.86 3.04 2.86 2.55 2.28 2.05 1.85 1.68 1.33 1.40 1.29
2.88 3.10 2.95 2.64 2.36 2.13 1.93 1.75 1.60 1.47 1.35
2.90 3.15 3.03 2.72 2.45 2.21 2.00 1.82 1.67 1.53 1.41
2.91 3.20 3.11 2.81 2.53 2.29 2.08 1.90 1.74 1.61 1.48
2.93 3.24 3.19 2.90 2.62 2.38 2.17 1.99 1.82 1.68 1.56
2.93 3.28 3.27 2.98 2.71 2.47 2.26 2.07 1.91 1.76 1.64
2.94 3.32 3.34 3.07 2.81 2.37 2.36 2.17 2.00 1.85 1.72
2.95 3.35 3.41 3.16 2.90 2.67 2.43 2.26 2.09 1.94 1.81
2.95 3.38 3.48 3.25 3.00 2.77 2.56 2.37 2.19 2.04 1.90
2.94 3.40 3.54 3.33 3.10 2.87 2.66 2.47 2.30 2.14 2.00
2.94 3.42 3.60 3.42 3.19 2.97 2.77 2.58 2.40 2.24 2.10
2.93 3.44 ].66 3.50 3.29 3.08 2.88 2.69 2.51 2.35 2.21
2.92 3.45 3.70 3.38 3.39 3.19 2.99 2,80 2.63 2.46 2.31
2.91 3.45 3.75 3.66 3.48 3.29 3.10 2.92 2.74 2.58 2.43
2,89 3.45 3.79 ].73 3.37 3.40 3.21 ].03 2.86 2.69 2.54
2.87 3.45 3.82 3.80 3,66 3.50 3.33 3.15 2.98 2.81 2.66
2.83 3.44 3.84 3.86 3.75 3.60 3.44 3.27 3.09 2.93 2.77
2.83 3.43 3.86 3.92 3.84 3.70 3.55 3.38 3.21 3.05 2.89
2.80 3.41 3.88 3.97 3.92 3.80 3.66 3.30 3.33 3.16 3.00
2.77 3.38 3.88 4.02 3.99 3.89 3.76 3.61 3.44 3.28 3.12
2.74 3.36 3.88 4.06 4.06 3.98 3.86 3.71 3.56 3.39 3.23
2.71 3.32 3.87 4.09 4.12 4.06 3.Q6 3.82 3.66 3.50 3.34
2.68 3.29 3.85 4.12 4.18 4.14 4.05 3.92 3.77 3.61 3.45
2.64 3.23 3.83 4.13 4.22 4.21 4.13 4.01 ].86 3.71 3.35
2.60 3.20 3.80 4.14 4.26 4.27 4.21 4.10 3.96 3.81 3.63
2.56 3.15 3.77 4.14 4.29 4.32 4.27 4.17 4.04 3.89 3.74
2.51 3.10 3.72 4.13 4.32 4.37 4.33 4.24 4.12 3.98 3.82
2,47 3.05 3.67 4.12 4.33 4.40 4.39 4.31 4.19 4.05 3.90
2.42 2.99 3.61 4.09 4.33 4.43 4.43 4.36 4.25 4.11 3.97
2.38 2.93 3.55 4.05 4.32 4.44 4.46 4.40 4.30 4.17 4.02
2.33 2.86 3.48 4.01 4.31 4.43 4.48 4.43 4.34 4.21 4.07
2.28 2.79 3.41 3.95 4.28 4.44 4.48 4.45 4.36 4.25 4.11
2.23 2.73 3.33 3.89 4.24 4.42 4.48 4.46 4.38 4.27 4.14
2.18 2.65 3.24 3.82 4.19 4.39 4.46 4.45 4.38 4.28 4.15
2.13 2.58 3.15 3.74 4.13 4.35 4.44 4.44 4.38 4.28 4.16

2.07 2.50 3.06 3.65 4.06 4.29 4.40 4.41 4.36 4.27 4.15
2.02 2.43 2.96 3.56 3.98 4.23 4.34 4.36 4.32 4.24 4.13
1.97 2.35 2.86 3.45 3.89 4.15 4.25 4.31 4.28 4.20 4.10
1.91 2.27 2.76 3.34 3.79 4.07 4.20 4.24 4.22 4.15 4.06
1.86 2.19 2.66 3.23 3.69 3.97 4.12 4.17 4.15 4.09 4.00

1.80 2.11 2.55 3.11 3.57 3.86 4.02 4.08 4.07 4.02 3.93
1.75 2.03 2.44 2.98 3.45 3.74 3.91 3.98 3.98 3.03 3.85
1.69 1.95 2.33 2.85 3.32 3.62 3.79 3.87 3.87 3.84 3.77
1.64 1.87 2.22 2.72 3.18 3.48 3.66 ].78 3.76 3.73 3.67
1.39 1.79 2.11 2.59 3.04 3.34 3.53 3.62 3.64 3.62 3.56
1.33 1.72 2,00 2.45 2.89 3.20 3.35 3.48 3.51 3.49 3.44
1.48 1.64 1.89 2.31 2.74 3.04 3.23 3.33 3.37 3.36 3.32
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Figure 2. Radiation pattern for AO array in

front of spherical reflector (solid line)

and parabolic reflector (dashed line).

Primary beam width is 70 ° and distance =

from paraxial surface 9.3 meters.
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7.7.1 THE ELIMINATION OF A CLASS OF PSEUDO ECHOES BY

AN IMPROVED T/R SWITCH TECHNIQUE

J. L. Green and W. L. Ecklund

Aeronomy Laboratory, NOAA

325 S. Broadway

Boulder, CO 80303

INTRODUCTION

In the session on "Design of Radar Transmitters and Transmit-Receive

Switches" of the Workshop on the Technical Aspects of MST Radar, Urbana, IL,

May, 1984, it became evident from the discussion that a class of pseudo echoes

had been observed in the Doppler spectra from a number of ST and MST radars.

This class of pseudo echoes can be characterized as being occasional, variable,

and usually located on these spectra near zero Doppler shift. These pseudo

echoes have also been observed to gradually change apparent Doppler shift with

altitude and time. It was also reported during this session that these pseudo

echoes are most intense at the very closest radar ranges, but as shown in

Figure I, can be seen occasionally as high as the tropopause when the echoes

from the atmosphere are especially weak. As shown in Figure I, these echoes

can usually be easily recognized and edited from the radar records. Also, it

is often possible to eliminate them by careful adjustment of the radar.

Because these pseudo echoes occur only occasionally and are easily

recognized, they have not seriously degraded the usefulness of ST or MST

radars, but rather can be typified as a nuisance.

LABORATORY SIMULATION

One of us, W. L. Ecklund, studied this problem by means of a laboratory

simulation. In this simulation, a ST radar was configured using actual radar

components (high power transmitter, transmit-receive switch and radar receiver)

with a 50-ohm resistor (dummy load) as a substitute for the radar antenna

(ECKLUND, 1983; JOHNSTON et al., 1976). By using this resistor in place of

the antenna, the reception of radar echoes was, of course, precluded. A

schematic drawing of this simulation is shown in Figure 2.

The pseudo echo was successfully duplicated in this laboratory study and

found to be due to "ringing" (damped oscillations) of the high quality resonant

circuits in the final stage of the radar transmitter. This is a very

reasonable explanation. For the benefit of readers unfamiliar with radio

frequency engineering, the term Q, or the quality factor of resonant circuits

is introduced,

Q = (energy stored) / (energy dissipated), per cycle.

It is obvious that Q is related to the number of cycles which a resonant

circuit will ring after excitation is removed. It is customary in the

construction of high power radar transmitters to use resonant circuits with

intrinsic Qs of several thousand to minimize the heating of the circuit

components by their internal dissipation of radio frequency power.

During the short period of time when the radar transmitter is delivering

the radar pulse to the antenna, the Q of these circuits is typically no more

than I0 because the flow of radio frequency power to the antenna represents a

dissipation of energy. But, a few microseconds after the radio frequency radar

pulse is terminated, the transmit-receive switch connects the receiver to the

antenna. This switch also simultaneously disconnects the transmitter, whose
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Figure I. Example of pseudo echoes in a Sunset radar plot

of radial velocity. The velocities on the left are

from an antenna bean directed 15 ° from the vertical

towards the north while the velocities on the right

are from an antenna beam 15 ° from the vertical towards

the south. The median velocities at each altitude are

denoted by the small rectangles connected by lines. At

altitudes of 8 km and 10 km, note the pseudo echoes

near zero velocity that have captured the medians.
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R
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Figure 2. Schematic of laboratory simulation of

a ST or MST radar used to study origin of

pseudo radar echoes. Except for the antenna,

which has been replaced with a high power

resistor (dummy load), the components are from

an operating ST radar.

circuitry reverts to its intrinsic high value of Q -- hence the ringing and the

pseudo echo. It is clear from these laboratory experiments that the pseudo

echoes in question are caused by the leakage of the ringing of the transmitter

circuits into the extremely sensitive radar receivers. Much of the variability

in frequency, intensity and damping rate of these psuedo echoes that has been

observed with operating ST and MST radars, can now be explained as the tuning

or detuning of these high-Q circuits by changes in the operating temperature of

the transmitting equipment.

SOLUTIONS

In the light of the foregoing laboratory experiments, it is probable that

this type of pseudo echo has not been observed with radars using transmit-

receive switches based on 3 dB hybrid circuits as shown in Figure 3, a sche-

matic drawing of the transmit-receive switch circuit used at the SOUSY radar

(CZECHOWSKY et al., 1983). In this type of device, as the receiver is

connected to the antenna, the transmitter is simultaneously switched from the

antenna to a dummy load, rather than being left connected to an open circuit.

By our reasoning, the provision of an alternate load for the transmitter during

the receiving portion of the radar cycle, prevents the Q of the output circuit

of the transmitter from rising to its intrinsic value, thereby allowing ringing

and the associated pseudo echoes.

One of us, J. L. Green, made use of the information gained from the

laboratory simulation described above, to redesign the transmit-receive switch

at the Sunset radar (GRE_q, 1983). As is shown in Figure 4, the isolation of

the receiver from the transmitter provided by this switch was increased by

approximately 50 dB with the incorporation of an extra section. Even this was

not sufficient to eliminate the occasional pseudo echo from the lowest altitude

range gates (probably because of direct radiation from the transmitter to the

radar antenna) so additionally, the length of the coaxial line from the switch

to the transmitter was adjusted so that as the transmitter was disconnected

from the antenna, the intrinsic resonance of its output circuit and the coaxial

line was changed to a frequency far outside the pass band of the radar

receiver. These two modifications to the Sunset radar have effectively

eliminated the pseudo echoes. An example of a radar record free from these

echoes is shown in Figure 5.



428

i _' Ii CouplerF"x"_'kf_'-Rx
' _3db

Ant > 3 db I
Tx Coupler _ [

L contro!

Figure 3. Schematic of SOUSY radar transmit-receive

switch as noted in the text, after the emission

of the radar pulse, as this circuitry connects

the receiver to the antenna, it simultaneously

connects the transmitter to a dummy load. Any

ringing of the transmitter circuits is therefore

quickly damped.

Trans_iterTank Circui%

T

_ Reciver

Figure 4. Schematic of improvements of sunset radar

transmit-receive switch. The control voltage to

the PIN diode switches A, B and C, alternately

connects the transmitter and disconnects the

receiver to the antenna or vice versa. The new

section added in this modification is dr_n with

dashed lines.
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CON CLUS ION

We have described an annoying class of pseudo echoes that evidently occur

occasionally in a number of ST radars and located the origin of these signals

in the output circuitry of the radar transmitter. We have also suggested two

methods for their elimination.
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INTRODUCTION

In this paper, I will attempt to give an overview of the data-acquisition,

signal-processing, and data-analysis techniques that are currently in use with

high-power MST and ST radars. Many of the topics discussed here have also been

the subject of papers presented at the two previous MAP Workshops on MST

Radars, and have been reviewed by RASTOGI (1983) and FARLEY (1984). This

review supplements, and hopefully augments, the work discussed in these papers.

An additional useful reference is the comprehensive review of the MST technique
by ROTTGER (1984).

We begin with a general description of data-acquisition and signal-

processing operations and attempt to characterize these on the basis of

their disparate time scales. Then signal-coding techniques, a brief descrip-

tion of frequently used codes, and their limitations are discussed, and

finally, several aspects of statistical data-processing such as signal statis-

tics, power-spectrum and autocovariance analysis, outlier-removal techniques,
etc. are discussed.

DATA-ACQUISITION AND SIGNAL-PROCESSING OPERATIONS

It is interesting to note that although all the signal-processing

operations in MST radars are carried out in time, these operations can be

conveniently divided into three different categories on the basis of their time

scales as shown in Figure I.

The operations that proceed most rapidly, at scales of the order of a

_sec, take place along the T Z axis. Time measured along this axis scales

directly to radar range z through z = 0.5 cT Z. The total span of the T_

axis is of the order of 1 msec corresponding to a maximum range of 150 _m.

The operations along this axis include transmitter pulse shaping, receiver

impulse response, range gating, signal coding, and decoding. Each point along

this axis represents a complex sample, with an in-phase and a quadrature

component, corresponding to a range cell. The samples are usually digitized to

an accuracy of 8-12 bits. The time-resolution along the T Z axis should

correspond to the most rapid modulation imposed on the transmitted pulse, and

the duration of the receiver impulse response should be closely matched to it.

In the simplest MST radar experiments this resolution is the duration of the

transmitted pulse, typically i0 _sec. In coded-pulse experiments, the scale

along the T_ axis corresponds to the duration of a code element, typically 1

sec. The _nly operation that proceeds more rapidly than the time-scale along

the T_ axis is that of analog to digital (A/D) conversion of the received

signal. For using signal coding, not only should the A/D converters be fast

with a conversion time of only a fraction of a _sec, they should also be

linear over a wide dynamic range (about 60 dB) that includes low-level noise as

well as the strong ground clutter and interference.

The time scale along the Ty axis is measured in units of the interpulse

period (IPP), that is typically of the order of a msec, and it extends for

times of the order of i0-i00 sec. For each channel or range cell, a digitized

complex sample is obtained every IPP. The operations along the Ty axis
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Figure i. Signal-processing operations in MST radars can be decomposed

on the basis of three different time scales as shown above. The

specific operations that proceed at these time scales are shown in

the boxes. In some cases, decoding is carried out after coherent

integrati on.

HSTORE

include coherent integration of the digitized complex samples, estimation of

averaged power spectral density (PSD) of the integrated samples, automated

editing of the spectral estimates, and finally estimation of the basic

spectral-moment parameters. An equivalent amount of information can be

obtained through autocovariance function (ACF) of the coherently integrated

samples.

