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ABSTRACT 

Processing research w a s  undertaken t o  demonstrate t h a t  superior  S i c  

c h a r a c t e r i s t i c s  could be achieved through t h e  use of  i d e a l  cons t i tuent  

powders and ca re fu l  post-synthesis processing s teps .  

I n i t i a l  research developed means t o  produce -1000 8, uniform diameter, 

nonagglomerated, spher ica l ,  high puri ty  S i c  powders. Accomplishing t h i s  

goal required major revis ion of t h e  p a r t i c l e  formation and growth model 

from one based on c l a s s i c a l  nucleation and growth t o  one based on 

co l l i s ion  and coalescence of S i  pa r t i c l e s  followed by t h e i r  carburizat ion.  

Dispersions based on pure organic solvents as w e l l  as s t e r i c  s t a b i l i z a t i o n  

were invest igated.  Although s t a b l e  dispersions were formed by both, 

subsequent pa r t  fabr ica t ion  emphasized t h e  pure solvents  because w e  

an t ic ipa ted  fewer problems with drying and res idua ls  on t h e  high pu r i ty  

pa r t i c l e s .  T e s t  p a r t s  were made by the co l lo ida l  pressing technique; both 

l iq l~ tc l  f i l t r a t i o n  a n d  consolidation (rearrangement s tages  were modeled. 

Green dens i t i e s  corresponding t o  a random c lose  packed s t ruc tu re  ( -63%) 

w e r e  achieved; t h i s  highly per fec t  s t ruc ture  has a high, uniform 

coordination number (>11.) approaching the qua l i ty  of a n  ordered s t r u c t u r e  

without introducing domain boundary defects. After  drying, p a r t s  were 

densif ied a t  temperatures ranging from 1800 t o  2100°C. 

dens i f ica t ion  temperatures w i l l  probably be i n  t h e  1900-2000°C range based 

on these  preliminary r e s u l t s  which showed tha t  2050°C samples had 

experienced subs t an t i a l  grain growth. 

samples exhibi ted excel lent  mechanical propert ies .  B i a x i a l  t e n s i l e  

s t rengths  up t o  714 MPa and Vickers hardness values of 2430 kg/mm2 were 

both more t y p i c a l  of hot pressed than s in te red  S ic .  Both r e s u l t  from t h e  

absence of l a rge  defects and t h e  confinement of r e s idua l  porosi ty  ((2.5%) 

t o  small diameter, uniformly dis t r ibuted pores. 

Optimum 

Although over f i red ,  t h e  2050°C 

This research program accomplished a l l  of i t s  major object ives .  

Superior microstructures and properties were a t t a ined  by using powders 

having i d e a l  cha rac t e r i s t i c s  and special  post-synthesis processing 

procedures. 
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I m  INTRODUCTIQB 

We a t  M.I.T. have approached t h e  h i s t o r i c  subject  of ceramic property- 

processing in t e rac t ions  from a new prospective. 

demonstrating through government and indus t r i a l ly  sponsored research that 

powder processes and r e su l t i ng  propert ies  of ceramic bodies can be 

dramatically improved by using powders having unconventional 

c h a r a c t e r i s t i c s .  The p r inc ipa l  new feature  is requir ing t h a t  t h e  powders 

have a uniform p a r t i c l e  s i z e  so t h a t  the  flaw c h a r a c t e r i s t i c s ,  densi ty  

uniformity,  and coordination number i n  t h e  green bodies a l l  can be improved 

We hypothesized and a r e  now 

simJltaneously a t  t h e  expense of a s m a l l  decrease i n  green densi ty  l eve l .  A 

1 8 s ~ ~  heated gas phase synthesis  process has been developed t o  produce 

nonoxide ceramic powders having t h e  required c h a r a c t e r i s t i c s .  

Defects i n  ceramic bodies are usually a t t r i b u t a b l e  t o  some s p e c i f i c  

event i n  t h e  processing h i s to ry  of a component, 

synthesis  through a l l  t h e  handling steps t o  tne  f i n a l  consol idat ion i n t o  a 

densif ied p a r t .  There a r e  many causes for s t rength  l imi t ing  defec ts  and 

t h e i r  e l iminat ion continues t o  be t h e  subject of processing research a n d '  

component development programs. Our approach t o  resolving t h i s  problem 

requires  t h a t  cons t i tuent  powders s a t i s f y  r i g i d  c r i t e r i a .  * With highly 

spec i f i c  powders and t h e  cor rec t  handling procedures, it i s  poss ib le  t o  

cause t h e  ind iv idua l  p a r t i c l e s  t o  arrange i n  a c lose  packed s t r u c t u r e  a s  

shown i n  Figure 1 o r  more p r a c t i c a l l y  i n  a random c lose  packed s t r u c t u r e 3  

which has many of t h e  same a t t r i b u t e s .  

s t r u c t u r e  w i l l  exhib i t  p rec ise ly  definable,  uniform shrinkage t o  t h e o r e t i c a l  

densi ty  with low f i r i n g  temperatures and shor t  f i r i n g  times. 

dens i f ica t ion  cycles  should v i r t u a l l y  eliminate gra in  growth. 

extending from powder 

Bodies having t h i s  unusual i n t e r n a l  

These 

A l s o ,  t h e  



cha rac t e r i s t i c  s i z e  of remaining f l a w s  should be approximately t ha t  of t h e  

p a r t i c l e s  since individual  p a r t i c l e  vacancies a r e  the l a rges t  probable 

defect . 
Our research has demonstrated t h a t  t h e  powders must have t h e  following 

i d e a l  cha rac t e r i s t i c s :  

t yp ica l ly  less  t h a n  0.5 wn; ( 2 )  t h e  powder must be f r e e  of agglomerates; 

(3 )  the  p a r t i c l e  diameters must have a narrow range of sizes; ( 4 )  t h e  

morphology of t he  p a r t i c l e s  must be equiaxed, tending toward sphe r i ca l  

shapes; ( 5 )  t h e  powders must have highly control led pu r i ty  with respect  t o  

contaminants a n d  t o  mult iple  polymorphic phases. 

s t ruc tu res  shown i n  Figure 1 o r  random c lose  packed s t r u c t u r e s ,  a powder 

exhib i t ing  these i d e a l  c h a r a c t e r i s t i c s  should be s i n t e r a b l e  t o  t h e o r e t i c a l  

densi ty  without r e so r t ing  t o  pressure or  addi t ives  and should permit t h e  

(1) t h e  powder must have a small p a r t i c l e  s i z e ,  

E i the r  with t h e  ordered 

f i n a l  grain s t r u c t u r e  t o  be highly cont ro l lab le .  

Figure 1. Ordered packing of monodispersed 0.2 p diameter TiO,  
spheres. (Barr inger  Ref. 24 

- -  
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Because ex i s t ing  powder synthesis  techniques could not produce powders 

with these  r e q u i s i t e  c h a r a c t e r i s t i c s ,  we developed a laser heated gas phase 

synthesis  process. The l a s e r  driven gas phase react ion process o f f e r s  many 

advantages. It is a clean process because no po ten t i a l ly  contaminating 

surfaces  are heated. 

the  volume enclosed by the  reactant  gas stream and the  l a s e r  beam. The 

a b i l i t y  t o  m a i n t a i n  s teep  temperature gradients i n  t h e  e f f e c t i v e  thermal 

environment, and thus a well  defined reaction zone, allows prec ise  cont ro l  

of t he  nucleation r a t e ,  t h e  growth r a t e  and exposure t imes,  permit t ing t h e  

nucleation and growth of very f i n e  uniformly s ized p a r t i c l e s .  V i r tua l ly  

100% of t h e  reac tan ts  a r e  consumed and  t h e  processing energy i s  pro je ted  t o  

be only 2-3 kWhr/kg of powder. 

The react ion zone is p rec i se ly  defined, cons is t ing  of 

Before s t a r t i n g  t h i s  program, our research had emphasized synthes is  of 

The f e a s i b i l i t y  of synthesizing Sic had been S i  and Si3N4.4-7 

demonstrated8 but process conditions had t o  be i d e n t i f i e d  t h a t  would r e s u l t  

i n  approximately 1000 a diameter agglomerate-free ? a r t i c l e s .  

11. APPROACH 

This research program had th ree  tasks;  each t o  be ca r r i ed  out 

sequent ia l ly  during t h e  course of t h e  proposed three year  program. 

f i r s t  we were t o  define process conditions leading t o  su i t ab le  S ic  powders, 

i n  t h e  second w e  were t o  f ind  means t o  disperse t h e  powders, and i n  t h e  

t h i r d  w e  were t o  shape and consolidate powders. 

I n  t h e  

The first yea r ' s  ob jec t ive  was t o  grow nominally 1000 A diameter S i c  

powders having a l l  r e q u i s i t e  cha rac t e r i s t i c s .  The most important 

c h a r a c t e r i s t i c s  a r e  freedom from agglomerates and narrow s i z e  d i s t r i b u t i o n .  

3 



Other important cha rac t e r i s t i c s  are stoichiometry,  c r y s t a l l i n i t y  (amorphous 

o r  spec i f i c  c r y s t a l l i n e  phase),  pu r i ty  and shape. 

i n t o  t h e  second and t h i r d  years. 

This t a s k  w a s  continued 

The primary object ive f o r  t h e  second year  w a s  t o  f ind  means of 

dispers ing the  S ic  powders which w i l l  insure  t h a t  a l l  p a r t i c l e s  are r e l i a b l y  

separated.  

completely removable and should be reasonably f r e e  of both t o x i c i t y  and 

combustion problems. 

powder a f t e r  capture i n  t h e  f i l t e r  assembly.9 

of more recent ca lcu la t ions  provided t h e  i n i t i a l  basis f o r  s e l ec t ing  

dispersants  f o r  Sic.  

The dispers ing l i q u i d  must not contaminate t h e  powders, must be 

We had previously invest igated t h e  dispers ion of S i  

These r e s u l t s  and t h e  r e s u l t s  

Year three ' s  research introduced shaping and consolidation i s sues  i n  

conjunction with continued synthesis  and dispersion research top ics .  

Introduction of subsequent processing s t eps  required reexamination a n d  

reoptimization of synthesis and  dispersion processing s teps .  

made by cent r i fuga l  ca s t ing  and by c o l l o i d a l  pressing techniques. 

Densification w a s  l i m i t e d  t o  pressureless  s in t e r ing  with B as a s i n t e r i n g  

a i d .  

mechanically. 

Sic  p a r t s  were 

Resulting p a r t s  were character ized microstructural ly  and 

111. sic mmER SYrnESIS ' 

A. 

The powder synthesis  p r o ~ e s s ~ ' ~  employs a n  o p t i c a l  energy source t o  

Description of the Synthesis Process 

transfer t h e  energy required t o  i n i t i a t e  and sus t a in  a chemical reac t ion  i n  

t he  gas phase. 

throughout t h e  gas volume, a process t h a t  is d i s t i n c t  from conventional ones 

where heat i s  t r a n s m i t t e d  from a source t o  t h e  gas molecules by a 

I n  t h i s  process, t h e  gas molecules are "self-heated" 

4 



combination of conduction, convection a n d  r ad ia t ive  processes. The 

advantages of t h i s  means of heat ing are freedom from contamination, absence 

of surfaces  that a c t  as heterogeneous nucleation si tes,  and unusually 

uniform and p rec i se  process control .  

powders with c h a r a c t e r i s t i c s  t h a t  a r e  ideal  f o r  making ceramic bodies. 

These a t t r i b u t e s  permit synthes is  of 

I n  t h e  experimental apparatus,  Figure 2,  t he  laser beam enters t h e  

react ion chamber through a K C 1  window and is  e i t h e r  a r r e s t ed  with a water 

cooled copper block or  e x i t s  through a second K C 1  window. 

range from 270-1020 watts/cm2 f o r  t h e  unfocused beam, and up t o  l o 5  
watts/crn* near t h e  foca l  point of a 13 cm l e n s .  

f o r  S i ,  NH3-SiH, f o r  Si,N,, and e i t h e r  CH4-SiH4 or  C$,-SiH,+ f o r  S i c )  e n t e r  

Power i n t e n s i t i e s  

The reac tan t  gases (SiH, 

To Bear Stopper 
-. 

ir.- 

Annular Ar 

0 a 
Y 

0 Y 

: 
K 

Figure 2. Schematic of powder synthesis c e l l .  
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t h e  c e l l  orthogonal t o  t he  l a s e r  beam through a 1.5 mm s t a i n l e s s  s t e e l  

nozzle 2-3 mm below t h e  l a s e r  beam. A coaxial  argon stream i s  used t o  

suppress the expansion of t h e  product stream with entrained p a r t i c l e s ,  so 

these  p a r t i c l e s  can be co l l ec t ed  i n  a microfiber f i l t e r .  Argon gas is 

d i rec ted  across t h e  KC1 window t o  prevent powder co l l ec t ion  t h e r e  and 

possible  breakage. 

Figure 3. 

and C2H4. 

train includes a T i  oxygen g e t t e r  t h a t  t yp ica l ly  achieves < 1 ppm 02. 

Reaction c e l l  pressures ,  ranging from 0.08 t o  2.0 a t m ,  a r e  maintained by a 

t h r o t t l i n g  valve i n  s e r i e s  between t h e  f i l t e r  and t h e  vacuum pump. 

S in te r ing  enhancing addi t ives  a r e  introduced i n  t he  reactant  gas stream; 

e.g. boron as BG6. 

A t y p i c a l  Si3N, reac t ion  flame i s  shown schematically i n  

The reac tan t  gases employed a r e  e l ec t ron ic  grade SiH,, N H 3 ,  CH, 

Prepurif ied argon is  used as  the  i n e r t  buffer  gas. The A r  gas 

, 

Figure 3. Physical c h a r a c t e r i s t i c s  of a t y p i c a l  l a s e r  induced S i 3 N 4  
react ion.  The react ion f l a m e  is shown r e l a t i v e  t o  the  gas 
nozzle and laser beam pos i t ions .  
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The powders produced i n  the  react ion zone a r e  ca r r i ed  i n t o  t h e  

co l l ec t ion  f i l t e r  by t h e  product and argon gases. With recent modifications,  

v i r t u a l l y  a l l  of t he  powder i s  transported t o  the f i l t e r .  Based on m a s s  

balance, t h e  l a s e r  induced reac t ion  typ ica l ly  converts 85 - 100% of t h e  

reac tan ts  t o  products. After termination of a synthesis  experiment, t h e  

co l lec ted  powders a r e  sealed i n  t h e  microfiber f i l t e r  under a pos i t i ve  argon 

pressure;  t h e  f i l t e r  assembly is  then t ransfer red  i n t o  a glove box through a 

vacuum antechamber. A l l  post-production handling i s  performed in a n  argon 

environment maintained a t  l e s s  than 10 ppm each of O2 and H20. None of these  

powders oxidize pyrophorically on exposure t o  air. 

