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"_bstract

design and fabrication program was conducted to evaluate a unique concept for

constructing a cooled, high-temperature radial turbine rotor. This concept,
called "split blade fabrication" was developed as an alternative to internal

ceramic coring. In this technique, the internal cooling cavity is created with-

out flow dividers or any other detail by a solid (and therefore stronger) ceramic

plate which can be more firmly anchored within the casting shell mold than can

conventional detailed ceramic cores. Casting is conducted in the conventional

manner, except that the finished product, instead of having finished internal
cooling passages, is now a "split blade." The internal details of the blade are

created separately together with a carrier sheet. The inserts are superalloy.

Both are produced by essentially the same software such that they are a net fit.

The carrier assemblies are loaded into the split blade and the edges sealed by

welding. The entire wheel is Hot Isostatic Pressed (HIPed), braze bonding the
internal details to the inside of the blades. Subsequently, the weld bead is

removed, exposing the steel carrier which is leached away in an acid bath, leav-
ing the superalloy details.

During this program, two wheels were successfully produced by the split blade

fabrication technique. One of these wheels was successfully thermal shock, spin,

and flow tested, and conformed to all dimensional and design requirements.
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EXECUTIVE SUMMARY

This program was concerned with the evaluation of a new concept for manufac-

turing air cooled blades called "split blade fabrication"*. The split blade
manufacturing procedure was developed as an alternative to internal ceramic

coring. In this system the internal cooling cavity is created without flow
dividers or any other detail by a solid (and therefore stronger) ceramic

plate which can be more firmly anchored within the casting shell mold than
can conventional detailed ceramic cores.

Casting is conducted in the conventional manner, except that the finished

product, instead of having finished internal cooling passages, is now a

"Split Blade". The internal details of the blade are created separately
together with a carrier sheet. The parts were created on a CAD/CAM wire EDM

saw. The carrier is a low carbon steel. The inserts are superalloy. Both

are produced by essentially the same software such that they are a net fit.

The carrier assemblies are loaded into the split blade and the edges sealed

by welding. The entire wheel is Hot Isostatic Pressed (HIPed), braze bonding
the internal details to the inside of the blades. Subsequently, the weld

bead is removed, exposing the steel carrier which is leached away in an acid

bath, leaving the superalloy details.

Two wheels were successfully produced by the split blade fabrication tech-

nique. The main detriment to the process in the majority of other attempts
was unsatisfactory welding closure of the blade edges (and a lack of reliable

pressure testing method) resulting in leakage and unsound bonding in the
HIPing operation. Of these wheels, one was successfully thermal shock, spin,

and flow tested, and conformed to all dimensional and design requirements.

The rationale for the split blade approach is avoidance of excessive casting

rejections in a multi-blade wheel. If the acceptance of a single cast blade

is A percent, combining N blades within a single monolithic wheel generates
a condition wherein acceptance of the wheel becomes O.A N, often a prohibi-

tively small number, unless A is unrealistically high. A number of conven-

tionally cored bladed wheels procured (together with the split blade wheels)

yielded no perfect castings and a projection of only about 5% in further

production. The split bladed castings were 100 percent acceptable.

The second advantage of the evaluted manufacturing technique is the ease with

which the design of the cooling passages can be modified, requiring only

changes in the software which creates the flow dividers and carriers. Changes.

*Patent application in process.



in conventional coring require, in most cases, alteration of hard tooling
required to create the detailed ceramics.

In summary, production of multi-bladed wheel casting by the split blade
technique proved to hold a significant advantage over conventionally cored
wheel castings. The techniques for creating internal details within the split
blade were shownto be sound in concept but suffering from reliable welding
(and weld testing) procedures.



I

INTRODUCTION

The objectives of this program were to design, fabricate, and test an advanced

air-cooled radial turbine wheel. Design constraints included the following
as specified by NASA:

• 2.25 kg/sec (5 Ib/sec) primary flow

• 190 newtons/cm 2 (280 psia) turbine inlet and coolant inlet pressure

. 745 kW (1000 hp) shaft power

• 780°K (950°F) cooling air temperature

0.45 kg/sec (1 Ib/sec) maximum cooling air flow for stator
and rotor

. 1500 hour life

Rotor inlet temperature as close as possible to 1900°K (2960°F)

with a minimum of 1600°K (2420°F)

Convective cooling with the majority of ejection from the blade

trailing edges

Five fabrication methods all involving casting were analyzed as to ease and

cost of fabrication, and structural integrity• The five methods included

three configurations suggested by NASA and two by Solar:

i. NASA Configuration 1 - Pie Slices. Cast identical rotor segments,
equal in number to the number of blades, each of which includes the

suction side of one blade, the hub segment, and the pressure side

of the adjacent blade. The internal blade cooling passage would be

integral with either or both sides of the blade. The joining
surface between adjacent segments would lie within the blade and

would approximate a mean camber surface with radial or near-radial
eIement s.

. NASA Configuration 2 - Cover Plates. Cast a monolithic rotor that

includes all but one side of each blade. The mating blade sides

would be cast separately and bonded to the rotor• The internal

blade cooling passages would be cast into either or both surfaces.

. NASA Configuration 3 - Radial Plane Sections. Cast the rotor in

two or three parts, one including the radial-flow portions, and the
other(s) the axial-flow portion.



. Solar Configuration 4 - Split Blades and Inserts. Cast a monolithic

rotor but one in which each blade is divided into two sections,

pressure and suction sides, by a relatively thick, plain, ceramic

core which can be anchored in the investment; (1) within the hub,
at the (2) leading and (3) trailing edges, and (4) on the outer

periphery of the blades, i.e., virtually entirely around. Subse-
quent to casting and removal of the core, a steel matrix fitted

with superalloy insert pin fins, trip strips, and flow directors

would be slipped into the split blade, welded gas tight around the

periphery, and HIPed at the appropriate times, temperature and

pressures to effect a liquid interface bond of the various inserts

to the blade surfaces. Final leaching of the casting in appropriate
acids would remove the steel matrix, opening the cooling passages,
while leaving the inserts bonded in place.

. Solar Configuration 5 - Segmented Blade Sections. Cast individual

segmented sections, each comprised of a radial blade, an endwall

platform, and a shank ending in a dovetail type of attachment to a

central forged hub.

The initial tasks were the selection of method by design and analysis together

with generation of enough fabrication data to perform the essential trade-
offs with design. Principal considerations were:

determination of velocity diagrams
aerodynamic design of the rotor
selection of the rotor material

selection of the cooling configuration

mechanical and thermal analysis of the rotor
detailed mechanical design of the rotor

joint strength

Subsequent work included casting and fabrication by the selected methods.

Prototype wheels were produced and tested for cooling air flow, structural
integrity, and by Cold and hot spin tests.

Solar personnel involved in the program included: Dr. Arthur Metcalfe,

Program Director; Alvin Hammer, Program Manager; George Aigret, Thermal

Analysis; Tom Psichogios, Stress Analysis; and Colin Rodgers, Aerodynamic
Design.

4



2
DETERMINATION OF PROGRAM DIRECTION

2.1 DESIGN CONSIDERATIONS - CASTING

A preliminary design was formulated for the aerodynamic shape and cooling

passages applicable to the design constraints. The wheel has 10 blades, is
16.5 cm (6.5 in.) in diameter, and has a speed of 65,000 rpm. Table 1 pre-

sents preliminary data as to this design in comparison to other recent air-

cooled rotors. Figure 1 shows a schematic representation of the wheel.

A meeting was held with technical and sales representatives of the foundry to

discuss the five manufacturing approaches under consideration. The foundry

reaffirmed the dificulty of attempting to cast a lO-bladed, monolithic rotor

with cooling passages generated by internal ceramic coring. Unless the cores

can be securely anchored at most edges the danger that one of the ten will

slip creates odds which are prohibitive to economical production. NASA

Configuration #3, Radial Plane Sections, more than halves the odds of this

happening since the shorter cores can be supported in the investment much
more securely.

Similarly, the foundry felt that the split blade approach offered significant

advantages in that the core can be very securely anchored in the investment.

There is a further advantage in that the positions of strip trips, pin fins,

and cooling passages can be revised at will, without recourse to altering
ceramic core tooling.

The third approach which the foundry favored was segmented blade sections.

The fact that the blades are cast individually eliminates the chance that one

bad blade can scrap an entire 10 blade wheel. This approach also has much to

recommend it in facilitating cooling of the hub sections.

Of the several NASA- and Solar-suggested configurations there was general

agreement that the best approach was the radial plane method, i.e., casting

the wheel as separate star wheel and exducer sections. The exducer section

can be produced using conventional ceramic cores for the internal cooling

passages. The star wheel section is less easily produced by this method and

the risk factor was estimated as high as 300%, e.g., casting 40 parts to get

10 good ones. Conventional monolithic, uncored wheels of about the same

size, have a risk factor of only about 10% and a price of about $300 each in

quantity production. Although no specific numbers or risk factors were

assigned, the consensus of opinion was that fabrication of the star wheel

portion by the split blade method would improve the chances of recovery.

Conversely, the foundry estimated lower risk in producing the exducer with
contoured ceramic cores.



Tabl e I

High-Temperature Cooled Radial Turbines

Reference

T.I.T. - Total temperature TOO

R.T.T. Total temperature TO2
EGT

Enthalpy drop Ah

Total pressure PO0

Total pressure P03

Diameter D 2

Diameter D3s

Diameter D3h

Blade tip height b 2

Vane number Z 1

Blade number Z2

Speed N

Tip speed U 2

_2/Cspouting, isentr.

%/T_O2
Gas flo_ rate

Flow function _;
Shaft power

Blading coolant flow ratio

Og = _c/_q
Bore and hub {oolant flow

ratio_ =_c/%
Coolant, temperature

Cooling_scheme

_ann _ NZ
Mate_{al

Design Life

Results

Specific speed N S

Specific dia. D S

Casting data

Tip-L.E. thickness

T.E. thickness

Min. xail th_cKnes_

Core t_i,:kness

__._.. 6 T.I.T.

Z.,l

I_lg ! "_ "'_ 1
L_2 R.I.T.

_ 5

_c _. _3 E.G.T,
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oF

_F

o F

Btu/lb

psia
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in.

in.

in.

in.

rpm

ft/s

ft/S R2
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ift/min) 2

hrs
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Ibf /

llbf ._I/4

in.

in,

in.

in.

3/41

min.sl/2
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0.03
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fabrication
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172.0
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8.71

5.534

2.400
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1.588
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cast MAR-M247

• hub: PAl01 PM
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+6000 cycles
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+ spin test

completed

65

1.60

0.090
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0.025

0.040 to 0.12

Rodgers-Hammer-
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Conf 1 10-21-80

2800

2336

139.6

280.0
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6.50

4.25

2.40

0.30

21

in

65,000

1,844
0.65

32 3

4.933

1.006

974

0.10

0.03

950

284.106

In-792
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53

1.61
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0.025

>0.050



6.50"

_ WIDTFI 3.36" __>._

"_-- 0.300"

2.36 OVERALL TOTAL-
TO-STATIC

Figure 1. Air-Cooled Radial Turbine (Full Size)



Ceramic coring for the star wheel cooling passages is relatively more fragile

than that for the exducer. It was decided, therefore, to proceed with split
blade fabrication. The use of solid ceramic cores to produce split blades

reduces the risk of rejection to the point where the castings can be made as
monolithic units.

2.2 ECONOMIC CONSIDERATIONS

Table 2 is a compilation of costs quoted by several machining and assembly

vendors for manufacture of the rotor by any of four methods, i.e., individually
bladed exducer versus monolithic, and fabricated star wheel cooling passages

versus cast-in-place. Also included are the quotations for ten castings of

each of the various types received from the foundry, but no quotes could be

obtained for larger quantities. These quotations are for best effort only

and it is speculative as to what the costs would be for guaranteed production
quality in larger amounts.

Based upon these data (and previously described casting considerations) it

was decided to proceed with development of monolithic, rather than separately

bladed, dual star wheel and exducer. The internal cooling passage would be
cast into the exducer and fabricated in the star wheel. A number of star

wheels with cast cooling passages also subsequently were ordered (at Solar
expense) to verify casting production yield.

J
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3
DETAIL DEVELOPMENT

3.1 CARRIER ASSEMBLY

The carrier assembly, i.e., the leachable component and integral superalloy

flow passage dividers, flow straighteners, and trip strips, underwent several
evolutions of change before development of the final configuration used for

the prototype wheels. The initial configuration, seen in Figure 2, was
produced by an electrodischarge machining (EDM) numerically controlled wire

saw. The carrier (etchable) portion was low carbon, low silicon enameling
steel.

Experiments were conducted in forming trip strips and passage partiitions by

plasma spraying grooved and indented steel carriers. The plasma sprayed alloy

employed was a NiCrAIY, with an approximate composition of 75 w/o Ni, 19 w/o

Cr, and 6 w/o Al.

A second approach to forming the trip strips and partitions was filling the

steel carrier grooves and slots with a superalloy/braze alloy powder blend

and partially sintering in vacuum, prior to HIP bonding at higher temperature.
Reproduction of details by this tehcnique was excellent. Figure 3 shows an

example which has been partially acid leached to remove the steel carrier.

No pressure was applied in braze bonding the superalloy details to the simu-

lated blade halyes, yet near 100 percent density is achieved.

With the addition of some pressurization, about 10 MPa (1500 psi), with a

vacuum bellows fixture, the superalloy additions were converted to full den-

sity. The results were virtually porosity free and indicate that the actual

HIP cycle will achieve a 100 percent dense structure.