In most MST radar experiments, the received signals have a small bandwidth

with fading times of the order of 0.I sec. A sufficiently large number M of

digitized complex samples can therefore be added together, thus resulting in a

substantial reduction in data rate. When a coding scheme is used during

transmission, the operation of signal decoding can often be relegated until

after coherent integration for slowly fading signals, with a remarkable saving

in computational effort. For a linear system, the operations of coherent

integration and decoding are commutable. The estimation of PSD or ACF of the

received signal is carried out on finite blocks (of length N) of coherently

integrated samples. Usually some time-averaging of these estimates is desir-

able. Estimates of averaged spectra for all the channels are supposed to be

available at the far end of Ty axis, at intervals of the order of 0.I to 1

min. The final operations along the Ty axis involve spectral editing and

spectral-moment estimation. The averaged PSD estimates often are conteminated

with undesired signatures due to ground clutter, aircraft echoes, and ducted

returns. Algorithms for removing the effect of these signatures tend to be

ad-hoc in nature and are often implemented in post-processing. Algorithms for

obtaining low-order spectral moments of the averaged PSD estimates vary in

their sophistication from evaluation by definition, to rigorous least-square

fits to idealized spectral shapes.

The time-scale along the T X axis is of the order of I min. The

operations carried out along thls axis can be classified under statistical data

analysis. These operations include post-processing of averaged PSD estimates

to obtain time-series of physical parameters for all range cells and for all

antenna pointing directions.

Even though all of the signal-processing operations mentioned above have

become reasonably standardized, the details of their implementation differ
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considerably from one radar to another. Figure 2 shows the sequence in which

these operations are usually carried out. An important decision in the overall

organization of these operations pertains to their division into real-time (or

on-line) and off-line (or post-) processing. Processing in real time requires

synchronization of all the data acquisition, housekeeping, and processing

modules -- usually through access to additiomal fast processors. The data

input rate to a real-time processor is typically 0.5 Mbyte/sec for a 256-

channel radar. If the processor obtains averaged 128-point spectra for all

channels in the form of 4-byte integers at intervals of l-sin, then the data

output rate is only about 131 kbyte/min. To provide this near 250-fold

reduction in data rate, the processor needs the ability to carry out over a

million multiplications per sec. The numbers on which the processor operates

are, of course, irretrievably lost and the processing scheme is relatively

inflexible. A 'minimum processor' on the other hand would merely transfer raw

data samples to a storage medium, relegating the major computational tasks to

an off-line processor for a later time. 0ff-line processing allows the

experimenter total flexibility in examining and reducing the data. There is,

however, a serious limitation in terms of storage requirements. Due to the

very high data-input rates, a standard 9-track, 2400; 1600 bpi tape can

accommodate only 1-2 mln worth of r_ data samples. Most MST radars tend to

make a compromise between these two extremes, depending on the available

storage and real-time processing facilities.

Figure 2 shows several other breakpoints for dividing up the processing

effort into real-time and off-line. At the breakpoint chosen, the partially

processed data are transferred to a storage medium. The most common break-

points are either after coherent integration (before or after decoding), or

I ms

T,_p- i msI'- fMT,,_- ,,T,

__ _ __1 COHERENT INTEGRATION ¢>

COPtERENT INTEGRATION (DECODING) <_

_.j.j. _ PSD OR ACF ESTIMATION_

i_10,, e _ _ AVERAGED PSD OR ACF >

,b ._Z EDITING

SPECTRAL MOMENTS _>

-'_T v _ NATy

x : : : ' ' +

N-I_NT &C'D OR ACF

-Ty I MULTI-CHANNEL ::>

I PARAMETER _>

IT,ME SERIES >

o,,',ml_T'

Figure 2. Sequence of signal-processing operations for a single channel is

shown above. Sampling and digitization of phase-detector output pro-

vides a time sequence of complex samples for each channel. Decoding is

carried out across channels. Oblique arrows show possible breakpoints

for on-line and off-line processing. PSD estimation may be replaced by

an equivalent ACF estimation.
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after averaged PSD estimates have been formed. Editing of averaged PSD

estimates and spectral-moment estimation is invariably carried out off-line.

When the alternative method of obtaining spectral moments through the ACF

estimates is followed, it can be very simply implemented in on-line processing.

It suffers from a serious limitation, however, that no subsequent correction

can be applied for external interference.

Some form of display routines are essential for monitoring the progress of

experiments. When PSD estimation is not carried out in real time, ACF

estimation for a small number of time lags can still be implemented on-line to

provide a display of the low-order moments for a few representative ranges. At

MST radar installations with more sophisticated processing and display

facilities, it is usual to display averaged PSD estimates for all ranges. Such

displays allow experimenters to take crucial real-time decisions.

In the simplest data-acquisition schemes, the input data strean is

directed to a memory buffer. Data acquisition is halted once the buffer is

full, and at the same time the processor starts working on the numbers in the

buffer and updates the processed results. Such single-buffer schemes are

simple to implement, but work with only a fraction of r_ data that could be

handled with improved data-acquisition schemes. Most data-acquisition systems

have a direct memory access (DMA) channel, which permits transfer of data to a

memory buffer. As long as the DMA channel and the processor do not share the

same memory buffer at the same time, data transfer and processing can proceed

concurrently. The DMA channel can interrupt the processor but the converse is

not true. If sufficient memory is available, then data-throughput can be

increased by adopting a dual-buffer scheme in which two data-acquisition and

processing paths are maintained in parallel, -11 the way from input to output.

One buffer is processed while the other is being replenished, and vice versa

There is a trade-off between available memory, processor speed and data

throughput. This permits the use of one or several slow-processors in a

multibuffer scheme. With the declining cost of microprocessors and

large-scale memory chips, such schemes have become a viable alternative to

large, dedicated processors for MST radar applications.

In large processors that allow several programs to run concurrently at

different priorities, on-line processing tasks can be broken up into modules in

such a way that time-critical operations, e.g., range gating and digitization,

PSD of ACF estimation etc., run at the highest priorities. Operations such as

display can be run on a very low priority. To ensure proper synchronization of

these operations, a high-speed processor or an auxiliary parallel processor is

usually required.

SIGNAL CODING AND DECODING

The a_osphere behaves as a diffused random medium for radio waves. The

objectives of radar experiments are to probe it with as fine a range solution

as possible, and to measure its velocity precisely. To attain a fine range

resolution, the radar must send an infinitely narrow pulse. For precise

velocity measurements, it must send a pure sinusoidal waveform. The two

objectives are clearly contradictory. For a slowly moving medium, a compromise

is affected by sending a modulated pulse train in which pulse duration is T t

PRI is T , and the duration of pulse train is Tn. In this scheme, often

called t_e single-pulse technique, the range re_olution is 0.5 cT t and the

radial velocity resolution is c/2f0T_, for a radar frequency f0" This is
a standard mode of operation for many _ radars.

An obvious way to improve the range resolution, i.e., to decrease it, is

to reduce the pulse duration. This is actually the approach followed in a few
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tropospheric radar experiments, but it has the following disadvantage. Since

practical transmitters have both a peak power and an average power limitation,

sending narrow pulses at a given PRI reduces the average power that in turn

degrades the received signal power and detectability of Doppler shifts. Since

the range is aliased beyond 0.5 cT the PRI cannot be very much reduced
below about 1 msec. P"

An alternative method is to transmit a broad pulse, but to modulate the

phase of the radio frequency carrier in accordance with a code. Successive

parts of the scattering volume are now illuminated with different phases, but

this can be undone through an inverse operation called decoding on the received

signal. To provide a fine range resolutlon, a phase code should have an almost

impulse-like ACF. The decoding operation then merely involves correlating the

received signal with a delayed replica of the code. For t_o-level or binary

phase codes, the decoding operation can be implemented without actual multi-

plications, using additions only. For this reason, and because of technical

limitations in applying multi-level phase modulation to radar transmitters,

binary phase codes have been widely used in MST radar experiments.

A binary phase code is simply a sequence of O's and l's (or + and -),

where a 0 or + denotes a reference phase and a 1 or -, a phase shift of 180

deg The time T_ corresponding to the duration of a 1 or 0 is called a baud
• I_

or ba_d length, a term derived from telegraphy. The code length can be ex-

pressed either in bauds or in time units. Phase codes that achieve an impulse-

llke autocorrelation function provide a range resolution of the order of 0.5

cTB, corresponding to the baud length• Some examples of the most commonly
used binary phase codes are given below.

Barker codes. These codes are known for several lengths n < 13. The

value of autocorrelation function is n at zero lag, but 0 or 1 a_ all non-zero

lags. This code is useful when the scattered signal has a large bandwidth or a

large Doppler shift, e.g., in D-region incoherent-scatter experiments (where

these codes were first applied), and low-elevation ST experiments. The codes

for several values of n are given below (GOLOMB and SCHOLTZ, 1965)•

n=l + 1

n= 2 ++ 2

n = 3 ++ - 2,1

n = 4 +++ - 3,1

n = 5 +++ - + 3,1,1

n = 7 +++ -- + - 3,2,1,1

n = 11 +++ --- + -- + - 3,3,1,2,1,1

n = 13 +++++ -- ++ - + - + 5,2,2,1,1,1,1

Complementary code pairs and sets. These codes form pairs, or more

generally sets, with a very interesting property. The autocorrelation func-

tions for the individual codes have sidelobes that exactly cancel each other

upon addition. For complementary codes of length n, the sum of the two auto-

correlation functions is 2n at zero lag and zero at all other lags. This

behavior is near ideal. In order that perfect sidelobe cancellation may occur,

it is imperative that the scattering medium should remain unchanged during

illumination by the two codes in the _ir, i.e., over at least two p.r.i.'s.

In the most commonly used form of MST radar experiments, this happens to be

true for several (tens to hundreds) p.r.i.'s. An interesting application of

linear system theory provides a great saving in computations required for

decoding complementary code pairs. If the signals corresponding to each code

are separately and coherently integrated, then decoding can be done after

coherent integration. Several complementary code pairs, adapted from RABINER

and GOLD (1975), are given below.
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n=2

n= 4

n=8

n=16

n=32

4-+

+ -

4-++ -

++ - +

+++ - ++ - +

+++--- + -

+++ - ++ - ++++--- +-

+++ - ++ - +-_ +++- +

4-++ - ++ - ++++ --- + - +++ - ++ - + --- +++ - +

+++ - ++ - ++++--- + .... + -- +- +++ --- + -

The basic property of complementary code pairs, that the sidelohes in their

ACFs cancel each other when the ACFs are added, can be extended to sets of

codes. In his original paper, GOLAY (1961), discusses methods of forming

complementary code sets from code pairs of lengths n = 2k as well as for a

few other values of n. SARWATE (1983, 1984) discusses methods of forming

feedback shift-register sequences with complementary property. For integer

values of k, 2k sequences of length 2k-I exist. For MST radar appli-

cations, complementary code sets for n _< 6 should be useful. In using

such code sets, some of the simplicity of decoding with complementary code

pairs is lost since it is no longer possible to use coherent integration due to

limitations on fading time of signals, and on the number of separate memory

buffers that can be maintained. Use of fast pulse-by-pulse decoders becomes

essential in this case.

Quasi-Complementary Code Sets. For a baud length T_ _sec, the

transmitter should have a nominal bandwidth of (I/T_) MH_. For this finite

bandwidth of the transmitter, abrupt phase transitibns required for ideal phase

codes cannot be faithfully reproduced. A desired phase relation may only he

attained after many cycles of the carrier have elapsed. For this reason, the

ideal performance of binary phase codes is rarely achieved, even if the signals

returned from the atmosphere remain perfectly coherent. It is feasible to

carry out a selective Brute-Force search for code sets that are quasi-

complementary at a specified ACF sidelobe level. An exhaustive search of

this kind is impossible even for short code lengths, e.g., 32 (SULZER and

WOODMAN, 1984). When the ACFs for the entire code sets are added together,

the sidelobes are at a finite though small level. The sidelobe levels tend to

become randomized and even smaller when quasi-complementary code sets are used

with a transmitter of finite bandwidth I/T B for probing a slowly fluctuating

medium.

An empirical search for quasi-complementary code sets has been made by

SULEER and WOODMAN (1984). The search was made through 0.7 billion codes of

length 32 using about 350 hr of computations on an array processor connected to

a host minicomputer, to first screen about 300 codes with acceptable sidelobe

properties. From these a set of 48 codes was selected to give an acceptable

collective sidelobe performance. In actual tests, the performance of this code

set was indeed found to be superior to a complementary code pair.

Due to their inherent complexity, the use of sophisticated coding and

decoding schemes is likely to be limited to only a few research facilities,

most notably the Arecibo Observatory where a planetary radar decoder has been

available for MST work. With the development of alternative decoding hardware

(SULEER and WOODMAN, 1983; PETITDIDIER et al., 1985) it is certain that these

schemes will find wider application.

Two additional limitations of coding schemes should be stressed at this

point. The first one pertains to ground-clutter performance. Since a wide

transmitted pulse is used, the average transmitter power in coded-pulse

experiments is frequently larger than without signal coding. The ground-
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clutter problem thus becomes more severe at larger ranges. The second

limitation pertains to the length of the code. Since decoding is implemented

as a correlation in range, a total number of range cells corresponding to the

code length is wasted. In a 256-channel experiments using a 32-baud code, only

224 channels are available after decoding. Long codes are therefore not very

useful for standard monostatic radar experiments. They are, however, quite
useful for bistatic experiments.

ASPECTS OF STATISTICAL SIGNAL AND DATA ANALYSIS

In this section, we consider aspects of signal and data analysis with

application to MST radars.

Signal statistics. In recent years, two distinct scattering mechanisms

have been identified, viz. volume scattering from refractivity fluctuations and

specular reflections from sharp refractivity gradients. Evidence for these

mechanisms comes from observations of aspect sensitivity and spectral

characteristics of scattered signals. An alternative method of discriminating

between the two mechanisms is on the basis of signal statistics, in terms of

their moments, probability density function, and higher-order spectra. Since

the emphasis in most MST radar experiments is to obtain the PSD or ACF of the

signals, there is very little direct information available on their statistics.

The necessary observations for this type of analysis can be obtained by using

the 'minimum processor' mentioned earlier for a small number of range cells.

PSD and ACF estimation. The PSD of the received signals is estimated as

their time averaged periodogram using the discrete Fourier transform (DFT)

methods. Essentially, a block of n coherently integrated complex samples is

transformed, and the squared magnitude of the transform is averaged in time.

