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SOME RECENT DEVELOPMENTS IN SPECTRAL METHODS 

M. Y. Hussaini 
Institute €or Computer Applications in Science and Engineering 

ABSTRACT 

This paper is solely devoted to spectral iterative methods including 

spectral multigrid methods. These techniques are explained with reference to 

simple model problems. Some Navier-Stokes algorithms based on these 

techniques are mentioned. Qesults on transition simulation using these 

algorithms are presented. 
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1. Introduction 

Spectral methods consist of expanding the solution to a problem in terms of basis functions which are 

global, infinitely differentiable and preferably onhogonal [ 1,2]. This choice of basis functions is what distin- 

guishes them from the finite difference and finite element methods. In the case of finite element methods, the 

domain is divided into small elements, and a basis function is specified in each element They are thus local 

in character. The case with finite difference methods is similar. 

In addition to the basis functions, a key element of spectral methods is the set of test functions or 

weight functions. The test functions are used to enforce minimi&on of the residual resulting from the sub- 

stitution of the series expansion of the solution into the differential equation. The choice of test functions 

distinguishes between essentially two types of spectral methods - spectral Galerkin, and spectral collocation. 

In the Galericin approach, the test functions are usually the same as the basis functions, whereas in the collo- 

cation approach the test functions are translated Dirac delta functions. In other words, the Galerkin approach 

satisfies the differential equations in the least square sense. In the spectral collocation approach the equations 

are satisfied exactly at the selected, so-called collocation points. It should be noted that the basis functions are 

employed solely for the purpose of approximating derivatives. This approach, which became feasible with the 

advent of computers, is the easiest and the most efiicient for nonlinear problems,.and is the focus of the 

present discussion 

2. Basic Aspects 

The principal advantage of spectral methods lies in their potential for rapidly convergent approxima- 

uons. In practical terms, it means that they achieve accurate results with substantially fewer points than are 

required by typical finite difference methods. Suppose unl is a numerical approximation to a function u(x). 

With a given set of basis functions @,,, it takes the form 

The expansion coefficients a, are obtained by enforcing the condition 

K ~ , I  (Xj) = U(Xj). 

where xj are the selected, so-called collocation points, which are usually the exuema of Qs. F i y e  1 prc- 

vides a graphic distinction between a second-order accurate central difierence approximation and a Legendre 

spectral approximation to the first derivative of the function 



whose values are given at a finite number of grid points. T h e  finite difference approximation for the deriva- 

tive at the origin, for instance, is estimated by interpolating a parabola through the origin and the two adja- 

cent points, and is thus local in character. T h e  spectral approximation estimates the derivative of the original 

function by the derivative of the polynomial which interpolates all the available points. Note that the error of 

the finite difference discretization decreases as 1/N2, whereas the error of the specval discretization decreases 1 
exponentially. In the case of a differential equation, a further step is involved. that of finding an approxima- 

Another advantage of spectral methods is their minimal phase error. Consider the periodic solution to 

I 
tion for the differential operator in terms of the grid point values urJ(xi). , 

I 
the problem u, + ux = 0 with u(x,O) = sin(xcos(x)). F i y e  2 shows the lagging phase of the finite difference 

solution, while the Fourier spectral solution has zero phase error. A fourth-order Runge-Kuna method is used 

for temporal discretization in both the cases. For realistic problems with variable coefficients or nonlinear 1 
terns, the phase error for spectral methods is, of course. m ~ v ~ r o ,  but still relatively small. I 

I 

These art some of the essential aspects of spectral methods which make them the prevailing tool in the 
study of stability, transition, and turbulence. Some of the drawbacks which have inhibited their wider use are: 

1) time-step resmction imposed by the standard spectral grid, 2) sensitivity to sinplarities and 3)  resmction 

to simple geometry. Progress has been made on all counts 131. The present work will be confined to the 

recent developments in overcoming the first obstacle. 