Estimates were also sought for production of the carrier (used to hold super-

alloy inserts in place) as sintered powder metallurgy compacts. If these

parts (which are ultimately etched or leached away) are made from molybdenum

they would be strong enough during the HIP exposure to support small diameter

wires which would serve as trip strips in the inner cooling passages. As a

further advantage of moly, we found that it dissolves very readily in a fused

salt bath, much more efficiently than does iron or steel in acid. There is

no observable effect of the salt bath on the surface of the superalloy cast-

ings, as seen in Figure 4, a photomicrograph of a sample IN-792 casting after

removal of the moly. The molybdenum can also be removed by exposure to air

at temperatures of 760% (1400°F) or more, but this method is much slower and
tends to become ineffective in penetrating more than a fraction of a milli-

meter between the superalloy sidewalls where there is limited access to a

fresh supply of air.

pREC'EO_G PAGE BLAP_,K NOT F_Lr,_p

11

pAGI_INTENTIONALLY BLANK



F igu re  2. Car r ie r ,  I n i t i a l  Design 

Figure 3. P a r t i a l l y  Leached Composite S t ruc tu re  (Mag: 4X)  

F igu re  4. 

Photomicrograph o f  IN-792 
Casting Surface Cross Sect ion 
Showi ng Negl i g i  b l  e E f f e c t  o f  
Removal o f  Molybdenum C a r r i e r  
by Kolene DGS Fused Descal ing 
S a l t  

Etchant : K a l l  i ngs 
Ma gn i f i c a t  i on : 250 X 
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p n - 7  n,vir4x p,qfx 1s 
OF POOR QUALITY 

U1 t i m a t e l y  a procedure was developed, working w i t h  t h e  subcontract  w i r e  EDM 
vendor, DATM o f  Santa Ana, CA, f o r  producing both t h e  s t e e l  c a r r i e r  and t h e  
supera l loy i n s e r t s  used i n  f a b r i c a t i o n  o f  t h e  s p l i t  b lade s t a r  wheel. T r i p  
s t r i p  grooves i n  t h e  s t e e l  c a r r i e r  were produced by photo- res is t  chemical 
m i l l i n g .  In actua l  p r a c t i c e  we decided t o  a l s o  w i r e  EDM t h e  supera l loy  f l o w  
d i v i d e r s  and edge c losure  from superal loy sheet, f i t  them i n t o  t h e  machined 
s l o t s ,  and f i l l  t h e  t r i p  s t r i p  grooves w i t h  powder metal /braze mixtures. 
This was accomplished four p a r t s  t o  a panel which were then double d i s c  
sanded, both sides, and EDM w i r e  sawed t o  f i n a l  shape p r i o r  t o  i n s e r t i o n  
w i t h i n  t h e  blade cav i ty .  

A t  about $20 p e r  piece, t h i s  system i s  more expensive than h i g h  product ion 
stamping and co in ing,  bu t  invo lves  less i n  t h e  way o f  hard t o o l i n g  and i s  
more f l e x i b l e  i n  terms o f  design change. 

Figures 5 and 6 are photomicrographs showing 100 pecent dense t r i p  s t r i p s  
and f l o w  d i v i d e r  i n  t h e  m i ld  s t e e l  c a r r i e r  by s i n t e r i n g  a mix tu re  o f  Has te l loy  

F igure 6. 

Flow D i v i d e r  Formed by Sintered 
Superal l  oy/8raze Powder M i  x t u r e  

(Magni f i c a t  i on : 7 5X) 

13 



X powder, -325 mesh, and nickel braze alloy powder. The resulting composite,

including Inco 625 superalloy flow divider strips was subsequently braze-

bonded between two samples of IN 792 castings and the steel removed by boiling

in a refluxed solution of 50 percent nitric acid in methanol. Complete
dissolution of the steel was achieved in less than one hour, and the defini-

tion of cooling passage and trip strips conformed to print requirements.

The etching medium selected for most efficient removal of the fabricated

split blade steel core after bonding was:

50 v/o Nitric Acid, conc.

50 v/o Alcohol, (ethyl, methyl)*

50-65°C (120-150°F)

3.2 BRAZE-BONDING DEVELOPMENT

Four braze alloys, all in foil form, were selected as candidates for bonding

the internal details to the split blades.

AMS 4777

AMS 4778

Ni-Flex 77**

Ni-Flex 78**

0.051 & 0.084 mm (0.002 & 0.0033 in.)

0.051 & 0.084 mm (0.002 & 0.0033 in.)

AMS 4779 Ni-Flex 79**

Ni-Flex 95**

0.025, 0.051, & 0.10 mm (0.001, 0.002, &

0.004 in.)

0.025, 0.051, & 0.10 mm (0.001, 0.002, &
0.004 in.)

Tests included lap shear bonds, butt joint specimens, and simulated blade

sections containing the carrier and HIP bonded inserts. All were prepared

with cast samples of the candidate casting alloys, IN 792 and MAR-M-247
obtained from the foundry. Flat plates were used for double lap shear tests;

dog bone tensiles, cut apart and subsequently rebonded, as butt joint

specimens.

Initial bonding tests were conducted within a vacuum furnace using a fixture

through which pressure could be supplied by an expandable bellows.

Despite several rebuilds to strengthen the mechanism, joining studies pro-

ceeded with great difficulty due to problems in pressurizing the specimens at

the high bonding temperatures. The desired cycle is 1150°C/100 MPa/2 hours

*It is important to monitor the reaction and to keep the level of alcohol
near the 50 percent level to avoid oxidation by the nitric acid. Equally

important, only ethyl or methyl alcohols should be used. Other varieties,

e.g., isopropyl, can react violently with nitric acid.

**Materials Development Corporation, Medford, Mass.
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(21OO0F/15 k s i / 2  hours). We were n o t  ab le  t o  s u s t a i n  a load above about 35 
MPa (5 k s i )  f o r  more than a f e w  minutes, however, and t h e  f i x t u r e  was 
abandoned. Subsequent bonding t e s t s  were conducted w i t h i n  evacuated, hermet- 
i c a l l y  sealed tubes o r  boxes subjected t o  an ac tua l  H I P  environment and cyc le.  

Figures 7 and 8 are  photographs of H I P  processed braze j o i n t  specimens returned 
from Pressure Technology, fo l low ing  1175°C(21500F), 103 MPa (15,000 p s i )  H I P  
processing. A l l  o f  t h e  double l a p  j o i n t  specimens contained i n  s t a i n l e s s  
s t e e l  boxes were. bonded. One tube o f  t h e  b u t t  j o i n t  specimens apparent ly  
leaked due t o  an undetected crack i n  t h e  c losure  weld, and consequently saw 
no d i f f e r e n t i a l  pressure i n  t h e  H I P  cycle. The specimens i n  t h i s  tube were 
o n l y  s u p e r f i c i a l l y  bonded, and could no t  be tested. F igure 7 a l s o  shows t h e  
I N  792/s tee l / IN 792 laminates,  edge-welded and H I P  bonded t o  s imu la te  ac tua l  
s p l i t  b lade f a b r i c a t i o n  of t h e  wheels The i n t e r n a l  c o o l i n g  passage d i v i d e r s ,  
edge closures,  and . t r i p  s t r i p s  were f i l l e d  w i t h  p re-s in te red  powders p r i o r  t o  
bonding, as fo l lows:  

Haste l loy X powder -- -325 mesh 
Haste l loy X powder -- -325 mesh p lus  5 w t .  % A M I  775 braze a l l o y  
80-20 N i - C r  powder -- -325 mesh 
80-20 N i - C r  powder -325 mesh p lus  5 w t .  % A M I  775 braze a l l o y  -- 

O f  t h e  two specimens evaluated meta l lograph ica l l y ,  one was seen t o  be h e a v i l y  
contaminated and no t  bonded, due t o  w h a t  we suspect was a cracked weld. The 
second showed t h e  powder t o  be f u l l y  compacted and bonded t o  t h e  cas t  I N  792. 

Table 3 i s  a compi la t ion o f  t e n s i l e  and shear s t rengths o f  t h e  I N  792 c a s t  
specimens bonded w i t h  a v a r i e t y  of h igh temperature braze a l l o y s  i n  t h e  H I P  
runs. Both t h e  s t rongest  and t h e  most cons is tan t  r e s u l t s  were demonstrated 

F igure  7. H I P  Bonded Specimens 



I '' 

c 

Figure  8. H I P  Bonded Specimens 

by Ni-Flex A l l o y  77, 0.05 mm (0.002 in . )  t h i c k .  Table 4 shows room tempera- 
t u r e  t e n s i l e  data f o r  two specimens o f  t h e  I N  792 m a t e r i a l  i n  t h e  as-HIPed 
cond i t ion .  The a l l o y  e x h i b i t s  good d u c t i l i t y .  Y ie ld  s t reng th  i s  approx i -  
mate ly  t h a t  o f  t h e  braze a l l o y  t e n s i l e  t e s t ,  Table 3. 

Table 5 presents e levated temperature t e n s i l e  data on f i v e  b u t t  j o i n t  braze 
specimens which were given a braz ing  c y c l e  s i m u l a t i n g  a HIP-bonding c y c l e  and 
subsequently heat t rea ted .  The a l l o y  i s  NI-Flex 77. The braze and heat  
t r e a t  cycles were as f o l l o w s :  

Braze 
Heat Treat 1121°C ( 205O0F)/Vac./2 hou rs / fas t  cool*  
Age 
Age 

1177°C ( 215O0F)/Vac./2 hours/furnace cool  

843°C (1 55OOF) /Vac./4 hou rs / f  urnace coo l  
760°C ( 140O0F)/Vac./16 hours/furnace cool  

*10 minutes or l e s s  t o  538°C (1000°F) 

Table 6 i s  a compi la t ion  o f  t h r e e  shear s t r e n g t h  t e s t s  conducted on brazed 
and heat  t rea ted  I N  792 l a p  j o i n t s .  Two values a r e  noted f o r  t h e  f i r s t  two 
specimens since t h e  ho les  i n  t h e  double l e g  of t h e  specimen were mis-al igned, 
causing t h e  j o i n t  t o  be loaded as  a s i n g l e  lap ,  each s i d e  independently. As 
wi th  previous r e s u l t s ,  t h e  Ni-Flex 77 a l l o y  p rov ided  t h e  s t ronges t  and most 
cons is ten t  j o i n t .  These specimens were brazed w i t h  a s imu la ted  H I P  c y c l e  and 
subsequently vacuum heat t r e a t e d  as noted above. 



Table 3

Braze Alloy Strength, Room Temperature

Braze Alloy
Thickness

mm fin.)

Ni-Flex 77
0.05 (0.002)

Ni-Fl ex 77

0.083 (0.0033)

Ni-Fl ex 78

0.05 (0.002)

Ni-Fl ex 78

0.083 (0.0033)

Ni-Fl ex 79

0.05 (0.002)

Ni-Fl ex 95

0.025 (0.001)

Ni-Fl ex 95

0.05 (0.002)

Ni-Fl ex 95

0.I0 (0.004)

Base Material,

Tensile Strength

MPa (ksi)

782.6 (113.5)

257.0 (37.4)

594.3 (86.2)

415.8 (60.3)

137.2 (19.9)

IN 792 Castin_

Shear Strength

MPa (ksi)

348.9 (50.6)

383.3 (55.6)

77.2 (11.2)
313.0 (45.4)

388.9 (56.4)

436.4 (63.3)
38.6 (5.6)

342.7 (49.7)

Table 4

Tensile Properties, IN 792, As-HIPed

O.2% Yiel d St rength

MPa (ksi)

813.6 (I18.0)

808.1 (117.2)

Tensile Strength

MPa (ksi)

1005.3 (145.8)

1065.9 (154.6)

El ongati on

%in 4D

9.0

9.8
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Table 5

871°C (1600°F) Tensile Data, Ni Flex 77 Braze Alloy

Specimens
Number

A02-8

A01-7

A06-9

A02-10

A06-11

Ultimate Tensile

MPa (ksi)

826 (119.8)

799.1 (115.9)

700.5 (101.6)

759.8 (110.2)

797.0 (115.6)

Fractu re

50% Parent Metal

65% Parent Metal

35% Parent Metal

65% Parent Metal

75% Parent Metal

Tabl e 6

Braze Alloy Shear Strength, 870°C (1600°F), IN 792

Specimen
Number

DL-8

DL-9

DL-IO

Braze Alloy

Ni-Fl ex 77

0.084 mm

(0.0033 in.)

Ni-Fl ex 95

0.025 mm

(0.001 in.)

Ni-Fl ex 95

O.10 mm

(0.004 in.)

Shear Strength

(MPa) (ksi)

311.0 45.1
311.6 45.2

194.4 28.2

295.1 42.8

110.3 16.0

Notes

Opposite side of double

lap joint broke

independently.

Opposite sides of double

lap joint broke

independently.