The averaged PSD estimate thus obtained gives only a distorted and aliased

estimate of the ACF when Fourier transformed. The direct ACF estimates

obtained by an averaged lagged-product method do not have this restriction and

are clearly superior. The DFT method, despite its serious drewback, has become

the standard procedure for estimating the PSD. The PSD estimates can be

improved by padding the sample block with n zeros and transforming the

resulting 2n points at a time.

Data smoothin_ and outliers. Radar data are frequently cont6minated

with data points of dubious validity. Visual inspection of almost any time

series will show a few points that clearly do not belong. Such polnta are

usually called outliers. Manual editing of outliers is impractical for large

data sets. Direct averaging of data points is likely to yield a biased and

even meaningless average. The following procedures based on median and order

statistics reduce the effect of outliers on averages.

The median of a given data set is a more realistic indicator of its

average than the mean. For a long data sequence, a 7-point running median

(e.g.) performs better smoothing than a 7-point running mean and is robust with

respect to outliers. Mean is obtained as a linear combination of data points,

whereas median does not possess any such properties. When some smoothing is to

be performed on data contaminated with outliers, a very acceptable smoothing

procedure is to consider a block of n data points, sort them in ascending

order, discard x% of the highest and lowest values and average over the

remaining points. It is necessary to sort out only a few highest and lowest

values. This scheme discriminates between data points and outliers on the

basis of their magnitudes. If more is known of outlier statistics, better

algorithms can be devised. No rejection scheme can be perfect, however, for

some good data points may be rejected and some outliers may be accepted. A

good scheme will tend to minimize these errors.
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Data-analysis techniques based on median and order statistics provide a

quantitative basis for handling noisy data. Recently, these methods have been

successfully applied to editing and analysis of ST spectra at Millstone Hill.

D-region incoherent-scatter data from Arecibo (GERMAN, 1985; YING, 1985), and

power-law analysis of mesoscale winds from Poker Flat (B_, 1985).

Potential MST applications include improved interference rejection algorithms

for spectral moment estimation, and improved filtering schemes for automated

analysis of large data sets.
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The keynote paper on this topic reviewed salient aspects of data

acquisition, use of phase codes and decoding techniques, estimation of ACF

and PSD, and data-processing methods used in MST radar probing of the

atmosphere. Additional papers on this topic focussed on three important areas.

These papers were followed by brief invited reviews of points that would be

generally useful but are often overlooked.

CODING AND OTHER TECHNIQUES FOR IMPROVING RANGE RESOLUTION

SULZER and WOODMAN described a practical approach for implementing optimum

codes for which decoding is done through "inverse" codes that correct for non-

ideal behavior of high-power transmitters.

STITT and BOWHILL presented a frequency-hopping scheme within the

coherence time of signals, that provides improved range resolution. This

technique is equivalent to a digital frequency chirp within the signal

coherence time, and is potentially useful for very slowly fading signals e.g.,

in HF radar experiments.

HARDWARE DEVELOP_NTS

STITT and JOHNSON described a variable frequency local oscillator, using

computer controlled phase-lock loops, for de-chirping in the frequency-hopping
scheme mentioned above.

BOWHILL and KENNIER described an inexpensive but versatile data-taking

system using an Apple microcomputer and Forth language. This system is used in

ST experiments with the Urbana radar to obtain spectral mements in real time

and to display velocities up to 29 km altitude. The system cost is about

$5000.

CARTER et al. described an inexpensive preprocessor and pulse-generator

card for coherent integration.

DATA PROCESSING

ROTTGER described a metched-filter algorithm for enhancing signal spectra.

GREEN, YING et al., and BCWHILL discussed the application of median and related

statistics for spectral and data editing. GREEN described the use of a

3-spectra median statistic, with smoothing and peak tracking, for reducing the

effect of interference echoes. YING et al. presented methods based on median

and percentiles for forming templates that are effective in rejecting

interference in routine processing of D-region incoherent-scatter spectra.

BOWHILL described a three-point median filtering algorithm due to Tukey, and

discussed its effectiveness in removing single outliers.

INVITED DISCUSSIONS

ROTTGER described an on-line technique for removing the instrumental dc

effects in which the phase of transmitted pulse is alternately switched between

0 and 180 deg. and the receiver output corresponding to the latter is inverted

in sign. When the receiver output for successive pulses is accumulated, it is

virtually devoid of instrumental dc effects. This method has been in use at

Jicamarca for almost 25 years and deserves the attention of groups designing
new MST radars.
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SAT0 summarized the distortions introduced in the PSD estimates through

the method of averaged periodograms using the DFT algorithms. These

distortions are introduced through the aliasing of the ACF, and are most

significant in the presence of a very slowly fading near dc component. The

effect of these distortions is frequently apparent in UHF radar spectra

contaminated by slowly fadin 8 and slightly Doppler-shifted strong 8round

clutter. These distortions also become very important in the analysis of meso-

scale wind fluctuations with a power-law spectrum.

WOODMAN commented on t_e computational and SNR advantages of using coding

anu decoding techniques in MST radar experiments, especially when the

operations of decoding and coherent integration can be commuted with little

extra storage, e.g., with the use of complementary code pairs.

CONCLUDING REMARKS

It appears that an awareness of signal-processing and data analysis

methods that have been developed through research use of MST radars over the

last 15 years would be of benefit to groups currently involved in designin B and

constructing new radars. Most of the on-line signal processing tasks can be

implemented inexpensively through modules usin 8 microprocessors and signal-

processing chips. Median and related filtering schemes provide an effective

means for automated editing of radar spectra and derived paremeters

contaminated with interference or other outliers. These schemes deserve

further examination.
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8.1.1 OPTIMUM CODING TECHNIQUES FOR MST RADARS
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INTRODU CT ION

The optimum coding technique for MST radars is that which gives the lowest

possible sidelobes in practice and can be implemented without too much

computing power. Coding techniques are described in FARLEY (1985). The best

technique, in theory, is the complementary code pair. Coherent integration can

be used to reduce the size of the data set, and so the amount of computation is

not excessive. The sidelobes are zero in theory, but when errors induced by

imperfections in the modulation of the transmitter are significant, the quasi-

complementary set gives better results (SULZER and WOODMAN, 1984). However,

this technique requires an extraordinary amount of computation. We discuss

here a technique mentioned briefly in FARLEY (1985), but not fully developed

and in general use. This is decoding by means of a filter which is not matched

to the transmitted waveform, in order to reduce sidelobes belc_ the level

obtained with a matched filter. This is the first part of the technique

discussed here; the second part consists of measuring the transmitted waveform

and using it as the basis for the decoding filter, thus reducing errors due to

imperfections in the transmitter. There are two limitations to this technique.

The first is a small loss in signal-to-noise ratio, which usually is not

significant. The second problem is related to incomplete information received

at the lowest ranges. Appendix A shows a technique for handling this problem.

Firmlly, we show that the use of complementary codes on transmission and non-

matched decoding gives the lowest possible sidelobe level and the minimum loss

in SNR due to the mismatch.

THE CODING-DECODING PROCESS

A model of the coding-decoding process starts with a square pulse of

length t where t corresponds to the desired range resolution and the

square _%_se is _scribed by h _(t), since the pulse may be thought of as the

response of a filter to an impulse, and thus is identified by the impulse

response of this filter. This square pulse is what we would like to transmit

if we had sufficient peak power. If no coding is done, the received signal is

passed through a matched filter and is given by

s(t) = hsq(t)*hsq(-t ) (i)

The impulse response of the matched filter is just the flip of that of the

transmitted signal, or in the frequency domain, the amplitude responses are the

same and the phases are additive inverses.

If we use a phase code, then

s(t) = hsq(t),hc(t),hsq(_t),hdc(t) (2)
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h-(t) is the impulse response of the coding filter. For a binary phase

code hc(t) is a sequence of positive and negative impulses. For normal

decoding h. (t) is the flip of h (t) For a perfect code h (t)*h (-t)C " _- C C _

is an impu_sCe. Imperfect codes will give sidelobes.

Consider the function hdcp(t ) for an arbitrary code such that

hc(t)*hdcp(t) = [impulse] (3)

This is the decoding function which eliminates ell sidelobes. It exists

for most codes, and it is calculated from the Fourier transform of h (t):
C

Hc(f ) = Ac(f)e j [phi(f)] (4)

Then the impulse response of the decoding filter with no sidelobes is

hdcp(t ) = F-l[(llAc(f))e j [-phi(f)]] (5)

As long as Ac(f) has no zeros the inverse exists. The perfect code has
A (f) equal to a constant, and requires no amplitude correction at ell. For
u

good codes, the amplitude function is nearly constant and thus, the inverse

exists and varies little as a function of frequency. The effect of the inverse

amplitude filter is to pass more random noise than in normal decoding. This is

one cost of elimirmting the sidelobes, one that is a function of how good the

code is. With a good code such as the 13-bit Barker code, the loss in signal

to noise ratio is about .25 dB, hardly significant. A randomly selected code

might lose several riB. A second problem is that hdc_(t ) is infinitely long
and thus can never be used exactly for deconvolution P Sometimes this does not

matter, and there are techniques for minimizing the effect when it is important

that sidelobes be kept very small at very close ranges.

EXPERI FENTAL RESULTS

The results of various types of decoding are shown in Figures I through 4.

These consist of the transmitted 430-MHz signal and the received signal

covering a total time period of 256 microsec. The transmitted signal was the

output of a probe in the waveguide; the received signal consisted of ground

clutter and atmospheric scatter. The figures show power versus range, and it

is the ground clutter which is the dominant signal. The two signals were added

at the i.f. (30 Ml{z) level and thus passed through a common 500-kHz Gaussian

filter. The transmitter was coded with a 13-baud Barker code with 2 microsec

baud length. The sampling rate was also 2 microsec. The response of the

sampled transmitted waveform to the decoding process is called the system

function, since it shows the response of the receiver and decoder to a very

narrow target.

Figure 1 shows the power versus range obtained when the transmitted and

received signals are decoded with the Barker code. The main lobe of the

decoded transmitter signal is broadened by the 500-kHz. Gaussian filter and

sidelobes are visible both before and after the main lobe. The sidelobes

before the main lobe are very close to the expected -22 dB level. The side-

lobes following the main lobe are quite different. We shall not discuss the

generating mechanism of these sidelobes except to say that both finite band-

width and nonlinearities are involved, since physical filters can only affect

the signal at later times.

Figure 2 shows the same data decoded with the inverse of the Barker code.

The sidelobes to the left of the main lobe have been considerably reduced,

since the sidelobes due to the code have been removed, while those that are
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left are from imperfections in the transmitted waveform. In the forward

direction, the sidelobes are not significantly changed since the dominant

effect already was the imperfections. The gap between the transmitted and

received slgnals has been partly filled with signal. This has happened because

the first range gates of the received signal contain signal from ranges which

are truncated by the receiver cutoff. Complete decoding is impossible with

either the Barker code or its inverse, but the inverse of the code gives worse

response in this respect because the convolving waveform is longer than the

code. A comparison of the first two figures reveals some reduction in sidelobe

level near the end of the sampled period.

Figure 3 shows the same data decoded with the inverse of the transmitted

waveform. Sidelobes are of course completely removed from the transmitted

signal. The remaining signal at these delays is due to leakage of the

truncated signal to lower altitudes. The range of the leakage has increased

due to the increased length of the inverse code. The effect of the Gaussian

filter has also been removed, and some signal-to-noise ratio has been lost in

doing this. Square pulse matched filters should be used, and then the data

will have the ideal triangular shape which is achieved when using a Gaussian

filter only by some increase in noise. Finally, the decrease in sidelobes is

evident near the end of the sampled time period.

As mentioned before, the leakage due to the truncation of the lower ranges

can be reduced. The technique for doing this is explained in detail in

Appendix A; briefly, the normal decoding method is used to find the signals at

the lower ranges, with sidelobes, of course. The signals from the truncated

ranges can then be subtracted away to an accuracy determined by the sidelobe

level. The nonmatched decoding technique is used with the result that the

range nearest the truncated ranges has leakage about equal to the sidelobe

level of the normal decoding method, but the sidelobe levels decrease quickly

with increasing range. Figure 4 shows a comparison of the decoding with and

without removal of the truncated ranges. The differences in the leakage levels

in the direction of decreasing range are similar to the differences expected in

the other direction. Using the subtraction technique reduces the leakage by

about 20 dB in the lower ranges and it becomes completely insignificant within

one pulse width.

PRACTICAL USES OF THE TECHNIQUE

The complementary code pair provides very low sidelohes in many practical

circumstances. Two cases where it does not are:

1) When the coherence time is short compared to twice the interpulse

period. This is usually the case with incoherent scatter.

2) When transmitter modulation errors are significant.

As long as the coherence time is longer than the pulse length, we can take

any good code and gain a substantial reduction in sidelobes with this

technique.

If transmitter modulation errors are a problem but the coherence time is

long, then we can use a modification of the technique. The complementary codes

are used to modulate the transmitter in the normal way. What is transmitted is

somewhat in error, and when we decode, we choose hdc(t ) for each comple-

mentary code such that the sidelobes of the complementary code are achieved.

In other words, we do not try to get rid of the sidelobes, but merely make

them what they would have been in the absence of the transmitter errors. As

long as transmitter errors are small, this involves a very small correction to

the spectral amplitude function, and hence causes no noticeable loss in signal-
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to-noise ratio. When the returns from the complementary pair are added, there

will be no sldelobes. Since the correction is very small, truncation errors

will also be very ema11.
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Appendix A

Reducing the Effect of Truncated Ranges

The problem with t_he truncated ranges that affects the technique described

in this paper occurs because given an infinite decoding waveform, the extent of

leakage of a range for which the signal is incomplete is infinite. The

solution to the problem depends upon the fact that with normal decoding, only

those heights that are truncated are affected. The explanation of these two

statements requires a detailed ex_,ination of the coded waveform.

Figure A1 shows how this waveform can be broken into its component parts.

Figure Ala shows the radar signal before decoding. No signal is received to

the left of the vertical line because of the receiver cutoff. Figures Alb and

Alc show returns from two ranges. When the returns from these two ranges and

also from all other ranges are added the signal of Figure Ala is obtained. The

signal of Figure Alc is completely to the right of the heavy vertical line, and

this means that we have all the information from that range. On the other

hand, the signal of Figure 2b is partly to the left of the vertical line, and

thus we have only a part of the information from this range. This range is

referred to as a truncated range.

Figure Ald shows the waveform used in normal decoding in a position for

decoding the lowest nontruncated range. Sidelobes from the truncated ranges

are decoded normally, and the lack of information to the left of the vertical

line does not affect the decoding of nontruncated ranges. Figure Ale shows

the inverse of the Barker code placed in position to decode the same lowest

nontruncated range. This waveform extends to the left of the vertical line

and thus requires all the information from the truncated ranges in order to

reject them completely.