Most process var iab les  were manipulated ~ y s t e m a t i c a l l y ~ ’ ~  t o  determine 

t h e i r  e f f e c t  on p a r t i c l e  cha rac t e r i s t i c s .  The var iab les  t h a t  have a d i r e c t  

e f f e c t  on t h e  formation and growth k ine t ics  include react ion temperature, . 

heating r a t e ,  p a r t i a l  pressure of reactants ,  t o t a l  pressure a n d  d i l u t i o n  by 

i n e r t  gases. Most of these var iables  were nanipulated t o  demonstrate t h e i r  

e f f e c t s  on S i c  powder cha rac t e r i s t i c s .  

c h a r a c t e r i s t i c s :  s i z e ,  s i z e  d i s t r ibu t ion ,  shape, stoichiometry,  chemical 

We examined t h e  following powder 

impuri t ies  , and c r y s t a l l i n i t y .  

The i d e n t i f i c a t i o n  of t h e  p a r t i c l e  formation process was the  primary and 

t h e  e s s e n t i a l  r e s u l t  of these synthesis  experiments. Our o r i g i n a l  synthesis  

model w a s  bas i ca l ly  c l a s s i c a l  nucleation and growth.’’ This model had some 

success,  espec ia l ly  i n  describing low temperature, low pressure reac t ions  

t h a t  produced small p a r t i c l e s .  

descr ibing process conditions leading t o  l a r g e r  S i  p a r t i c l e s  

However, t h i s  model had severa l  problems i n  



and, i n  p a r t i c u l a r ,  with respect t o  S ic  synthesis  from a Sill,, reac tan t .  Our 

current  Sic  synthesis  modell1,l2 has a S i  formation and growth s t e p  followed 

by a carburizat ion s tep.  

c o l l i s i o n  and coalescence. 

The S i  p a r t i c l e  formation and growth occurs by 

Based on a n  improved understanding of t h e  operat ive mechanisms, it w a s  

poss ib le  t o  increase t h e  mean S i c  p a r t i c l e  diameter from nominally lOOA t o  

over gOOA w h i l e  r e t a in ing  complete d i s p e r s i b i l i t y .  

S ic  powders w i t h  diameters up t o  approximately 1500A were produced. 

P a r t i a l l y  d i spe r s ib l e  

B. Particle Formation Model 

A successful model f o r  t he  formation of s i l i c o n  p a r t i c l e s  by t h e  l a s e r  

process must explain how the  process var iab les  deter idne t h e  f i n a l  s i z e  of 

t h e  p a r t i c l e s ,  t he  p a r t i c l e  s i z e  d i s t r i b u t i o n ,  and t h e  f i n a l  morphology 

d i s t r ibu t ion  of t h e  p a r t i c l e s .  The l a s t  point i s  c r u c i a l  s ince  of t h e  th ree  

types of s i l i con  p a r t i c l e s ,  (I: 50-200 A agglomerated spheres,  11: 200- 

1000 A l i nea r  aggregates,  and 111: 

Type I11 powders t h a t  a r e  needed f o r  ceramic processing. 

type I11 S i  p a r t i c l e s  must form before carburizat ion commenced t o  achieve 

500-5000 A i so l a t ed  spheres)  it i s  t h e  

We found t h a t  t h e  

t h e  desired Sic powder cha rac t e r i s t i c s .  

1. Coalescence Model 

a. Mechanism 

The basis of t h e  coalescence moLi -s  t h a t  s i l a n e  rapidly decomposes t o  

either s i l i c o n  o r  di-s i l icon p a r t i c l e s  which make l a rge r  a n d  l a rge r  

p a r t i c l e s  through co l l i s ions .  l1 ,' * 
t h e  S i  and S i p  species should be t r e a t e d  as condensed phase p a r t i c l e s  o r  as 

There i s  a bas ic  ambiguity i n  whether 



gas molecules. Schematically, t he  reaction can be w r i t t e n  as either:  

nSiH, + nSi (g )  + ... %i(n/m)  
n o r  nS iH ,  + Sig(@;)  + ... +msi(n/m) . 

Sawanoll appl ied Smoluchowski 'sl  

coagulation equations t o  t h e  l a s e r  process, and found t h a t  t h e  agreement was 

reasonable. 

average p a r t i c l e  s i z e  so lu t ion  of t h e  

- 3  

Recently Lee has used the  concept of s e l f - s i m i l a r i t y  i n  t h e  

evolving p a r t i c l e  s i z e  d i s t r i b u t i o n  t o  develop a closed so lu t ion  t h a t  

pred ic t s  not only t h e  average p a r t i c l e  s ize  of an aerosol ,  but i t s  

d i s t r ibu t ion  as For a case where re laxa t ion  t o  sphe r i ca l  shapes 

i s  f a s t ,  Lee's p r inc ip l e  r e s u l t s  a r e  tha t  t he  average p a r t i c l e  volume 

increases as the  6 / 5  power of time, and tha t  t h e  p a r t i c l e  s i z e  d i s t r i b u t i o n  

rapidly converges t o  a log-normal d i s t r ibu t ion  w i t h  a w i d t h  parameter of 

about 1.3 . 

b. Final  Average Particle S i z e  

I n  t he  coalescence model, p a r t i c l e  growth occilrs by two p a r t i c l e s  

co l l i d ing  and coalescing. Usually, coalescence only goes t o  completion i n  

t h e  shor t  t i m e  s c a l e  of these  react ions i f  t h e  p a r t i c l e s  a r e  l i qu ids .  Lee's 

so lu t ion  i s  f o r  a co l l ec t ion  of l i qu id  pa r t i c l e s .  I n  t he  l a s e r  process,  

coalescence w i l l  proceed from t h e  t i m e  the  p a r t i c l e s  melt u n t i l  they have 

cooled and s o l i d i f i e d  o r  carburized. Large, cold s o l i d  p a r t i c l e s  w i l l  not 

form s t rong  i n t e r p a r t i c l e  bonds. 

therefore  determined i n  pa r t  by t h e  length of time the  unreacted S i  

p a r t i c l e s  are h o t t e r  than t h e  melting point of s i l i con .  

The f i n a l  average p a r t i c l e  size is  

Experimentally t h i s  t i m e  i n t e r v a l  i s  r e l a t ed  t o  the  peak reac t ion  

temperature,  s ince  increasing maximum temperatures give longer times above 
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t h e  melting point .  

reac tan ts  through t h e  c e l l  s ince  t h e  f a s t e r  t h e  reac tan ts  move through t h e  

laser beam, t h e  sho r t e r  i s  t h e  t i m e  they spend at  high temperature. 

The t i m e  i n t e r v a l  i s  also r e l a t ed  t o  t h e  ve loc i ty  of t h e  

The f i n a l  p a r t i c l e  s i z e  a l s o  depends on t h e  c e l l  pressure which 

determines the mass densi ty  of s i l i c o n  i n  t h e  react ion z'one. 

number density decreases at a r a t e  t h a t  is  not s t rongly dependent on t he  mass 

densi ty ,  but r a the r  depends mostly on t h e  number densi ty  i t s e l f ,  a higher 

i n i t i a l  mass densi ty  w i l l  r e s u l t  i n  l a r g e r  p a r t i c l e s  being present at  any 

given t i m e .  

zone temperatures, which r e s u l t  i n  l a rge r  average p a r t i c l e  s i z e s ,  as 

described above. 

Since the  

Higher c e l l  pressures  a l s o  usual ly  produce higher peak reac t ion  

2. Formation of SIC Powders by Carburization of Si Particles 

W e  have developed increasing c l e a r  evidence t h a t  Sic p a r t i c l e s  form 

gaseous mixture of silane and a hydrocarbon through a two-step reac t ion ;  

- 

10 
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C. Particle S i z e  Distribution 

Lee's so lu t ion  p red ic t s  t h e  u l t imate  emergence of a log-normal s i z e  

d i s t r ibu t ion  w i t h  a v id th  parameter approximately equal t o  1.3. The l a s e r  

process would produce such a narrow d i s t r i b u t i o n  only i f  a l l  of t h e  flow 

streams remained above 1410°C f o r  t h e  same length of time and they had t h e  

same composition. Unfortunately,  a t  t h e  present time t h e  outer  edge of t h e  

react ion zone is  colder  than the  center  and  is d i lu t ed  by t h e  annular stream. 

Therefore la rger  p a r t i c l e s  form i n  t h e  center  of t h e  react ion zone, and 

smaller ones at the  edges. These e f f e c t s  and a non uniform ve loc i ty  r e s u l t  

i n  a broader d i s t r i b u t i o n ;  t y p i c a l  width parameters a r e  around 1.7. 



s i l i c o n  p a r t i c l e s  form from s i l a n e  pyrolysis products, and then carburize t o  

produce t h e  s i l i c o n  carbide pa r t i c l e s .  T h i s  sec t ion  descr ibes  t h e  

carburizat ion mechanism of s i l i c o n  pa r t i c l e s .  Conversion rates of s i l i c o n  

p a r t i c l e s  t o  Sic calculated assuming two postulated rate- l imit ing mechanisms 

are compared with experimental r e su l t s .  

a. Background 

There are severa l  po ten t i a l  r a t e  control l ing s teps  f o r  t h e  carburizat ion 

of s i l i c o n  p a r t i c l e s .  The most l i k e l y  were considered t o  be hydrocarbon 

pyrolysis  o r  d i f fus ion  of S i  o r  C through t h e  S ic  product layer .  Methane and 

ethylene were used f o r  Sic synthesis w i t h  s i l a n e .  Tyrolysis k i n e t i c s  of both 

gases are reviewed. 

Despite t h e  complexity of pyrolysis  k ine t i c s ,  methane's ove ra l l  reac t ion  

rate is  believed t o  be represented by the f i r s t -o rde r  i n i t i a t i o n  s tep :  

CH,+ CH3+ H. 

The rate of pyrolysis  is  conveniently i l l u s t r a t e d  using a half  l i f e  (Table 1) 

fo r  t h e  react ion.  

Ethylene pyrolysis  proceeds through p a r a l l e l  channels t o  form C 2H2  and 

As these  react ions are second-order, t h e  r a t e  depends on t h e  i n i t i a l  C2H3. 

concentration. 

conditions used i n  our experiments is l i s ted  i n  Table  1 along with t h e  ha l f  

l i v e s  of methane and silane. Ethylene exhibi ts  a n  intermediate pyrolysis  

rate between methane and s i lane .  

1 

For comparison, a n  equivalent ha l f  l i f e  of ethylene a t  t h e  
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Table 1. Decomposition ha l f - l i ves  of ethylene,  methane and s i l a n e  (sec). 

2 

SiH, 
Colt r in18 

CH4 
Chen17 

2H4 
Temp (K Skinner' 

1000 125 1 .82x1o7 0.01 
1300 6 . 2 ~ 1 0 ' ~  190 4 .2x10-5 

1900 2 . 0 9 ~ 1 0 - ~  1 . 0 8 ~ 1 O - ~  9x10- * 1600 2.1~10- 3 0 -146 9 . 6 ~ 1 0 - ~  

.a 

C e l l  Pressure ( a t m )  0.2 - 0.95 
Laser Power I n t e n s i t y  (W/cm*) 2,500 - 24,000 
Si l ane  Flow Rate (cc /min>  10 - 50 

Reaction Temperature (K) 
G a s  Mixture Stoichiometry ( C  /S i )  0.86 - 2.2 

1330 - 2210 

Except grain boundary d i f fus ion  of S i ,  d i f fus ion  coe f f i c i en t s  of S i  and 

C through d i f f e ren t  paths have been reported. Carbon g ra in  boundary 

d i f fus ion  is much f a s t e r  than  e i t h e r  of t h e  l a t t i c e  d i f fus ion  paths.  

Although S i  gra in  boundary d i f fus ion  coe f f i c i en t s  a r e  not known, t he  

r e l a t i v e  values can be deduced. Carburization of s i l i c o n  subs t r a t e s  by 

flowing hydrocarbons reveals  t h a t  material t r anspor t  through the  product 

l aye r  occurs by s i l i c o n  grain boundary d i f fus ion .  Thus, s i l i c o n  gra in  

boundary diffusion i s  f a s t e r  t h a n  t h a t  of carbon. 

b. Experimental Results 

Experiments were performed using t h e  reac t ion  c e l l  shown i n  Figure 2 

and 180 W focused COP laser beam. 

were control led by mass-flow con t ro l l e r s .  

Both s i l a n e  and hydrocarbon flow rates 

The ranges of inves t iga ted  

process conditions are summarized i n  Table 2. 

Table 2. Range of process conditions inves t iga ted  f o r  S i c  powder synthes is  
s tud ies  . 
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1) Methane: S i lane  System 

A t  0.95 a t m  pressure  and 6000 W/cm2 laser i n t e n s i t y ,  t h e  reac t ion  

temperature increased abrupt ly  with decreasing reac tan t  gas flow rates. 

T h i s  phenomenon i s  r e fe r r ed  t o  as "ignition" (Figure 4) .  Ign i t ed  reac t ion  

zones contain two regions. The lower edge of t h e  reac t ion  zone had a 

crescent  shaped region having a n  orange color,  which is  c a l l e d  a cusp. The 

cusp is loca ted  below t h e  C 0 2  laser beam. The second, upper region of t h e  

reac t ion  zone becomes highly luminous at t h e  pos i t i on  of t he  C 0 2  laser beam. 

T h i s  point  corresponds t o  the  m a x i m u m  temperature. Other t h a n  temperature, 

t h e  upper region appeared smooth and continuous throughout t h e  remainder of 

IL ,,,,e ...-or.+ IcQcv-Lvn :n zone. Unignited reac t ion  zones do not exhib i t  a CUSP. 

The t ransmi t tance  of a He-Ne laser beam throughout the  unignited 

reac t ion  zone decreased smoothly and monotonically w i t h  t h e  d i s t ance  above 
m 

the  reac tan t  nozzle. I n  con t r a s t ,  t h e  transmittance of t h e  ign i t ed  plume 

showed a minimum at the pos i t ion  of t he  cusp (Figure 5 ) .  

The e f f e c t  of t h e  gas-mixture stoichiometry w a s  examined only f o r  

i gn i t ed  reac t ions .  Excess-methane mixtures  were used t o  obta in  

s to ich iometr ic  S i c  powder. The react ion temperature exhib i ted  a maximum at 

C/Si r a t i o  of 1.27. T h i s  maximum is believed due t o  t h e  competing e f f e c t s  of 

a n  endothermic methane pyro lys i s  reaction and an exothermic reac t ion  t o  form 

Sic .  The amount of S i c  i n  the powders increased w i t h  increas ing  C/Si r a t i o  

of gas mixture; it neared 100% w i t h  gas C/Si r a t i o  of 1.67 (Figure 6 ) .  
P 

X-ray d i f f r a c t i o n  ana lys i s  revealed tha t  powders produced from unignited 

reac t ions  consisted primarily of s i l i con  and a small amount of S i c  (20%).  

Ign i t ed  reac t ions  produced powders containing a much higher proportion of S i c  

(70%)  

1 3  
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Figure 7. T M  photomicrograph of a n  ignited-reaction SiH4-CH4 powder 
synthesized a t  0.95 a t m  and 1870K. 
are observed and are not  s t rongly agglomerated. 