Eight split blade simulation specimens were electron beam (vacuum) welded and

processed by HIPing. They are included in Table 7. These simulated split
blade specimens were evaluated metallographically. There was no particular

advantage or disadvantage noted in the integrity of any of the braze alloy,

substrate combinations. In all cases the steel or molybdenum carrier etched

away cleanly with no damage to the superalloy inserts or casting. Experience

with preparation of these samples demonstrated that the placement of indivi-

dual trip strip wires is an unworkable system. We therefore went to a method

wherein the superalloy addition is made by filling the trip strip grooves

18



Table 7

HIP Bonded Joining Specimens

Test

Bar

Sample
Number

21

Material

MAR-M247

Braze Alloy

Ni-Fl ex 95

0.050 mm thick

(0.002 in. thick) _

22

31

MAR-M247

IN-792

Ni -Fl ex 95

0.05 mm thick

(0.002 in. thick)

Ni-Fl ex 78

0.05 mm thick

(0.002 in. thick)

32

4s

5S

IN-792

IN-792

IN-792

MAR-M247

MAR-M247

Ni-FI ex 79

0.05 mm thick

(0.002 in. thick)

Ni-FI ex 79
0.05 mm thick

(0.002 in. thick)

Ni -FI ex 79

0.05 mm thick

(0.002 in. thick)

Ni-Fl ex 77

0.05 mm thick

(0.002 in. thick)

Ni-Fl ex 77

0.05 mm thick

(0.002 in. thick)

Etchi n9

Nitric Acid

Nitric Acid

Nitric Acid

Nitric Acid

Nitric Acid

Kolene DGS

fused salt

Nitric Acid

Kolene DGS

fused salt

Insert

1010 steel, 1.5 mm

(0.058 in.) carrier;

2 round plugs (Hast X)

7 mm (9/32 in.) dia.;
16 0.9 mm (0.035 in.)

Hast X pins; 2 trip

strips fabricated of
Inconel 718 wire.

II II

i! il

II tl

6 trip strip wires,

grooves at various

depths; 1010 steel
1.5 mm (0.0589 in.)
carrier

Molybdenum 1.2 mm
(0.047 in.) carrier;

6 trip wires

1010 steel carrier; 6

trip wires at various

depth

Molybdenum 1.2 mm

(0.047 in.) carrier;

6 trip wires

19



with a powder/braze alloy mixture and sintering. This method results in
about ten volume percent porosity, which the subsequent HIP densification
corrects.
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4

DESIGN

Four assemblies, comprised of two types of star wheel and two types of exdu-

cer, were designed. The engineering drawings and specifications of these

various components can be made available to qualified parties for examination

by application through NASA-Lewis.

Descriptions and drawing numbers are as follows:

131100 Proposal - engine assembly, with high temperature turbine

wheel (full size to fit T-62)

131102 Layout - turbine wheel, air-cooled (two-piece IOX size)

131301 Proposal - air-cooled turbine wheel assembly (multi-piece

construction IOX size)

131454 Wheel, turbine - air cooled (cast star wheel)

131103 Wheel, turbine - air cooled (brazed star wheel)

131467 Insert, blade - air cooled (brazed star wheel)

131455 Exducer, turbine - air cooled (cast one-piece)

131599 Blade, exducer - air cooled (cast and machined)

954959Cl Hub, exducer - air cooled (machined)

954960CI Ring, exducer - air cooled (machined)

131453-100 Wheel assembly, turbine - air cooled (cast wheel and exducer)

200 Wheel assembly (brazed wheel and cast exducer)

300 Wheel assembly (cast wheel and multi-piece exducer) (includes

assembly, balancing and spinning)

DSK 17073 Material specification

The mechanical and thermal design procedures are covered in Appendices A and

B of this report.
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5

PROTOTYPE PRODUCTION

5.1 APPLICATION OF PRINCIPLES

Following the definition of design manufacturing techniques, braze bonding

cycles, thermal treatment, and sealing and leaching cycles, it was decided
to proceed with the production of prototype wheels to demonstrate the prac-

ticality of these methods in simulated production. This section describes
the course of the various tasks from procurement through final machining.

5.2 CASTING PROCUREMENT

Approval was received from the local DCAS administrator in 1982, to proceed
with procurement of the tooling. Purchase orders were let for the exducer,

P/N 131455, to be cast with integral ceramic cores; for the star wheel, P/N

131103, with split blade, fabricated passages; and an adaptor to allow fabri-

cation of the star wheel, P/N 131454, with integral ceramic cores. The foun-
dry contracted with a second source for all tooling.

The purchase order was let to cover the casting of the wheels on a best effort

basis. The foundry was to make up to 25 pours to produce ten good castings

in each of the components, star wheel and exducer. The exducer was cast only
with detail ceramic cores. The first attempts at the star wheel were with

the split blade type core. If a requisite number of good castings, 10, were

attained in the initial attempts, the balance of the 15 pours could be devoted

to detail type ceramic cored star wheels.

In casting the first (tool proof) star wheel plunger over-travel (during the

wax injection) caused the solid cores to be cracked prior to assembly. The

problem was corrected by restricting the stroke during subsequent operations.

Evaluation was conducted during subsequent production of cast star wheels,

both the integrally cored and split blade designs, P/N's 131454 and 131103.

A photograph of the sectioned blade of each is seen in Figure g. The only

difficulty reported was that some of the cores forming the air entry holes in

P/N 131103 were broken in the wax injection process and that these castings
needed reworking to reform the holes.

Figures 10, 11 and 12 are photographs of the total casting procurement, the

leading faces, and the trailing faces of the wheels, respectively.

PRECT.DING PAGE BLANK NOT FILh_ED
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Figure  9A. Sectioned Blade Produced With D e t a i l  Core 
P / N  131454 

Seventeen convent iona l l y  cored s t a r  wheel were c a s t  by t h e  same foundry w i t h  
t h e  same coo l ing  passage design as t h a t  o f  t h e  s p l i t  b lade wheels, except 
t h a t  t h e  passage was made 0.075 i n .  (1.9 mm) wide, r a t h e r  than  t h e  s p e c i f i e d  
0.050 in .  (1.27 mm), due t o  t h e  need f o r  more r i g i d i t y  i n  t h e  d e t a i l e d  core. 
O f  t h e  17, four  were supp l i ed  t o  So la r  and t h e  balance scrapped. Table 8 
shows t h e  r e l a t i o n s h i p  of unacceptable blades p e r  wheel. No s p e c i f i c  d e t a i l s  
a r e  known f o r  t h e  13 scrapped a t  t h e  foundry so they  are  s imply  assumed t o  
have had a t  l e a s t  as many as s i x  bad blades p e r  wheel, one more than t h e  
worst  o f  the f o u r  we received. 

24 



Figure 98. Sectioned ( S p l i t )  Blade Produced With S o l i d  Core 
P / N  131103 
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Figure  10. Total  Cast ing Procurement: 4 Convent ional ly  Cored Star  Wheels 
(So la r  Procurements); 11 S p l i t  Blade Star  Wheels; and 10 Exducers 

F igure  11. Leading Faces o f  (Clockwise) Convent ional ly  Cored S t a r  Wheel, 
S p l i t  Blade Star  Wheel, and Exducer 

26 



F i g u r e  12. T r a i l i n g  Faces o f  t h e  Wheels 

1 
1 
1 
1 

Table 8 

1 
2 
3 
5 

Occurrence of Defects i n  Wheels 

Nurnbe r o f  Defec ts  
Per Wheel 
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A very approximate Weibull analysis of these data (Fig. 13) show the probable

acceptance rate to be less than 3%, corresponding to an acceptance rate, had

they been single blades, of about 70%, not an unreasonable figure. Recogniz-

ing that this was the first production trial with this design, we will assume

that subsequent production will bring some kind of improvement through a

learning curve.

Of castings completed and shipped by the foundry, we received 4 pieces of P/N

131454, the conventionally cored star wheel; eleven pieces of 131103, the

split blade star wheel; and 10 pieces of 131455, the exducer. The number of

trials for the latter two castings were not reported. P/N 131455 and 131454
were HIPed and heat treated, without aging. P/N 131103 was not HIPed or heat

treated as this will follow as a part of the fabrication procedure. The
foundry supplied a complete record of certification, NDT records, HIP and

heat treatment parameters.

Review of radiographs submitted with the castings show generally definable

structures in the star wheels, both conventionally cast and those which were

to be fabricated by the split blade technique. Several (Table 8) of the
former had variations in the blade wall passages, however, examples of which

(magnified and shown as a positive print) are shown in Figures 14 and 15.

Definition of the exducer blade detail is very much complicated by overlap of

the blades and the central hub. For this reason, a casting was submitted to

Aerojet Strategic Propulsion Company, Sacramento, CA, for an assessment of

400

3.00

II

Z

Lu 2.00

1.00

NO. OF CASTINGS DEFECTS PER WHEEL

1 1
1 2
1 3

1 5
13 6 or more

F=I

Where F = CUMULATIVE WHEELS WITH N DEFECTS
EFECT LEVEL

I I I I I I I
1.00 2.00 3.00 4.00 5.00 6.00 7.00

N, DEFECTS PER WHEEL

Figure 13. Modified Weibull Analysis

8.00
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Figure 15. 

Radiographic P o s i t i v e  Enlargement 
Showing Cracked and Metal 
I n f i l t r a t e d  Core i n  a S ta r  Wheel 
B1 ade 

F igure  14. 

Radiographic P o s i t i v e  Enlargement 
Showing Core S h i f t  i n  Star 
Wheel Blade 
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inspection by the ComputedTomography(CT) Process, developed under sponsor-
ship of Materials Laboratory, Air Force Wright Aeronautical Laboratories.
This system appears to have great promise in resolution of the complicated
inner structures of the blades. A disadvantage was seen in the estimated
cost of adapting the system to the exducer, e.g., two blades for $3,245; in
the actual inspection of the first casting, all 10 blades, $1,849; and in the
probable cost of prototype and/or production inspection, probably in excess
of $1,000 each. For this reason further investigation of the process was put
on hold, with the hope that further studies will eventually be made.

Nosurface defects were noted by fluorescent penetrant inspection in any of
the castings supplied, nor were defects noted in visual examination.

5.3 ASSEMBLY

All wheels were lathe turned to locate the blade diameters. The star wheel
casting split blades were milled internally with a carbide slitting saw to
clean out the cavity between the blade halves, Figure 16.

Sawblade thickness was selected such that approximately 0.050 to 0.075 mm
(0.002 to 0.003 in.) was removedon either side opening the slots to 1.27 mm
(0.050 inch) minimumwidth. It was also necessary that an electro-discharge
machining tool be fabricated to shape and deburr the oval air passage slots
at the base of the split blades. The steel carriers, inserts and trip strip
assemblies were prebrazed, sanded flat and parallel and cut to shape prepara-
tory to assembly in the split-blade star wheels (Fig. 17). The carrier
assemblies were, in this final lot, prepared with EDMwire saw fabricated
inserts anda powder/alloy mixture prebrazed in photochemicallymilled grooves
to form trip strips. The total configuration, seen in Figure 18, wascomprised
of:

carrier - enameling steel
flow dividers - Hastelloy X inserts
trip strips - Hastelly X powder/AMI 775 braze powder, 95/5 mixture

Twowheels were assembled with the carrier-inserts and welded, preparatory to
HIP-bonding.

These wheels, Numbers1 and 5, were returned from the HIP-bonding operation,
lathe machined to define the blade contours, and the blade tip holes (4) and
air inlet holes electro-discharge machined to expose the steel core to acid
leaching. The leaching operation proceeded satisfactorily, requiring about
10 hours exposure to warm [70°C (160°F)] nitric acid, alcohol 1/i mixture.
Subsequentdestructive metallographic analysis revealed all traces of the
steel to be gone and no evidence of reaction of the casting, superalloy
inserts, or braze alloy with the acid.

The wheels were radiographed in two planes: axially, which did little to
reveal the inner strucuture; and tangentially (after sectioning out the blade
segments), which indicated the arrangement of the inner structures. The
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F i g u r e  16. M i l l i n g  S p l i t  Blade C a v i t i e s  

F i  ugure 17. Machined Wheel and C a r r i e r  Assembl i e s  
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Figure  18. EDM Wire Sawed C a r r i e r s  and I n s e r t s  

blades were subsequently sect ioned and me ta l l og raph ica l l y  examined. Two d i s c -  
repancies were noted i n  the  r e s u l t s :  f i r s t l y ,  t h e  al ignment of t h e  c a r r i e r /  
i n s e r t  assemblies w i t h i n  t h e  s l o t s  was compromised by the  i nadver ten t  removal 
o f  t h e  t a b  which should key i n t o  t h e  a i r  i n l e t  passage. A shaped, s tee l  t a b  
was subs t i t u ted  t o  prevent passage co l l apse  du r ing  HIPing, bu t  s ince  t h i s  was 
n o t  an i n t e g r a l  p a r t  o f  t h e  c a r r i e r ,  t h e  al ignment was compromised. Th is  
caused four o f  t h e  assemblies t o  p ro t rude excess ive ly  from e i t h e r  t h e  b lade 
t i p  o r  t r a i l i n g  edge. Secondly, i t  was obvious t h a t  several  of t h e  c losu re  
welds had not been sound, r e s u l t i n g  i n  l ack  o f  p ressu r i za t i on  of t he  j o i n t s  
and a contaminated braz ing  atmosphere. It appears t h a t  four  of t h e  blades 
were so affected. 
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The first discrepancy resulted from misinterpretation of the instruction to
"radius the tabs" on the carrier/insert assemblies, and therefore was correc-
ted in subsequent production. The second discrepancy, unsound welding, was
partially compensatedfor in sealing the second lot of wheels by variations
in the technique. These included sealing the curved and trailing edges of
the blade by conventional TIG welding, proofed by fluorescent penetrant
inspection prior to final closure by EB welding of the blade tip. A 12-hour
pumpdownof the vacuumchamber was included to compensate for the reduced
area of the final sealed joint. The probable more ideal technique would be
to core the air inlet hole in the casting directly into the slot and to use
it for leak testing after sealing the blade edges. It could then be sealed,
in a vacuum, by crimping a welded-in tube, or by a similar, more reliable
technique.