In order to reduce this effect, we decode the first n-1 untruncated ranges

using normal decoding (n is the length of the code). This waveform contains

normal sidelobes from the truncated ranges below and the untruncated ranges

above. We recode this signal, which means convolving with the code. Both the

wanted signal and the unwanted sidelobes are convolved with the code and thus

look like coded signals. Next, we replace the first n-1 numbers in the

original coded signal with zeros; this is the first n-1 samples to the right of

the vertical line in Figure Ala. Then, we add to this the recoded waveform

from the last step. Finally, inverse decoding is performed on the composite

waveform. In the lower ranges, we get sidelobe levels about the same as with

normal decoding, but the sidelobes go to zero very quickly as the range

increases.
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INTRODU CT ION '._"

Range resolution of a conventional pulsed Doppler radar is determined by

the scattering volume defined by the transmitted pulse shape p(z). To

increase the resolution, the length of the pulse must be reduced. Reducing

the pulse length, however, also reduces the transmitted power and hence the

signal-to-noise ratio unless the peak power capability of the transmitter is

greatly increased, which is a very expensive process. Improved range reso-

lution may also be attained through the use of various pulse-coding methods,

but such methods are sometimes difficult to implement from a hardware stand-

point. The "frequency-hopping" (F-H) technique to be described increases the

range resolution of pulsed Doppler MST radar without the need for extensive

modifications to the radar transmitter. This technique consists of sending a

repeated sequence of pulses, each pulse in the sequence being transmitted at

a unique radio frequency that is under the control of a microcomputer.

All of the radar parameters in the following discussion, such as pulse-

width and Inter Pulse Period (IPP), apply to the F-H system being developed

for the Urbana radar.

ANALYSIS OF SYST_4

Figure 1 shows one way of representing the pulse train sent by the radar

transmitter. Since the wavelength of each pulse differs from that of its

neighbors by about one centimeter, it is to be expected that echoes from a

turbulent scatterer will differ slightly from each other in phase. Taking

advantage of these phase differences constitutes the crux of the frequency-

hopping technique.

The frequency sequence applied to consecutive transmitter pulses is also

shown in the pulse pattern diagram of Figure 2. For example, at time t = 0,

a pulse is sent at frequency _^I at time t = T , a pulse is sent at

frequency _ + A_, and so fort_. At time t = 16T , the pattern repeats

itself. Th ° range of frequencies covered by the pattern is 750 kHz, with

contiguous frequencies separated by 50 kHz. Notice that the sewtooth wave-

form of Figure 2 repeats itself three times every 1/8 s. The present Urhana

coherent scatter system integrates samples for 1/8 s. Hence, by integrating

samples corresponding to three of the waveforms in Figure 2. the F-H system

possesses a coherently integrated sample length identical to that of the

present coherent scatter system. It must be realized, however, that only

samples taken at the same frequency may be coherently summed. Consequently,

each 1/8-second coherently integrated F-H sample actually consists of 16

subsamples, with each subsample comprised of three individual samples at the

same frequency added together.

Consider the situation that the atmosphere contains only a single

infinitely thin. mirror type scatterer located somewhere within the range

gate z , and moving with a constant velocity v d throughout the collection
of a l_-second coherently integrated data sample. In this case, nonzero

samples are obtained only for range gate z o. Consider also the following
sample sequence x(n):
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Figure 2, Time vs. frequency pulse pattern of the F-H system.

x(n) = BneJ_n (I)

where n = 0, 1, 2 .... , 47. x(n) is the sequence that results from sampling

the radar returns caused by the reflection of the transmitted pulse train

shown in Figure I from the mirror scatterer. Notice that the index of x(n)

takes on the values 0-47. Hence, x(n) consists of all the individual samples

contained in a single 1/8-second coherently integrated F-H sample. B n is

the magnitude of sample n, and _n is the phase.

The mirror scatterer is a delta function in range space; that is, as a

function of z. Consequently, its Fourier transform is a constant for all

values of wave number k. Since radar pulses are scattered by fluctuations in

the index of refraction with a nor_ero Fourier component equal to one-half
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the radar wavelength in the direction of propagation of the pulse, the ideal

mirror scatterer reflects radar pulses at ell frequencies equally well. As a

result. -11 samples of the sequence x(n) have the same magnitude, and

equation (1) may be rewritten as

x(n) = BeJ@n (2)

In order to consider the phase ¢_ of the samples of the sequence

x(n), it is convenient to make the following definitions. Let

f =

v d =
Az

fn =
n

Z ---
n

11384 s

40.52 MHz

50 kHz

the velocity of the scatterer

the distance, at time t = 0, at which the scatterer is

located above or below z . Az must satisfy the relation

I_z) <_1.5 km o
the wavelength of the nth radar pulse

the frequency of the nth radar pulse

_e + (n)1_ A f
heig_ of the scatterer when it reflects the nth radar

pulse

% z +dz + Vd nT

(n)16 = n moOd 16

With these definitions. @n maY be written as

4_

d_n = q Zn

= 4_C [foZo+foAz+foVdnT+(n)16Afzo +(n) 16 Af(Az+vdnT) ]

Substituting the above result for _n into equation (2) yields

(3)

x n = B exp{j_[foZo+foAz+foVdnT+(n)16AfZo+(n)16Af(Az+vdnT)]}

Let us define the constant a as

= _(foZo+foAz)

Using this definition, and noting the property

{j_[(n)!6Afzo]} = iexp

the expression for x(n) may be written as

x(n) = Be j_ exp{j4_[foVdnT+(n)16Af(Az+vdn_)]} (4)

Recall that in each I/8-second coherently integrated F-H sample,

individual samples at the same frequency are to be coherently summed. So if

y(n) is the 16-point sequence that results from adding individual samples at

the same frequency, then

2

y(n) = [ x(16m+n)

m=0
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.4_
3Bexp{3_--[foZo+AZ(fo+nAf)+vd(16T+nT)(fo+nAf)] } (5)

where n = 0. 1 ..... 15. Notice that since the index of the sequence y(n)

has a maximum value of 15. the clumsy modular notation has been dropped.

The third phase term in equation (5) results in a systematic error in

the range estimation of the scatterer, due to the velocity of the scatterer

itself. However. this effect is of concern only if the third phase term is

approximately the same size as the second, which is due to the actual

position of the scatterer. In order to gain an idea of the scatterer

velocity that is necessary for this to occur, the two terms may be set equal.

_Z

Vd 16T+nT

Substituting the worst case values Az = 200m, n = 15 into the equation

above, it becomes clear that the scatterer must be moving with a velocity of

at least v d = 2500 m/s in order for the two terms to be about equal.
Hence. for all practical purposes, the third phase term of equation (5) may

be ignored.

where d
O

Recalling the definition of a, a constant D may be defined as

D = 3B exp(j_). Using this definition and the equation

4_ (nAfAz) n_Az
T =-Fr-o

= 187.5 m, equation (5) may be rewritten as

. .n_Az,

y(n) = D expt3-_--)
O

where n = 0, 1 ..... 15.

(6)

Equation (6) reveals the form of the individual samples in a single 1/8-

second coherently integrated F-H sample, assuming a single mirror-type

scatterer located somewhere within the range gate z As anticipated,
• O" °

each sample has the s_,,e magnitude, and there _s a phase dlfference from one

sample to the next. This intersample phase difference is in fact linear, and

its size depends upon the distance Az of the scatterer from the center of

the scattering volume (z o).

To take advantage of the linear intersample phase shift present in the

sequence y(n) of equation (6), it is possible to simply calculate the DFT of

the sequence. Figure 3 shows graphs of the sequence Y(p) resulting from the

DFT of y(n), assuming different values for Az. It is clear that as Az

becomes more positive, the intersample phase shift in (6) becomes larger, and

the central peak of Y(p) moves up the graph. Conversely, as A z becomes more

and more negative, the central peak of Y(p) wraps around to the top of the

graph, and begins to move down it.

When a 1/8-second coherently integrated F-H sample is obtained from the

atmosphere for range gate z , the value of Az is of course not known. It

is made clear by the graphs°of Figure 3, however, that by taking the DFT of

the individual samples within the coherently integrated sample, it is

possible to deduce the position of the scatterer Az within the scattering

volume by the position of the central peak of Y(p). This fact is the basis

for the improved range reeolutlon offered by the frequency-hopping technique.
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Figure 3. Y(p) for different values of A z.

A more complex analysls involving the convolution of the pulse train in

FiEure 1 with scatterers present in the atmosphere, and taking into account

the coherent detection scheme employed by the Urbana radar, has also been

performed_ it yields results similar to those obtained using the more intui-

tive approach outlined above.

OOMPLICATIONS IN ANALYSIS

All of the values of Az assumed in the graphs of Figure 3 are integer

multiples of d = 187.5 m. d is the basic range resolution of the
o

frequency-hopp°ng system_ integer multiples of d may therefore be termed

"subranEe" gates of the system. Hence, all of th ° scatterers in the graphs of

Figure 3 are assumed to fall exactly in the middle of a subrange 8ate. This

pleasant sltuation is unlikely to be duplicated in the real atmosphere.

FiEures 4(a) and 5(a) show graphs of Y(p) plotted in semilog form for more

arbitrary values of _z. A scatterer is shown startin 8 in the middle of the

third subrange gate, and gradually movin 8 downward until it reaches the point
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halfway between the second and third subrange gates. The central peak of

Y(p) remains in the correct position, but it is now accompanied by undesir-

able sidelobes in the subrange gates that should be zero.

The sidelohes present in the graphs of Figures 4(a) and 5(a) are due to

the fact that the sequence y(n) of equation (6) is unwindowed; or, to be more

precise, a rectangular window has been applied. To reduce the sidelobes, a

window having more gently rounded edges may be used. In other words, we

may derive a new sequence y(n), having more desirable transform properties,

from the old sequence y(n) as follows

t .n_Az_

y(n) = Dn expk3--_--) (7)
o

where D = w(n)D, and w(n) is a windowing sequence of length 16.
n

Figures 4(b) and 5(b) show the effects of selecting a Hamming window

sequence for w(n). A useful reduction in sidelobe level has been achieved,

at the cost of a slight increase in the width of the main peak, or lobe, of

the sequence Y(p).

Although the standard Hamming window quite effectively reduces the

sidelobes of Y(p), the unusual form of the sequence y(n) in equation (7)

makes possible a somewhat more clever approach. Since the weighting sequence

D in (7) is arbitrary, it is possible to specify that D must be
n

symmetrmc about its center. In this case, it may be sho_nn that the DFT of

y(n) can be written as

N
---1
2

Y(_) = I An cos[(2n+l)_2] (8)
n=0

where
A n = A_(n+l)

N=I6

Since a relationship exists between A and D , if values can be found for
• n n

A , then the values of the wemghting coefficients D will be known. One
n n

way of finding appropriate values for A is by solvmng the equation
n

Y(_) = T7(x)

where T7(x) = a seventh order Chebyshev polynomial (9)
x = a cos(_/2 )

a = an arbitrary constant

T.(x) is a polynomial consisting of terms of the form [a cos(_/2)] k,

where k is an odd, positive integer. On the other hand, Y(T) is a polynomial

consisting of terms of the form cos(p _/2), where p is also an odd, positive

integer. In order to solve equation (9), then, trigonometric identities must

be used to reduce terms of the form [a cos ( _/2)] k into terms of the form

cos(p _/2). This can be a very tedious process. Fortunately, operations of

this kind are tabulated in books on antenna engineering (see, e.g, JASIK,

1961).

Figures 4(c) and 5(c) show the results of applying a window of this type

to the sequence of equation (7). Although these results appear very similar

to those obtained using a standard Hamming window, the sidelobe levels and
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mainlobe width have in fact been slightly reduced. A window of this type

should be optimal in the sense of giving the narrowest possible main lobe for

a specified sldelobe level, or vice versa. The main lobe width may be varied

by adjusting the value of the arbitrary constant a. In generating the graphs

of Figures 4(c) and 5(c), the value of a was chosen so that the sidelobe

level is approximately 40 dB below the main lobe peak.

The Urbana radar normally employs a 20_s pulse, so that range gates are

separated by 3.0 km intervals. When the F-H technique is employed, however,

such range gate spacing can cause renge-aliasing problems. In particular,

when a scatterer is located at the boundary of two range gates, it becomes

impossible to determine its correct position. By oversampling at 1.5 km

intervals, it is possible to construct an unaliased vertical profile by

throwlng out the subrange gates at the edges of each range gate, then fit-

ting the remaining subrange gates together in a manner analogous to the

"overlap-save" algorithm used to perform large DFTs (see, e.g., OPPENHEIM

and SCHAFER 1975).

SUMMARY OF DATA ANALYSIS PROCEDURE

At this point, a fairly thorough discussion has been given of the manner

in which a single 1/8-second coherently integrated F-H sample might be

processed. No mention has been made, however, of the way in which an entire

minutes' worth of data for a single range gate is to be processed. Figure 6

shows one way of representing such a block of data. In order to understand

the graph in this figure, it is perhaps easiest to make the following set of

def initi ons :

x(m,n) = a two-dimensiosal data sequence containing one minutes' worth

of F-H data for a single range gate. Each column consists of a

single 1/8-second coherently integrated F-H sample.

M = the number of I/8-second coherently integrated samples in one

minute of data.

N = the number of frequencies at which the F-H system operates. This

number is 16 for the present system.

t' = 1/8 s.

mr' = the time at which the ruth column is collected.

f +nAf = the transmitting frequency corresponding to the nth element of
o

a column.

Assume that the range gate corresponding to the data of Figure 6

contains only one scatterer. Suppose that the one-dimensional DFT of the

first column in Figure 6 is calculated. Earlier discussions suggest that

only one element (or perhaps two) of the resulting column is essentially non-

zero. Precisely which element is nonzero depends, of course, on the position

of the scatterer within the scattering volume. Now suppose that the one-

dimensional DFTs of all of the columns in Figure 6 are taken. After the

completion of these operations, only one row of the resulting graph is

essentially nonzero. The position of that row may be used to determine the

position of the scatterer within the scattering volume. By taking the

one-dimensional autocorrelation function of the nonzero row, the usual

parameters of velocity, power, and correlation time may be derived for the

single scatterer.
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Figure 6.
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Representation for one minute of data in a single range gate of

the F-H system.

Thus, a one-minute block of data, such as that represented in Figure 6,
may be processed in five steps:

(1) Each column of the two-dimensional sequence is windowed using a

Chebyshev window of the type discussed earlier.

(2) Each column of the sequence is transformed using a one-dlmenslonal

DFT.

(3) Undesired rows are thrown out using the overlap-save algorithm

discussed earlier.