P a r t i c l e s  larger t h a n  1000 A , 

Figure 8 . TEM photomicrograph of powder containing hollow p a r t i c l e s  
synthesized a t  0.95 a t m  a n d  1820R w i t h  S i H 4  15 cc/.min a n d  CH, 25 
cc /mine  
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The unignited react ion powders were mostly comprised of agglomerated, 

medium sized (about 500 A )  p a r t i c l e s  which were s i l i c o n .  

reac t ion  powders contained considerable numbers of l a rge  p a r t i c l e s  (>lo00 A )  

s imi l a r  i n  s i z e  t o  la rge  s i l i c o n  p a r t i c l e s  which were observed i n  the high- 

temperature s i l i c o n  synthesis  runs (Tmax = 1300°C). 

a r e  polycrys ta l l ine  and a r e  not agglomerated (Figure 7 )  

The ign i ted  

These l a rge  p a r t i c l e s  

Pa r t i c l e  s i z e  was measured by TEM and BET. P a r t i c l e  s i z e  decreased w i t h  

increasing C/Si r a t i o  desp i te  t he  increase of react ion temperature. 

remarkable f ea tu re  w a s  t h e  emergence of hollow p a r t i c l e s  with increasing C/Si 

r a t i o s .  

beam than t h e i r  outer  boundaries. Hollow p a r t i c l e s  ex is ted  only i n  t h e  

medium s i z e  range (about 500 A ) .  

diameter were observed (Figure 8) .  

A 

The i n t e r i o r s  of these  p a r t i c l e s  were more t ransparent  t o  t h e  TEM 

No hollow p a r t i c l e s  l a r g e r  t h a n  1000 A i n  

2) Ethylene: S i lane  System 

S i c  powders were a l s o  synthesized using ethylene as a carbon source. 

As described i n  t he  background sec t ion ,  ethylene decomposes f a s t e r  than 

methane but slower t h a n  silane. The ha l f  l i f e  of ethylene a t  temperatures 

of i n t e r e s t  is approximately one hundredth t h a t  of methane. 

An ign i t ion  phenomenon w a s  a l s o  observed w i t h  t h e  ethylene-silane 

system; however, t h e  ign i t i on  conditions d i f fe red  from the  methane-silane 

system. 

silane and 6000 W/cm* of l a s e r  i n t e n s i t y .  

t h e r e  w a s  no hys t e re s i s  i n  t h e  process conditions t h a t  produce ign i t i on .  

fully igni ted and unignited react ion zones were ind is t inguishable  from t h e  

corresponding methane-silane react ion zones. 

ful ly- igni ted react ion zones. 

Ign i t ion  starts with conditions as low as 0.5 atm, 20 cc/min of 

Unlike t h e  methane-silane system, 

The 

A cusp w a s  observed i n  t h e  
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charac te r i s t ic  s i z e  of remaining flaws should be approximately t h a t  of t he  

pa r t i c l e s  s ince individual p a r t i c l e  vacancies are t h e  la rges t  probable 

defect . 
Our research has demonstrated that t h e  powders must have t h e  following 

idea l  charac te r i s t ics :  

typ ica l ly  l e s s  than 0.5 pm; (2 )  t h e  powder must be f r e e  of agglomerates; 

(3)  t h e  p a r t i c l e  diameters must have a narrow range of s i z e s ;  ( 4 )  t h e  

morphology of the pa r t i c l e s  must be equiaxed, tending toward spherical  

shapes; ( 5 )  t h e  powders must have highly controlled puri ty  with respect t o  

contaminants and t o  multiple polymorphic phases. 

s t ructures  shown i n  Figure 1 o r  random close packed s t ruc tures ,  a powder 

exhibit ing these idea l  character is t ics  should be s in te rab le  t o  theore t ica l  

density without resor t ing t o  pressure or  additives and should permit the  

(1) the  powder must have a small p a r t i c l e  s i ze ,  

E i the r  with t h e  ordered 

f i n a l  grain s t ruc ture  t o  be highly controllable. 

Figure 1. Ordered packing of monodispersed 0.2 p diameter Ti02 
spheres. (Barringer Ref. 24 ) 
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TEM observations showed differences between t h e  microstructures of 

ethylene and methane derived powders. The most remarkable d i f fe rence  w a s  a n  

absence of t h e  l a rge  p a r t i c l e s  (>lo00 A )  ; thus  t h e  average p a r t i c l e  s i z e  w a s  

smaller than t h a t  of corresponding methane derived powder. P a r t i c l e s  i n  t h e  

ethylene derived powder (Figure 9 )  appeared t o  be more agglomerated than 

those of t h e  methane derived powder. 

C .  Discussion 

As described i n  t h e  background sec t ion ,  t h e  s i l i c o n  p a r t i c l e  

carburization rate i s  believed t o  be control led either by t h e  hydrocarbon 

pyrolysis  ra te  o r  by t h e  r a t e  S i  diffuses  through t h e  S ic  product layer .  

Observed ra tes  were compared with calculated values t o  iden t i fy  t h e  operat ive 

rate control l ing mechanism. 11 

1) S o l i d  S t a t e  Dif fus ion  

The time f o r  converting a s i l i c o n  sphere with radius  R t o  S i c  with 

thickness of ( R  - rc) i s :  

where r 

D i s  t h e  diffusion coef f ic ien t  of t h e  f a s t  species ,  and AC i s  t h e  

concentration gradient  between p a r t i c l e  surface and  Si-Sic in t e r f ace .  For 

t h e  igni ted react ion,  t h e  ca lcu la t ion  r e s u l t  using carbon grain boundary 

diffusion coef f ic ien t  is  higher than t h e  experimental r e s u l t  (Figure 10) 

Considering t h a t  s i l i c o n  grain boundary d i f fus ion  i s  f a s t e r  t h a n  t h a t  of 

carbon, t he  difference between t h e  ca lcu la ted  value and  t h e  experimental 

i s  t h e  remaining s i l i c o n  core radius ,  pB is t h e  density of s i l i c o n ,  
C 
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r e s u l t  w i l l  d i f f e r  more. Therefore, t he  ra te - l imi t ing  s t ep  i s  not so l id-  

s t a t e  diffusion f o r  s toichiometr ic  i gn i t ed  react ions.  

2) Methane Pgrolysis 

The second ca lcu la t ion  assumes t h a t  methane pyrolysis  i s  rate 

control l ing.  Assuming t h a t  decomposed methane immediately r eac t s  with 

s i l i c o n ,  the conversion r a t i o  t o  S i c ,  x,  is  described by: 

x = m(1-exp(-kt)) 

where m is  the r a t i o  of methane t o  s i l a n e  and 4 is the  r a t e  constant f o r  

methane pyrolysis.  Figure 11 shows t h a t  t h e  ca lcu la t ions  agree with t h e  

experimental r e s u l t s .  Consequently, f o r  a s toichiometr ic  gas mixture, t h e  

ove ra l l  ra te- l imit ing s t ep  i s  most l i k e l y  t o  be t h e  methane pyrolysis  r a t e .  

3 )  Hallow Particles 

With increasing C / S i  r a t i o  i n  t h e  gas mixture, t he  ove ra l l  r a t e  

cont ro l l ing  s t ep  probably changes t o  d i f fus ion  cont ro l  as hollow p a r t i c l e s  

appear . 
s t ep  i s  outward d i f fus ion  of s i l i c o n  through t h e  S i c  product layer .  

t h e  use of a rapidly decomposing hydrocarbon such as  ethylene should tend t o  

form hollow p a r t i c l e  a s  is  t h e  case with excess methane. 

The exis tance of hollow p a r t i c l e s  i nd ica t e s  t h a t  t he  ra te - l imi t ing  

Also ,  

Rapid hydrocarbon pyrolysis  and carbur iza t ion  a t  low temperatures i s  

expected t o  prevent s i l i c o n  p a r t i c l e s  from growing by coalesence. Thus, 

adding excess methane or  replacing it w i t h  ethylene should produce smal le r ,  

agglomerated S i c  p a r t i c l e s .  This w a s  observed i n  t h e  experiments. 

2 2  



-4 
0 
& 
3 
E: 
0 u 

.4 

.r( 
3 

111 
0 

E" 
0 
0 aa 
n 

s 
(d 

3 
aa 
d 
U 

E 

? d: 0 N. 

2 3  



d. Approach for Producing an Ideal Powder 

The understanding of t h e  formation mechanism provided a r a t i o n a l  

bas i s  f o r  producing an i d e a l  S i c  powder by t h i s  process.  S i l i c o n  p a r t i c l e s  

must grow t o  f i n a l  dimensions before carburizat ion begins,  s ince  S i c  

p a r t i c l e s  cannot coalesce.  The s i l i c o n  p a r t i c l e s  must t he re fo re  grow before 

t h e  pyrolysis of t h e  hydrocarbon becomes rapid,  so a slowly decomposing 

hydrocarbon is des i rab le ,  t h a t  i s ,  methane. An " igni ted" reac t ion  condi t ion 

must be achieved with t h e  smallest amount of methane t h a t  w i l l  y i e l d  

s toichiometr ic  powder. I f  poss ib le ,  it would be best t o  add t h e  hydrocarbon 

i n t o  t h e  stream a f t e r  appropriate  growth of t he  s i l i c o n  p a r t i c l e s .  

C.  Silicon Carbide Powders: Current Status 

W e  a re  now rout ine ly  producing s i g n i f i c a n t l y  improved s i l i c o n  carbide 

powders using t h e  approach described above. The new powders a r e  l a r g e r  

(average p a r t i c l e  diameter of 9 0 0 8 )  and have f a i r l y  narrow p a r t i c l e  s i z e  

d i s t r ibu t ions  (log-normal width parameter of around 1.6). The p a r t i c l e s  a r e  

spher ica l ,  non agglomerated, and can be made s to ich iometr ic ,  o r  i f  des i red ,  

1-2% carbon r ich .  

dens i t i e s  of 60% o r  more. 

S ic  powders *, which were character ized by smaller s izes ,  hard agglomerates, 

and imprecisely cont ro l led  stoichiometry.  

This powder disperses  wel l ,  and  can be packed t o  green 

T h i s  new powder con t r a s t s  s t rongly  with i n i t i a l  

We can ex2lain t h e  improvement i n  powder proper t ies  us ing  t h e  

col l is ion/coalescence model and t h e  two-step model. 

l a r g e r  because they a r e  produced at  higher  pressures ,  w i t h  correspondingly 

higher i n i t i a l  s i l i c o n  densi ty .  A t  t hese  higher  pressures ,  l a r g e r  s i l i c o n  

The new powders are 
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p a r t i c l e s  grow before carbur iza t ion  begins, so the  f i n a l  Sic  p a r t i c l e s  are 

l a rge r .  

explained above. 

This is only poss ib le  i f  methane i s  used f o r  t h e  carbon source,  as 

The p a r t i c l e  s i z e  d i s t r i b u t i o n  i s  more narrow because a l l  of t he  flow 

streams pass through a n  in tense  por t ion  of t h e  laser beam. 

180 watts of laser power w a s  ava i lab le .  

focussed t o  a 2 mm diameter spot .  Some of t h e  reactant  gas the re fo re  flowed 

around t h e  beam. These flow streams produced very d i f f e r e n t  powder from t h e  

flow streams t h a t  experienced t h e  high in t ens i ty  of the  focussed laser beam. 

With t h e  present  apparatus,  w e  have up t o  400 w a t t s  ava i lab le .  

Previously,  only 

To achieve i g n i t i o n ,  t h e  laser w a s  

The beam i s  

focussed t o  a 2 mm high by 5 mm wide  e l ipse,  which is  wide  enough t h a t  a l l  

of t h e  flow streams pass through in tense  laser i r r a d i a t i o n .  The p a r t i c l e  

s i z e  d i s t r i b u t i o n  would be even more narrow i f  t he  laser i n t e n s i t y  could be 

made more uniform across  i ts  5 mm w i d t h .  

We a r e  now making s toichiometr ic  (or  on demand carbon r ich)  Sic because 

a l l  of t n e  flow streams are being igni ted.  The p a r t i c l e s  are not 

agglomerated because t h e  s i l i c o n  growth zone i s  d i s t i n c t  from the  

carbur iza t ion  zone. Once carburizat ion begins, the  p a r t i c l e s  get  coated 

with a l a y e r  of S i c  t h a t  prevents co l l id ing  p a r t i c l e s  from s t i c k i n g  s ince  

even at  18oo0c t h e  S ic  is s o l i d .  I n  t h i s  way, the  co l l i s ion /coa lescence  

model remains cons is ten t  with a 10008, average p a r t i c l e  s i ze .  

reac t ions  at similar flow r a t e s  and pressures produce 30008, powders. 

is  because p a r t i c l e  growth continues u n t i l  t h e  p a r t i c l e s  flow out of t h e  

Pure s i lane 

T h i s  

laser beam and cool below 1410°C, t h e  s i l i c o n  melting point .  

F ina l ly ,  t h e  improved dispers ion and packing behavior of the  new powder 

i s  a consequence of t h e  above l i s t e d  propert ies .  The p a r t i c l e s  are l a rge  
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enough t h a t  i n t e r p a r t i c l e  forces  

dispersants .  Since t h e r e  are no 

pressed t o  high green dens i t i e s .  

can  be overcome using t h e  proper 

hard agglomerates, t h e  powders can be 

The excess carbon content can be 

cont ro l led  f o r  s i n t e r i n g  s tudies .  We have succeeded i n  developing t h e  

s i l i c o n  carbide laser synthesis  process i n t o  a source of unique, high 

qua l i t y  s i l i c o n  carbide powder. 

IV. DISPERSION OF S I C  POWDER 

A. Introduction 

To produce flaw-free,  high qua l i t y  ceramics cont ro l  of a l l  processing 

s t eps  including powder preparat ion,  f ab r i ca t ion ,  s i n t e r i n g  a n d  f in i sh ing  is  

required. Powder preparat ion techniques normally include grinding a n d  

pu r i f i ca t ion  of Acheson Sic .  Much work has been donelgY2O, 21 charac te r iz ing  

t h e  flaws associated with ceramic p a r t s  manufactured from comminuted s i l i c o n  

carbide powders with broad p a r t i c l e  s i ze  d i s t r ibu t ions .  It appears t h a t  

t h i s  approach f a l l s  shor t  of t h e  goal  of high qua l i t y  pa r t s .  

has  demonstrated t h a t  high green d e n s i t i e s ,  reduced s i n t e r i n g  cycles  and 

improved microstructures are poss ib le  by u t i l i z i n g  submicron S i c  p a r t i c l e s  

with a narrow s i z e  d i s t r ibu t ion .  H i s  f a i l u r e  t o  deomonstrate improved 

proper t ies  may have been due t o  departures from i d e a l i t y 2 3  because these  

powders were non-spherical and impure. 

capable of producing S ic  powders t h a t  adhere more c lose ly  t o  t h e  concept of 

i d e a l i t y .  

Hermansson22 

The laser synthesis  process6 is  

Highly per fec t  green compacts have been formed from "ideal"  oxide 

powders dispersed i n  a l i qu id  It appears poss ib le  t h a t  t h i s  

approach may be exploi ted by applying t h e  commercially popular techniques of 



s l i p  cas t ing  and in j ec t ion  molding to dispersions of ideal  S i c  powders. 

advantages of t h e s e  techniques include formation of complex shapes and high 

density green compacts. 

process laser synthesized S i c  powder depends first on developing di-spersing 

The 

Whether t hese  fabr ica t ion  techniques can be used t o  

systems. 