The second batch of two wheels was assembled -- this time with the carrier
tab intact -- welded, with the improved technique, HIP-bonded as before, and
solution heat treated, preparatory to rough machining and acid leaching.

5.4 THERMALTREATMENT

Bonding of the assembled and weld sealed wheels was conducted by an outside
toll HIPing facility according to the schedule established in earlier tests,
Section 3.2. Both the first lot, wheels S/N 1 and 15, and second lot, wheels
S/N's 9 and 20, were processed identically:

1185% (2165°F)
103.4 Mpa (15,000 psi) pressure
4 hours at temperature

Both runs were monitored by continuous recordings of temperature, pressure,
and gas quality and conformed to requirements in every respect.

Upon receipt of the HIP-bonded wheels at Solar, they were each solution heat
treated in vacuum, 1 x 10-5 Torr or better as follows:

1177°C (2150°F) for 2 hours at temperature
Argon fan cool to below 538°C (IO00°F)
Reheat to 1121°C (2050°F) for 2 hours at temperature
Argon fan cool to below 538% (IO00°F)

5.5 LEACHING

Preparatory to acid leaching of the blade cores, the diameter and trailing
edge contours of the blades were shaped to net dimension (removing the weld
beads) by cutting on a numerically controlled EDMwire saw. Onewheel, S/N
20, was damagedin the cutting process (Fig. 19) whenthe sensing mechanism
of the wire saw mispositioned the back side of one blade tip and cut about
1.3 mm(0.05 in.) too deeply into the internal cooling cavity. The air inlet
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Figure  19. Mis-machined Blade T ip  

passages and t i p  e j e c t i o n  holes a l s o  were opened by e lec t ro -d ischarge d r i l l  - 
ing. The pa r t s  were subsequently immersed i n  a re f l uxed  n i t r i c  acid-methanol 
so lu t ion ,  50-50 mixture,  a t  approximately 70°C (160°F), f o r  t e n  hours. Gas 
e v o l u t i o n  was observed t o  s top  a f t e r  about s i x  hours. For  t h e  f i n a l  four  
hours o f  leaching, t h e  obverse s ide  o f  t h e  wheel was placed uppermost i n  
o rder  t o  guarantee complete removal o f  t h e  s t e e l  core i n  a l l  i n t e r s t i c e s  o f  
t he  blades. A t  t h e  cessat ion o f  e tch ing,  the  blade were r i nsed  w i t h  pressur-  
i z e d  c o l d  water (serv ing  a s  a f l o w  t e s t ) ;  w i t h  a d i l u t e  sodium b icarbonate 
so lu t i on ;  and wi th a f i n a l  h o t  water r inse. 

5.6 MACHINING, ASSEMBLY, AND AGING 

Machining and assembly t o  f i n a l  dimensions was conducted by an ou ts ide  subcon- 
t r a c t o r .  The m a j o r i t y  o f  t h e  e f f o r t  was i n  producing the  c u r v i c  coupl ings on 
t h e  ''back" face o f  t h e  s t a r  wheel; t h e  ' ' f r on t "  face o f  t h e  exducer; and 
mat ing and p inn ing  t h e  two t o  form the  complete wheel. No machining was 
necessary on t h e  blade contours o r  diameters. 

The completed assemblies were returned t o  Solar f o r  f i n a l  aging (both sec t ions  
being i n  the HIPed and double s o l u t i o n  heat  t r e a t e d  cond i t i on ) .  Double ag in  
was conducted i n  vacuum a t  843°C (1550°F) f o r  f o u r  hours p lus  760°C (1400°F 
f o r  16 hours. 

3 
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6
INSPECTION

6.1 VISUAL AND DIMENSIONAL

Wheels S/N 1 and 5 which, as noted previously, had the internal spacers and

details mispositioned through machining error, were exempted from final

machining. It was decided, however, to destructively section wheel S/N 1 to

survey the internal cavities. This confirmed the earlier suspicions as to
poor quality of the closure welds. In severa| of the blades the internal

details had failed to properly braze.

The second lot of HIP-brazed wheels, S/N's

machining, conformed to complete dimensional
wheel is seen in Figure 20.

9 and 20 both, after final

requirements. The completed

6.2 NON-DESTRUCTIVE INSPECTION

The results of radiographic inspection of the blades were generally incon-

clusive. Except for delineating improper positioning of the internal compon-

ents (see Section 5.2) no significant data could be obtained. Inadequate
braze strength, for instance, could not be detected.

Liquid penetrant inspection of the blades, after removal of the closure

welds, was effective in delineating areas of inadequate bonding, at least at

the outer periphery of the blade. Inspection of the internal details was not

possible by this method, although it was found (by destructive sectioning of
wheel S/N 1) that the external bond quality was in all cases indicative of
the internal.

6.3 FLOW TEST

Both wheels, S/N's 9 and 20 were flow tested after assembly and final machin-

ing. Water flow testing served to demonstrate that all cooling passages were
open and free of obstruction.

Subsequently both wheels were subjected to dynamic pressure drop test with
air, simulating more accurately actual operation in the engine. Results were

as seen in Table 9. There is close similarity in comparison of the two wheels

and in comparison of the cast-to-size cooling passages in the exducer section
and the fabricated passages in the exducer.
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Figure  20. Completed Wheel 

6.4 SPIN TEST 

Wheel S / N  9 was sp in  t e s t e d  (Fig. 21), inc rementa l l y  a t  50, 75, 90, 100, and 
110 percent o f  opera t ing  speed, 65,000 rpm, ho ld ing  one minute a t  each t a r g e t  
speed. Measurements were taken a t  f i v e  diameters o f  t h e  wheel, across t h e  
blade t i p s .  The t e s t  was repeated a f t e r  t he rma l l y  c y c l i n g  t h e  wheel f rom 
room temperature t o  900°C (1650°F) s i x  times. Resul ts,  before and a f t e r  
thermal cyc l ing ,  a re  seen i n  Table 10. Ne i ther  showed s i g n i f i c a n t  growth a t  
any speed. 

F igure  21. Spin Tes t ing  
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Table 10

Spin Test Results

Percent of

Rated Temperature Before
Speed " I After

(65,000 rpm) °C I °F Spin

50

75

90

100

110

50

75

90

I00

110

i
124.4 76.0
24.4 76.0

23.9 75.0

26.1 79.0!

i
L25.6 78.0

i26.1 79.0 !

i
I

126.1 79.0
27.2 81.0

127.2 81.0

27.8 !82.0

26.7 !80.0

26.1 179.0

25.6 i78.0

27.2 81.0

27.2 !81.0
27.2 81.0

26.7 80.0

26.7 80.0

27.2

Diameters, Inches

1 2 3 4 5

BEFORE THERMAL CYCLE

B.S.

A.S.

B.S.

A.S.

B.S.
A.S.

B.S.

A.S.

B.S.
A.S.

6.4990

6.4990

6.4990

6.4990

6.4990

6.4990

I
6.4990

!6.4990

6.4990
6.4990

6.4950

6.4951

6.4951

6.4951

6.4951

6.4951

6.4951

6.4951

16.4951

6.4950

6.4983

6.4985

6.4985

6.4985

6.4985

6.4985

6.4985

6.4985

6.4985

6.4990

6.4962

6.4962

6.4962

6.4962

6.4962

6.4962

6.4962

6.4962

6.4962

6.4970

AFTER THERMAL CYCLE

B.S.

A.S.

B.S.

A.S.

B.S.

A.S.

B.

B.S.
A,S.

6.4985

6.4985

6.4985

6.4985

6.4985

6.4985

6.4985
6.4985

6.4985

6.4985

6.4945

6.4945

6.4945

6.4945

6.4945

6.4948

6.4948

6.4948

6.4948

6.4950

6.4980

6.4980

6.4980

6.4980

6.4980

6.4983

6.4983

6.4983

I 6.49836.4983

6.4950

6.4950

6.4950

6.4950

6.4950

6.4955

6.4955

6.4955

6.4955

6.4955

I

6.4951
6.4953

i 6.4953
6.4953

6.4953
6.4953

6.4953

i 6.4953

i 6.4953
6.4953

6.4946

6.4946

6.4946

6.4946

6.4946

6.4950

6.4950

6.4950

6.4950

6.4953
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APPENDIX A

MECHANICAL DESIGN SUMMARY

NASA AIR-COOLED RADIAL TURBINE ROTOR
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INTEF =GFFICE E

September 21, 1981

To:

CC: W. A. Compton
A. G. Metcalfe
W. O. Treece
G. L. Padgett
C. Rodgers
G. Aigret
T. P. Psichogios
J. V. Gallagher

From:

A. W. August C/

Subject: MECHANICAL DESIGN SUMMARY -- NASA AIR-COOLED
RADIAL TURBINE ROTOR

The objective was to deslgn and manufacture a high temperature air-cooled

radial inflow turbine rotor per Solar S. O. 6-4938-7.

The following contributors took part in the design of the rotor:

Aero

Heat Transfer

Stress

Manufacturing
Cost

Mechanical Design

- C. Rodgers

- G. Aigret, N. Anderson

- T. P. Psichogios, R. P. Barrow

- A. N. Hammer, Howmet Turbines Corp.

- J. V. Gallagher

- A. W. August, T. P. Psichogios

Based on cooling and manufacturing constraints, two-piece turbine rotor with

separate star-wheel and exducer have been selected for design.

Layout Drawings 131101 and 131102 show two main configurations of the turbine

rotor considered in the design; Drawing 131103 with one-piece cast star-wheel and

one-piece cast exducer; Drawing 131101 with individually bladed star-wheel
and exducer.

After final review of the above layouts, the following wheel assembly

drawings have been prepared for cost analysis and manufacturing selection:

131453-I00

131453-200

131453-300

131453-400

- Rotor Assy, with cast star-wheel & exducer

- Rotor Assy, with brazed star-wheel &
cast exducer

- Rotor Assy, with cast star-wheel & bladed
exducer

- Rotor Assy, with brazed star-wheel & bladed
exaucer

SOLAR TURBINES INCORPORATED
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MECHANICAL DESIGN SUMMARY --

NASA AIR-COOLED RADIAL TURBINE ROTOR

Page 2.

September 21, 1981

The following hardware drawings and specifications have been prepared and
released to Solar file:

131454 -
131103 -
131467 -
131455 -
131599 -
954959Cl-
954960CI -

954961C1-

Wheel, Turbine - Air-cooled (cast star-wheel)

Wheel, Turbine - Air-cooled (brazed star-wheel)

Insert, Blade - Air-cooled(brazed star-wheel_

Exducer, Turbine - Air-cooled (one-piece cast)

Blade, Exducer - Air-cooled (casting & mech.)

Hub, Exducer - Air-cooled

Ring, Exducer - Air-cooled
Retainer, Exducer Blade

DSK-17073- Material Specifications for Turbine Wheel Castings

131100 - Proposal, T-62 Engine Assy. with Ti-Temp Turbine Wheel

The geometrical description of the turbine wheel was based on C. Rodgers'

data and blade coordinates with very slight changes required to optimize

wheel cooling.

Cooling of the'cast turbine wheel has been described by G. Aigret and N.

•Anderson in the report T-5500 -- "Heat Transfer and Aerodynamics Design Status."

The stress analysis of the turbine wheel assemblies are described in

Report T-5537 by T. Psichoqios and P. Barrow.

It should be noted that for the individually bladed exducer assembly additional

cooling air leakage through the side of blade seals can be expected. The

effect of this additional leakage on the wheel cooling has not been reviewed

by the heat transfer people.

AWA: gm
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Engineering Report

2800°F, R.I.T. NASA COOLED RADIAL TURBINE ROTOR

STRESS ANALYSIS REPORT

REPORT T-5537 iSSUED October 27, 1981

PREPARED B_ot,,,_v__11_,<_

P. Barrow

APPROVED BY/1) _ --;

-_'__, _..s
T. _. Psichogios//

CUSTOMER REF

SOLAR REF

COPY NO

NAS3-22513

S.O. 6-4938-7

SOLAR llvlliOn of Inloelllionall Narvollor

2200 Plcdic H*gllway. P.O. Box80966. San O_o. CA 92138
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1.0 INTRODUCTION

This report summarizes the stress analyses of the radial inflow cooled turbine

rotor designed to NASA RFP 3-188454 of April 22, 1980. Numerous stress and

design iterations were completed prior to arriving at the configuration dis-
cussed in this report.

The radial turbine wheel design incorporates cast blades with internally cored
passages for the flow of cooling air to maintain blade metal temperatures to

an acceptable limit consistent with the required creep-rupture life of the

metal. Because of the complexity of the blade cored passages and the require-
ment for multi-path cooling air supply, it was necessary to construct the
rotor in two sections as follows:

I. A star wheel section in which the blades lie in axial-radial

planes on the disc hub

e An exducer wheel section in which the blades are axially

cambered and disposed radially on the disc hub.

The design/analysis effort included two exducer configurations as follows:

I. A one-piece cast blade-disc design

. Individually cast blades attached to a (forged) disc hub by

conventional dovetail type attachments and shown in Figure 38.

The individual (inserted) blade design was included in case major problems

were encountered in the production of sound one-piece blade-disc castings.

Note: The star wheel design has been limited to a one-piece cast

blade-disc configuration since no probl_s are anticipated
in the production of sound castings. Fabriction of the star

wheel blades can actually be accomplished by an alternate

method as shown in Figure 39. This procedure will generate
blades similar in design to the one-piece cast configuration

and will be investigated along with the cast design.

The blade-disc configurations listed above have all been designed to meet the

design and stress criteria listed in para 2.1.4 and para 2.1.5 of Proposal

RFP 3-18454, QR 6-4938.