(4)

(5)

The one-dimensional autocorrelation function of each of the remaln" -

in 8 rows is found.

The usual velocity, power, and correlation time parameters are
derived for each row.
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8.2.1 A VARIABLE-FREQUENCY LOCAL OSCILLATOR FOR THE

FREQUENCY-HOPPING TECHNIQUE

G. R. Stiff and L. J. Johnson

Aeronomy Laboratory

Department of Electrical and Computer Engineering

University of Illinois

Urbana, IL 61801

The frequency-hopping technique described elsewhere (STITT and BOWHILL,

this volume) requires the use of a local oscillator whose output frequency may

be rapidly and accurately changed by a fixed frequency increment. Such a

device, capable of producing 16 different frequencies separated by 50 kHz over

the range 35.02-35.77 MHz, has been build for the Urbana MST radar facility.

The following paragraphs describe the design and construction of this device,

which is illustrated by the block diagram of Figure i.

A 5.00 MHz crystal oscillator provides a reference source for the synthe

sizer. The oscillator output is divided by 100 to provide a precise 50 kHz

input to the 16 separate NE564 Fhae-Locked-Loops (PLLs). Each PLL, though

locked to the same master oscillator, is set to run continually at its own

unique frequency. Although the use of a battery of 16 PLLs may seem a bit

extravagant, the NE564 chips employed are very inexpensive, and this approach

avoids the problems with capture range and settling time that may occur when a

single PLL is used to generate multiple frequencies.

A frequency synthesizer consisting of 16 separate oscillators connected to

an analog multiplexer was also considered. Unfortunately, this brute force

approach is quite expensive, as it requires the use of high quality

oscillators. This is due to the sensitivity of the frequency-hopplng technique

to random variations in the operating frequencies of the oscillators; if these

frequencies deviate by more than a few Hertz from their desired values, the

frequency-hopping method simply does not work. The use of 16 separate PLLs,

each locked to the same reference oscillator, helps to minimize this problem.

Returning to Figure 1, it may be seen that the local oscillator frequency

generated at any given time is determined by the 16-to-l-line multiplexes.

When the radar is operated in the frequency-hopping mode, this multiplexes is

controlled through a parallel port by an Apple II+ microcomputer. A switch

allows control of the multiplexer to transferred to a row of rocket switches on

the front panel of the device. In this way, the local oscillator frequency may

be fixed at a chosen value when the radar is operated in a more conventional

mode.

The output frequency range of the synthesizer is beyond the maximum

operating frequency of the NE564 PLL. Consequently, it is necessary to mix the

PLL outputs with that of a 40.02 MHz oscillator in order to obtain the desired

output frequencies. Since it is difficult to mix a squarewave due to the

higher order harmonics present, the PLL outputs are filtered with a low-pass

elliptic filter to ensure an approximately sinusoidal weveform before being

mixed. The mixer output is then bandpass filtered in order to eliminate the

undesirable harmonics produced by the mixing operation. Finally, the resulting

signal is amplified by a pair of _4A 120 wideband hybrid amplifiers.

The frequency synthesizer illustrated in Figure 1 physically consists of

10 printed circuit boards inserted into a card cage. Eight of these boards,

labeled PLL in Figure 1, contains two PLL circuits apiece. These cards are all

identical except for the frequencies the individual PLLS are set to run at.

One board (labeled FSO) contains the multiplexer and 5.00 MHz reference
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Figure I. Implementation of the frequency synthesizer.

oscillator. The remaining board (labeled OMFA) contains the 40.02 MHz

oscillator, mixer, filters, and amplifiers. The modular construction used for

this synthesizer should simplify maintenance, and make it easier to change

operating frequencies should that prove desirable in the future.

Figures 2 and 3 show spectrum analyser displays corresponding to the 35.77

MHz output of the frequency generator. Figure 2 indicates that there are no

significant frequency components present other than those near the desired

frequency. Figure 3, which expands the central peak in Figure 2, reveals that

there are undesirable frequency components located + 50 kHz and + 100 kHz

away from the 35.77 MHz component. These undesirable components? whose

amplitudes are approximately 23 dB below the central peak, are apparently

caused by the phase comparator section of the NE564 chip. If they prove

troublesome, it will be necessary to use a different type of PLL.
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8.2.2 AN ACCELERATED FORTH DATA-ACQUISITION SYSTEM

S. A. Bowhill and A. D. Rennier

Department ot Electrical and Computer Engineering

University of Illinois

Urbana, Illinois 61801

A new data acquisition system was put into operation at Urbana in August

1984. It uses ;a standard Apple II microcomputer with 48 k RAM and a standard

5 1/4 inch floppy disk. Design criteria for the system includes the following:

i. Acquire two 8-bit data bytes each I0 microseconds for 60 alti-

tudes, compared with 20, previously.

2. Coherently integrate real and imaginary components for 50 pulses

(1/8 sec)

3. Display coherently integrated samples in real time

4. Perform complex autocorrelation each minute

5. Write correlation data to floppy disk each minute

6. Display height profiles of power and Doppler frequency each minute

while data are being written to disk

7. Accommodate 1 hour's data on each side of floppy disk.

8. Perform the above for as many altitudes as possible

The system was implemented using fig-FORTH, a threaded interpretive

language which permits easy interfacing to machine code. The throughput of

this system is better by a factor of 6 than the PDP-15 minicomputer system

previously used, and in addition has the real-time display feature and provides

the data in much more convenient form. The impr_ed performance is due to the

followlng features :

I. FORTH uses a zero-address pseudo-machine with an integer stack and

integer arithmetic

2. An accelerator board raises the Apple clock frequency to 3.6 MHz

3. I/O and coherently integration routines were written in machine

code and interrupt driven

4. Two A/D converters were used in tandem for the real and imaginary

components

5. The Apple II permits direct screen access for the real-time

display

6. The quarter-square algorithm was used for multiplication

Figure I shows the improved performance obtained from the new system in

the stratosphere. Velocity data can be obtained to 28.5 km altitude.

Complete documentation of the software (R_IqNIER and BOWHILL, 1985) is

available from the University of Illinois, together with compiled system disk

and complete source code.
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8.3.1 A SINGLE-BOARD PREPROCESSOR AND PULSE G_qERATOR

463

D. A. Carter, A. E. Ayers, and R. P. Schneider

Aeronomy Laboratory

Natiorml Oceanic and Atmospheric Administration

Boulder, CO 80303

The Aeron_ny Laboratory of NOAAhas designed and built a single-board,

programmable radar controller for use with VHF ST radars. The controller

consists of a coherent integrator preprocessor and a radar pulse generator,

both described here, as well as interfaces to an antenna beam switch and a

receiver bandwidth switch. The controller occupies a single slot in a Data

General Nova or Eclipse computer. The integrator and pulse generator take

advantage of high density, dual-port FIFO chips such as the 512 x 9 MOSTEK MK

4501. These FIFOs have separate input and output ports and independent read

and write cycles with cycle times of less than 200 ns, making them very fast

and easy to interface,

A simple block diagram of the coherent integrator is shown in Figure I.

At the completion of each ADC conversion, the 8-bit data from each receiver

channel is latched into a register. The two channels are alternately placed at

one input of the 16-bit adder. During the first interpulse period (IPP) the

other input to the adder is set to zero and the data word is written directly

into the FIFO. During successive IPPs, the data words are read from the FIFO,

added to the incoming data from the corresponding range gate and rewritten to

the FIFO. After the desired number of coherent additions have been completed,

the data read from the FIFO is sent to the computer via the DMA channel, while

the incoming data are being added to zero, beginning the cycle again. When a

specified number of coherently averaged points for each range gate have been

sent to the computer, the device is done and can interrupt the computer

program. A status register, read from software, indicates errors such as adder

overflow, FIFO overflow, and missed data points.

The integrator is designed to handle inputs from one receiver (2 channels)

with I see sample spacing. The timing could probably be adjusted for 500 ns

samples, and additiorml receivers could be processed without any hardware

modification by using one integrator board for each receiver. The design could

also be altered to multiplex more channels onto a single board, but the maximum

sampling rate would consequently be reduced.

The pulse generator is based on controllers designed by R. F. Woodman for

the Arecibo and SOUSY radars using a "recirculating memory" scheme. Figure 2

shows the basic circuitry of the Aeroncmy Laboratory device. The output lines

of the pulse generator are the TR switch control pulse, the transmitter (Tx)

logic pulse, and the sample gates. The state of each line changes according

to the state of a specified hit of the FIFO memory as the data words are

sequentially latched into an output register. The remaining bits of the FIFO

word represent the number of l-_sec clock cycles for that particular state to

be held on the output latch. When that number is counted down to zero, a READ

pulse is created and the next FIFO word is read into the output latch and the

counter. The last word in the sequence is indicated by setting one bit (LAST)

which creates a retransmit (RETRANS) signal. The retransmit function of the

FIFO nondestructively resets the internal read pointer so that the data may he

reread from the beginning.

The FIFO is loaded with the proper pulse sequence by a software DATA OUT

(DOB) command and may be read back by a DATA IN (bIB) instruction. Once a

START command is executed, the pulse generator will run continuously without

further computer intervention. It can be stopped without destroying the FIFO
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contents by a software IOPULSE commnd. A software CLEAR or hardware IORESET

will reset the internal read and write pointers for r_criting the FIFO

contents.

A number of safety features are built into the hardware. The TR pulse is

gated with a fixed-length pulse to prevent the TR from accidently being turned

on too long. The Tx pulse is allowed on only while the TR pulse is on. Any

command that halts the pulse generator also clears the output lines. The ninth

bit of the FIFO is used for parity. If a parity error is detected after a FIFO

read cycle, the pulse generator is stopped and the computer program is

interrupt ed.

In the pulse generator actually built, two FlFOs are used in parallel so

that 8 lines are available for pulse signals and 8 lines for counting. Two of

the additional signal lines are set up for Tx pulse coding. Coherent

integra_on of the coded returns can be done in the preprocessor part of the

board, but the decoding must be done in software.

The Aeronomy Laboratory has built three of these preprocessor/pulse

generator devices. They each occupy about half of an MDB Systems I/O board,

the other half being used by the vendor-supplied interfacing to the Data

General I/O bus. One such board was used during the 1985 PRE-STORM program and

others will be installed in Pacific Ocean ST radars on Ponape and Christmas

Island. Compared to previous systems that used software coherent integration

and manually controlled pulse generator boxes, this design offers great

advantages in speed, flexibility, and radar efficiency.
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8.3.2 A MICROPROGRAMMABLE RADAR CONTROLLER ,

b

Daniel C. L_

NOAA/ENL

Wave Propagation Laboratory -/_;

Boulder, CO 80303

The Wave Propagation Laboratory has completed the design and construction

of a microprogrammable radar controller for atmospheric wind profiling. Unlike

some radar controllers using state machines or hardwired logic for radar

timing, this design is a high speed programmable sequencer with signal

processing resources. A block diagram of the device is shown in Figure I.

The device is a single 8 1/2" x I0 1/2" printed circuit board and consists

of three main subsections: I) the host computer interface, 2) the microprogram

sequencer, and 3) the signal processing circuitry.

HOST INTERFACE

The host computer bus chosen for this design is the Digital Equipment

Corporation Q-Bus supported by DEC's 11/23, 11/73, and MicroVAX computers.

The radar interface control�status register (RICSR) allows control of the

radar controller from the host. The RF control/status register (RFCSR)

allows the host to control the operation and check the status of up to seven

external RF devices such as the receiver/exciter, the antenna controller, the

pulse amplifier, etc.

MICROPROGRAM SEQUENCER

An Advanced Micro Devices 2910A microprogram sequencer determines the

address for the microprogram memory. Such features as an internal loop

counter, a 9-word deep stack for microsubroutines, and condition testing allows

efficient microcoding for radar control and signal processing. The

microprogram memory is 2048 words deep by 64 bits wide. Most of the bits in

the microword control the microprogram sequencer and the signal processor but

eight of these bits are sent out for high speed radar timing signals such as

Transmit, T/R, Receiver Blank, A/D Sample, Pulse Coding, etc. Since the

sequencer runs at I0 MHz, these signals are all controllable with I00

nanosecond resolution. The clock source may either be an on-board crystal

oscillator or a 10-MHz external reference oscillator such as the master

oscillator in a phase locked receiver design.

SIGNAL PROCESSING

In-phase (I) and Quadrature (Q) digital data are sequentially processed

using a high speed 16 x 16 bit multiplier-accumulator and a 2048-word deep by

32-bit wide accumulation memory.

If simple time-domain averaging is desired, the coefficient/scaling memory

contains a fixed scale factor which, when multiplied by each incoming sample

and accumulated without truncation, results in a properly scaled value in the

most significant 16 bits of the accumulation memory at the end of the time-

domain averaging period.

A weighted average may be implemented by multiplying each incoming sample

by a weighting value from the coefficient/scaling memory along with the
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accumulation. This is a digital transverse low pass filter and has been used

to help reject RF interference and moving targets.

After the averaging process, the data are sent out of the device via the

First In-First Out memory to a commercially available digital signal processing

board. The SKY320, manufactured by Sky Cemputers, Inc., sorts the data,

performs dc removal, performs the fast Fourier transform, and the windows the

spectra. The SKY320 is programmed to process 128 point complex time series

from 36 range gates and is operating at one-third its maximum throughput

capacity.

Data are then retrieved from the SKY320 by the host computer which per-

forms spectral moment calculation, wind calculations, etc.

This configuration results in real-time operation (100% dwell time)

without the use of expensive array processors or high speed memory.

MICROCODE DEVELOPMENT

Microcode is written on the host machine using commercial meta assembler

software. An auxiliary writable control-store board substitutes for the Radar

Controller microprogram memory during development. Programmable Read Only

Memory is then loaded with the developed microcode and is used as the

microprogram memory for a fixed number of radar parameters.

A NOAA Technical Memorandum detailing the design and microprogramming of

the device is planned for 1986.
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8.4.1 THE APPLICATION OF MATCHED-FILTER ANALYSIS TO DEDUCE A

BEST ESTIMATE OF MEAN DOPPLER VELOCITY

Jurgen Rottger*

Arecibo Observatory

P.O. Box 995

Puerto Rico

Several methods are usually applied in MST radar data analysis to estimate

mean Doppler velocity and spectrum width, such as the computation of m_nente

from spectra or autocorrelation functions or the nonlinear least-squares fit.

We present here another approach which is based on a best matched filter
estimate.

Having computed the power spectrum P(f) of radar data, we use P(-f) as a

best estimate to compute the autocovarlance function

+fN

pf (AF) = E

-fN

P(f - Af) • p(-f) (i)

Po_ has a maximum at exactly twice the mean frequency of P(f). The advantage
thls technique is that it is less sensitive to unsymmetrical and spiky

spectra, and it eliminates aliasing. It also allows to better estimate the

spectral width. The amplitude of pf is a measure of the unsymmetry or
spikyness oZ the spectra P(f).