I 

3. Iterative Spectral Methods I 

For evolution problems, explicit timezstepping can be extremely inefficient This is so because the typi- 

cal time-step limitation for spectral methods is proportional to l/N2 for the advection equation and 1/p for 

the diffusion equation (where N is the number of modes) [I]. Hence, implicit time-stepping becomes a n w s -  

sity. This results in a set of algebraic equations, which are in generat amenable to iterative solution tech- 

niques only. Also, elliptic equations governing practical problems virtually require implicit iterative tech- 

niques. As the condition number of the relevant mamices are large, preconditioned iterative schemes including 

multigrid procedures are the am-active choices. In this section, we discuss the fundamentals of iterative spec- 
tral methods with reference to an elementary example. and then their application to the three dimensional 

incompressible Navier Stokes equations for the study of stability and transition in a channel and a boundary 

layer. 

For the purpose of illustration let us consider the equation, 

UX =& 

periodic on [0,2x]. For the Fourier method, the standard choice of collocation points is 

(3) 

(4) j =  0, 1, 2, -.., N-1, 2xi  
Xj=" 

Setting uj = u(xj), the discrete Fourier series for u may be represented by the discrete transform pair 
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The expression for the derivative u, at the collocation points is 

Thus the Fourier collocation discretization of the equation may be written 
I 

j = 0, 1,  ..., N-1 

j - 0, 1. ..., N-1 

LU = F. (5)  

where U = (q-,, ul, ..., uN-,), F = vb,fi, ..., fN-l), and L = C ’ D C  with C being the discrete Fourier transform 

operator, C-’ the inverse transform, and D the diagonal matrix denoting the first derivative operator in the 

Fourier space. Specifically, 

0 
N c, = e , j , k - 0 ,  1, .-., N-1 

and 

D i  = i (j - N f 2 )  for j = 1, 2, ..., N-1 (7) 

= O  for j = 0 

The eigenvalues of L are 31@) = ip. p = -  N f 2 +  1, ..., N f 2 -  1, and the largest one grows as N f 2 .  A 

pre&nditioned Richardson iterative procedure for solving Eq. (5) is. 

v t v + 6Uf-l (F - Lv) (8) 

where the preconditioning mamx H is an approximation to L, is sparse, and is readily invemble. An obvious 

choice for H is a finite difference approximation LFD to the first derivative. With the various possibilities for 

LFD, the eigenvalue spec- of LgD L is given in Table 1. Apparently, the staggered grid leads to the most 

effective treatment of the first derivative. This kind of preconditioning was successfully used in the semi- 

implicit time-stepping algorithm for the Navier Stokes equations discussed in the section on Navier Stokes 

Algorithms. The eigenvalue trends of that complicated set of vector equations are surprisingly well predicted 

by this extremely simple scalar periodic problem 

Nexg let us consider the second order equation 

-ua = f on [0, 2x1 (9) 

with periodic boundary conditions. A Fourier collocation discretization of this equation is the same as Eq. (5)  

except for the diagonal mamx D which represents now the second derivative operator in the Fourier space. 

3 



= 0, j = O  

The eigenvalues of L are ?L@) = 2 , p = -N/2 +1, ..., N/2-1. To make the case for the multigrid procedure 

(consisting of a fine-grid operator and a coarse-grid correction) as a preconditioner, we assume H to be the 

identity mamx I in the irtrative scheme (8). The iterative scheme is convergent if the eigenvalues, ( 1  - ax), 
of the iteration mamx [ I 4 1  satisfy 

11 - 0x1 e 1.  