2.0 SUMMARY

The four rotor design configurations (integrally cast star wheel and blades,

integrally cast exducer wheel and blades, individually cast exducer blades

inserted into a forged hub and fabricated star wheel blades) all conform to

the design requirements stipulated in para 2.1.4 and 2.1.5 of RFP 3-188454,

QR 6-4938. The one exception to the design requirements is the 1500-hour
stress-rupture life of the star blades. In order to meet this requirement,

the blade (average) metal temperature must be reduced by 75° to IO0°F.

This can best be accomplished by reducing the turbine inlet temperature from
the present 2800°F value. These rotor designs have been cleared for detailed

_i_._G p_GF- BLAI_ NQT l_J_ 47



design drafting and meet all the requirements of room-temperature spin,

stress-rupture life, and gross yield speed.

Finite element analyses have been used in the computation of stress and of

local metal temperatures, the respective computer programs for each analysis
including all the parametric variables that affect the calculated values. A

very high degree of confidence is, therefore, attached to the validity of

the design analysis.

The IN-792 alloy (HIPed and heat treated) used in the investment casting of

the star and exducer rotors is a proven material extensively used in the pro-
duction of turbine blades for high-temperature applications in company turbine

products. A 6.5 inch diameter uncooled radial turbine rotor integrally cast

in IN-792 alloy is also presently used in a production engine. The IN-718
(AMS 5398) wrought alloy selected for the alternate exducer hub design is

also extensively used in company turbine disc applications.

A concession was made in the overall design of the star wheel wherein the rear

face was contoured radially rather than angled similar to the forward face.
This was necessary since it had to be matched with the exducer wheel on

assembly and also provide the air supply to the exducer blades. This conces-

sion increased the local (radial) stress across the air feed hole at the

disc aft face to a value exceeding the material tensile strength. Since the

value is, however, higher than what would actually occur in practice and

because the high stress is localized on the disc surface, it is not regarded

as affecting the wheel integrity for the required 1500-hour (steady-state)
operation.

All rotor designs adequately meet the burst and gross yield speed requirements
and the rupture life of t_le star wheel blades will also comply provided the

metal temperature is reduced by the margin stipulated.

3.0 ANALYTICAL DESIGN

3.0.1 Design Analysis

The blade and disc designs were completed to comply with the stipulated

requirements as stated in RFP 3-188454, QR 6-4938. Design stress analyses
were done by use of a two-dimensional finite element program that allowed

evaluation of [radial, tangential and axial] stresses in axisymmetric solids
and [radial and axial] stress in plate sections. The program permitted

evaluation of stresses (mechanical and thermal) in both disc and blade

portions of the rotors. Certain hand analyses were also conducted to complete

the design analysis. The resulting stress in all rotor components were

limited to values that would comply with the requirements as mentioned above.
These are:

(a) Minimum rotor burst speed shall be at least 140 percent of maximum

continuous design speed.

(b) Gross yield speed of the rotor shall be at least 120 percent of
maximum continuous design speed.
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(c) Stress-rupture life shall be 1500 hours based on minimum rupture
strength data.

(d) A 1500 start-stop cyclic life is targeted for the rotor and would

be met. No component testing will, however, be done to confirm
this requirement.

It should be noted that in the evaluation of thermal stress due to temperature

gradients, only average (steady-state) temperatures through the blade thickness

were used. The two-dimensional computer program does not permit the use of
temperature variations in a tangential direction in either the rings or the

plates and limited the analysis to the evaluation of average stress to ensure

1500 hours rotor stress-rupture life. For engine (start-stop) use, the
analysis would be enlarged to include evaluation of transient metal tempera-

tures and a rotor three-dimensional model to evaluate time-dependent stresses
through the blade thickness and in the rotor hub sections.

3.0.2 METAL TEMPERATURES

Metal temperatures used in the overall stress analysis were supplied by the

Heat Transfer group. The rotor (disc and blade) metal temperatures were

evaluated for a total inlet temperature (T.I.T.) of 2800°F and a cooling flow
of 13 percent of total air flow.

The metal temperatures evaluated are shown in Table 1 (disc metal temper-

atures) and Table 2 (blade metal temperatures). The geometry of the nodes
at which temperatures are listed are shown in Figure I (disc node geometry)

and Figure 2 (blade node geometry). The mid node temperatue values through
the blade thickness, as shown in Figure 2, were used in the analysis (blade

average metal temperature) as explained in para 3.0.1

The above blade and disc metal temperature input into the finite element

computer program results in evaluation of thermal stress which adds to the

centrifugal stress due to rotation.

3.0.3 ROTOR MATERIAL PROPERTIES

The materials used in the construction of the various blade-disc rotor con-

figurations are listed in Table 3.

Material property data used in the design analysis are listed in Table 4.
All material strengths are minimum design values based on -3orstatistical data.

3.0.4 ROTOR STRESS ANALYSIS

3.0.4.1 Operating Conditions

The rotors have been designed to operate at the conditions listed below:

(a) Maximum rotational speed of 65,000 rpm (1775 ft/sec tip speed)

(b) Metal temperatures as stipulated in para 3.0.2.
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Both the aboveoperating parameters were used as input into the finite element
stress analysis program.

3.0.4.2 Star Wheel (One-Piece Casting) Analysis

The results of the stress analysis of the star wheel and blades are shownin
-Figures 7 through 13 which are computer plots of the input and output data as
listed in Table 5.

Note: The numerical value of the Von Mises equivalent stress is

where: _R = radial stress
_T -- tangential stress
_Z = axial stress
TRZ --shear stress in radial-axial plane.

In keeping with the theory of constant energy of distortion for ductile

materials, elastic failure occurs when the equivalent stress value approaches

the material yield strength (or elastic limit). This value is, therefore,
used in computing the gross yield speed of a rotor subjected to multi-axial
normal and shear stresses.

It should be noted that in the finite element analysis of the rotor, those

elements that are not complete axisymmetric rings are treated as plates with

appropriate thickness values. Hence the blades and the metal between the
cooling air holes are treated as plates resulting in no tangential stress

values being present at these elements (Fig. 11).

Direct (radial) stress on blade (axial) sections at constant radius were mini-

mized by optimizing the blade area taper ratio. From the blade tip (3.25 Rad)

down to section B-B (3.00 Rad) the area was held constant allowing the strss
at section B-B to rise to 30 ksi. The areas at all other sections down to the
disc hub line were increased in a manner to limit the stress at each section

to the calculated maximum value of 40 ksi.

3.0.4.3 Exducer Wheel (One-Piece Casting) Analysis

The results of the stress analysis of the exducer wheel and blades are shown

in Figures 14 through 20 which are computer plots of the input and output
data similar to the values listed in Table 5.

As described in paragraph 3.0.4.2, non-axisym6etric elements (blades and

metal between air holes) are treated as plates with appropriate thickness.

3.0.4.4 Inserted (Exducer) Blade Analysis

The stress in the blade (airfoil) section is similar to the values shown in

Figures 17 through 19, para. 3.0.4.2. The stress in the blade and disc root
fixing and the disc hub are as below.
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3.0.4.4.1 Blade Root Fixing Analysis

The blade root fixing (half section) was modeled as a single plate and analyzed
using finite element methods. This method allowed the evaluation of the

peak fillet stress and was chosen over empirical methods that utilize photo-
elastic data.

The centrifugal loading applied to the blade root dovetail fixing and the

(hand) calculated average stress across the neck section are shown in Table 6.

The stresses in the blade root are shown in Figures 22 through 26.

Note: Figure 21 is a layout showing the blade and disc dovetail

fixing and the location of the above Sections A-A and B-B.

3.0.4.4.2 Disc Stub Fixing Analysis

The disc stub fixing (half section) was modeled as a single plate and analyzed

using finite element methods. The external loading applied to the disc stub
for stress evaluation was as shown in Table 6. The stresses in the disc stub

are shown in Figures 27 through 31.

3.0.4.4.3 Disc Hub Analysis

The results of the stress analysis of the (forged) disc hub are shown in

Figures 32 through 37. The value of the load applied to the disc rim is
shown in Table 6.

Note: The rim of an inserted blade disc is defined as the surface at

the bottom of the blade slot. Material outside this surface is

regarded as 'dead' weight contributing to the rim radial load

(160,350 lbs).

4.0 DESIGN SPECIFICATIONS MARGINS OF SAFETY

The margin of safety on the design specifications listed in paragraph 3.0.1
are as follows.

4.0.1 Star Wheel

Maximum radial stress in blades

Blade average temperature

40,000 psi
1600°F

From Figure 4 stress rupture life of blade is evaluated as:

46 = (1600 + 460) (20 + Logln t) x 10-3

Log t = 2.33 t = 214 houri-

To achieve the required 1500 hours stress-rupture life the blade (average)

metal temperature must be limited to:

46 = (T + 460) (20 + Loglo 1500) x 10 -3
T = 1525°F
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Since the blade stress cannot be further reduced (by increasing the area taper

ratio) the blade average temperature should be reduced by 75° to IO0°F to

meet the stress-rupture life requirement.

The average tangential stress in the disc is calculated to be 59,370 psi.

Room temperature material tensile strength 150,000 psi.

Assuming a material casting burst factor of .85

Disc burst speed = 65,000 x 1"85 x 150'00011/2-

l -59,370 J

= 65,000 x 1.47 = 95,250 rpm.

The required burst margin of 1.40 has hence been met.

The average equivalent stress in the disc is calculated to be 61,270 psi.

Assuming a disc average temperature of 1200°F, material 0.2 percent yield

strength is 120,000 psi.

.85 x 120,000] I/2

Gross yield speed = 65,000 x - ] = 65,000 x 1.29 = 83,850 rpm.61,270

The required gross yield speed margin of 1.20 has hence been met.

Examining the values of equivalent stress contours, it is evident that the
stress across the wheel cross section and in the blades are all of a pro-

gressively increasing and usual pattern, with no local areas of excessively
high stress resulting due to the geometric shape of the rotor. Because of

this characteristic of the rotor design, it is valid to use the values
of average tangential and average equivalent stress of the wheel cross section

to estimate the wheel burst speed and gross yield speed (as has been well

substantiated in gr_owth and burst spin tests). There is, however, one area
of the wheel where-the calculted radial stress in the plate section between

the lower air holes are higher than desired. This area is toward the wheel

aft face (contour J - 200,000 psi). This is due to a compromise in the
wheel shape whereby the rear face was made radial to facilitate matching
with the exducer wheel that is clamped to ii_. The high stress is, however,

very localized and quickly reduces to 140,000 psi (contour G). This radial
stress value is also actually fictitious since in reality tangential stresses

will be in evidence in this area (flowing between and over the air hole

boundaries) that will result in stiffening of the disc at this section and a
consequent reduction in the radial stress. Tangential stress is not included

in plate sections in the computer program analysis.

Cyclic fatigue life in the disc bore resulting from a calculated peak 'elastic'

stress of 150,000 psi is estimated to be 104 cycles, which exceeds the 1500

cyclic start-stop value stipulated. These values are estimated from cyclic
strain controlled material test data.
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4.0.2 Cast Exducer Wheel

Maximumradial stress in blades 35,000 psi.
Blade temperature 1500°F.

FromFigure 4 stress-rupture life of blade is evaluated as:

46.75 = (1500 + 460) (20 + Loglo t) x 103
Log t = 3.25 t = 7110 h6urs

The required 1500 hours stress rupture life has hence been met.

The average tangential stress in the disc is calculated to be 41,250 psi.

Room temperature material tensile strength 150,000 psi.

.85 x 150,0001 1/2
Disc burst speed = 65,000 x = 65,000 x 1.75 = 114,280 rpm.

41,250 J

The required burst margin of 1.4 has hence been met.

The average equivalent stress in the disc is calculated to be 38,335 psi.

Assuming a disc average temperature of 1350°F, material 0.2 percent yield
strength is 123,000 psi

.85 x 123,00011/2
Gross yield speed = 65,000 x - --- = 65,000 x 1.65 = 107,340

38,335 J
rpm.

The required gross yield speed margin of 1.20 has hence been met.

Cyclic fatigue life in the disc bore resulting from a calculated peak 'elastic'
stress of 130,000 psi is estimated in excess of 104 cycles which exceeds the

1500 start-stop value stipulated. The values are again estimated from strain
controlled test data.

4.0.3 Blade Root Fixing (Exducer)

Table 6 shows that the average direct (radial) stress on blade fixing stem

neck Section A-A is 53,290 psi. Figure 23 shows that the peak radial stress
at root fillet is 150,000 psi dropping rapidly to 70,000 psi and to a value

of 30,000 psi in the mid-section of the stem neck.

Under steady-state operating conditions, local yielding and time-dependent
creep will result in a reduction of the calculated high 'elastic' stress at

the fillet surface. For purposes of stress-rupture life evaluation the cal-

culated average stress will be used to obtain a reliable (ball park) value.
However, if the rotor is subjected to cyclic (stop-start) conditions, the

resulting total strain range at the fillet surface must be evaluated and

compared to the material (strain range) fatigue cyclic properties.
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In keeping with the above statements the following are estimates of blade neck
stress-rupture and cyclic fatigue life:

Average stress across blade neck (Section A-A) 53,290 psi
Blade neck metal temperature (estimated) 1300°F

Stress-rupture life from Figure 4:

44 = (1300 + 460) (20 + log10 t) x 10-3
LoglO t = 5.00 t -- 100,000hours

This value far exceeds the required 1500-hour life requirement.