Figure 1 shows examples of P(f), computed from the complex autocorrelation

function (ACF) and the corresponding covariance function pf of incoherent
scatter data. This method has recently also been successf_lly applied to

mesospheric VHF radar signals (Figure 2).

*On leave from Max-Planck-Inatitut fur Aeronomie, Katlenburg-Lindau, West

Germany.

c7
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Figure i. The right-hand diagrams show 10-min averages of the

real and imaginary part of the autocorrelation function of

incoherent-scatter signals from 75 km and 95 km altitude,

measured with the EISCAT UHF radar (ROTTGER, 1984). The

corresponding power spectra are shown in the upper left-

hand diagram. The lower left-hand diagram shows the auto-

covarianoe functions computed from equation (i). The

location of their maxima at _+ divided by two gives
r x

the mean Doppler frequency of tm_e power spectrum.
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Figure 2. Power spectra (l-rain averages) and corresponding

autocovarianee functions of mesospheric VHF radar echoes,

measured at the Arecibo Observatory. The deduced Doppler

frequencies were used to compute gravity-wave spectra and

mean wind profiles (see ROTTGER, 1985a,b).
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8.4.2 AN EXAMPLE OF SCALING MST DOPPLER SPECTRA USING MEDIAN SPECTRA,

SPECTRAL SMOOTHING, AND VELOCITY TRACING

' r .... _ ,_ J.L. Green .'_;Q'J

Aeronomy Laboratory _i %_ /,:
NOAA _

Boulder, CO 80303

INTRODU CT ION _ _

Although automatic, computer scaling methods appeared at the start of the

MST radar technique, there is a continuing need for scaling algorithms that

perform editing functions and, if possible, increase the sensitivity of radar

by post processing. The scaling method presented here is an adaptation of the

method of scaling MST Doppler spectra presented by RASTOGI (1984), to the

particular problems encountered at the Sunset radar. It also uses elements

from ZRNIC (1979), CLARK and CARTER (1980), CARTER et al. (1980), and WOODMAN

(1983).

A brief overview of this method is as follows: a median spectrum is

calculated from several sequential spectra; the median noise value is sub-

tracted from this derived spectrum: the median spectrum is smoothed; the

detection/nondetection decision is made by comparing the smoothed spectrum

to the variance of the smoothed noise; and if a signal is detected, then the

half-power points of the smoothed echo spectrum are used to place limits on the

evaluation of the first two moments of the unsmoothed median spectrum. In all

of the above steps, the algorithm is guided by tracing the expected velocity

range upward from the lowest range as far as is possible.

There is evidence that the radar echo power from the troposphere and

stratosphere is log-normally distributed (NASTROM, 1985). This means that the

use of a point-by-point median of several Doppler spectra is more appropriate

than the point-by-point arithmetic mean employed by a number of ST and MST

radar groups. The median technique has the added advantage of rejecting

transient interference.

To accurately obtain the integral of the echo spectrum for the

determination of echo power, the noise must be subtracted from the echo

spectrum. This has been a problem to the author, and perhaps others, because

if a mean value of the noise is calculated, frequently a large spectral

component from noise or interference can cause an unacceptable error. This

problem can be reduced, if not practically eliminated by using instead, the

median value of the noise.

Smoothing the Doppler spectra in frequency (or radial velocity) increases

the signal-to-noise ratio of the radar echo and thus enhances the detectability

of weak echo. However, the selection of the smoothing function and its width

is important since the detectability is maximum when the smoothing function

'bmatches" the echo spectrum.

The increases sensitivity provided by smoothing the Doppler spectrum

before detection also increases the probability of detecting a noise peak not

associated with the radar echo. The probability of false detection can be

reduced by tracing the velocity from the lowest ranges upwards. At each

successive altitude a search for a radar echo can be conducted over a spectral

range based on "a reasonable shear" (RASTOGI, 1984).
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IMPLEMENTATIONOFSCALINGALGORITHM

Figure1 is an example of this adapted scaling method. The top three

panels are Doppler spectra at a particular altitude and antenna beam position

from three sequential records. These three spectra are transformed into the

median spectrum in the bottom panel by finding the median of each corresponding

spectral point. Note that the strong echo from an aircraft on the right side

of the 3rd panel has been eliminated from the median spectrum. Also, the

median value of the noise has been subtracted from each point of the median

spectrum.

Referring again to Figure I, the spectrum in the 4th panel was obtained by

smoothing the median spectrum in the 5th panel with an ll-point Gaussian

function. This function and its width were selected empirically as being an

approximation of a typical ST radar echo spectrum. The echo spectrum has been

obviously enhanced by the smoothing. The algorithm searched for this echo

spectrum over a Doppler range centered on the velocity detected at the next

lowest range. Limits, L_ and L2, were then located at the half-power
points of the envelope the yet untested smoothed signal spectrum. In this

case, the smoothed echo was determined to be valid because it was located with-

in the search range, and because its integral from L 1 to L^ exceeded the
integral of the variance of the smoothed spectrum over theZsame interval by a

factor T. T is an arbitrary threshold, discussed below.

Finally, the integral, center and width of the signal spectrum was

obtained from the median spectrum in the bottom panel of Figure 3, by the

methods used in CLARK and CARTER (1980), but using L I and L 2 as limits to
the required integrations. The signal integral, center and width can obviously

be transformed into the echo power, radial velocity and velocity width. It is

suspected, but not yet proven, that the use of the unsmoothed median spectrum

in the evaluation of these moments results in greater accuracy.

DISCUSSION

About 1200 individual Doppler spectra from the Sunset radar have been

studied using the technique described here. It has been found that the

variance of the spectral noise tends to decrease with the square root of the

number of spectra used in computing the median spectrum, as expected for an

arithmetic average. Because of the large array storage now available in small

computers, it is practical to calculate median spectra as a means of on-line

compaction of data at a radar site.

As mentioned, the smoothing function and its width should be selected to

match the radar echo. At the Sunset radar the Doppler width of echoes varies

over a factor of 50:1. The development of an adaptive function is required for

the maximum enhancement of weak signal detection.

The selection of the detection threshold requires some consideration. In

Figure 2, the two curves, P_ and Pf explore the consequences of the hypoth-
esis that the probability of _etecting an actual echo varies as (S/N)1/2 and

the probability of detecting a false echo as (S/N)-I/2. The point at which

the two curves intersect represents an equal probability of true and false

detection. There are obviously costs associated with setting T too high or too

low. One approach is to choose T so that Pf/Pt < 1/2 and then employing

some further method of automatic editing such as a random sample consensus

(STRAUCH, 1983) or the comparison of velocity measurements with redundant

antenna positions (CLARK et al., 1983).
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Figure 2. Hypothetical probability of true detection Pt and

false detection, Pf. T is an arbitrary threshold.
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8.5.1 INTERFER_C_ DETECTION AND CORRECTION APPLIED TO

INCOHER_T-SCATTER RADAR POWER SPECTRUM MEASUREMENT

------ W. P. Ying*, J. D. Mathews, and P. K. Rastogi

/ (5
Electrical Engineering and Applied Physics

Case Western Reserve University

Cleveland, Ohio 44106

AB STRACT

A median filter based interference detection and correction technique is

evaluated and the method applied to the Arecibo incoherent-scatter radar D-

region ionospheric power spectrum is discussed. The method can be extended to

other kinds of data when the statistics involved in the process are still

valid.

INTRODUCTION

The expression for the D-region ionosphere incoherent-scatter radar (ISR)

power spectrum has been a well-kn_cn quantity (DOUGHERTY and FARLEY, 1963;

TANENBAUM, 1968; MATHEJS, 1978, 1984a), from which more physical parameters can

be inferred (MATHE_S, 1984b) than if the power profile measurement is carried

out alone. However, a real-time power spectrum measurement was not possible

until the computer power advanced so that an efficient fast Fourier transform

can be realized into the array processor. Tepley (TEPLEY et al., 1981) first

reported a successful experiment of D-region power spectrum using the 430-MHz

ISR at Arecibo. Although the collision-dominated power spectrum shape can be

seen easily from the r_¢ data, interference can be a serious problem which

sometimes even overwhelms the spectrum totally.

Several interference removal techniques have been devised, among them the

commonly used method to model a theoretical data set, and then divide the

experimental data with the theoretical data to obtain a 'flat', 'noise-like'

data sequence which then allows easier detection and removal of outliers from

the data. Another useful method is to form two complementary data sets by

summing and subtracting the experimental data with the theoretical data, and

then sum two complementary data sets to get rid of the outliers (RASTOGI,

private communication). In both of these approaches, the performance depends

totally on how accurately the theoretical data resembles the true data, i.e.,

a good a priori knowledge of the real data is required, but this condition

is seldom met.

The method we bring out here, which is named the Template Process, is

based on the concept of median f_Itering (RASTOGI, 1983). Even though we

applied this method to the D-region power spectrum, it is independent of the

shape of the data and no prior knowledge is necessary, therefore is suitable to

process other kinds of power spectra as long as the statistical properties of

the data can be described by the assumptions that we made to form this method.

Consequently, it is a good practice to treat the following discussion as a

generalized idea and we use the D-region power spectrum only as an example.

TI_IPLATE PROCESS -- METHODOLOGY

Median Filtering. A time integrating method (or time averaging) can

enhance the estimate of the return signal by increasing the signal-to-noise

ratio. But this applies only to the additive Gaussian noise channel. If other

*Presently at Arecibo Observatory, Arecibo, Puerto Rico 00613
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signals, like interferemce, are involved in the integrating process, then the

estimate is biased due to this non-Gaussian signal.

If one sorts The data sequence of interest (either in an ascendin E or

descending order), the middle point, which is called the median is

approximately the same as The mean value (theoretically they are The same, if

it is a continuous infintely lon8 Gaussian process) for signals from additive

Gaussian noise channels. Furthermore, it 8ires a better estimate of the true

mean even with interference involved.

Median filtering is, in a sense, a process that, if a finite number of

data pass through the filter, the output will be The median value of the

sequence. For an interference-contmminated Gaussian signal, the median

filtering is superior to The direct averagin E since the latter one no longer

gives a good estimate, whereas the former one gives a more reasonable estimate

of the true mean.

Interference can occur at any time, at any place, and in any form in the

power spectrum data, a good process should be able to not only pin-point the

interference but also correct it. An idea derived from the median filtering

technique eventually leads to the solution of this problem. The process is

described as follows.

Each spectral point in a power spectrum can be regarded as a random

variable and the corresponding value is chosen from the parent population (this

should refer to The infinite long sample space, but later on, we also use this

terminoloEy to designate The finite length sample space only for convenience).

For a stationary process, and if no interference intervened, each parent

population is Gaussian and has its own expectation value and variance. These

expectation values then constitute the ideal or expected spectrum. Further-

more, if ergodicity applies here, each parent population can be generated by

an infinite number of measurements in time. A three-dimensio_al probability

density function of the D-region power spectrum from one height is shown in

Figure 1 which explains this situation when the parent populations can be

obtained and the process is statio_ry.

Z

o

®;,
o z / -_"

a. O _
I

1% 80% OB_

Figure 1. Three-dimensio_al diagram of the probability density function for

each power spectrum point. Median value (50%), original template value

(5_, 95%) and final tamplate value (1%, 99%) are shown, respectively.
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To form a statistically meaningful parent population in order to form a

'reasonable' median point, one has to include a large enough data set. In the

case of D-region power spectrum measurement, the diurnal variation of the D

region prohibits the time span to be too long, but one can incorporate the data

from the neighboring heights within the same scale height, therefore,

decreasing the number of the data in time to make the stationarity valid in the

analysis.

Once a valid population for each spectral point of the power spectrum in

question is formed, one can use the median filter technique and apply to each

population created for each spectral point, then a series of median values,

which is close to true mean, for every spectral point is obtained, this series

of spectral points forms the median filtered power spectrum. But to carry out

the template process, more information is needed in addition to the 'median'

power spectrum during the median filtering process.

Template Formation. When the median filtering is carried out on a

Gaussian-distributed data sequence, the middle point of this sequence is

assigned as the median and that should be very close to the mean even if

interference is present. In addition to the median, two extra outputs are

obtained from the median filter. They are the values of the i th point (i is

less than N/2, the median point) and the (N-ith) point and serves as

auxiliary observation points of this data sequence for the template process.

Here, N is the number of the sample points for each parent population and i is

a number to be decided on next.

Obviously, the amplitude of interference should be always larger than the

power spectrum itself. This is simply because the power spectrum data have no

negative value and if the interference is smaller, then it will be hidden in

the spectrum, so that no comparison can be made to this mixed signal whether

it is interference or a real signal. If the median does point to the true

mean of this data sequence and since the lower part of the power spectrum is

almost not influenced by the interference, the lower margin value along with

the median, bear very important information about the true statistics of this

data sequence.

For example, if N is chosen as 100, then the values of the 51st point (or

50th point, since N is even in this case) is approximately the mean value of

this Gaussian data sequence and if i is chosen as 5, then from the table (the

table of the standard normal distribution function. LINDGREN, 1960), it is

known that the 5th point stands for 1.645 standard deviation away from the

mean. Since the Gaussian distribution is symmetric to the mean, one can use

this information to set up a tolerance level. For instance, to cover 99_

Gaussian data (2.33 times standard deviation), by taking the difference

between the median value and lower 5_ margin times 2.33/1.645 and adding the

difference to the median value, the upper margin is formed. Consequently, all

other spectral data outside these two margins can be treated as interference.

Note that the interference may be included with greater chance if the 95th data

point is used as the upper margin.

To be able to store and recreate these margins efficiently, a standard

least-square Lorentzian fit was applied (the D-region power spectrum has the

shape of Lorentzian distribution, see MATHEWS, 1984a,b; YING, 1985) to both

the lower margin and the 'median' spectra and stores only four coefficients

for each fit. Since almost no interference occurs at median and lower margin

spectra (notice that this is the primary assumption we made to the template

process), the Lorentzian fit gave out coefficients corresponding to the wanted

signals, and when the templates are needed, these two 'fitted' power spectrum

margins are used to decide the appropriate size of the template in order to

detect and correct the interfered spectrum.
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This is called template process only because this selecting procedure is

just like putting a template onto the pdf-spectrum plot, as shown in Figure 1,

and only those points within the template are selected. The template is shown

as the region within two dashed lines in Figure 1. By using this template,

the interferences not only can be detected but also can be modified in a sense

that the good data and bad data are isolated in a single spectrum and then the

good data can be processed instead of throwing out the whole spectrum.