Each iteration damps the error component corresponding to 

of h is that which balances damping of the lowest-frequency and the highest-frequency errors, i.e., 

by a factor v(A) = Il-ohl. The optimal choice 

(1 - = - ( I  - a&J 

This yields 

and the spectral radius 

O-llUX-LlI) 

(L+L). Psc = 

In the present instance, & = N2/4, k.- = 1, and thus pE = 1 - SIN'. This implies order N2 iterations are 

needed for convergence. This poor performance is due to balancing the damping of the lowest frequency 

eigenfunction with the highest-frequency one. The multigrid procedure exploits the fact that the lowest- 

frequency modes (IpI < N/4) can be damped efficiently on coarser grids, and settles for a relaxation parameter 

value which balances the damping of the mid-frequency mode (IpI = N/4) with the highest-frequency one 

(ipI= Nl2).  Table 2 provides the comparison of single-grid and multigrid damping factors for N=64. The 
high frequencies from 16 to 32 are damped effectively in the multigrid procedure, whereas the frequencies 

lower than 16 are hardly damped at all. But then some of these low frequencies (from 8 to 16) can be 

efficiently damped on the coarser grid with h'=32. Further coarser grids can be employed till relaxation 

becomes so cheap that all the remaining modes can be damped. In concrete terms, the ingredients of a mul- 

tigrid technique are a fine-grid operator, a relaxation scheme, a resmccion operator which interpolates a func- 

tion from the fine grid to the coarse grid, a coarse-grid operator, and a prolongation operator interpolating a 

function from the coarse grid to the fine grid. The fine grid problem for the present example may be written 

L f V f = F f  (10) 

Let Vf denote the fine-grid approximation. Afrer the high-frequency content of the error g- d has been 

sufficiently damped, attention shifts to the coarse grid. The coarse-_grid problem is 

I 
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I L V  = F 

i 
where 

P = R [FI- I!! V I ] ,  

R being the restriction operator. After a satisfactory approximation V is obtained, the coarse-grid correction 

(VC - RVf) is interpolated onto the fine jyid by the prolongation operator P, yielding the corrected fine-grid 

solution 

V f c  V I + P ( v - J ? v q  (12) 

The details of spectral multigrid techniques ax furnished in [4]. Spectral multigrid techniques have been 

used to solve a variety of problems including the transonic full potential quation [5,6]. Additional applica- 

tions of spectral methods to compressible flows are described in [7]. In thc next section, we describe a mul- 

tigrid algorithm for the incompressible Navier Stokes equations. 

4. Navier Stokes Algorithms 

This section is devoted to a description of recently developed algorithms for the simulation of instability 

and transition to turbulence in a flat-plate boundary layer. These algorithms deal with the primitive variable 

formulation of the Navier Stokes equations, and are based on the iterative methods discussed above in the 

simplest context They are capable of handling geomemc terms and variable viscosity. 

The Navier Stokes equations in the so-called rotation form are 

q, = q x 0 + v - @Vq) - VP in R 

and 

q = g  on an 

where q = (u,v,w) is the velocity' vector, o = V x q the vorticity, P = p + 112 1qI2 the total pressure, p the 

variable viscosity, R the interior of the domain, and an its boundary. In the stabdity and uansinon problems 

under study, the domain R is Cartesian and semi-infinite: periodic in the two horizontal directions (xJ).  and 

bounded by a wall at 34.' Fourier collocarion can be used in the periodic directions (x,z), and Chebyshev 

collocation is used in the vertical (y) direction. The collocation points in the periodic directions are given by 

a relation similar to Eq. (4). The vertical extent of the domain 0 e y e - is mapped onto -1 < 5 < +l. The 
velocities are defined and the momentum equations enforced at the points 

xi kj = cos(-), 
NY 

The pressure is defined at the half points 

NY j = 0, 1, ..., 

j = 0, 1, ..., Ny - 1  
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and the continuit). equauon is enforced at thcse points. The staggered grid avoids artificial pressure boundaT 

conditions, and precludes spurious pressure modes. 