Dispersing systems must preserve pur i ty  and must f ac i l i t a t e  processing 

at  a l l  s tages .  The formation of a n  oxide l aye r  on S i c  powder has been 

observed2’ f o r  aqueous powder dispersions. 

l e v e l s  >0.2 w t . %  degrade t h e  high temperature s t r eng th  of S ic .  

It has been shown26 t h a t  oxygen 

In addi t ion ,  

t h e  processing of submicron s i l i c o n  bearing ceramic powders i n  aqueous media 

is hampered by t h e  formation of s i l i c a  slimes which prevent t h e  achievement 

of high green density compacts.27 

dispersed i n  non-aqueous mediums. Of these,  t h e  obvious contaminant bearing 

systems were not considered (e.g., a l k a l i ,  s u l f u r  and  phosphorus containing 

compounds). 

d i spers ing  c a p a b i l i t i t e s  . 

For these reasons S i c  is normally 

The remaining systems were evaluated f e r  t h e i r  powder 

For nearly pe r fec t  microstructures t o  be formed from a d ispers ion  of 

ceramic p a r t i c l e s ,  t h e  p a r t i c l e s  must remain i s o l a t e d  i n  t h e  medium u n t i l  

added s i n g l e l y  t o  t h e  forming compact. The f i r s t  c r i t e r i o n  t o  be met i s  

t h a t  t h e  medium w e t  t h e  powders 28,  29. 

agg i t a t ion  i s  s u f f i c i e n t  t o  break up f locs  formed i n  t h e  dry powder. 

Ultrasonication is  an exce l len t  way of doing F ina l ly  t h e  

p a r t i c l e  must be kept i s o l a t e d  i n  t h e  l iqu id  medium by i n t e r p a r t i c l e  

repulsion. 

e i t h e r  of two approaches, coulombic s t a b i l i z a t i o n  o r  steric s t a b i l i z a t i o n .  

Coulombic s t a b i l i z a t i o n  is ef fec ted  by the  repulsion between p a r t i c l e s  

Secondly, normal mechanical 

Such a dispersion is  s a i d  t o  be stable and may be achieved by 
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r e su l t i ng  from t h e  in t e rac t ion  of overlapping ionic  charge clouds (double 

l aye r s )  during pa r t i c l e -pa r t i c l e  approach3*. 

t h e  increase i n  f r e e  energy associated with t h e  in te rpenet ra t ion  of 

marginally soluble  macromolecules adsorbed on t h e  p a r t i c l e  surface 3 3 .  

S t e r i c  s t a b i l i z a t i o n  i s  due t o  

This chapter deals with these dispersion issues .  

B. Dispersion i n  Bon-Aqueous, Pure Solvents 

Sil icon carbide powders synthesized from laser driven react ions have 

extremely pure surfaces  because of t h e  synthesis  process and  handling 

procedures, Consequently, t h e  surfaces of laser s i l i c o n  carbide powders 

d i f f e r  from those of commercial s i l i c o n  carbide powders, which a r e  general ly  

known t o  have s l i g h t l y  oxidized layers  on t h e i r  surfaces .  Because t h e  

dispersion cha rac t e r i s t i c s  of powders are s t rongly dependent on t h e i r  

surface cha rac t e r i s t i c s ,  t h e  l a s e r  s i l i c o n  carbide powders a r e  expected t o  

behave d i f f e ren t ly  from commercial s i l i c o n  carbide powders. Understanding 

dispersion cha rac t e r i s t i c s  i n  pure solvents  i s  needed not only f o r  choosing 

an  e f fec t ive  pure solvent ,  but a l s o  f o r  ident i fy ing  a good dispersant .  

The dispersion cha rac t e r i s t i c s  of pure s i l i c o n  powders made from l a s e r  

heated SiH, were previously s tud ied9  and  ascer ta ined t o  depend on t h e  

d i e l e c t r i c  constant of solvents .  This research concentrated on pure solvent 

systems i n  t h e  absence of dispersants34 t o  confirm t h e i r  a p p l i c a b i l i t y  t o  

f i n e ,  pure s i l i c o n  carbide powders made by t h e  laser synthesis  process a n d  

t o  understand t h e  powders' dispersion cha rac t e r i s t i c s .  



1 Experiments 

a. Materials 

Three types of pure laser synthesized S ic  powder made under d i f f e r e n t  

condi t ions,  one commercial S i c  powder ( IBIDEN BETARANDOM ULTRAFINE), and a n  

oxidized laser powder were used i n  t h i s  study. 

are given i n  Table 3 and c h a r a c t e r i s t i c s  a re  summarized i n  Table 4. 

Their  synthes is  condi t ions 

Oxidized laser S ic  powder w a s  prepared by heat ing laser S i c  powder LO14 

i n  air  at 600"c f o r  5 hours a f t e r  breaking t h e  s o f t  agglomerates with a 30 

minute exposure t o  a 40 w a t t  u l t r a son ic  probe with t h e  powders dispersed i n  

isopropyl a lcohol .  The oxidized l a s e r  Sic powder w a s  character ized with 

s i n g l e  point  BET, TEM, XRD and FTIR. The oxidized powder had approximately 

t h e  same sur face  a rea ,  morphology and c rys t a l  phase as the  pure laser powder 

L014. The only difference w a s  t h e  presence of a n  oxidized l aye r  on t h e  

p a r t i c l e  surfaces .  

Commercially ava i l ab le  grades of organic solvent w e r e  used i n  t h i s  

study (Table 5 ) .  These solvents  represent commonly ava i l ab le  organic 

f ami l i e s ,  including a l i p h a t i c  and aromatic hydrocarbons, ch lor ides ,  e the r s ,  

ketones,  e s t e r s ,  a lcohols ,  aldehydes, carboxylic ac ids ,  amines and  water. 

The so lvents  were d r i e d  with a 3A molecular s ieve.  

b. Dispersion Test 

Simple screening tests and cent r i fuga l  cas t ings  w e r e  used t o  determine 

t h e  s t a b i l i t y  of t h e  S i c  powders dispersed i n  t h e  inves t iga ted  solvents.34 

Preparat ion of suspensions f o r  screening tes ts  w a s  conducted under a 

ni t rogen atmosphere using a glove box. After  a small amount of powder (10mg) 
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Table 3. Synthesis conditions f o r  powders used i n  pure solvent  
dispersion s tudies .  

Run Number React an t  Laser React ion 
(Carbon) Power 1 ~ )  .Temp ("C) 

BO38 Ethylene 150 1650 
~ 0 6 0  Methane 150 1680 
LO14 Methane 500 1830 

r 

r 1 I I t 

CHARACTERISTIC LASER-POWDERS COMMERCIAL 
BO38 BO60 LO14 

SPECIFIC SURFACE 44.9 44.3 22.4 19.4 
AREA (m2/g) 

BET PARTICLE 41.5 42.1 83.1 98 .o 

SIZE DISTRIBUTION narrow wide 
MORPHOLOGY spher ica l  i r r e g u l a r  
SURFACE 

S I Z E  (nm) 

pure s l i g h t l y  
oxidized 

PHASE B B B B 

O X I D  I ZED 
LO14 

23.3 

80 .O 

narrow 
spherical  
s l i g h t l y  
oxidized 

B 

Table 4. Charac te r i s t ics  of powders used i n  pure solvent  
dispersion s tudies .  

- -  . 
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Table 5. Results of screening tests and centrifugal casting tests for pure 
dolvent dispersion studies. 

SOLVENT DISPERSIBILITY PACKING DENSITY % HmB. 
LO14 COMMERICAI, INDEX - PURE OXIDIZED BO38 BO60 - --- 

HYDROCARBONS 
1 hexane 
2 toluene 

CHLORIDES 
3 methylene chloride 
4 chloroform 
5 carbon tetrachloride 
6 1,2-dichloroethane 
7 trichloroethylene 
8 chlorobenzene 

CYANIDE 
9 acetonitrile 

ETBERS 
10 isopenthyl ether 
11 tetrahydrofuran 
12 dioxane 

KETONES 
13 acetone 
14 2-butanone. 
15 2-heptanone 

ESTERS 
16 ethyl formate 
17 ethyl acetate 

18 benzaldehyde 
ALDEHYDE 

ALCOHOLS 
19 methyl alcohol 
20 ethyl alcohol 
21 n-propyl alcohol 
22 2-propyl alcohol 
23 2-furfuryl alcohol 
24 benzyl alcohol 
25 n-octyl alcohol 
26 ethylene glycol 

AMINE 
27 propylamine 

CARBOXYLIC ACID 
28 propionic acid 
29 n-octanoic acid 
30 oleic acid 

INORGANIC 
31 water 

P 
P 

G 
G 
P 
G 
P 
P 

G 

G 
G 
P 

G 
G 
P 

P 
G 

P 

P 
P 
P 
P 
P 
P 
G 
G 

P 

G 
G 
VG 

F 

P 
P 

G 
G 
P 
G 
P 
P 

G 

P 
G 
P 

G 
G 
G 

VG 
G 

VG 

VG 
VG 
VG 
VG 
VG 
VG 
VG 
VG 

VG 

P 
VG 
G 

G 

11.9 16.4 20.5 
12.8 19.5 23.6 

11.8 17.2 23.9 
14.0 17.0 26.8 
11.3 16.7 25.9 
14.0 19.8 25.6 
12.8 17.7 25.9 
13.9 18.7 26.2 

11.1 15.8 25.1 

- 25.5 29.0 
13.6 21.8 
16.1 25.8 28.7 

14.7 18.3 26.8 
15.5 20.7 26.2 - 22.2 27.5 

12.2 22.3 - 
15.0 22.3 26.4 

- 26.5 29.5 

16.2 24.3 25.0 
16.1 25.2 27.7 
16.2 25.1 27.0 
16.3 25.6 30.2 - 28.9 
- 25.1 31.2 - 26.4 32.4 - 15.4 22.8 

- 

12.7 21.8 28.3 

- 21.0 27.4 
- 22.7 29.7 - 22.3 25.7 

11.0 16.5 20.3 

28.4 
31.0 

26.8 
29.0 
26.9 
29.4 
27.7 
30.9 

34.8 

34.4 
34.1 
36.7 

38.0 
34.9 
36.9 

33.0 
34.6 

39.1 

37.6 
37.8 
37.4 
38.6 
38.8 
41.5 

39.0 
38.4 

40.2 

35.9 
39.9 
32.4 

36.8 

2.2 
3.0 

2.7 
2.2 
2.2 
2.7 
2.5 
2.7 

4.5 

(6.0) 
5.3 
5.7 

5.7 
5.0 
(5.5) 

5.5 
5.2 

5.2 

8.9 
8.9 
8.9 a. 9 
8.9 
(8.9) 

8.9 
9.6 

9.0 

9.5 
9.5 
9.5 

P: poor dispersion G: good dispersion 
VG: very good dispersion F: flotation 



w a s  mixed with t h e  se l ec t ed  solvent  (10cm3), t h e  powder w a s  dispersed by 

subjec t ing  t h e  suspension t o  a 40 w a t t  u l t r a s o n i c  probe f o r  two minutes. 

A f t e r  standing f o r  5 days, t h e  s t a b i l i t i e s  of t h e  suspensions were evaluated 

v i sua l ly  

Centrifugal ca s t ing  experiments a l s o  provided a n  expedient means of 

evaluating the  dispersions; e.g., good dispersions y i e l d  high packing 

dens i t i e s .  Suspensions cons is t ing  of 290mg of S i c  powder and 9cm3 of 

investigated so lvents  were prepared under a nitrogen atmosphere i n  a similar 

manner as above. The suspensions were cen t r i fuga l ly  c a s t  a t  3000 g ' s  f o r  2 

hours. The sed imen t  volumes were de termined  by measuring t h e i r  heights w i t h  

a s c a l e  i n  t h e  cen t r i fuga l  tubes;  t h e  height-volume re l a t ionsh ip  had 

previously been ca l ib ra t ed  with a syringe. 

nitrogen atmosphere, sediment weights were measured t o  permit ca l cu la t ion  of 

t h e i r  packing d e n s i t i e s .  The microstructures of t hese  s e d i m e n t s  were 

After drying t h e  sediments i n  a 

observed with a scanning e l ec t ron  microscope. 

Colloidal press ing  w a s  a l s o  used t o  make green compacts from suspension 

using se lec ted  solvents.  The packing d e n s i t i e s  of t h e s e  compacts were 

measured and t h e  microstructures w e r e  obeserved w i t h  SEM. 

2. , Results 

a. Screening Tes t  for Dispersibility 

The r e su l t s  of suspension screening tes ts  were evaluated a n d  were 

c l a s s i f i e d  i n t o  t h e  following four  ranks: 

0 V e r y  good d ispers ion  (designated V G ) :  

w e l l  dispersed af ter  seve ra l  days. 

m o s t  of t h e  p a r t i c l e s  remained 



0 Good dispersion (designated G): some p a r t i c l e s  remained w e l l  

d ispersed,  while o the r s  (-1/2) s e t t l e d  out  of t h e  suspensions a f t e r  

s eve ra l  days. 

Poor dispersion (designated P) :  most of t h e  p a r t i c l e s  s e t t l e d  out of 

t h e  suspensions wi th in  one day. 

P a r t i c l e  f l o a t a t i o n  (designated F) :  most of t h e  powder f l o a t e d  on t h e  

solvent  surface.  The p a r t i c l e s  could not be incorporated i n t o  t h e  

l i q u i d ,  even after vigorous ag i t a t ion .  This phenomenon w a s  observed 

only f o r  t h e  combination of water and pure laser powder. 

0 

0 

Sign i f i can t  d i f fe rences  i n  d i s p e r s i b i l i t y  were observed between pure 

laser powder and,oxidized laser powder as shown i n  Table 5 but n o t  between 

s p e c i f i c  pure powder types.  
a 

I n  t h e  case of pure laser powders, "very good" 

dispersion w a s  observed only f o r  o l e i c  acid. "Good" dispersion w a s  observed 

f o r  t h e  o ther  carboxylic ac ids  (such as propionic acid and  n-octanoic a c i d ) ,  

high molecular weight alcohols (such as n-octyl a l coho l ) ,  ethylene g lycol  

etc. On t h e  o the r  hand, oxidized laser powders dispersed very w e l l  i n  many 

kinds of so lvents  such as a l l  alcohol groups, propylamine, e t h y l  formate and 

octanoic acid.  

b. Centrifugal T e s t  

Packing d e n s i t i e s  of cen t r i fuga l  sediments are a l s o  given i n  Table 5 

f o r  s eve ra l  solvents.  

func t iona l  group and t h e  s p e c i f i c  powder type. 

Packing dens i t i e s  were d i r e c t l y  r e l a t e d  t o  t h e  l i q u i d  
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For pure l a s e r  powders, o c t y l  a lcohol  showed t h e  highest  packing 

d e n s i t i e s ,  However, t h e  packing dens i t i e s  from o l e i c  ac id  was not vezy high; 

it w a s  t h e  best  solvent i n  t h e  screening test. A s t rong  co r re l a t ion  between 

cent r i fuga l  packing dens i t i e s  and screening t e s t  r e s u l t s  w a s  observed f o r  t h e  

commercial powder which had an oxidized l aye r ,  while some exceptions were 

observed for  pure laser powders. 

r e l a t i v e l y  lower d i s p e r s i b i l i t i e s  of t h e  pure l a s e r  powders. The average 

These exceptions may be a t t r i b u t e d  t o  t h e  

packing dens i t ies  of t h e  l a s e r  powders increased i n  t he  following order ;  

B038, ~ 0 6 0 ,  L014. 

density than the  l a s e r  powders. 