Baseline Adjustment. One of the advantages of forming the templates is

that the templates can be used to any spectrum within the 'height-time' windows

that were used to generate the valid sample space for the median filtering

process to remove the contaminated spectral points. But since the template

formation process is done in a semi-stationary state because of the span in

time and height baseline shift might exist throughout the experiment. There-

fore, a proper baseline readjustment may be needed for certain spectra in

order to have a proper 'cutoff' by the templates.

This is done by sorting the spectrum and assuming the median point is not

interfered, then uses both the position and the value of the median point as

referemces and aligns the center (average) of the two margin spectra at the

corresponding position to this median point, consequently this spectrum should

be positioned properly within the two margins of the template, and the proper
'cutoff' can be formed.

APPLICATION TO ARECIBO D-REGION POWER SPECTRUM

The power spectrum data that we are dealing with here were taken during a

sequence of three and half days experiment from January 3 to 6 of 1981, at

Arecibo, Puerto Rico. The basis of the experiment uses a 52 microsec 13-baud

Barker coded pulse with 1 millisec interpulse period, which yields an

effective height resolution of 0.6 km and 1 kHz bandwidth. For every 256

samples from the same height, a power spectrum was formed, results in a 3.9-Hz

frequency resolution. A total of 63 heights spectra records were formed for

each time designation.

The template formation process is carried out by using a 'window' of 20

records in time and 5 heights. This corresponds to a window that covers a time

span of approximately one and a half hours, and 3 km height (note that 3 km

height window is smaller than the neminal scale height of the D region which is

around 5 kin, therefore stationarity in height for the median filtering process

can be secured). Since there are 63 heights, the highest process window

includes height numbers from 59-63, overlaps with the next lower one, i.e., it

shares the spectrum data of height numbers 59 and 60 with the second highest

process window. The final template process on this experiment comprises 51

time spans, 13 different heights and thus 663 windows.

Figure 2 demonstrates a complete template formation process using the

window from 11:46 to 13:13 of January 4, 1981, and height window II which com-

prises the actual height number from 51 to 55 and is about 89 km to 92 km in

altitude. Figure 2a shows the actual spectra within the window with slight

interference effect, each spectrum is populated into the plot and consequently

there are 25600 spectral points in this figure. The interference can be seen

from the upper part of the plot only; therefore, the lower part of the spectral

points has reliable statistical significance. Figure 2b shows the median

filtered result with the median spectrum and lower 5% spectrum superimposed

onto the scattered spectral points. Apparently, the median spectrum is around

the center as we expected. Figure 2c is based on Figure 2b with the fitted

results displayed for the median and lower 5_ spectrum. These two fitted

spectra are used to form the two margins for the final template which is shown

in Figure 2d as two dashed lines. 1_ selection range was used in this case.
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Figure 2. Demonstration of the template formation process

for the time-height window from 11:46 to 13:13 January

4, 1981, in time and 89 km to 92 km in height. This

is a slight interference cont_.inated case.

X axis represents spectral points from i to 256,

Y axis represents relative amplitude for all spectra.

(a). Spectral population of the specific window.

There are 100 spectra within the window, altogether,

25600 data are present in this plot.

(b). Median filtering result of the specific window.

The higher solid line represents the median spectrum,

the lower solid line represents the 5% spectrum, the

background is the spectral population.
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(c). Fitted result of the two median filtered spectra,

which are represented by two 'smoothed' solid curves.

(d). The final templates formed by two margins shown

in dashed lines. The template formed by two margins

can be enlarged or reduced depending on how strictly the

selection criterion is enforced. In this case, lZ

selection is used.
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Figure 3. Demonstration of the template formation process for

the time-height window from 12:47 to 14:14 January 3, 1981,

in time and 89 km to 92 km in height. This is a severe

interference contaminated case.

X axis represents spectral points from I to 256,

Y axis represents relative amplitude for all spectra.

(a). Spectral population of the specific window. There

are i00 spectra within the window, altogether, 25600 data

are present in this plot. Interferences can be easily

seen from the upper part of this plot.

(b). Median filtering result of the specific window.

The higher solid line represents the median spectrum,

the lower solid line represents the 5% spectrum, the

background is the spectral population.
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(c). Fitted result of the two median filtered spectra,

which are represented by two 'smoo_hed' solid curves.

(d). The final t_mplates formed by two margins shown

in dashed lines. The template formed by two margins

can be enlarged or reduced dependin 8 on how strict the

selection criterion is enforced. For this 1_ selection

template= one can see how effectively the interferences

can be detected and removed.
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Figure 3 shows another template process for a window with severely

interfered spectrum involved. The time is from 12:47 to 14:14 of January 3,

1981, the height window is the same as in Figure 2. Figure 3a shows such

spectra with highly peaked interferences existing in the upper part of the

window, but again the lower part of the window shows no evidence of 'outliers'.

Figure 3b shows the median filtering process results and two more fitted

spectra of both median spectrum and 5% spectrum are included in Figure 3c.

Finally, Figure 3d reveals that the final template again successfully rejects

the outliers and the remaining spectral points bear good statistics so that a

further averaging and Lorentz fit can be applied.

SUMMARY

We have reported an almost universal interference detection and removal

scheme which has been applied to the Arecibo D region power spectrum

measurement to demonstrate the effectiveness of this method. The scheme

comprises three major parts, each of them depends heavily on the stationarity

of the process and the interference contaminating condition of the data.

The first part is the median filtering process which finds the median and

5% power spectrum from a collection of the spectra for which stationarity is

assumed. Then the template is derived from the fitted median and lower margin

spectrum. In this stage, and that not more than half of the spectra are

contaminated is the major assumption here, so that both the median and lower

margin spectrum can be assured to have the valid statistical meaning. The last

process is to readjust the template to a proper position when performing the

interference removal process, so that even though a slight nonstationarity

exists during the template formation, a proper cutoff can be formed.

Another important idea has to be pointed out here is that, when further

averaging is required of these interference-free spectra in order to gain the

signal-to-noise ratio, one has to carry the template detection information

along, so that a statistical weighting can be applied to each spectral point

(YING, 1985) (for instance, the fewer points averaged together, the less

statistical significance can be made to this averaged point). This is

especially true when a further least-square fitting process is required,

because the least-square fit depends on the statistics of each individual point

that is fitted to.
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8.5.2 THE TUKEY ALGORITHM FOR ENHANCING MST RADAR DATA

/gy3G S. A. B_hill
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Department of Electrical and Computer Engineering

University of Illinois

Urbana, Illinois 61801
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One of the most troublesome features in MST velocity measurements is the

determination of unwanted scatterers whose velocity is different from that of

the surrounding atmosphere. Aircraft seen in the sidelobes of the antenna are

the principal problem.

Because coherent integration essentially eliminates echoes with line-of-

sight velocities greater than I0 or 20 m/s, aircraft are seen only when their

flight path is almost perpendicular to the line-of-sight. Then, they give

large returns whose velocities may be positive or negative, and certainly

different from that of the surrounding air. These "glitches" in the minute-by-

minute velocity records are quite troublesome in that they may distort the

statistics of the velocity. Table I illustrates a simulation where a fairly

smooth velocity profile was generated by applying a 20-point moving average to

a sequence of random values whose standard deviation is unity. Standard

deviation of those points should be .224. The lines A on Table 1 show sample

standard deviations of 20 sequences of 60 points generated in this way and

represent hourly data. The mean standard deviation is .216, reasonably close

to the theoretical value. The considerable variation in these hourly standard

deviations illustrates the problems in trying to determine accurate statistics

on a time series such as this.

Lines B represent standard deviations of the simulated hourly data with

randomly added 1-minute glitches, each having a standard deviation of unity

(or about 4.5 x the time series standard deviation). The probability that a

glitch will appear in a given minute of data varies from .01 to 0.3. Mean

standard deviations for the glitched data are as high as .520 for a glitch

probability of 0.3.

An objective way is therefore needed to remove sporadic points of this

kind. For this purpose, the Tukey algorithm is appropriate and has some

advantages over averaging.

The Tukey algorithm, applied to a data array, uses for each data point

the median of it and the two points surrounding it. If the three points form a

monotonically increasing or decreasing sequence, the original P9int is copied

without change. However, if the central data point is remote from the other

two, it is replaced by whichever of the two surrounding points is closest in

value.

In Table I, lines C and D show the results of applying the Tukey algorithm

to the original and to the glitched data. As can be seen, almost all of the

glitches are successfully removed by the use of the Tukey algorithm, and even

the original data are not much affected as far as standard deviation is

concerned.

The greatest effect of the Tukey algorithm is on data where the succes-

sive points are uncorrelated. Table 2 shows the results of applying the Tukey

algorithm to five samples of a 1000-element random array with population

standard deviation unity. Its standard deviation is reduced by a factor of

approximately .687, so serious errors can be produced by applying the algorithm

to such data.
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TABLEi

Glitch
probability

0.01

0.03

0.I

0.3

Velocity
StandardDeviations

x I000 Mean

A 174 158 217 179 254 197
B 192 158 217 179 333 216
C 171 159 205 178 249 192
D 172 159 205 178 251 193

A 367 237 212 201 183 240
B 367 345 222 272 184 278
C 365 230 207 188 180 234
D 365 231 209 189 181 235

A 238 194 274 202 196 221
B 268 332 377 328 303 322
C 235 189 267 199 199 218
D 236 188 262 233 197 223

A 206 175 143 271 150 189
B 527 536 474 563 501 520
C 193 172 142 271 143 184
D 213 207 188 282 144 207

A is simulatedwind, theoretical standarddeviation= .224
B is Awith addedglitches, eachwith s.d. = I
C is A smoothedwith Tukeyalgorithm
D is B smoothedwith Tukeyalgorithm

TABLE2

Effect of Tukeyalgorithmon1000-elementrandomarrayof theoretical

standard deviation unity.

Sample

No.

Standard Deviations

Random Array Tukeyed array Ratio

i 1.0110 0.6952 0.6876

2 0.9731 0.6751 0.6938

3 1.0049 0.6845 0.6812

4 1.0019 0.6954 0.6941

5 0.9946 0.6755 0.6792

Average ratio = 0.6872 + .0005
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Table 3 shows another simulation in which 1000-element arrays were

generated with Gaussian correlation functions, with E-folding times of 0, 0.7,

1.4, and 3.1 rain. Lines A represent the correlation function or the original

winds and lines B represent the correlation functions after Tukey smoothing.

Acceptable results are found of the correlation times of 1.4 min or more.

The Tukey algorithm has been successfully used in smoothing stratosphere

MST velocity data (BOWHILL and GNANALINGAM, this volume) and the results were

found to be of good quality.

TABLE 3

Cor tel a ti on

time (min)

0

0.7

1.4

3.1

Correlation x I000 vs Lag (rain)

Velocity 0 I 2 3 4 5 6 7

A i000 -26 44 I0

B I000 542 325 43

A i000 679 200 37 37 31

B I000 766 394 145 58 37

A I000 812 433 162 62 24 -14

B I000 838 523 248 106 44 1

A i000 907 679 420 254 83 17 -5

B i000 915 707 463 256 116 38 0

A is simulated wind, Gaussian autocorrelation

B is A smoothed with Tukey algorithm
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9.1.1 ON THE USE OF COLOUR REFLECTIVITY PLOTS TO MDNITOR

THE STRUCTURE OF THE TROPOSPHERE AND STRATOSPHERE

J. Rot tger

Arecibo Observatory

Arecibo. Puerto Rico

I. J. Fu, F. S. Kuo

National Central University

Chung-Li, Republic of China

C. H. Liu

Department of Electrical and Computer Engineering

University of Illinois

Urbana, IL

and

J. K. Chao

National Central University

Chung-Li, Republic of China

The radar reflectivity, defined as the range-squared corrected power of

VHF radar echoes, can be used to monitor and study the temporal development of

inversion layers, frontal boundaries and convective turbulence. These

observations as well as possible conclusions were discussed in more detail for

instance by GAGE and GREmq (1979), ROTTGER (1979), and LARSEN and ROTTGER

(1982, 1985). Also, the development of convective turbulence can be observed

(ROTTGER, 1980). Such measurements can most conveniently be done with VHF

radars operating with vertical beans.

From typical features of upward (cold front) or dowr_ard (warm front)

motion of reflectivity structures, the advection/convection of cold and warm

air can be predicted. Whereas, inversion layers, the tropopause and frontal

zones evolve as fairly stratified, stable and often thin laminated structures

on the height-time-reflectivity plots, convective turbulence is clearly

characterized by upwelling, nonstratified structureg.

High resolution colour plots appear to be useful to trace and to study the

life history of these structures, particularly their persistency, descent and

ascent. These displays allow an immediate determination of the tropopause

height as well as the determination of the tropopause structure (e.g., highly

stratified, split into multiple layers, fairly dlssolved, or indications of

potential temperature gradient deduced from reflectivity magnitude, etc.). The

life history of warm fronts, cold fronts, and occlusions can be traced, and

these reflectivity plots allow detection of even very weak events which cannot

be seen in the traditlonal meteorological data sets. The life history of

convective turbulence, particularly evolving from the planetary boundary layer,

can be tracked quite easily. Its development into strong convection reaching

the middle troposphere can be followed and predicted.

In a cooperative project of the Max-Planck-Institut-fur Aeronomie, the

University of Illinois and the National Central University in Chung-Li. data

taken with the SOUSY-VHF-Radar (ROTTGER, 1980) were analyzed in terms of

reflectivity and further processed with the VAX 11/750 image processor of the

Centre for Remote Sensing and Space Physics of the National Central University.
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Figure 1 shows two examples of black-white copies of colour height-time-reflec-

tivity plots. The abscissa is time, covering 6 hours for each plot, and the

ordinate is altitude from 1.5 km to 16.5 km MSL. Whereas, gray-shade or

contour plots and also these black-white copies can only barely cope with the

large dynamic rage of 60 dB of the reflectivity throughout the troposphere and

lcwer stratosphere, but the colour plots indicate a lot of interesting fine

structure as well as allow an immediate detection, tracing and interpretation

of relevant structures.

Z/km

29.5.78 0000 0100 30.5.78 0730

Figure 1. Copies of colour prints of height-time-reflectivity plots

obtained by image processing of VHF radar reflectivity, measured

with vertical beam and 150 m height resolution. Time coverage

is 2 x 6 hours, and altitude coverage from 1.5 to 16.5 kin.
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9.1.2 DATA COMMUNICATIONS AND MONITOR FOR THE

PENN STATE UNIVERSITY PROFILER NERWORK

491

Robert M. Peters

Department of Meteorology

The Pennsylvania State University

University Park, PA 16802

The profiler network to be installed by the Department of Meteorology at

Penn State University (THOMSON et al., 1984)utilizes a microcomputer for

network monitoring and control. When completed, the network will consist of

two VHF and one UHF wind profiling Doppler radars. Additional measurement

systems to be added to the network include temperature and humidity profiling

radiometers, sodar for boundary layer wind profiling and selected surface-based

baseline systems.