After a Fourier transform in x and 5 the temporal discretization (backward Euler for pressure, Crank- 

Nicolson for normal diffusion, and third or fourth-order Runge-Kutta for the remaining terns) of Eqs. (13) 
leads to 

[ I  - MDMJ Q + AtAo Vn = Q, (14) 

I 

- A + V - Q = O  

I 

where 

M is the Chebyshev derivative operator, D the diagonal matrix with 1/2pAr as its elements, and 4 is the 

interpolation operator from the half points to cell faces, A+ vice versa. Obviously, the equations for each pair 

of horizontal wave number (k&) are independent, and they can be wrinen as the system 

W T = F  

where X = [p, ll] . The iterative solution of this equation is carried out by preconditioning the system with a 

finite difference approximation on the Cliebyshev grid, and applying a standard iterative technique such as 

Richardson, minimum residual or multigrid [8]. 

The method described above solves the implicit equations together as a se t  The extension of this 
method to the more general cases of interest such as those involving two or more inhomogeneous directions 

is not straightforward. An alternative is the operator-splitting technique or the fractional step scheme [9]. This 
method yields impIicit marices which are positive definite and are easily amenable to iterative methods. In 

the first step, one solves the advectiondiffusion equation 

ql* = q* x 0. + 0 - (pVq*) (1 6) 

subject to the initial and boundary conditions 

P = g* on aS2 

Note that g* has yet to be defined. In the second step, one solves for the pressure correction 

ql** = vp** 
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in R 

where ii is the unit normal to the boundary. Further, the tangential component of the Eq. (17) holds on the 

boundary, Le., 

q,** t = -VP** . t in an 
where 2 is a unit tangent vector to the boundary. Now g* is defined [9] as (using Taylor expansion in t) 

g* * ii = (g" + At g;) ii 

Eq. (1 6) is discretized in the usual spectral collocation manner. After a temporal and spatial discretization of 

Eq. (17). the boundary conditions are built into the relevant mamx operators. and then a discrete divergence 

is taken This results in a discrete Poisson equation (with as many algebraic equations as unknowns) for pres- 

sure, which can be solved by standard iterative techniques including the multigrid method. 

5. Applications 

These algorithms have been used to study the incipient stages of the transition process in channel flows 

[8] and parallel boundary layer flows [lo]. Some representative results are provided here. The channel flow 

results pertain to the secondary instability associated wih the socalled center modes. UnIike the Tollmien- 

Schlichting modes (sometimes alluded to & wall modes), the center modes always decay with a rather high 

decay rate. Their phase velocity is near unity and their maxima occurs near the center of the channel. The 

simulation had a Reynolds number of 5000 based on halfchanntl width, and the initial conditions consisted 

of a 20% amplitude two-dimensional center mode with two 15% amplitude skewed modes. The harmonic 

contents of the solution were monitored, and the grid was refined as deemed necessary. The finest grid was 

144x96~108. Ploned in Figure 3 are streamwise v~rticity (left side) and spanwise vorticity (right side) con- 

tours on the streamwise planes at I = 3/8, 7/16, 1/2 and 9/16 of the fundamental wavelength. The so-called 

peak plane would intersect these streamwise planes along a vertical line in the center of the frames. The 

structure of the vortex loop can be deduced from these plots. It differs in detail from that of the wall modes. 

The vortex structures are significant over only a small portion of the wavelength in the streamwise direction, 

whereas in the case of, wall modes they cover almost the whole wavelength Furthermore, the pinching of the 

vortex loop in the pe& plane appears to be less acute in the case of the center modes. The harmonic history 

is displayed in Figure 4. The evolution of the secondary instability is apparent and it appears similar to that 

of the Tollmien-Schlichting modes. What is more interesting is the steep growth of the (0.2) and (2,2) modes 

which may lead to a strong tertiary instability. To resolve it in detail would require an even finer B;d 

The parallel heated water boundary layer cases had a Reynold number of 1100 based on the displace- 

ment thickness, and the initial amplitudes of the two-dimensional and three-dimensional Tollmien-Schlichting 

waves were 2.7% and 0.4% respectively. 