The commercial powder ex ih ib i ted  a higher average packing 

e.  Dispe r s ib i l i t y  and Solvent Characteristics 

Di spe r s ib i l i t y  i n  t h e  examined systems may be a t t r i b u t e d  t o  t h e  

formation of e l e c t r i c a l  double layers  r e su l t i ng  from surface- l iquid 

in te rac t ions .  These in t e rac t ions  a r e  defined by t h e  powders' surface 

cha rac t e r i s t i c s  and func t iona l  groups of t h e  l i qu id  molecules. 

Packing d e n s i t i e s  of cen t r i fuga l  sediments a s  a function of hydrogen 

bond indexes of t he  solvents  a r e  shown i n  Figure 12. Hydrogen bond indexes 

were derived from chemical s h i f t s  of spectroscopic data  obtained by Gordy's 

technique. Good co r re l a t ion  was observed between packing dens i t i e s  of a l l  

powders and  hydrogen bond indexes .  

packing dens i t ies .  

screening t e s t  r e s u l t s  were a l s o  observed f o r  t h e  oxidized powder. However, 

screening t e s t  r e s u l t s  f o r  t h e  pure powders and the  d i f fe rences  i n  

d i s p e r s i b i l i t i e s  between pure and oxidized powders could not be in t e rp re t ed  

only by hydrogen bond s t rengt hs  . 

High hydrogen bond indexes provided high 

Good co r re l a t ions  between hydrogen bond index and 
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Table 6. C o m p a r i s o n  b e t w e e n  dispersibil i t ies of pure laser p o w d e r  and 
ox id ized  laser p o w d e r .  

. D I S P E R S I B I L I T Y  FOR O X I D I Z E D  POWDER 
I 

POOR GOOD VERY GOOD 

POOR HYDRO CARBONS KETONE AMINE 
CHLORIDES LOW-ALCOHOLS 
ETHER E S T E R  

ALDEHYDE 

GOOD ETHER KETONES HIGH-ALCOHOLS 
CABOXYLIC-ACD E S T E R  

ETHFR 
N I T R I L E  
CHLORIDES 
CARBOXYLIC-ACID 

VERY CARBOXYLIC-ACID 
GOOD 

7 
7- 

a- 

3s - 
30 - 
2s - 
20 - 
1s - 
10 - 

A 

I I I I 1 I 1 I 1 

A 6 -  a 3 2 

HYDROGEN BOND INDEX OF SOLmm 

0 

12. C e n t r i f i g a l  packing dens i t ies  as a func t ion  of hydrogen bond i n d e x e s  
of solvents .  
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The comparison between d i s p e r s i b i l i t i e s  of pure laser powders and  

oxidized l a s e r  powders are shown i n  Table  6 f o r  t h e  families of organic 

solvents  studied. Some solvent  families, such as carboxylic a c i d ,  amine, 

etc., showed d i f f e r e n t  d i s p e r s i b i l i t i e s  depending on t h e  s p e c i f i c  powder type  

and member of t h e  solvent  family. These phenomena may be r e l a t ed  t o  the  

a c i d i t y  a n d  b a s i c i t y  of t h e  solvents  and powder surfaces .  

Propylamine and low molecular weight a lcohols ,  which act as Lewis bases ,  

dispersed oxidized l a s e r  powder well;  however, they did not d i sperse  pure 

laser powder wel l  i n  s p i t e  of their  high hydrogen bond i n d e x e s .  I n  c o n t r a s t ,  

o l e i c  ac id  and propionic ac id ,  which a c t  as L e w i s  ac ids ,  dispersed pure 

laser powder w e l l ;  however, they did not disperse  oxidized laser powder very 

well .  This  phenomenon may be a t t r i b u t e d  t o  t h e  d i f f e r e n t  i n t e rac t ions  

between powder surfaces  and  solvents  due t o  t h e i r  a c i d i t y  or  b a s i c i t y .  

surfaces  of pure l a s e r  powders a r e  probably L e w i s  bas ic  and  have good 

in te rac t ions  w i t h  L e w i s  ac id  solvents .  

The 

The s t a b i l i t y  of t h e  suspensions were evaluated i n  terms of  t h e  

d i e l e c t r i c  constants  ( E )  of t h e  solvents  t o  see whether high E solvents  

favored s t ab le  suspensions and low E: solvents  tended to give  r i s e  t o  

f locculat ion.  No strong co r re l a t ion  w a s  found f o r  pure S ic  powders; e.g., 

propionic acid showed good dispers ion characteristics i n  s p i t e  of i t s  low E. 

The oxidized powder gave r e s u l t s  t h a t  were similar t o  those observed w i t h  S i ;  

t h e  dispersion s t a b i l i t y  improved w i t h  increas ing  d i e l e c t r i c  constant of t h e  

solvent . 
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d, Packing Density and Powder Characteristics 

Sign i f i can t  differences between t h e  cen t r i fuga l  sediment d e n s i t i e s  w e r e  

observed among four  kinds of powders: 

powder . 
B038, ~ 0 6 0 ,  LO14 and commercial 

These d i f fe rences  should be a t t r i b u t a b l e  t o  powder c h a r a c t e r i s t i c s  such 

as p a r t i c l e  s i z e ,  p a r t i c l e  s i z e  d i s t r ibu t ion ,  p a r t i c l e  morpholoa,  

aggregation and d i s p e r s i b i l i t y .  

p a r t i c l e  s i z e ,  i f  t h e  p a r t i c l e s  are la rge  enough t o  eliminate t h e  inf luence  

of e l e c t r o s t a t i c  forces ,  sur face  f i lms ,  boundary e f f e c t s ,  e t c .  Increased 

width of p a r t i c l e  s i z e  d i s t r i b u t i o n  increases packing densi ty .  

r z t i n  p a r t i c l e s  such as p l a t e s ,  rods, etc. ,  pack t o  higher d e n s i t i e s  than 

spheres as a resu l t  of o r i en ta t ion .  Spheres can pack most uniformly. 

Agglomerates and aggregates generally (but not always) have lower packing 

density than randomxy packed indiv idua l  pa r t i c l e s .  

Packing density should be independent of 

High aspect 

The packing d e n s i t i e s  achieved w i t h  t h e  type  LO14 powder were 

cons i s t en t ly  higher than those  achieved with type BO38 and ~ 0 6 0  powders. 

Although t h e  type  LO14 powder w a s  approximately t w i c e  as l a r g e  as t h e  o the r  

two, it i s  unl ike ly  t h a t  t h i s  difference w a s  responsible f o r  t h e  improved 

packing density.  

It is more l i k e l y  t h a t  t h e  BO38 and ~ 0 6 0  powders cons is t  of aggregated 

primary p a r t i c l e s  which can be dispersed but do not pack w e l l .  

research with photon co r re l a t ion  spectrometry should c l a r i f y  t h i s  i s sue .  The 

high packing d e n s i t i e s  achieved with the  commercial powder may be a t t r i b u t e d  

t o  wide p a r t i c l e  size d i s t r i b u t i o n  and morphology. 

A l l  t h r e e  exhibited nominally t h e  same d i s p e r s i b i l i t i e s .  

Fur ther  
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e. Characterization of the Sediments and Col lo ida l ly  Pressed Green 

Bodies 

The micrographs of t h e  top  surfaces of cen t r i fuga l  sediments from L014- 

hexane a n d  LOl4-octyl a lcohol  suspensions are shown i n  Figure 13. 

packing densi t ies  are 20.5% and 33.25, respect ively.  

dispersed i n  octylacohol are packed much b e t t e r  as shown by fewer numbers of 

la rge  voids and loosely packed agglomerates. 

These 

The p a r t i c l e s  

Micrographs of a f r ac tu re  surface a n d  a s i d e  surface of a co l lo ida l  

pressed pe l l e t  using o c t y l  a lcohol  are shown i n  Figure 14 .  

than t h e  p a r t i c l e  s i z e  are present a n d  s eve ra l  areas show ideal c lose  packing 

of spheres. 

No voids l a r g e r  

The packing density of t h i s  p e l l e t  w a s  -62%. 

f .  Effect of CarboxJrlic Acid I n  Solvents  

According t o  a screening tes t  of d i s p e r s i b i l i t y ,  carboxylic acids, 

espec ia l ly  o l e i c  ac id ,  were one of t h e  best  dispersants  f o r  dispers ing pure 

laser powder. However, o l e i c  acid may not be des i rab le  because of i t s  high 

v iscos i ty  and bo i l ing  point.  Oleic ac id  was therefore  d i lu t ed  i n  t h e  o ther  

solvents  and t h e  so lu t ion  w a s  evaluated with a cen t r i fuga l  tes t  (Figure 

l5a).  

The resu l t s  are given i n  Figure l5b .  

ac id  i n  hexane and chloroform improved t h e  packing densi ty  of t h e  sediments 

over those of t h e  pure solvents.  

S t e r i c  ac id  w a s  a l s o  evaluated as a n  add i t ive  t o  t h e  same solvents.  

Small amounts of o l e i c  ac id  and  s t e r i c  

3. Conclusions 

Laser S i c  powder showed d i f f e ren t  d i s p e r s i b i l i t y  tendencies than 

commercial powder because of i t s  pure surface.  

these powders i n  non-aqueous solvents  were r e l a t ed  t o  t h e  a c i d i t y / b a s i c i t y  

The d i s p e r s i b i l i t i e s  of 
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ORIGINAL PAGE IS 
POOR QUALITY 

(a) LO14 /Hexane 

(b) LO14 /Octyl Alcohol 

Figure 13. SEM photomicrographs of centr i fugal ly  cas t  S i c  s e d i z e n t s  from 
(a) L014/hexane and ( b )  L014/octyl alcohol.  
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ORlGiNAL PAGE IS 
OF POOR QUALITY 

(a) Fractured Surface 

(b) 'S ide  Surface 

Figure 14 .  SEN photomicrographs of c o l l o i d a l  pressed Sic compact from 
L014/octyl alcohol: (a) f rac tured  sur face ,  (b) s i d e  surface.  
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carboxylic acid concentration i n :  ( a )  o l e i c  ac id ,  (b) s t e a r i c  acid.  
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and t h e  hydrogen bond s t rength  of t h e  solvents .  

d i s p e r s i b l i l i t y  f o r  laser powder; 

of i t s  high v i scos i ty  and bo i l ing  poin t .  

s u i t a b l e  pure solvent .  

and high density (up t o  63%) green bodies were obtained. 

Oleic acid showed t h e  bes t  

however it might not be des i r ab le  because 

Octyl a lcohol  may be the  most 

Using c o l l o i d a l  press ing  with o c t y l  a lcohol ,  uniform 

C. Dispersion of SIC by Steric Stabilization 

1. Experiments 

a. Systems Studied 

Oloa-1200TM w a s  used as a dispersant  with hexane. Other d i spersants  

were tes ted pre l iminar i ly  by v i s u a l  inspect ion;  however, none w a s  as 

e f f e c t i v e  as Oloa-1200 f o r  laser synthesized Sic .  35 

V i n e  d i f f e ren t  l a s e r  derived powders were examined i n  t h i s  work. Major 

differences between powders were a t t r i b u t e d  t o  t h e  carbon source and  t h e  

l a s e r  op t ics ;  minor d i f fe rences  were a t t r i b u t e d  t o  synthes is  temperature,  

gas veloci ty ,  e tc .  

these  experiments are summarized i n  Table 7. 

Physical p roper t ies  of t h e  powders which were used i n  

b. Method 

Dispersions were prepared under oxygen-free condi t ions using a glove 

box. 

treatment t o  produce a dispersed state. 

Mixed powders were subjected t o  a 40 w a t t ,  5 minute u l t r a s o n i c  



Table 7. Powder c h a r a c t e r i s t i c s  and synthesis condi t ions of laser 
synthesized S i c  powders used i n  s ter ic  dispers ion s tudies .  

Surf ace 
Temp ("C) Area ( m 2 / g )  
React ion I 

- 

Run 
Number 

~ 0 0 6  
GO11 
GO10 
BO59 
~ 0 8 2  
coo8 
~009 
BO64 
A002 

BET Equiv. 
Diameter (nm: 

-~ ~ 

Reactant 
(Carbon 

n 
0 

El 
W 

1.4 - 
4 
v 
Q 

Methane 
Methane 
Methane 
Methane 
Ethylene 
Ethylene 
Ethylene 
Ethylene 
Ethylene 

1830 
1600 
1615 
1550 
1310 
1410 

1940 
N .A 

1580 

32 e 1  
53 .4 
49.1 
58.2 
69 .6 
67 .o 

65.3 
61 .9 

72 .4 

a LO06 

x GO11 

B BOG4 

58 .5 
35 -1 
38.1 
32.2 
26.9 
25 -9 
30 -3 
22.7 
19.4 

Q 

20 40 60 
1 

0 

Time ( min ) 

Figure 16. Rela t ive  agglomerate s i z e  as a funct ion of t i m e  after an u l t r a son ic  
treatment f o r  three d i f fe ren t  powders i n  Oloa/hexane. The i n i t i a l  
agglomerate dimension w a s  taken a t  t h e  end of  t h e  fast 
agglomeration period. 



Centrifugal ca s t ing  w a s  mainly used t o  evaluate  packing a b i l i t y .  

Although t h i s  technique is  good f o r  quick evaluations,  it is  not effective as 

a means for making green bodies which are ready t o  s in te r .  Therefore 

co l lo ida l  pressing w a s  used f o r  t h e  green body fabr ica t ion  study. 

Agglomerate s i z e s  were determined by photon co r re l a t ion  spectroscopy. 

Primary p a r t i c l e  s i z e  and  s i z e  d i s t r ibu t ion  w e r e  measured by BET and TEM. 

Microstructures of green bodies were examined d i r e c t l y  using SEN microscopy. 

2. Results and Discussion 

a. Agglomerate Size/Time Dependence 

Agglomerate s i z e  w a s  measured as a function of time a f t e r  u l t r a son ic  

treatment for  B064, GO11 and LO06 powders. Each sample contained 4 ~ 1 0 - ~  g/cc 

t o  5 ~ 1 0 ’ ~  g/cc. powder and 30 - 40 w t %  Oloa-1200 based on powder weight. 

Figure 16 shows t h a t  t h e  agglomerate s i zes  increased 5-6% i n  
s 

approximately 1 hr.  BO64 powder showed a s l i g h t l y  higher coagulation 

tendency t h a n  t he  other  two powders. Comparing these r e s u l t s  with similar 

dispersions i n  pure hexane (>3000A 30 sec )  shows t h a t  Oloa-1200 works as a n  

e f f ec t ive  dispersant f o r  t h e  l a s e r  synthesized, non-oxidized Sic .  However, 

t h e  r e su l t s  a l s o  ind ica te  t h a t  t h e  s t e r i c  b a r r i e r  formed by Oloa-1200 may not 

be e f fec t ive  enough t o  m a i n t a i n  a w e l l  dispersed state f o r  a long period. 

b. Effect of t h e  Oloa Concentration on Packing Density 

It is  desirable t o  m i n i m i z e  t h e  amount of dispersant needed t o  m a i n t a i n  

a dispersed s t a t e  because t h e  dispersant  may r e m a i n  i n  t h e  green body a f te r  

drying and it should be removed completely before f i r i ng .  The minimum Oloa 



requirement w a s  examined by t h e  cent r i fuga l  ca s t ing  method. 

centrifugal3.y cas t  at  3000 g ' s  f o r  1 hour. 

s l i p s  w a s  1 vel$ f o r  each sample. 