Experience gained at Penn State has shown that reliable unattended

operation oZ automated instrumentation systems has been best achieved when the

data base and communications/monitor functions are handled by separate computer

systems. The data base, which is generally available to many student and

faculty users, is incorporated on a large multiuser system with many other data

types, sources and applications. The "_rt" to the large system, the

communications controller, is a dedicated microcomputer optimized for fail safe

and unattended operation. This approach frees the operation of the network

from depending upon the use of a particular large, and usually maintenance

intensive, system as the data base. The communications controller serves as a

temporary archive if the on-line data base system is not available. The

microcomputer controller is also cost effective. Capital costs, maintenance

fees, and factors such as uninterruptable power supplies are small in

comparison to those for 'hini-mainframe" systems. Thus, if need be, the

microcomputer can be considered a disposable and replacable component.

Alarms on the network monitor provide an indication of network component

malfunctions. This is accomplished by monitoring data quality and transmitter

electronic parameters. A large color graphics display driven by the

microcomputer network controller also provides selected profiler output and

status indicators.

Each wind profiler within the Penn State ne_ork is currently using the

software and signal processing hardware developed by the NOAA/ERL Wave

Propagation Laboratory (STRAUCH et al., 1984). Several new features not

currently available on the earlier prototype systems are also available. The

transmitters (Tycho Technology, Inc.) include an internal microprocessor

control system. Each transmitter is linked via a serial line to the local

radar control minicomputer. This link provides the capability for complete

monitoring and control of the transmitters. The sodar systems, which are

designed around a microcomputer, will also be linked to the local radar

minicomputer. Uninterruptable power sources are only used with the radar

control computer, the radar signal processor and the radar site modem. Thus,

automatic and controlled restart of the transmitters is an essential feature in

the radar control software given the temporary but regular power outages which

occur on the service lines during thunderstorms.

Remote diagnostic capabilities are also being implemented in the Penn

State network. It will be possible to remotely analyze many specific

malfunctions of the transmitters or signal processor. Persons interested in

specific technical details of any of these systems should contact the author

here or at Penn State.
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9.1.3 ARCHIVAL OF POKER FLAT MST RADAR DATA
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The Poker Flat MST radar has operated almost continually from early 1979

to early 1985. The data recorded during that time resides on some ii00

magnetic tapes. A second (compressed) data set containing only the derived

parameters of velocity, width and signal to noise of the primary echo at each

height, plus the noise on each spectra, occupies another 250 tapes. While the

processing to generate the compressed data set does correct some known errors

(such as incorrectly recorded dates or records taken when the transmitters were

off) no attempt has been made to identify or remove spurious echoes. When the

data are analyzed at the Aeronomy Laboratory, we have programs which can remove

many types of spurious data and the knowledge to avoid analysis of data for

which the problems cannot currently be rectified.

However, other users of the data set, a rapidly increasing group, do not

have the advantage of insider knowledge or availability of programs to help

them sort out the good data from the bad. Because the Poker Flat data set is

such a unique and valuable resource, we are proposing to archive the data in

forms more useful for armlysis.

The archived data set would contain only the parameters for significant

echoes with contamination from airplanes, unwanted ionospheric returns,

frequency aliased Doppler signals and other sources removed. An example of the

improvement already achievable is shown by comparisons between Figures 1 and 2.

Figure 1 is a contaminated data set plotted with a program which removes only a

few of the more easily detected contaminants. Figure 2 shows the same data

plotted with a program having a more advanced contamination elimination

facility. The improvement in reducing contamination while selecting more

significant echoes is obvious. The archived set should be as good or better

than that shown in Figure 2 and may occupy only 25-50 tapes.

For many users, data at time intervals of an order of one minute is not

required. For their purposes, average data at half or one hour intervals would

suffice. Data in that form will also be archived and the total data set may

fit on only 1 or 2 tapes.

The archived tapes, together with documentation, will be available through

the National Center for Atmospheric Research. From the persons at this

meeting, or reading this paper, we solicit suggestions as to format for the

archived data and preferred intervals for time averaged data. Testing of

procedures to produce the archive quality data will commence soon and the

complete data set is expected to be available within 2 to 3 years.
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Figure I. A fairly typical sample of Doppler velocities observed

on Day 304, October 30, 1984, plotted by the "quick-look"

program. Large contaminating velocities caused by airplanes,

etc. can be seen at lower altitudes. Sporadic echoes above

80 km are due to meteors.
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Figure 2. The same data set as Figure 1 subjected to some quality

control. Data at adjacent heights and times were compared to

obtain consensus. Airplane associated noise spikes have been

removed and the data are now noticeably cleaner. In addition,

the effective threshold signal-to-noise ratio is lower, which

yields considerably more usable data at 23.4 km. In the

mesosphere, the data quality and quantity is also improved.

Other forms of interference remain. To eliminate these, more

sophisticated quality-control strategies need to be developed.
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P. K. Rastogi

Electrical Engineering and Applied Physics Department

Case Western Reserve University

Cleveland, Ohio 44105

At the first Workshop on Technical Aspects of MST Radar, the MST Radar

Coordination (MSTRAC) Group was initiated to serve as a forum for data-

exchange, and to coordinate and foster other activities related to MST radars.

During its first year the group was jointly chaired by Dr. B. B. Balsley and

Dr. S. K. Avery. Through their efforts, a small group of users was identified

to which sample data tapes were furnished by several participating observa-

tories. In their report, at the end of the first year (AVERY and BALSLEY,

1984), it was noted that the response from the observatories had not been

overly enthusiastic and though it was possible to identify several potentially

useful areas (e.g., data catalogs, data format and possibly radar frequency

allocation), it was necessary to reassess the program. The current chairman

assumed responsibility during summer, 1984.

During October, 1984, a questionnaire was mailed to about 15 scientists

who either managed an MST radar facility or had close collaboration with one.

The purpose of the questionnaire was to assess the level of interest in

providing data for an interim data repository or data base and in other related

activities. Of the 9 questionnaires returned, only about half were from groups

already involved in dissemeniating data to other users or from groups that

planned to do so once their facilities became operational. In subsequent

discussions with several of the respondents, it became clear that the

principal reasons for the tepid response were the lack of resources or shortage

of trained personnel, frequently both. Also, most of the facilities are

already directly involved with user(s), who naturally seam to share in the

burden of developing programs, documentation and data analysis schemes. Few

respondents have expressed an interest in participating in discussions on data-

exchange formats, and frequency allocation for MST radars. Due to the limited

response, however, it is uncertain whether a discussion on these topics would

be of any genuine interest to the MST radar community at large.

Some of the facilities (e.g., Poker Flat) are currently in the process of

establishing their own data base. Dr. A. D. Richmond has been managing the

Incoherent-Scatter Data Base (ISDB) at NCAR and has expressed a willingness to

extend this data base to incorporate a part of MST radar data. Since ISDB

already has an established format shared with several incoherent-scatter radar

facilities, it would be desirable to adhere to this format and provide a

complete documentation with tapes.

During the last year, no further requests have been received from the user

community for additional MST radar data.

In the opinion of this chairman, it is necessary to reas sess the need for

MSTRAC and to clearly define a role in which it can be of service to the MST

radar community.

R EFE R_q CE

Avery, S. K., and B. B. Balsley (1984), Data base management -- MSTRAC,

Handbook for MAP, 14, edited by S. A. Bowhill and B. Edwards, 300-301,

SCOSTEP Secretariat, Department Electrical and Computer Engineering,

University of Illinois, Urbana-Champaign, IL.
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A. D. Richmond

HAO/NCAR

P.O. Box 3000

Boulder, O0 80307

One means of making MST data more easily accessible for scientific

research by the general scientific community is through a centralized data

base. Such a data base can be designed to readily provide information on data

availability and quality, and to provide copies of data from any radar in a

common format to the user.

The ionospheric incoherent-scatter radar community has established a

centralized data base at NCAR that may serve not only as a model for a possible

MST data base, but also as a catalyst for getting an MST data base started.

Some key elements of the NCAR data base are:

Data are processed to yield geophysical parameters (e.g., velocities

instead of Doppler shifts) by the radar organizations before being sent to

NCAR;

Emphasis is on data for which measurement and analysis techniques have

become well-understood and relatively routine;

All radar organizations use a common format for sending datal

NCAR catalogues the data and prepares summary information files;

NCAR provides data copies to users upon requestl

NCAR assists users when possible with documentation and software, and

helps place users in contact with appropriate persons at radar organiza-

tions for further information;

Users are required to offer co-authorship on publications to data

providers;

Costs are largely borne by each respective institution with minimum trans-

fers of funds. (NSF-supported radars are supposed to have funds included

in their contracts to cover costs of participation in the data base).

The NCAR data base can include MST data in this same framework with

relatively little extra effort. We are willing to handle MST data on a limited

basis in order to permit assessment of community interest and in order to pro-

vide some experience with a centralized data base for MST data. If sufficient

interest develops, NSF support could be sought for a full-scale MST data base,

either at NCAR or elsewhere. Data from the Poker Flat radar are already under

consideration for incluslon in the NCAR data base.

One important requirement is a common data format. The format currently

used for incoherent-scatter data is quite flexible, and in fact was designed

with the thought in mind of having it usable for data from other types of

instruments. A brief description of this format is appended. The MST

community may find this format acceptable, or may wish to design a more

specialized format.



NCAR'sdatabasetape format

"All words are 16-bit, 2's complement integers.

Physical Record

Last word: checksum
!

l I Logical record [ Logical Record Logical Record

!

First word: total number of words in this physical record, including this

word and checksum.

Each physical record contains an integral number of logical records.

Logical Record (Data Record)

Or:

NROW

rows

Pro1 ogue I

1-D codes

1-D values [

2-D codes ]

2-D values J

2-D values I

Length

LPRGL

JPAR

JPAR

MPAR

MPAR

MPAR
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PROLOGUE

WORD

NU_ ER

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

NAI_

LToT

KREC

KINST

KINDAT

IBYR

IBDT

IBRM

IBCS

IEYR

IEDT

IEHM

IECS

LPROL

JPAR

MPAR

NROW

DE S CRI PT ION

Number of 16-bit words in this record, including this

one

Kind of record (1002 for data record in this format)

Instrument code

Kind-of-data code, pointing to documentation on

analysis procedure used

Beginning year for data in this record

Beginning month/day (M_DD)

Beginning hour/rain (HHMM)

Beginning centisecond

Ending year

Ending date

Ending hour/mln

Ending centi second

Length of this prologue (at least 16)

Number of single-valued parameters (0 permissible)

Number of multiple-valued parameters (0 permissible)

Number of entries for each multiple-valued parameters

(0 permissible)
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SAMPLE PARAMETER CODES

Code Description Designator Units

10 YEAR (UNIVERSAL TIME) YEAR 1. UT

20 MONTH/DAY (UNIVERSAL TIME) MMDD 1. UT

21 DAY NUMBER OF YEAR (UNIVERSAL TIME) DAY # 1. UT

30 HOUR/MIN (UNIVERSAL TIME) HHMM 1. UT

34 TIME PAST 0000 UT HR > 0000UT 1.E-03 HOUR

60 INTEGRATION TIME FOR THESE DATA INTEGRATN T 1. S

70 SAMPLING INTERVAL (TIME BETWEEN SAMPLS) SAMPL NTRVL 1. S

110 ALTITUDE (HEIGHT) ALTITUDE 1. KM
111 ADDITIONAL INCREMENT TO ALTITUDE ADDITNL HT 1.E-01 M

115 ALTITUDE AVERAGING INTERVAL AVGNG DEL H 1. KM

116 ADDITIONAL INCREMENT TO HT AVGNG INTRVL ADDITNL D H l.E-01 M

120 RANGE RANGE 1. KM

121 ADDITIONAL INCREMENT TO RANGE ADDITNL RNG 1.E-01 M

125 WIDTH OF RANGE GATE RANGE GATE 1. KM

126 ADDITIONAL INCREMENT TO RNGE GATE WIDTH ADDITNL R G I.E-01 M

130 MEAN AZIMUTH ANGLE (0 ffi GEOG N, 90 = EAST) AZ ANGLE I.E-02 DEG

140 ELEVATION ANGLE (0 = HORIZONTAL, 90 = VERT) EL ANGLE 1.E-02 DEG
402 PULSE LENGTH PULSE LEN 1.E-06 SEC

412 LOG10 SIGNAL TO NOISE RATIO LG10(SNR) 1.E-03
486 PEAK POWER PEAK POWER 1. KW

490 TRANSMITTED FREQUENCY XMITTED FRQ I.E+05 HZ

492 RECEIVED DOPPLER FREQUENCY OFFSET R DPLR OFST 1. HZ
494 RECEIVER BANDWIDTH RCVR BANDWD 1. KHZ

496 RECEIVER DELAY TIME RCVR DLAY T 1.E-06 SEC

830 LOG10 (NUTRL ATM MASS DENSITY IN KG/M3) LG10(M DEN) 1.E-03

910 NEUTRAL ATMOSPHER LOG10(PRESSURE IN PA) LG10(PRES) 1.E-03

920 PRESSURE SCALE HEIGHT PRES SCL HT 1.E+01 M

1010 SKEW ANGLE DEFININ GEOG UNIT VECTRS:I-3 ROT ANGL-GG 1.E-02 DEG

1410 NEUTRAL WIND IN DIRECTION 1 VN1 1. M/S

1420 NEUTRAL WIND IN DIRECTION 2 VN2 1. M/S

1430 NEUTRAL WIND IN DIRECTION 3 VN3 1. M/S

Codes for error values are the negative of the corresponding parameter code, e.g. -1410 is the code for
the error in the measured neutral wind in direction 1.

Missing data values are entered as -32767.

The angle given under code 1010 gives the rotation of direction 1 from eastward and of direction 2 from

northward. Direction 3 is upward.
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9.2.3 SUMMARY

A. D. Richmond

HAO/NCAR

P.O. Box 3000

Boulder, CO 80307

The first three papers presented information on some data manaKement pro-

cedures used at differemt radars. An issue was brought up in the last two

talks concerning data exchange. The MSTRAC chairman, Dr. P. K. Rastogi, noted

that several impediments exist to data exchange, notably the lack of time and

resources needed to prepare and transfer data. Although Richmond noted that

NCAR could handle archiving and sending data copies to interested users, it was

not clear that this alone would be sufficient to provide for an active data

exchange.
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