For a peak fillet stress of 150,000 psi the total cyclic strain range gener-

ated at each start and stop cycle of the Unit would be approximately 0.625
percent. Strain range cyclic data for the material indicates a cyclic life

of 104 cycles (10,000 cycles) which exceeds the 1500 start-stop requirement.

4.0.4 Disc Stub Fixing (Exducer)

Table 6 shows that the average direct (radial) stress on the disc stub neck
Section B-B is 74,000 psi. Figure 28 shows that the peak radial stress at

stub neck fillet is 140,000 psi dropping rapidly to a value of 100,000 psi

and to a value of 40,000 psi at mid-section. The same reasoning would apply

to the reduction of local high 'elastic' stress at the disc stub neck fillet

surface (para 4.0.3) under steady-state operating conditions. The resulting
stress-rupture and cyclic fatigue life estimates are as follows:

Average stress across disc stub neck (Section B-B) 74,000 psi

Disc metal temperature (estimated) 1150°F

Stress-rupture life from Figure 7:

38 = (1150 + 460) (20 log O t) x 10-3
Log t -3.60 t = 40001hours

This value exceeds the required 1500-hour life requirement.

For a peak fillet stress of 140,000 psi the cyclic strain range would be

approximately 0.56 percent which would resultin a cyclic life in excess of

104 cycles which again exceeds the 1500 start-stop requirement.

4.0.5 Forged Disc Hub (Exducer)

The average tangential stress in the disc is calculated to be 57,490 psi.
Room temperature material tensile strength 185,000 psi.

.90 x 185,000_I 112Disc burst speed = 65,000 x = 65,000 x 1.70 = 110,630 rpm
57,490 J

The required burst margin of 1.40 has hence been met.
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Note: A forging burst factor of .9 is used (as compared to .85 for the

cast disc) because of the large ductility value of the IN-718 alloy

(15 percent) as compared to the IN-792 alloy (5 percent).

The average equivalent stress in the disc is calculated to be 52,470 psi.

With inserted blades it is estimated that the disc average metal temperature
would not exceed 1150°F.

Material 0.2 percent yield strength is 120,000 psi.

yield speed = 65,000 x [|.90
x 120,000"

Gross

L 52,470

1/2

= 65,000 x 1.43 = 92,950 rpm.

The required gross yield speed margin of 1.20 has hence been met.

4.0.6 'Balloning' of Blade Surface

A (hand) calculation has been performed to check on the problem of 'ballooning'

of the blade surface due to the cooling air pressure internally being larger
than the gas surface pressure externally on the cored blade. The blade surface

chosen for the analysis is shown in Figure 40 (largest flat plate area) under
the internal and external pressures shown in Figure 41.

The hand calculation included indicates a maximum bending stress in the blade

wall of 5000 psi and no possibility of 'ballooning' of the blade wall.

5.0 CONCLUSION

Whereas it is anticipated that some (considerable) difficulty may be experienced

in producing sound castings of the star and exducer rotors (because of the
complexity of the internally cored passages in the blade sections of the two

rotors) the mechanical integrity of the two rotors is assured. No drastic or

sudden changes in section have been permitted or included in the design of
the two rotors (either blade or disc sections) and excluding the above blade

cored passage complexity, the design follows standard, state-of-the-art,
company practice.

The spin testing of rotors that will commence at speeds (N) equal to:

N = 1.2 x 65,000 x
0.2 percent yield strength at room temperature

0.2 percent yield strength at operating temperature

under which condition no measurable growth of the rotor must result will

ensure that the gross yield speed requirement of the rotors have been met.

Note: The speed is increased in the above ratio since it is not

possible to heat the disc to its operating temperature in

the spin pit.

55



A second test will be conducted at a speed at which the tangential stress in

the bore is brought up to the value which results under operating temperature

conditions. Following this test no measurable growth must result in the bore.

Following the above tests, rotors will be spun at progressively higher speeds

until burst failure results. At each speed disc growth values will be measured

and plotted versus speed. Visual and other nondestructive testing (NDT) of
the rotors will be conducted to ensure that no localized failures have occurred

at either the blade or hub sections of both rotors.

The final bursting of the rotors will confirm the burst speed requirements

and the nature of the burst segments will indicate the absence (or presence)
of any localized weak elements in the rotor design.

In conclusion it can be stated that the detailed stress and thermal analyses
conducted in the rotor design, together with the above testing, will ensure

the integrity of the rotors to comply with and meet the operational require-
ments stipulated.
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BLADE WALL BENDING DUE TO INTERNAL PRESSURE

The blade section analyzed is rectangular section shown hatched [.900 x .320]
(Fig. 40). Assume plate is uniformly loaded and fixed on all sides.

Plate thickness assumed (constant) _ .040 inch

Assumed average internal pressure _ 240 psi (Fig. 41)

Assumed average external pressure _- 135 psi (Fig. 41)

From Roark "Formulae for Stress and Strain", pg. 203, Case 36.

Max s (at center)

Max A (at center)

_(ub 2

2t

a(ub 4

t3

b
_2.8

a

= 0.750
= O.1422

0.750 x 105 x .3202

s = = 5040 psi
.0402

0.1422 x 105 x .3204

& = = .0001 inch
24 x 106 x .0403

NOTE: The remaining exducer areas have pins joining the two walls and

the star portion wall thickness is considerably larger and plate
areas smaller than above values. The above values are hence the

maximum that can be expected.
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Table 3

COMPONENT

One-piece cast (integral
blades and disc) star wheel

One-piece cast (integral

blades and disc) exducer wheel

Individually cast exducer blades

Forged exducer hub retaining
cast exducer blades

MATERIAL

IN-792 Mod 5A HIPed and heat
treated

IN-792 Mod 5A HIPed and heat

treated

IN-792 Mod 5A HIPed and heat

treated

IN-718 (to AMS 5398)

Table 4

FIGURE
NUMBER

4

5

PROPERTY

IN-792 minimum ultimate tensile strength and 0.2

percent yield strength versus temperature

IN-792 Larson-Miller stress rupture data

IN-718 minimum ultimate tensile strength and 0.2

percent yield strength versus temperature

IN-718 Larson-Miller stress-rupture data
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Table 5

FIGURE

NUMBER

8

9
10

11

12

,13

COMPUTER PLOT DESCRIPTION

Finite element geometry node numbers

Finite element geometry element numbers

Rotor temperature isotherma
Rotor radial isostress lines

Rotor tangential isostress lines
Rotor equivalent isostress lines

Rotor operating deflection

Table 6

SECTION

Blade stem neck

(Section A-A)

Disc stub neck

(Section B-B)

Dovetail fixing

bearing surfaces

Disc rim surface

TOTAL LOAD

13,480 Ibs

17,575 Ibs

15,520 Ibs

160,350 Ibs

AVERAGE STRESS

53_290 psi

74,000 psi

120,725 psi
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G.SO "

lOOO HP
2BOO°F T. I. T.
M = 5 LBISEC

Pressure Ratio:

2.19 Total-to-Total
2.36 Overall Total-To-Static

AIR-COOLED RADIAL TURBINE_
_'---'-_Full Size)
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ADDENDUM

These dato-are copies of the computer printout sheets showing:

a) Radial and axial displacement at each node point.

b) Stresses (radial, axial, tangential, shear and effective) at each
element made up of three adjacent nodes.

Both a) and b) above are under operating conditions listed in para 3.0.4.1.

NOTE: The program performs node re-numbering (optimized wave
front) to minimize computation time. Each output group

has a re-numbered node diagram as a front sheet. This

(re-numbered node) sheet should be used in determining
the values of a and b above for each design.
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SYMBOLS

Stations

0

1

2

3

4

T, p

To' Pc

To, rel

b

c

C

CD

d

D

e

gc

h

h

J

k

UNITS

NOMENCLATURE

DEFINITIONS

eF, psia

eF, psia

eF

in.

ftls

Btu/IbeF

g

in.

in.

in.

in.

ft.l 

lbf.s 2

Btu/hft2F

Btu/Ib

ft.lbf

Btu

Btu/hftF

Stator entrance

Stator exit

Rotor entrance

Rotor exit

Exhaust diffuser exit

Static values of gas tempera-

ture and pressure

Total values of gas tempera-

ture and pressure

Relative total gas temperature

Flow path width

Absolute velocity

Constant pressure specific heat

Film Turbulence factor (J.M.)

Discharge coefficient

Leading edge diameter

Diameter

Hydraulic diameter

Wall Thickness

Conversion factor

Heat transfer coefficient

Enthalpy

Energy conversion factor

(778o161)

Thermal conductivity
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SYMBOLS UNITS

NOMENCLATURE (Cont )

DEFINITIONS

K

L

1

m

M

N

Nu

N s

P

Pr

q"

Q

1N

r

Re

R2

RoIoT.

s

t

_ U2

o

in°

in.

lb/s

lb/lb mole

RPM

ibf /

hp

Btu/hft 2

Btu/s

ft •ibf

Ibm.R

in , ft

in.

"F

in.

in.

ftls

1

rain. S 1/2
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Total pressure loss factor

Flow path lengt h

Meridional length

Mass flow rate

Film blowing parameter

Molecular mass

Rotation, speed

Nusselt number

Specific speed

Shaft power

Prandtl number

Heat flux

Heat load

Gas constant

Current radius

Ratios defined on page __

Reynolds number

Rotor tip radius

Rotor inlet total temperature

Film slot height

Airfoil normal thickness

Tangential wheel speed



SYMBOLS UNITS

W

X

Btu

h.ft2.F

ft./S

in.,

Z

Greek S_mbols

a 2

7

A

"_c

"_f

8

/A

P

oJ

Subscripts

r

c

f

g

degree

degree

degree

Ib/ft.h

ft2/h

ib/ft 3

rad/s

NOMENCLATURE (Cont )

DEFINITIONS

Overall heat transfer coefficient

Relative velocity

Distance from film injection

point

Number of blades (z 2) or vanes

(z 1 )

Rotor flow inlet angle (w.r.t.

tang.)

Blade exit angle (w.r.t. axial)

Ratio of specific heats

Difference

Metal cooling effectiveness

Film cooling effectiveness

Isentr. efficiency

Angular position

Work factor

Dynamic viscosity

Kinematic viscosity

Density

Coolant flow ratio

Angular speed

Rotor

Coo lan t

Film

Gas
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SYMBOLS UNITS

NOMENCLATURE (Cont )

DEFINITION

j tt
Lts

d

__h
Is

_ .'1.5

External

Metal

Internal

Total-to-total

Total-to-static

B lading

Disc

Hub

Shroud

Root mean square value

o

i

Outer

Inner

Average
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I !

I. INTRODUCTION

NASA-Lewis awarded Manufacturing Contract NAS3-22513 (Solar S.O. 6-4938-7) to

Solar Turbines International to design and manufacture a high-temperature

cooled radial inflow turbine rotor characterized by (Figs. l-a, 1-b and 2).

• Shaft pcwer: P = 1000 hp

• Stator inlet total pressurei Poo = 280 psia

• Rotor inlet total gas temperature selected: T02 = 2800°F

(2420"F is the lowest acceptable to N_A)

Rotor inlet gas flow: _g2 = 5 ib/s

Cooling air available at 280 psia and 950"F

Primary flow total-total isentropic efficiency: _tt > 0.85

0-3

Heat transfer promoters in the internal cooling passages for more

effective use of the coolant expenditure that should not exceed

1 ib/s for the rotor and the stationary rotor shroud. The stator

vanes and associated shrouds are assumed to be made out of

ceramic material, i.e., are uncooled.

• Parts designed to be castable

• 1500 hours life•

I I. CONTRIBUTORS
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Mechanical Design - A. W. August and T. P. Psichogios

Manufacturing Engineers - J. R. Woodward and A• N. Hammer
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XII. FLUID PROPERTIES

The _roducts of combustion at 2800°F of air at 950°F with a liquid fuel such

as ASTM-A-I (H/C = 0.168; L.H.V. - 18,700 Btu/Ib m) result from a fuel-air

ratio of f/a t 0.0315. Per NASA TN D-7488 (see App. B for references), the

transport properties at 20 atmospheres pressure are:

At rotor entrance

At rotor exit

Average

1.2699

1.2828

1.2751

0.3232

0.3113

0.3182

0.1485

0.1345

0.1430

Prg
(Ib/IM_mole)

0.06870 0.699 28.966

0.05975 0.702 28.968

0.06483 0.701 28.967

Likewise, per the same source, the coolant properties at pressure are:

At 950"F (fresh) 1.3537

At 1500°F (spent) 1.3288

Average 1.3413

_c

0.2626

0.2773

0.2700

_c

0.0876

0.1076

0.0976

kc

0.03266

0.04233

0.03750

Prc

0.706

0.705

0.705

IV. FLOW PATH DESCRIPTION

After several iterations involving the aerodynam/cs, heat transfer, applied

mechanics, manufacturing and desig_ discipllnes, the flow path of Figures l-a,

l-b, and 2 and shown on the drawings listed in Appendix E was found to satisfy

the design requirements. Main features are:

Stator: O.D.: D O - 9 inches

I.D.: DIs 7.4 inches

Width: b0=b I = 0.29 inch

z I - 17 vanes

Rotor: Tip diameter: D 2 - 6.5 inches (R 2 = 3.25 inches)

Xnlet blade width: b 2 = 0.30 inch

Exducer O.D.: D3s t 4.25 inches

Exducer I.D.: D3h = 2.40 inches

Exducer D3,RM _ - 3.45 inches

D2/D3,RM S - 1.88



z

Z2 = 10 full blades

N = 65,000 RPM

Tip speed: U 2 = 1844 ft/s

Rotor flow inlet angle: G2 = 22"31° (w.rot. tang.)