Samples were 

The powder concentration i n  t h e  

The r e s u l t s  i n  Figure 17 show t h a t  t h e  minimum Oloa requirement i s  

about 20 percent of t h e  powder weight. Assuming 1 Oloa molecule p e r  100A2 

of p a r t i c l e  surface,  an  absorbed monolayer corresponds t o  approximately 2% 

of t h e  p a r t i c l e  weight. 

t h e  hexane solvent.  

c r i t i c a l  Oloa concentration on t h e  powder surface area.  

The excess dispersant probably remains dissolved i n  

P re l iminav  data  showed a weak dependence of t h e  

This is  cons is ten t  

with t h e  weak segregation of Oloa t o  the  p a r t i c l e s '  surfaces  and i t s  high 

s o l u b i l i t y  i n  hexane. 
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Figure 17. Centrifuged compact density as a function of Oloa 
concentration. 
Centr i fugal  treatment is 3000 g ' s  f o r  1 hr .  

Concentration of Oloa i s  based on powder weight. 

_ -  - 
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c a  Packing Density and Dispersibility 

Centrifuged compact dens i t i e s  exhibi ted d i f f e r e n t  c h a r a c t e r i s t i c  l eve l s  

depending on powder type. 

previous d i s p e r s i b i l i  t y  evaluation test  r e s u l t s  i l l u s t r a t e s  one important 

r e su l t .  

poor d i s p e r s i b i l i t y .  

quickly and  t h e  coagulated p a r t i c l e s  prevent t h e  achievement of c lose  packing 

due t o  geometrical r e s t r a i n t s .  

A comparison of these  densi ty  values with t h e  

The l o w  packing densi ty  of t h e  BO64 type powder i s  explained by i t s  

I n  poorly s t a b i l i z e d  dispers ions,  p a r t i c l e s  coagulate 

Good d i s p e r s i b i l i t y  does not insure good packing, as is  i l l u s t r a t e d  by 

t h e  difference between ~ 0 0 6  and G O 1 1  type powders. 

d i s p e r s i b i l i t i e s ,  these  two powders w i t h  t h e i r  d i f f e r e n t  p a r t i c l e  s i z e  

d is t r ibu t ions  showed qu i t e  d i f f e ren t  packing dens i t i e s .  Hence, add i t iona l  

I n  s p i t e  of s imi l a r  

f ac to r s  must be taken i n t o  account t o  explain t h e  experimental data.  

d. Primary Agglomerate Size i n  the Oloa/Hexane System 

Agglomerate s i z e  was measured f o r  each powder immediately a f t e r  a 5- 

minute u l t rasonic  treatment.  The r e s u l t s  a r e  p lo t t ed  aga ins t  cons t i tuent  BET 

p a r t i c l e  diameters i n  Figure 18. 

I f  the  adsorption r a t e  of Oloa molecules onto t h e  sur face  of t h e  S ic  

p a r t i c l e s  is much f a s t e r  than the  coagulation ve loc i ty ,  t h e  agglomerate s i z e  

w i l l  be close t o  ind iv idua l  p a r t i c l e  s i z e .  

agglomerate s i zes  a r e  4-10 times l a rge r  than t h e  cons t i tuent  p a r t i c l e  s i z e s ,  

a l imi ted  amount of coagulation occurs p r i o r  t o  t h e  formation of s t e r i c  

b a r r i e r s  which a r e  good enough t o  prevent continued s t i ck ing  of p a r t i c l e s  t o  

one another. The agglomerated p a r t i c l e s  at t h e  end of t h e  f a s t  coagulation 

period a r e  the  u n i t s  from which compacts a r e  formed. The c h a r a c t e r i s t i c s  of 

these primary agglomerates cont ro l  compact proper t ies .  

Since t h e  data  show t h a t  t h e  

4 6  
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e, 

Colloidal press ing  w a s  performed with B064, G O 1 1  and ~ 0 0 6  type  powders 

Packing Density of Col lo ida l ly  Pressed Parts 

applying a 69 MPa (10,000 p s i )  pressure. The r e s u l t s  i n  Figure 19 show t h a t  

t h e  pressed dens i t i e s  were propor t iona l  t o  t h e  centrifuged compact 

dens i t i e s .  T h i s  r e s u l t  i nd ica t e s  t h a t  t h e  primary agglomerates which formed 

during t h e  fas t  coagulation period and then became surrounded by Oloa-1200 

a r e  not breakable with t h i s  l e v e l  of applied pressure  range. Again, t h i s  

i l l u s t r a t e s  t h e  importance of making t h e  primary agglomerate s i z e  as s m a l l  

as possible f o r  enhancing t h e  packing densi ty .  

The pressed d e n s i t i e s  achieved w i t h  ~ 0 0 6  type powder deserve comment. 

A t  -63% of t h e o r e t i c a l ,  they reach t h e  density of a random close-packed 

s t ruc tu re .  This i s  t h e  maximum density l e v e l  t h a t  can be achieved with non 

ordered, uniform diameter sphe r i ca l  p a r t i c l e s .  

neighbors, t h i s  s t r u c t u r e  has a coordination number s l i g h t l y  g r e a t e r  

Counting nearly touching 

than 11. 

Compacts were examined using SEM. The microstructures showed t h e  

importance of using small primary agglomerate s i z e  powders. The low dens i ty  

compacts (-33%) made with powder type BO64 contained l a rge  pores. I n  

con t r a s t ,  the  high dens i ty  compacts (-63%) made with powder type ~ 0 0 6  

exhib i ted  pore diameters approximately equal t o  t h e  primary p a r t i c l e  

diameter. 

3. Conclusions 

Oloa-1200 i n  hexane w a s  found t o  be a n  e f f e c t i v e  dispersant system f o r  

laser synthesized Sic. However, t h e  s p e c i f i c  powder is a l s o  important with 

respect  t o  achieving small primary agglomerate s i z e s  and maintaining them i n  

a w e l l  dispersed state a f t e r  s t a b i l i z a t i o n  by a s ter ic  layer .  



The p r i m a v  agglomerate s i z e  grea t ly  a f fec ted  t h e  packing density.  

These primary agglomerates were not breakable with pressures up t o  69 MPa 

(IO ,000 p s i  1. 

V. FORMATION OF SHAPES AND PARTS 

The unique surface proper t ies  of these covalent materials, as w e l l  as 

t h e  need t o  m a i n t a i n  high pu r i ty  throughout processing, place unusual 

r e s t r i c t i o n s  on t h e  forming and shaping process as has been discussed. 

These r e s t r i c t i o n s  include t h e  choice of a non-contaminating d ispers ing  

medium a n d  l i m i t e d  exposure t o  a i r  and water vapor. 

as t o  whether o r  not t o  add addi t iona l  components such as binders and 

l i ihricnnts  sFec i f i ca l ly  t o  a i d  post-dispersion forming i s  tempered by these 

r e s t r i c t i o n s  as wel l  as t h e  r e s t r i c t i o n s  imposed by drying and f i r i n g  

I n  addi t ion t h e  choice 

processes. Questions such as residue formation and  e f f luen t  generation i n  a 

highly impermeable compact tend t o  discourage the  use of b i n d e r s  and  

lubricants .  36 However, t h e  proper select ion of a dispers ing system may 

perform these  functions without incorporating addi t iona l  compounds. H. 

Rumpf 37 has shown t h a t  l i qu id  adhesion forces of low molecular weight 

compounds can improve green s t rength as  w e l l  as increase t h e  a b i l i t y  of a 

compact t o  p l a s t i c a l l y  deform under s t ress .  These c h a r a c t e r i s t i c s  enhance 

t h e  a b i l i t y  of a w e t  compact t o  be consolidated by pressing and t o  m a i n t a i n  

i n t e g r i t y  after pressing. 

t h e  des i r e  t o  exploi t  these  proper t ies  of f u l l y  w e t  compacts. The forming 

technique chosen w a s  c o l l o i d a l  pressing. 

The choice of a forming technique w a s  based on 

A. Colloidal Pressing 

The c o l l o i d a l  pressing process i s  analogous t o  t h e  commercial p rac t i ce  

4 9  



of s l i p  f i l t r a t i o n  followed by w e t  pressing t h e  f i l t e r  cake. 

capable of producing r e l a t i v e l y  defect  f r e e ,  high densi ty  compacts because 

c o l l o i d a l  pressing el iminates  the  p o s s i b i l i t y  of incorporat ing macro-bubbles 

wh i l e  loading t h e  press  with t h e  f i l t e r  cake. Col loidal  pressing occcurs i n  

two s tages  within one apparatus: 

T h i s  process is 

f i l t r a t i o n  and consolidation. 

1. F i l t r a t i o n  

F i l t r a t i o n  occurs i n i t i a l l y  as the  solvent i s  forced through t h e  porous 

membrane by t h e  load on t he  pis ton.  

forming a f i l t e r  cake. 

Par t ic les  bui ld  up on t h e  membrane 

I f  t he  p a r t i c l e s  are pe r fec t ly  dispersed and have a 

high in t e rac t iona l  p o t e n t i a l  t h e  individual  p a r t i c l e s  w i l l  be added t o  t h e  

compact a t  a point of minimum po ten t i a l  (e.g. t he  s a d d l e  point of t h r e e  

p a r t i c l e s ) .  

long range ordering such a compact w i l l  have a maximum density of 

I f  t he  powder i s  monodispersed and  t h e  process occurs without 

approximately 637 corresponding t o  random c lose  packed s t ruc tu re .  

In many systems however compact density f a l l s  shor t  of t h i s  mark. Low 

density flocs containing voids may e x i s t  i n  t h e  s l i p .  A low i n t e r p a r t i c l e  

in te rac t iona l  po ten t i a l  may allow the s l i p  p a r t i c l e s  t o  add t o  t h e  compact 

at the  e a r l i e s t  i n t e rac t ion  rather than ad jus t ing  t o  t h e  minimum saddlepoint.  

Such behavior would r e s u l t  in a low density chainy s t ruc tured  compact. The 

force of t h e  solvent  flowing through a p a r t i a l l y  dense compact may 

subsequently r e s u l t  i n  channel formation. 38 

These mechanisms r e s u l t  from non-ideal dispers ion c h a r a c t e r i s t i c s  and/or 

excessive f i l t r a t i o n  rates. These e f f e c t s  can  be monitored by comparing t h e  

r e s u l t s  of a simple f i l t r a t i o n  experiment w i t h  t he  t h e o r e t i c a l  model of f l u i d  

flow through a homogeneous powder compact as presented by Bird e t  a1,39 



AP E3 

L+L' 150~1 ( l - ~ ) ~  '0 

where Vo E s u p e r f i c i a l  f l u i d  veloci ty  

AP : pressure d i f f e r e n t i a l  across compact 

L 5 instantaneous compact thickness 

L' Z e f f e c t i v e  bed thickness of f i l t e r  

D E p a r t i c l e  diameter 

TI 5 solvent v i scos i ty  

E Z void f r ac t ion  

P 

A l l  q u a n t i t i e s  a r e  d i r e c t l y  measurable except L '  which is  ca lcu la ted  using 

t h e  appropriate  E once t h e  s u p e r f i c i a l  f l u i d  ve loc i ty  (Vo) is  measured f o r  

pure solvent  passing through the  membrane - f i l t e r  assembly. The 

co r re l a t ion  between t h e o r e t i c a l  and experimental flow r a t e s  i s  a good means 

of monitoring t h e  s t r u c t u r e  of t h e  f i l t e r  compact. An experimental flow 

r a t e  l e s s  t h a n  the  t h e o r e t i c a l  value i s  evidence of clogged i n t e r s t i t i a l  

passageways possibly r e su l t i ng  from a broad p a r t i c l e  s i z e  d i s t r ibu t ion .  I f  

t he  experimental flow r a t e  is g rea t e r  than t h e o r e t i c a l ,  8. more highly 

permeable compact implies t h a t  low density,  low re s i s t ance  pathways a r e  

in te rspersed  throughout t h e  powder compact. These low re s i s t ance  pathways 

are known as channels. These channels could l a t e r  se rve  as c r i t i c a l  flaws 

f o r  f r ac tu re .  

If t h e  forming process ended here,  a s  it would f o r  s l i p  cas t ing  o r  

pressure f i l t r a t i o n ,  t he  low density channelled s t r u c t u r e  would be r e t a ined  

and i n f e r i o r  p a r t s  would r e s u l t .  

pressing serves  t o  e l iminate  most of these p o t e n t i a l  flaw sites. 

However t h e  second phase of c o l l o i d a l  
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2. Consolidation 

The consolidation s tage of c o l l o i d a l  pressing begins when t h e  opposing 

f i l t e r e d  compacts, t h a t  b u i l t  up during f i l t r a t i o n ,  impinge upon each other  

( f o r  b id i rec t iona l  flow) o r  t h e  f i l t e r e d  compact impinges on t h e  opposing 

non-porous plug ( f o r  un id i rec t iona l  flow). 

consolidation s tage i s  accompanied by a rapid increase i n  t h e  load a t  

I 
During the  normal procedure, t h e  

constant strain rate. During t h i s  process,  t he  l o w  densi ty  f i l t e r  compact 

( t y p i c a l l y  35% d e n s e )  undergoes subs t an t i a l  rearrangement. 

number of nearest neighbors increase from typ ica l ly  6 t o  11,40 and channels 

t h a t  had formed during f i l t r a t i o n  col lapse.  

The average 

The consolidation process under constant rate of s t r a i n  i s  t r e a t e d  i n  

d e t a i l  by Lambe and Whitman41. 

t h i s  work are:  

Some important i s sues  t h a t  a r e  discussed i n  

m 
0 pressure a n d  density gradients  go t o  zero as the  s t r a i n  rate goes t o  

zero (assuming no d i e  f r i c t i o n ) .  

0 as the  load is  removed t h e  a f f i n i t y  t h a t  t he  compact has f o r  t h e  

l iquid can cause t h e  f l u i d  t o  be reabsorbed, r e su l t i ng  i n  compact 

swelling and possible  f rac ture .  

the e l a s t i c i t y  of t h e  p a r t i c l e s  can a l s o  r e s u l t  i n  compact swelling 

during load re lease ,  serving as another mechanism toward compact 

f rac ture  . 

e 

These three i ssues  can  be addres sed  individual ly  by evaluat ing t h e  i n t e g r i t y  

of t h e  compacts ( i .e.  s in te red  s t rength under constant condi t ions)  as a 

function of :  

0 strain rate 

0 ra te  of load removal 

0 limited maximum .load 
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I n  addi t ion ,  t h e  i s sue  of l i q u i d  reabsorption during load removal can be 

addressed by observing t h e  e f f e c t  of solvent removal from t h e  compacts while 

under a load,  followed by load removal. 