7 



I 

Three different siruatlons were studied: 1) uncontrolled a s e ,  2) heated fixed temperamre case, and 3) 
heated actlve temperature case. In the heated fixed temperamre case, the temperamre was kept fixed at thc 

initial value pemnent to the mean flow conditions, and the temperam evolution was totally neglected. In the 

heated active temperature case, the temperaturr evolution was taken into a w u n t  by solving the temperam 

I 

equation along with the momentum equations. In both the cases the wall temperature was 2.75% above the 

predicts the weakening effect of heating on the secondary instability. Figure 8 shows the spanwise vorticity 

I 

free smam temperatun. Figures 5,6 and 7 display the harmonic histones. The fixed temperam case over- 

I , 
contours on the peak plane. In the uncontrolled case (Figure 8 top left) a kink develops in the high-shear 

layer at time I equal to three Tollmien-Schlichting periods. It is generally accepted that a irrevocably quick 

succession of events follows thereafter leading to a turbulent spot formation. Heating the wall to 2.7536 

I 

above the free stream temperam diffuses the high-shear layer as is obvious from Eyre 8 (bomm left). I 

However, within the subsequent one and one founh period, turbulent spot formation appears to become 

imminent (Figure 8 top right). In the fixed temperature case. it is clear from Figure 8 (bottom right) that the 

high-shear layer formation is mellowed down even up to four and one fourth periods. This shows that the 
effect of temperature evolution is significant and deleterious in the nonlinear regime whereas it is quite negli- 

gible in the linear regime. 
I 
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Table 1. Preconditioned Eigenvalues for One-dimensional First 
Derivative Model Problem 

(Precomii tioning Eigenvalues 

Central Differences 1 -  ~ 

lA2 
sin(&) 

One-sided Differences 

Staggered Grid 

Table 2. Damping Famrs for N = 64 

p SingleGrid Mulrigid 
~ ~~ 

I -9980 
2 -9922 
4 .9688 
8 -8751 

12 .7190 

16 SO05 

20 .2 195 

24 .I239 
28 .5298 

32 .9980 

.9984 
3938 
.9750 
.go00 
-7750 

.6ooO 
-3750 
.lo00 

-2250 
.6ooo 
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FINITE DIFFERENCE DERIVATIVE 

3c 
LEGENDRE SPECTRAL DERIVATIVE 

3f 

I I I 

X 

X X 

17% ERROR 0.1 9b ERROR 

- 
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LL LI 
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X X -1 .o 

Figure 1: Comparison of finite difference (left) and Legendre spectral 
(right) differentiation. The solid curves represent the exact function and 
the dashed curves their numerical approximations. The solid lines are the 
exact tangents at x = 0 and the dashed lines the approximate tangents. The 
error in slope is noted as is the number of intervals N. 
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I PERIODIC WRVE EQURTION 

N: 32 T: 6 -2832 

Figure 2 :  F ini te  difference (FD2) and Fourier spectral (FS) approximations 
a f t e r  one period to a s i m p l e  wave equation whose exact solution i s  represented 
by the curve. 
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STRUMWISE VORTICITY SPANW ISE VORTlClM 
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L 

Figure 3: Streamwise (left) and spanwise (right) vorticity at four streamwise 
locations for a channel flow center mode transition. Only the lower half of 
the channel is shown. 
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F i g u r e  4 :  Harmonic h i s t o r y  f o r  a R e  = 5000 c e n t e r  mode s i m u l a t i o n .  
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Figure  5: Harmonic h i s t o r y  f o r  a R e  = 1100 boundary layer. 
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F i g u r e  7:  Same a s  F igure  6 but  €or  f i x e d  tempera ture .  I 
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Figure 8: Vertical shear i n  the peak plane for R e  = 1100 boundary layer 
s i mu1 a t ion. 
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