Exducer R.M.S. blade exit angle: _3 = 55" (wor.t. axial)

Rotor tip leading edge thickness: t 2 = 0.110 inch

Exducer R.M.S. trailing edge thickness: t 3 = 0.15 inch

Mean meridian flow path length: f2 = 2.366 inch

Solidity factor: z2_2/D 2 = 3.64
Nozzle hot throat area: 2.2 inch 2

Figure 2 also shows the main aerothermodynamic parameters such U pressures

and temperatures, These are for an uncooled turbine;

Rotor inlet total temperature: To2 = 2800"F

Rotor inlet static temperature: T 2 = 2510=F'

Rotor inlet pressure: total: Po2 = 276.1 psia

static: P2 = 179.3 psia

Exhaust gas temperature: To3 = 2363°F

Enthalpy drop: _h o = 139.0 Btu/Ib

Exit total pressure: P03 = 126.1 psia

Exit static pressure: P3 = 118.8 psia

Total-to-total rotor pressure ratio: Po2/Po3 = 2.19

Overall total-to-static pressure ratio: Poo/P3 = 2.36

Gas flow •rate: _g2 = 4.98 ib/s

Velocity ratio:

U2

Cspouting, isentrop (0-4)

= 0.65

U2
m - 32.3 ft/s.R I/2

Work factor:

Ah 0

Rotor Reynolds number: Re =

Flow function:

Shaft power:

= 1.023

_g2

_2

= 4.63 105

_g2 _ Ib'R1/2
= 1.03

Po2 S. psla

P = 980. hp (uncooled; no mechanical losses)

Specific speed (02-03) :

1

min. S I/2
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Reaction: _ 0,44

Expected primary flow (uncooled) efficiency (0-3): _tt _ 0.848

V. DISCUSSION OF THE AERODYNAMIC DESIGN

The t_rbine rotor was designed for a low solidity (z2(2/D2) and a sr,_ll inlet

relative width (b2/D 2 = 0.046) to minimize The blading area to be cooled.

The results of initial geometry optimizations at the design conditions are

listed below:

Effect of Blade Height b 2 (inch)

b2 0.25 0,30 ° 0.35

%_tt -1.1 0 +0.2
%P 0 0 +0.8

Effect of Blade Number z 2

z2 8 10 12 14

t&_tt -1.4 0 0_5 1.3
%P -0.2 0 O_ 1.0

Effect of Blade Exit Angle _3 (deg)

_3 55.0 e 60.0 65.0

%&Wit -0 •9 0 +0.8
%P +2.0 0 -3.3

Effect of Hub Diameter D3h (inch)

D3h 2.2 2.4 e 2.6

%&_t t -0.3 0 +0 • 1
%P +1.0 0 -1.4

Effect of Trailing Edge Thickness t3. (inch)

t 3 0.06 0.08 0.10 0.15 e

t_qt t +0.2 0 -0.2 +0.6
%P +0.1 0 -0.1 -0.5

• indicates selected parameters

From manufacturing and cooling constraints, the final geometry selected is

shown in Figures 1-a and 1-b (see App. E for drawing numbers) and employs ten

blades with a relatively large exducer hub d/ameTer to minimize exit blade

height. A relatively thick exducer trailing edge (_S) blade thickness of

0.15 inch is needed to Dermit trailing edge ejection of the largest rotor

cooling flow fraction. Estimated total-to-total primary flow (uncooled)

adiabatic efficiency from stator inlet To exducer outlet (i.e., 0-3) is 84.8

percent compared to The design goal of 85 percent.
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Design rotational speed is 65,000 B2M; reducing this to 60,000 RPM would

reduce the blade stresses by approximately 15 percent at the expense of a

2 percent points reduction in total-to-total efficiency.

Figure 3 show the velocity triangles. Note a 10-degree positive incidence

at the entrance and nearly axial leaving velocities. Figures 4, 5 and 6 give

the surface velocity distributions on the blades near the shroud, at mid-

passage and near the hub, respectively. The flow path was modified several

times to obtain the desirable zero ornegativesurface pressure gradients at

the expected airfoil and hub film injection points. The flow path was further

assumed continuous without any flow ejection at the star/exducer blade inter-

face (see Fig. l-b).

Figure 7 provides the average static pressure distributions necessary to

find the sink pressures for coolant ejection. A smooth acceleration is

shown along both the shroud and hub. The velocity distribution output listing

from external flow program P-229 is included in Appendix A.

Vl. COOLING SCH_4E SELECTION

Using the formula proposed by J. W. Gauntner in NASA TM 81453, the allowable

bulk metal temperature for the blades of an axial turbine using a 1970 material

such as Inconel 792 (Mod. 5A) and a 1500-hour life would be 1582"F.

The average blade metal cooling effectiveness, based on a relative total gas

temperature of 2600"F and a target bulk average metal temperature of 1500"F,

is:

. 2600-1500 = 0.667
c 2600-950

From the axial turbine cooling experience of Solar, with a blading coolant-

to-gas flow ratio of _gh " 0.10, we expect to achieve for the blading;

Wcb = 1 = 0.698
-0.8296

1 + 0.0641 _gb

This approximation and more detailed calculations (presented later), based

on the heat loads on the blading and the hub exposed area lead to the following

cooling airflow requirements for the roto_..__r:

For the blading: _gb = 0.10 or 0.50 ib/s

For the disc hub: _gd = 0.03 or 0.15 Ib/s

Corresponding quantities per blade are 0.05 and 0.015 Ib/s, respectively, for

a total of _g - 0.13 or 0.065 Ib/s per blade (Fig. 10).

A double-pass convective scheme in the blade tip region is required to avoid

massive tip ejection with resulting poor aerodynamic performances and to
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achieve the proper cooling effectiveness; Figure 1-a shows that the net coolant

flow area near the blade tip is quite reduced (see also Fig. I I and Table I):

for a passage gap of 0.050 inch between walls, we have the following passage

widths: 0.160 inch for the outflow (Sec. S6) and 0.070 inch for the inflow

(Sec. S9) channels! Likewise, the feed holes S 2 (Fig. 11) are rapidly choked.

Obviously then, the coolant to the exducer portion has to be introduced

through the feed holes E I near the bore. The limited amount of spent air from

the radial blade portion has to be ejected in the form of films on the

exducer surfaces (see Fig. l-b), Disc cooling can be achieved by impingement

cooling on the back side of the rim (holes A I ) and subsequent veil cooling

from A2 along the hub surface. Such a film will quickly lose its effective-

ness; hence, it is necessary to supply another film on the hub between the

blades in the exducer region through slots E32. The advantages of a two-piece

rotor now become apparent, both from the aerothermodynemic and manufacturing

viewpoints. The bore holes E I feed air to the exducer blades through holes E 4

and to the exducer hub through metering slots E31. The spent air from the star

portion blades is ejected to film cool the leading edges of the exducer

blades (Fig. l-b). The effect of a possible misalignment of the exducer

blades with respect to the star blades is discussed next.

An uncooled two-piece radial inflow turbine of similar construction and dimen-

sions has been tested at Solar (Ref. 27, Fig. 3 of pg. 7) with the following

characteristics :

Tip diameter: 6.25 inches

Exducer maximum O.D.: 4.16 inches

Exducer minimum I.D.: I.00 inch

Speed: 56,700 RPM

Number of blades: 12

The effect of an exducer blading misalignment with respect to the star blading

was systematically investigated for this simplified tandem arrangement (see

pgs. 5 and 6 of Ref. 27).

The effigies of exducer position on overall turbine efficiency indicated maxi-

mum overall turbine efficiency with direct alignment to the star blades and

minimum efficiency with maximum misalignment. The efficiency variation from

maxlmumto minimum was almost four percentage points. When the exducer was

misaligned a quarter of a pitch against the direction of rotation, the effici-

ency penalty was less than one percentage point (see Fig. 3 of Ref. 27).

Preferred misaliqnment is also against the direction of rotation for the

cooled turbine presented here, as it will result in more film cooling flow to

the suction side of the exducer blades where the heat load is the highest.

Heat transfer promotion is logically obtained by staggered trip strips in the

passages of the star blades and by a variable density array of pin fins in

the triple-pass convectively cooled passages of the exducer blades. The gap

between the internal blade walls is kept everywhere at a constant value of

0.050 inch to ease the casting process. The final flow split is shown in

Figure 10. Note that a small percentage of air (1%) is bled at the rotor tip

(radius R 2) to protect it by convection in the holes and by some external
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filming from the impinging external flow. Special attention has been paid to

the thick blade roots cooling: this is achieved by flowing fresh coolant in

the root passages (e.g., through orifices S 4 and E 6 [Fig. 11] and outflow

along the hub passages S 5 of the star blades) and by cooling the blades by

conduction to the impingement - (jets A I and E2) and film-cooled (films A 2

and E32) hub surfaces.

The cooling flow usage can be summarized as follows on a per blade basis (see

Fig. 10):

Star portion

Blade (with edges)

Hub (net )

Exduce r portion

Blade (with edges)

Hub (net )

Total for Rotor

Area To

Be Cooled

(in .2)

1.343

1.458

2.310

0.930

6.041

Coo lant

Flow

(Ib/s )

0.015

0.010

0.035

0.005

0.065

Specific

Coolant

Flow

(Ib/s. in. 2)

0.0112

0.0069

0.0152

0.0054

(0.0108)

Percent-

age

of

Gas

Flow

3.0

2.0

7.0

1.0

13.0

It is seen that the largest portion of the spent coolant is ejected at the

exducer blade trailing edges (_--.5.46%): the next most important portion

(22%) is ejected as films on the exducer blade leading edges (Fig. l-b) _n a

region of favorable external pressure gradients, as can be seen from Figures

4, 5 and 6.

Some coolant (_1.54%) is ejected in the exducer blade-shroud gap for several

reasons:

To reduce the blade-tip clearance losses where they are most

detrimental.

To partly cool the shroud: as a total of one ib/s was assigned

for the rotor and its shroud cooling, there remains 0.35 Ib/s

for further back cooling of this shroud.

• To completely flow-fill the blade internal cavities (corners).

• To provide core support locations.

The last two reasons also justify the tip leading edge film cooling holes.

The cooling flow ratios mentioned here are referred to the radial turbine

total inlet flow of 5 Ib/s. The engine inlet flow would be of the order of
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6.6 Ib/s as the downstream turbine would requ/re about 0.75 ib/s of cooling air.

{The mass balance is: 6.6-1.0-0.75+0.15 fuel flow = 5 ib/s gas flow.)

Using the engine inlet air flow as a reference, we get the following ratios

for this project:

Rotor cooling: _c = 0.6__5 x 100 = 9.85%
,r 6.6

Rotor and shroud cooling: _C,T
1.0__0 x 100 = 15.15%

6.6

Again, it is assumed that a ceramic distributor is used.

VII. INTERNAL AERODYNAMICS OF COOLING CIRCUITS

7.1 ANALYTICAL COOLANT FLOW MODELS

7.1.1 Purppse

An Lnalytical model (Fig. 12) of the blade cooling circuits was developed in

order to gain a better understanding of the statiopary flow models, to predict

flow distribution within the rotating cooling circuits, and to predict internal

heat transfer coefficients for the heat transfer analysis.

7.1.2 Major Assumptions

The analysis assumed that pre-swirl nozzles would no___tbe used and that the

star blade cooling air would be pumped radially outward between the rotor and

a stationary shroud from near the exducer inlet port (E I ) to the star blade inlet

port ($2_ (see Fig. 11). The analysis superimposed the effects of heat

transfer and forced vortex pumping on a conventional compressible flow network

of orifices, frictional passages, and turning losses. It was assumed that

the cooling air will be available at a total temperature of 950°F and a total

pressure of 280 psia.

7.1.3 Methods of Analysis

A block diagram of the cooling circuit model is illustrated in Figure 12.

7.1.3.1 Star Internal Cooling Circuit

The flow characteristics between the turbine wheel and shroud were modeled

from graphical data in Reference 34. The analysis assumed a 0.030-inch gap
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between the shroud and turbine wheel. This small gap was sized to prevent

inflow near the stationary shroud. It was found that a total pressure rise

of 10 psi occurred bet_-_en the inlet to the shroud and the inlet to the star

cooling circuit. The core velocity of the fluid was found to be approxi-

mately one-half of the turbine wheel velocity _en the throughflow effects

are included. It was then assumed that the total pressure in the star blade

entry port was equal to the static pressure in the gap between the turbine

wheel and the shroud.

The frictional effects of the star circuit trip strips were estimated from

graphical data presented in Reference 35. The pressure loss at the star tip

turn is estimated by applying a loss coefficient of 2.1 to the maximum dynamic

head.

The holes (S 4) near the bottom of the partition between the star blade cooling

passages and the star blade tip holes (S81 through S84) were sized using

a discharge coefficient of 0.80 applied to the isentropic orifice equation.