8. Procedures and Results 

1 Col lo ida l  Pressing 

Cyl indr ica l  p e l l e t s  were formed by co l lo ida l  pressing using t h e  d i e  

apparatus shown schematically i n  Figure 20. The solvent is  extracted from 

t h e  s l i p  through membrane f i l t e r s  which cover porous s t a i n l e s s  s t e e l  fr i ts .  

The load is  applied t o  t h e  f r i t s  by ported s t a i n l e s s  s t e e l  p i s tons ,  t h e  d ie  

is brass .  Two porous f r i t s  a r e  used i n  b id i r ec t iona l  pressing and one i s  

used f o r  un id i rec t iona l  pressing. 

S i l i con  carbide and s i l i c o n  s l i p s  were prepared by sonicat ing a 5 vol$ 

solids-methanol mixture i n  a g l a s s  v i a l  for t h ree  minutes at a power l e v e l  of 

65 w a t t s .  The s l i p  w a s  then pipeted i n t o  t h e  d i e  and  pressed. 

3y visua l ly  comparing p e l l e t s  t h a t  were co l lo ida l ly  pressed with 

un id i r ec t iona l  and b i d i r e c t i o n a l  geometries, it was obvious t h a t  t h e  l a t t e r  

geometry of ten resu l ted  i n  laminate flaws in t he  middle  of t h e  compacts. 

These flaws were formed when t h e  opposing f i l t e r  cakes met. For t h i s  reason 

t h e  b id i r ec t iona l  pressing geometry was abandoned. The r e s u l t s  reported 

r e f l e c t  t h e  un id i r ec t iona l  flow geometry. 

2. F i l t r a t i o n  Stage 

A baroid-type f i l t e r  press  obtained from Gelman Sciences,  Inc. (#4280) 

w a s  used i n  t hese  experiments. 

propanol w a s  placed in t h e  f i l t e r  chamber f i t t e d  with a 0.22 prn t e f l o n  

membrane (Mil l ipore FG) . f i l t e r .  

A 5 volume % presonicated s l i p  of S i c  and 2- 

The chamber was closed and  at tached t o  a 
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Figure 20. Components making up co l lo ida l  pressing apparatus. 
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regulated ni t rogen pressure of 0.064 MPa (10 p s i ) .  

valve w a s  opened exposing the  chamber t o  the  nitrogen pressure.  

c l e a r  f l u i d  exuded from t h e  lower chamber vent and poured i n t o  a t a red  

beaker located on a Mettler AE-163 balance with RS-232 i n t e r f ace .  

switch relayed t h e  instantaneous weight of exuded f l u i d  t o  a p r i n t e r  at  f i v e  

second in t e rva l s .  When the  f l u i d  stopped, t h e  experiment w a s  ha l ted  and t h e  

volume of t h e  cake was determined by bulk measurements. The weight was 

determined a f t e r  drying i n  nitrogen f o r  24 hours at  180°C. 

A t  zero t i m e ,  a toggle  

Immediately 

A t i m e r  

The weight of solvent exuded f romthe  baroid press  is  p lo t t ed  i n  

F igure  21 a s  a f'unction of time t o  t h e  one ha l f  power. The i n i t i a l  flow 

r a t e  i s  used t o  ca l cu la t e  t h e  e f f e c t i v e  thickness of t h e  f i l t e r  (L') and t h e  

compact void volume is determined by bulk measurements of t h e  cake. These 

parameters a r e  used t o  ca l cu la t e  t h e  theo re t i ca l  weight of solvent as  a 

flrnction of t i m e  t o  t h e  one half  power which a r e  a l s o  p lo t t ed  i n  Figure 21. 

The t h e o r e t i c a l  and experimental data a r e  s t r a i g h t  l i n e s  as expected. 

The discrepency between the  two slopes ind ica tes  t h a t  t h e  a c t u a l  cake i s  

more highly permeable than the  theo re t i ca l ly  homogeneous s t r u c t u r e  assumed 

i n  t h e  model, s t rongly suggesting t h a t  channels were formed under these 

experimental conditions a s  were observed by Aksay i n  s l i p  c a s t  samples 

3. Consolidation Stage 

Using the  co l lo id  press  the  f i l t r a t i o n  s tage occurs a t  very l o w  

pressures ,  t yp ica l ly  (0.64 MPa (<lo0 p s i ) .  The solvent i s  exuded from t h e  

p is ton  po r t  at  a rate of lcm3/cm2 of f i l t e r /minute .  

due s t r i c t l y  t o  f i l t r a t i o n  i s  typ ica l ly  30-40%. Once t h e  s l i p  has been 

f i l t e r e d  and t h e  opposing compacts impinge i n  t h e  case of b i d i r e c t i o n a l  

pressing o r  t h e  compact impinges on the  non-porous plug i n  t h e  case of 

Compact dens i f ica t ion  



unid i rec t iona l  pressing, t h e  pressure  increases  as the  s t r a i n  rate i s  

maintained. This occurs i n  less than one minute during which t i m e  t h e  

compact density increases t o  a maximum value of 6 3 5 .  

consolidation s tage  approximately 0 .2cm3 of solvent is  extruded. 

pressure i s  held a t  a maximum while stress gradien ts  are allowed t o  r e l a x  

f o r  1 /2  t o  60 minutes. Remaining r e s idua l  stress gradien ts  are due t o  t h e  

During t h i s  

The 

piston-die and compact-die f r i c t i o n .  

coe f f i c i en t  of f r i c t i o n  of s i l i c o n e  lubr ica ted  v i ton  O-rings on t h e  b ra s s  

b a r r e l ;  t he  l a t te r  i s  a l s o  small due t o  t h e  low aspect r a t i o  of t h e  p e l l e t  

geometry (i.e. thickness : diameter < l : 5 ) .  A homogeneously dense 

microstructure should r e s u l t  i n  t h e  absence of stress gradien ts ,  and  t h e  

channels t h a t  formed during f i l t r a t i o n  should be eradicated by t h i s  

consolidation rearrangement. 

The former i s  m i n i m a l  due t o  t he  low 

The e f f e c t s  of maximum loads on p e l l e t  d e n s i t i e s  are given i n  Figure 22 

f o r  s i l i c o n  compacts. The density rises wi th  increased maximum load as 

~ r e d i c t e d . ~  2-44 t h e  r e l a t ionsh ip  between density ( P) 

and pressure ( P )  is  given by: 

According t o  Bashin' 

+ c  = l o g  P 

where k a n d  c are constants. 

The derivation of t h i s  equation i s  based on the  assumption tha t  t he  

energy inputed i n t o  the system is  equivalent t o  P-AV and tha t  t h e  

incrementa l  work done on the  cake i s  related t o  t h e  log  of t h e  incremented 

density change. It is  expected t h a t  t h i s  r e l a t ionsh ip  should hold t r u e  up 

t o  the  point of f u l l y  dense compaction (i.e. p a r t i c l e  t o  p a r t i c l e  con tac t )  

o r  up t o  t h e  onset of p a r t i c l e  f r ac tu re .  

Data f o r  t h i r t y  c o l l o i d a l l y  pressed s i l i c o n  powder compacts (B-004-SED) 

i s  given i n  Figure 22 over a wide range of c o l l o i d a l  press ing  pressures.  
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Figure 22. Green compact densi ty  as a function of negative inverse  log  
maximum c o l l o i d a l  pressing pressure f o r  B-004-SED S i  and S ic  
powders i n  methanol. 
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Figure 23. Percent y i e l d  of good green compacts versus maximum c o l l o i d a l  
pressing pressure f o r  B-004-SED S i  powder i n  methanol. 
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The c lose  f i t  implies t h a t  a s i n g l e  process governs compaction and t h a t  

pa r t i cu la t e  f r a c t u r e  i s  n o t  occurring. 

The green compact i n t e g r i t y  i s  re f lec ted  i n  Figure 23 as % y i e l d  during 

pressing versus maximum load. 

dramatically above 69 MPa (10,000 p s i )  while t h e  y i e l d  remains constant f o r  

Sic. 

The y i e l d  f o r  t h e  s i l i con  compacts drops 

W e  do n o t  have an explanation f o r  t h i s  d i f fe rence  between t h e  two 

materials. 

Green s i l i c o n  compact densi ty  i s  p lo t t ed  as a funct ion of t i m e  i n  

Figure 24. For  times longer than one half  minute densi ty  is  constant.  

implies tha t  t h e  s t r e s s  re laxa t ion  i s  very sho r t  f o r  laser synthesized 

s i l i c o n  compacts. The same behavior i s  expected f o r  laser synthesized 

s i l i c o n  carbide powder. 

This 

. .  

20 30 41) 5G 60 
TIME AT MAXIrlUM PRESSURE (MIA) 

Figure 24. Green s i l i c o n  compact densi ty  versus t i m e  a t  maximum 
c o l l o i d a l  pressing pressure.  
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e. smry 

The d e n s i t i e s  of t h e  compacts have increased continuously during t h e  

program as powder synthes is  techniques, dispersion techniques and press ing  

techniques have been developed. A major cont r ibu t ion  t o  increased compact 

density has been t h e  improved powder cha rac t e r i s t i c s .  

aggregation and p a r t i c l e  s i z e  d i s t r ibu t ion  is  important f o r  achieving t h e  

more dense compacts. 

been achieved. 

Cont ro l l ing  

Laser synthesized S i c  compact d e n s i t i e s  up t o  63% have 

T h i s  dens i ty  (63%)  corresponds approximately t o  the t h e o r e t i c a l  value 

f o r  uniform spheres i n  a random c lose  packed s t r u c t u r e ,  which has the  

mxhm p n s s i h l c  achievable density without introducing ordering. Including 

"nearly touching" neighbors, t h i s  s t ruc tu re  has a coordination number i n  

excess of 11 thus  approaching t h a t  of close packed a r r a y s  i n  i t s  

per fec t ion .  

VI. DENSIFICATIOB 

Less than  planned l eve l s  of e f f o r t  were a c t u a l l y  spent on t h e  

dens i f i ca t ion  s tud ie s .  I n i t i a l  shaping study r e s u l t s  ind ica ted  t h a t  green 

d e n s i t i e s  were t o o  l o w  t o  y i e l d  u s e f u l  f i n a l  microstructures. S t a r t i n g  from 

green d e n s i t i e s  as low as N 40$, w e  an t ic ipa ted  l a rge  r e s idua l  pores ,  

discontinuous g ra in  growth a n d  unacceptably low f i n a l  dens i t i e s .  

recent synthes is  procedures produced the improved powders from which green 

Only a f t e r  

d e n s i t i e s  i n  excess of 60% could be achieved, w a s  it reasonable t o  undertake 

dens i f i ca t ion  research. 
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This research should be viewed as an i n i t i a l  demonstration of 

dens i f ica t ion  f e a s i b i l i t y ,  t h e  de f in i t i on  of necessary time-temperature 

combinations, and a preliminary evaluation of t h e  r e s u l t i n g  par t s .  

determined the r e su l t i ng  densi ty  af ter  a one hour s i n t e r i n g  cycle  a t  

temperatures ranging from 1800 t o  2100°C. 

these  experimentes w a s  se lec ted  on t h e  basis of maximum green dens i t i e s .  

Resulting parts were character ized with respect t o  densi ty ,  microstructure ,  

phases, s t rength ,  hardness, and  f r a c t u r e  toughness. 

We have 

The s i n g l e  powder type used f o r  

A. Experimental Procedures 

1. Sic Powder 

Si l icon  carbide powder type L-033 w a s  used f o r  these  i n i t i a l  

densif icat ion s tudies .  The corresponding undoped powder synthesized under 

t h e  same process conditions exhibited t h e  h ighes t ,  reproducible green densi ty  

pa r t s  made by co l lo ida l  pressing. Introduct ion of approximately 1% by weight 

of B i n t o  the  reactant  gas stream as B2H6 caused no no t i c ib l e  changes i n  any 

powder o r  green p e l l e t  cha rac t e r i s t i c s .  

0.1 urn a n d  a standard deviat ion of - 20% on a weight basis. 

composition w a s  3% excess carbon by weight. 

100% 6 Sic. 

This powder has a mean diameter of 

The nominal 

A s  synthesized, t h i s  powder i s  

2. Pellet Pressing 

Nominally 1 cm diameter by 2 mm t h i c k  green p e l l e t s  were made by 

c o l l o i d a l  pressing. 

concentration 400 mg powder i n  3.5 ml of l i q u i d  using a 60 w a t t  u l t r a son ic  

probe for 5 minutes. This system w a s  selected on t h e  basis of t h e  pure 

Powders were dispersed i n  o c t y l  a lcohol  a t  a 



solvent  d i spers ion  study. Dispersants were avoided since w e  could not rule 

out poss ib le  adverse e f f e c t s  of adsorbed molecules. P e l l e t s  were pressed 

with un id i r ec t iona l  flow f o r  15 minutes at a d i e  pressure of 13.7 MPa 

(2000 p s i ) .  

645; 

These procedures yielded green p e l l e t s  having d e n s i t i e s  of 62- 

t h e  range represents t h e  measurement e r ror .  

3. Drying 

After press ing ,  t h e  p e l l e c t s  were dried t o  remove a l l  v o l i t i l e s  t o  avoid 

damaging t h e  p a r t s  during f i r i n g .  

soak i n  a 200°C N g  atmosphere af ter  an 8 hour l inear  ramp. 

of t h i s  drying cyc le  w a s  es tab l i shed  by weight loss  measurements as a 

function of exposure t i n e .  

Drying w a s  accomplished with a 24 hour 

The completeness 

4. Fir ing  

Dried samples were f i r e d  a t  temperatures ranging from 1800 t o  2100°C i n  

a graphi te  tube  furnace. The samples vere supported v e r t i c a l l y  i n  a s l o t t e d  

carbon channel with a nominally 3 mm spacing between samples. The A r  

atmosphere was es tab l i shed  with a 2 hour f lush  before hea t ing  w a s  i n i t i a t e d .  

The heating cyc le  consisted of a 5O"C/hour linear ramp t o  t h e  f i r i n g  

temperature, a one hour soak and a furnace quench (50-100°C/hour). 

5 .  Exposures 

The powders and p e l l e t s  were handled without a i r  exposure u n t i l  t h e  

pressed green p e l l e t s  were seperated from t h e  TeflonTM f i l t e r s .  

w a s  done i n  a i r  because it is impossible t o  avoid damage using t h e  glove box 

gloves. The p e l l e t s  were exposed t o  a i r  again when, a f t e r  drying, they were 

t ranspor ted  from t h e  glove box t o  t h e  f i r i n g  furnace. 

This s t e p  
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B. Results 

1. Physical and Microstructural Features 

Samples were characterized with respect t o  density using th ree  

techniques and i n  terms of phase content by X-ray d i f f r ac t ion .  Densities 

were determined by physical  dimensions and weight, by immersion i n  water, 

and by microstructural  ana lys i s  using SEM and o p t i c a l  microscopy of both 

fractured a n d  polished surfaces.  The r e s u l t s  are shown i n  Table 8. 

For temperatures up t o  2 O 5 O 0 C ,  d e n s i t i e s  increased with incresing 

maximum s in te r ing  temperature. 

exhibited an apparant decrease; however, we suspect t h e  accuracy of two of 

t h e  density determinations. The bulk measurements (immersion and  

dimensional) included porous regions near t h e  samples' surfaces  thus t h e  

The average density of t h e  2100°C sample 

apparent dens i t ies  were probably lower than t h e  true values. Also, t h e  

polished 2100°C sample contained many pull-outs which were counted a s  pores,  

thus t h e  apparent density was lower than t rue .  Pore diameters a l s o  

exhibited an i n i t i a l  decrease i n  diameter followed by a n  apparent increase.  

In par t  t h i s  increase is the  r e s u l t  of counting t h e  pull-outs as pores. 

Vhen plot ted as  a n  Arrhenius funct ion,  t h e  l i n e a r  shrinkage shown i n  

This Figure 25 exhib i t s  a n  apparent ac t iva t ion  energy of -120 kcal/mole. 

value nominally corresponds t o  t h e  ac t iva t ion  energy reported f o r  carbon 

diffusion through S ic  grain boundaries .4 

were conducted; however, t h e  infer red  r a t e  cont ro l l ing  mechanism appears 

reasonable. 

N o  de t a i l ed  mechanistic s tud ie s  

The s i n t e r e d  S ic  remained 100% B phase up t o  a s i n t e r i n g  temperature of 

2050°C. The 2100°C sample contained approximately equal f r ac t ions  of a and 

B phases. These r e s u l t s  show t h a t  t h e  s in t e red  material has adequate phase 

s t a b i l i t y  for  most appl ica t ions  considered appropriate  f o r  S ic .  
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Figure 25. Arrhenius p l o t  of f r a c t i o n a l  dens i f ica t ion  versus absolute  
temperature observed f o r  B doped laser synthesized Sic .  The 
ac t iva t ion  energy i s  approximately 120 kcal/mole. 

The grain s i z e  and  morphology changed continuously w i t h  increasing 

f i r i n g  temperature, 

average grain s i z e  had already increased t o  approximately 0.3 ~ r m  from t h e  

s t a r t i n g  dimension of -0.1 vm. T h i s  dimension may be somewhat higher than 

a c t u a l  because it w a s  d i f f i c u l t  t o  resolve individual  grain boundaries 

within -0.6 LRII c l u s t e r s  which w e r e  counted as indiv idua l  gra ins .  Many 0.1- 

0.15 urn grains w e r e  observed i n  t h e  1900°C sample. By 1950"C, t h e r e  w a s  

considerable coalescence of t h e  p a r t i c l e s  i n t o  elongated gra ins  similar t o  

those reported by Sat0 e t  a146 (Figure 26) .  

p re fe ren t i a l  growth of 6 Sic gra ins  t o  a co inc identa l  alignment of 

c rys t a l l i ne  l a t t i c e s  between adjacent gra ins .  Ind iv idua l ,  s m a l l  diameter, 

equiax ia l  g r a i n s  s t i l l  remain a f t e r  f i r i n g  a t  1950°C. With 2050°C f i r i n g ,  

t h e  microstructure appears t o  be made up completely of high aspec t - ra t io  

At t h e  lowest temperature examined (1900"C), t h e  

They a t t r i b u t e d  t h i s  
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ORIGINAL PAC2 ~ 

POOR QUALITY 

Figure 26. SEN of B doped S i c  sample s intered a t  1950°C f o r  1 h r  i n  A r .  
Magnification 92OOX.  

Figure 27. Opt ica l  photomicrograph of B doped S ic  sample s in t e red  a t  2050°C 
Magnification 1OOOX.  f o r  1 h r  i n  A r .  
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cy l ind r i ca l  B gra ins  approximately 1.2 .wn i n  diameter and 20 

27). 

S i c  a t  2100"C, equiaxed gra ins  grow t o  100 wn; pores are uniformly 

d is t r ibu ted  throughout t h e  grains .  

long (Figure 

Pores a r e  confined t o  grain boundaries. With p a r t i a l  conversion t o  a 

It i s  evident t h a t  considerable mass-transport occurred i n  t h e  1900- 

1950°C temperature range. 

numbers made poss ib le  with improved dispers ion and pressing techniques 

should permit s i n t e r i n g  temperatures t o  be reduced t o  t h i s  temperature 

range. 

temperatures above .J2O5O0C. 

We bel ieve t h a t  higher,  more uniform coordination 

The gra in  growth mechanisms must be suppressed t o  permit se rv ice  

2. Mechanical Properties 

Room temperature s t r eng ths ,  hardness and  f r a c t u r e  toughness 

character izat ions were made f o r  t h e  2050°C samples. 

i n  b i a x i a l  tension using t h e  ball-on-ring procedure. 

toughness were measured using a Vickers indentor.  

Strengths  were measured 

Hardness and  f r ac tu re  

The ball-on-ring tes t  w a s  used t o  e l i m i n a t e  spurious edge e f f e c t s .  An 

apparatus based on t h e  design by Wachtman e t  a147 was used i n  conjunction 

with a n  Instron Corp. un iversa l  t e s t i n g  machine. 

6.35 mm, 

(0.05 cm/min) .  

The b a l l  diameter was 

The samples were t e s t e d  using a fast crosshead speed 

Fracture  s t r eng th ,  Uf, w a s  ca lcu la ted  48 from: 

3 P ( l + v )  a (I-v) b 2  a2  

f 4nt2 b ( l + v )  2a2 R *  
u =  [1+21n - + - (1 - ->(->I, 

where P = f r ac tu re  load, V = Poisson's r a t i o  ( taken t o  be 0.25), t = sample 

thickness  = 1 mm, R = sample radius  = 6.35 mm, a = load support r i ng  

radius  = 6.27 m and b = b a l l  contact radius  (taken t o  be 0.333 mm = t / 3 ) .  
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The r e s u l t s  of t h e  s t rength  measurements with t h e  2050°C S i c  samples 

are included i n  Table 8. Although t h e  samples are far from optimal, t h e  

observed average s t rength  (645 MPa, 93,500 p s i )  i s  approximately 2 times 

s t rengths  normally observed f o r  s in t e red  s i l i c o n  carbide4 

t y p i c a l  of hot pressed or  HIPed Sic.  

r e s u l t  from t h e  uniformly d i s t r ibu ted ,  small diameter pores made poss ib le  

with these  i d e a l  S i c  powders and  t h e  post-synthesis processing procedures 

t h a t  were developed. Further optimization of t h e  f i r i n g  schedule can be 

expected t o  r e s u l t  i n  higher  dens i t i e s ,  smaller pores and less gra in  growth; 

a l l  of t hese  should r e s u l t  i n  fu r the r  improvements in i n t r i n s i c  s t rength  

leve ls .  It should be noted t h a t  surface f i n i s h  and r e l a t e d  machining flaws 

5e ex-,ezted t o  c?nminst.e nhserved s t rengths  at  t h i s  s t rength  l e v e l  i f  

f i n i sh ing  operat ions a r e  not done with great care  as was observed with laser 

synthesized.react ion bonded s i l i c o n  n i t r ide .  50  

and are more 

The improved s t rength  values probably 

Vickers hardness values were determined on polished surfaces  using 300 

and 500 gram loads. 

t y p i c a l  of hot pressed r a the r  than s intered Sic.  We presume t h a t  t h e  

hardness and s t rength  values are coupled, although t h e r e  is no formal theory 

t o  r e l a t e  t h e  two proper t ies  i n  a b r i t t l e  mater ia l  as exis ts  f o r  d u c t i l e  

mater ia ls .  

The observed values of 2430 kg mm’2 a r e  also more 

Fracture  toughness values could not be measured on t h i s  mater ia l  us ing  

t h e  indentat ion technique. Normally with increasing loads,  stable cracks 

o r ig ina t e  from t h e  corners of indention; t h e  crack dimensions a r e  used t o  

ca l cu la t e  t h e  KIC values. 

Suddenly with increasing load,  cracks formed and propagated completely 

through t h e  samples. 

g ra in  s i z e  S ic .  51 , 5 2  

S tab le  cracks did not form i n  t h i s  S i c  material .  

Similar  r e s u l t s  have been observed w i t h  o ther  f i n e  
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VII. SUMMARY Am coIcLusIoIvs 

This research program has focused on t h e  processing-microstructure- 

property paradigm f i r s t  proposed by MIT. Only through t h e  use of both 

highly perfect  powders a n d  ca re fu l  post-synthesis processing s t eps  w i l l  it 

be possible t o  achieve uniform, defect-free microstructures and t h e  property 

improvements t h a t  are c r i t i c a l  f o r  many high performance appl ica t ions .  

Spec i f ic  issues  addressed i n  t h i s  program have been t h e  synthes is  of S i c  

powders, t h e i r  dispers ion,  t h e i r  shaping i n t o  high qua l i ty  green p a r t s ,  

consolidation of t h e  green p a r t s  i n t o  d e n s e  bodies,  and  t h e  evaluat ion of 

r e su l t i ng  propert ies .  

Powder synthes is  research began from successfu l  demonstration of t h e  

f e a s i b i l i t y  of making S i c  powders from l a s e r  heated SiH, and e i t h e r  C 2 X 4  o r  

CH, gases. 

diameters from 100-300 a t o  nominally 1000 a while re ta in ing  the  o ther  

required c h a r a c t e r i s t i c s  (uniform p a r t i c l e  s i z e ,  freedom from agglomerates, 

pu r i ty  and  shape).  

nucleation a n d  growth model w e  had used t o  descr ibe t h e  process d i d  not i n  

f a c t  apply; r a the r ,  p a r t i c l e s  formed by a two s t e p  reac t ion  t h a t  involved 

c o l l i s i o n  and coalescence of molten s i l i c o n  p a r t i c l e s  p r i o r  t o  t h e  onset of 

t h e  carburizat ion react ion.  With t h i s  understanding, it w a s  possible  t o  

increase t h e  p a r t i c l e  diameter t o  t h e  d e s i r e d  range. 

of reaction requires  a prec ise  combination of exposure times, temperature 

grad ien ts  and reac tan ts .  Fortunately,  t hese  are achieved i n  a 

straightforward manner with t h e  laser heated gas phase powder synthesis  

process. 

The p r inc ipa l  t echn ica l  ob jec t ive  w a s  t o  increase  p a r i c l e  

I n  t h e  course of t h i s  reserch,  we found t h a t  t h e  

Control l ing t h i s  type 
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New dispers ion techniques were required f o r  t hese  laser synthesized S ic  

powders because t h e i r  surfaces  are fundamentally d i f f e r e n t  from a l l  S i c  

powders t h a t  have experienced an exposure t o  air  o r  water. 

anhydrous processing conditions were used throughout. Both pure solvent  and 

s t e r r i c  s t ab l i zed  dispers ion techniques were invest igated.  It w a s  f e l t  t h a t  

t h e  pure solvent  systems would be eas i e r  t o  dry and would leave less residue 

than t h e  s t e r i c  systems, but they probably would not be capable of achieving 

highly stable, high densi ty  dispersions.  

Anerobic, 

Sui tab le  pure solvent  ( o l e i c  ac id )  and s t e r i c  s t a b i l i z e d  systems 

(Oloa/hexane) systems were iden t i f i ed  for  the  high p u r i t y ,  l a s e r  

synthesized powders. 

~ h e e r v e r l  between p a r t s  made from di f fe ren t  powder l o t s  having similar 

physical  and chemical cha rac t e r i s t i c s .  I t  is  believed t h a t  these  

Considerable var ia t ion i n  t h e  packing d e n s i t i e s  was 

d i f fe rences  r e s u l t  from .varying degrees of agglomeration. 

Green p a r t s  were made by cent r i fuga l  sedimentation and  by c o l l o i d a l  

pressing. Both techniques produced uniform p a r t s  t h a t  were f r e e  of l a rge  

defects .  The c o l l o i d a l  pressing technique yielded higher  dens i t i e s .  Two 

s tages  of pressing were modeled: l iquid i s  f i r s t  ex t ruded  through a 

progressively th i cke r  cake, then higher dens i t i e s  are made poss ib le  with 

p a r t i c l e  rearrangement accompanying increasing pressure.  Densi t ies  

corresponding t o  a random c lose  packed s t ruc tu re  (-63.5%) were achieved; 

t h i s  i s  t h e  highest  possible  densi ty  for  non-ordered, uniform-diameter 

spheres. 

A f t e r  drying, t h e  p a r t s  were densified f o r  1 hour a t  temperatures 

ranging form 1800 t o  2100°C. 

temperature up t o  97.5% a t  2050°C. 

2100°C sample may be real because of pore entrapment behind gra in  boundaries 

Densit ies increased progressively with 

The lower densi ty  exhibi ted by t h e  
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o r  may be a r t i f i c i a l  due t o  pull-outs and o ther  measurement e r ro r s .  

s izes  increased with f i r i n g  temperatures. Judging by the  observed gra in  

growth, the optimum f i r i n g  temperature w i l l  probably be subs t an t i a l ly  below 

2050°C. 

G r a i n  

Even without optimization, t h e  proper t ies  of t h e  r e su l t i ng  p a r t s  were 

excel lent .  Densities were high (up t o  97.5%) and r e s idua l  poros i ty  w a s  

generally d i s t r ibu ted  uniformly throughout t h e  p a r t s  i n  small diameter 

pores. The grain s i z e  and  shape changed subs t an t i a l ly  during t h e  evolut ion 

of t h e  microstructures;  B gra ins  became progressively elongated and  l a r g e r  

w i t h  increasing f i r i n g  temperatures up t o  2050°C. A t  2100"C, they 

transformed t o  much l a r g e r  equiax ia l  a and  B grains  w i t h  entrapped pores. 

The b i ax ia l  t e n s i l e  s t rengths  of t h e  2050°C p a r t s  were a l s o  exce l len t .  

The s t rengths  (up t o  714 MPa, 103,500 p s i )  a r e  twice l eve l s  nominally 

observed for  s in t e red  S ic  a n d  are more t y p i c a l  of hot pressed S ic .  Hardness 

values (2430 kg/ .m2) were a l s o  more t y p i c a l  of hot pressed than s in t e red  

S ic .  Both r e s u l t  from t h e  absence of la rge  defects  and  t h e  confinement of 

res idua l  porosity t o  small diameter, uniformly d i s t r ibu ted  pores. Fracture  

toughness values could not be measured by t h e  indentat ion technique because 

stable cracks d i d  not form; when cracks were induced they propagated t o  t h e  

samples' boundaries. 

This research program accomplished a l l  of i t s  ma.jor ob jec t ives .  

Broadly, the ove ra l l  goa l  w a s  t o  demonstrate t h a t  superior  microstructures  

and  propert ies  could be achieved by using both powders having i d e a l  

cha rac t e r i s t i c s  and very s p e c i f i c  post-synthesis processing procedures. 

This w a s  accomplished. I n  achieving t h i s  ob jec t ive ,  s eve ra l  narrower 

technica l  issues  were resolved. These included f inding means t o  make t h e  

powders, disperse t h e  powders, shape t h e  powders i n t o  high-density flaw-free 
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parts, d r y  t h e  p a r t s  and densify t h e  parts.  While super ior  proper t ies  and 

both reduced dens i f ica t ion  t i m e s  and temperatures were demonstrated, these  

r e s u l t s  do not represent f u l l y  optimized process conditions o r  maximum 

property values. Further  improvements can be ant ic ipated.  
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