Effects of forced vortex pumping were estimated from the following equations:

+

7. I .3.2 Exducer Internal Cooling Circuit

The exduher cooling circuit analytical model combines the traditional com-

pressible flow elements, the forced vortex pumping, and the heat transfer

effects as in the star cooling circuit. A discharge coefficient of 0.8 was

applied to the orifice elements (E 6, E24, E15). The pressure drop due

to the pin fin array was estimated from experimental data in reference one

(pg 10) expressed as:

I

" 3- K' 'P'M2with - 0.60S

where the Mach number and static pressure are defined at the minimum flow

area.
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7.1.4 Results

The results of the analytical flow model are illustrated and tabulated in

Figure 10 and Table I, respectively. In summary, cooling passages were

sized to provide the following flows per turbine wheel:

Star internal cooling circuit: 0.15 Ib/sec

Star hub film cooling: 0.10 ib/sec

Star blade film cooling: 0.05 Ib/sec

Exducer blade internal cooling circuit: 0.35 ib/sec

Exducer hub film cooling: 0.05 ib/sec

Exducer shroud cooling: 0.077 Ib/sec

Exducer blade film cooling: 0.10 lb/sec

The total flow used for cooling the turbine wheel, neglecting seal leakage,

is 0.65 Ib/sec which is approximately 10 percent of the total compressor

mass flow. This leaves 0.35 ib/sec for additional shroud cooling.

7,2 EXPERIMENTAL STATIC COLD FLOW MODELS

7.2.1 Purpose

One-to-one scale models of the star blade and exducer blade internal cooling

passages were fabricated from brass, aluminum and clear plastic. Pieces of

steel wire (_ 0.013 in.) were glued with lacquer to form the trip strips.

The curvature of the exducer flow passage was removed in order to ease the

fabrication. Static cold airflow tests were performed with various combina-

tions of turbulence promoters, tip holes, and internal division schemes

until a satisfactory design was achieved.

The flow.tests provided a flow function which must be corrected for inlet

losses and the effects of forced vortex pumping before applying the results

to a design calculation. These flow tests were then used to verify portions of

the analytical model of the internal flow network.

Cold air flow tests will also provide a basis for determining the extent of

plugging or voidage in the castings.

7.2.2 Test Apparatus

A block diagram of the flow bench is illustrated in Figure 13-a. F_gure 13-b

is a sample data sheet with the accuracies of each gauge shown. The sonic

orifice was not operating under choked conditions for all but the highest

flows; consequently, it was disconnected for the tests.

The flow bench as well as each test model was checked for leaks before the

tests.
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7.2.3 Static Flow Models

Photographs of the flow models are provided in Figures 14, 15, 16 and 17.

Upon completion of flow testing, several measurements were made in order to

determine differences between the models and the design drawings. These

differences are tabulated in Figure 19 for the final flow models. The lack

of dimensional accuracy is due to the fact that the models were fabricated

before the final design was completed.

Analysis indicates that the star piece flow function is most sensitive to

dimension "F" and dimension "C" in Figure 18. AnalysiE also indicates that

the exducer flow function is sensitive to dimension "K" and to the pin density.

The results of the flow tests were corrected for dimensional inaccuracies

before they were applied to design calculations.

7.2.4 Test Results

7.2.4.1 Final Test Results, Exducer Blade Model

The results of the final test of the exducer passage is illustrated in Figure

21. Results of the analytical model indicate a flow of 0.035 ib/sec per

blade at an upstream pressure of 234 psia, a downstream pressure of 120 psia,

an upstream temperature of 960"C and a speed of 65,000 RPM (6807 rad/sec).

The pressure rise due to forced vortex pumping is calculated from an inlet

radius of 1.05 inches and an outlet radius of 1.477 inches by the expression:

_PB =

pi._2.(r02-ri 2 )

2g c Rn T O

The resulting pressure rise due to pumping through the exducer is 16 psi. In

order to relate the analytical results to the experimental results obtained

with a stationary passage, the pressure rise due to pumping is subtracted

from the inlet pressure to obtain an equivalent pressure of 218 psia. The

resulting analytical flow function per blade is 0.0061 ib m "RI/2 (sec.psia)

at a pressure ratio of 1.82. Since the endwall spacing was 0.05 inch in this

analytical model and the test piece endwall spacing was measured to be 0.06

inch, the analytical model should yield a flow function that is 0.05/0.06 or

0.833 times the experimental results.

The experimental results from Figure 21 indicate a flow function of 0.0076
o_I/2 •

ibm _ _s.piai) at a pressure ratio of 1.82. Multiplying 0.0076 by 0.833

gives a flow function that is 3 percent higher than the analytical model.

This is a fortunate occurrence since the discrepancy between the methods is

well within the uncertainties of the measurements and the analytical model.



7.2.4.4 Final Test Results, Star Blade Model

The results of the final test of the star passage are illustrated in Figure 21.

Results of the analytical model indicate a flow of 0.015 Ib/sec/blade at an

inlet pressure of 270 psia, an exit pressure of 140 psia, and an inlet tem-

perature of 1410°R. Forced vortex pumping effects are not considered in the

star piece since most of the flow exits at the same radius as it enters.

The flow function per blade at design point from the analytical model is

0.0021 "R I/z ibm/sec/psia at a pressure ratio of 1.93. The results of the

experimental hardware model indicate a flow function of 0.0027 "R I/2 ib_

(s.psla) at the same pressure ratio. Correcting the experimental hardware

results for dimensional inaccuracies, we obtain a flow function of 0.0025

"R I/2 ibm/sec/psia at a pressure ratio of 1.93. Consequently, the corrected

hardware model results are 19 percent larger than the analytical model results.

This is considered quite satisfactory considering the uncertainty in the

loss coefficients used in the analytical models.

7.3 PROTOTYPE HARDWARE COLD FLOW TESTING (See Fig. 11)

Number the blades I through 10.

a) Flow with water: to make sure all holes are open

b)

Part

Star

Exducer

Assembly

Assembly

FI_ with air:

Feedpoint Plug

$2; eac____hhole

E4; eac___hhole

El; al__!lholes

S2; eac____hhole

E4

Observe

$81-$84, $11-$14

E91-E94, EI6-E20

Flow at E32 in each passage

Flow around exducer leading

edge

at a pressure ratio of 1.4083 or 6 psig plenum

Part

Star

Exducer

Assembly

Assembly

Feedpoint

S2; eac____hhole

E4; eac____hhole

E I ; al___lholes

together

S2 ; eac____hhole

Plug

E4

Acceptable flow function

limits (ib °R I/2_

0.0022 + 0.0002

0.0055 + 0.0005

To calibrate slots E31

0.0022 + 0.0002
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VIII. DETAILED HEAT TRANSFER ANALYSIS

8.1 GAS SIDE HEAT TRANSFER COEFFICIENTS

The primary aim of this project being to prove the feasibility of manufacturing

__ cooled_ high pressure radial inflow turbine rotor, and the literature

(see App. B) being relatively sparse on the subject of heat loading of such

a turbine, it has been decided to not distinguish between the blading suction

and pressure side heat transfer coefficient distributions, but rather to use

an average distribution, variable along the mean line, but constant from hub

to shroud (see Figs. 9-I, 9-2, 9-3). Likewise, the film cooling heat transfer

coefficients were assumed to be those calculated for gas flow only.

a) Flow field in the rotor

The surface velocities were nevertheless duly calculated (see App.

A) in five streamsheets during the course of the aerodynamic design

and the results are used here to properly assess the static pressure

distributions near the film and trailing edge ejection ports.

Figures 4, 5 and 6 show the surface velocities in the shroud, mid,

and hub streamsheets, respectively. The exducer leading edge and

the aft hub film cooling air flows are seen to be injected in

regions of constant or accelerating external flow, as they should

be.

b) Bladin@ heat transfer coefficients

All the available literature resources (see App. B) and a boundary

layer analysis were utilized to generate the distributions Of Figures

9-I, 9-2 and 9-3.

Important numbers are listed here:

Exit Reynolds number based on rotor throat area and mean

flow length of _ = 2.8 inch; Re = 1.814 106
g,L2

Reynolds number based on mean relative velocity of N2-3

1009 ft/s and L2 = 2.8 inch; R_ = 0.871 106
g

Leading edge Reynolds number based on a diameter of

d = t2 = 0.10 inch; Re = 23,425
g,t2

Leading edge stagnation h.t.c: hg 2 = 1246 Btu/h.ft2.F

Exit h.t.c.

Per Swartwout: hg 3 = 743 Btu/h.ft2.F

Per Hamed-Baskharone-Tabakoff: hg 3 = 647 Btu/h.ft2.F
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Average h.t.c.

. Per flat plate formula:

• Per Halls plot (axial):

_g2-3 = 903 Btu/h.ft2.F

611 Btu/h.ft 2.F

Per Russian method I (mean velocity; factor of 2

for turbulence): 626 Btu/h.ft2.F

Per Russian method 2 (accounts for RPM): 657 Btu/h.ft2.F

The boundary layer analysis (per NASA TND-5681), together with the

leading edge classical formula, gives a blading distribution (Fig.

9-I) whose average is 611Btu/hft2"F as obtained from the Halls

plot. Figure 9-2 provides the detailed external h.t.c, distribution

used on the star blade.

c) Hub surface heat transfer coefficient

The following Russian formula was used:

0.65

Nug,L 2 = 0.1Reg,_ which yields _g,h = 325 Btu/hft2F

This low value is well justified considering the lower and more

constant surface velocities prevailing near the hub (seeFig. 6).

Figure 9-3 shows the actual distribution of the star disc hug

h.t.c, that has been used.

8.2 RELATIVE TOTAL GAS TEMPERATURE

For an uncooled purely radial inflow turbine, this temperature can be calcu-

lated from:

oraI 01
Cpg

In our design, however, the flow enters with a 100 positive incidence (see

Fig. 3), and it is thus necessary near the tip to use the results of the

external flow analysis to calculate:

To,rel(r) =

W 2

T +1.997 10 -5 -- (°F)

Cpg
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For the 2800"F R.I.T., we find (see Figs. 2 and 8-a):

at the tip (6.5 inch diameter): To,rel, 2 = 2553OF

at the exducer O.D. (4.25 inch diameter): 2455"F

I.D. (2.419 inch diameter): 2395°F

for a rotor average relative total gas temperature of 2490OF (i.e., 310°F

below the R.I.T.). To be conservative, we used the full total relative gas

temperature distribution of Figure 8-a for the source temperatures to calculate

the heat loads at non-film cooled locations, and the adiabatic wall film

temperatures (see Figs. 8-b and 8-c) on the film-cooled portions.

8.3 APPROXIMATE HEAT LOAD ON TURBINE WHEEL (See Also Page 11)

iExpos ed
portion

, ii

B lading

Hub Surface

J(net)

Net

To_al

Area

(in. 2 )

36.53

23.88

60.41

* TO tel =" 2490°F
__ I

T m = 1590"F (surface)

Average

Gas-Side

h.t.c.

(Btu/

hft2F)

611.0

325.0

To,rel-Tml*

i !
. (oF)

900.0

900.0

Q(Btu/s)

38.750

13.474

52.224

Total

Coolant

Flow

(ib/s)

0.50

0.15

0.65

Coolant

Temp.

Rise

(OF)

287.0

333.0

Typical _adin_ Heat Flux

IN-792 blade wall

Btu

k m = 13.5 ---'--
hftF

x

_g

Tree =', 1590 °F

x

__

hc

_O, tel = 2490 "F

= 611 Btu/h.ft2.F

J=
• = 0.025 to 0.040 inch

T

Cooling air x T c
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To achieve a wall external temperature of 1590OF with a local gas total relative

temperature of 2490"F, the cooling flow must remove a heat flux of:

q" - (2490-1590)611 - 549,900 Btu/h. ft 2 and a wall gradient of

AT m 549,900

---- = = 3,394 OF/in. results

Ae 13.5 12

The wall thermal differential (Tme-Tmi) amounts to 102, 136, 170 and 204°F

for a 0.030, 0.040, 0.050 and 0.060 inch thick wall, respectively! It is

thus mandatory to cast the walls as thin as feasible. For example, with the

0.060-inch wall, the internal surface would be at Tmi = 1386OF and with a

coolant-side h.t°c, of h c s 2000 Btu/hft2F, the local coolant temperature

T c must not be higher than 1111OF, i.e., 161"F above the supply temperature.

This explains the moderate global coolant temperature rises shown in the last

column of the table above.

For the 0.060-inch thick wall, the resistances to heat flow are:

1 hft2F

• Gas side: ___-- = 0.001637

hg Btu

. Wall:

• hft2F

-- - 0.00_370

km Btu

1

Coolant side: --

1

for a total of -- -

U

hft2F

0.000500 -'--'T

Btu

hft2F Btu

0.002507-- or U = 398.883--

Btu hft2F

The wall resistance for a thin 0.060-inch wall is clearly of the same order

of magnitude as the coolant side resistance. For a thicker wall (say 0.18"),

the wall resistance approaches the gas-side one.

8.4 FILM COOLING

This technique is used at four locations (see Figs. 10, 11), namely to protect

the hub by injections at points A 2 and E32, to evacuate the spent air out of

the star blades through slots $11 to $14, thereby film cooling the leading

edge of the exducer blades (see Fig. l-b) and at the blade tip leading edges

(holes $81 to $84). Figures 8-b and 8-c show the adiabatic wall film

temperatures versus the distance from the injection points used in the two

analytical heat transfer models.
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IX. HEAT TRANSFER MODELS AND RESULTS

Two steady-state analytical thermal models were devised: one for a 1/10

pie-shaped segment of the assembled disc (see Fig. 22), and one for the two

components (star and exducer) of half a blade (see Fig. 23). The disc

model has boundary nodes that simulate one full blade, and the half blade

model has boundary nodes that simulate the disc; the two models were run

several times until agreement was found at t:%_ blade-disc interfaces where

the heat _leaving the blade walls must equal the heat entering the disc.

9.1 DISC MODEL (Fig. 22; Appendix C)

Characterized as follows:

• Axisymmetric pie-shaped (_8 = 360"/10 = 36") per Figure 22.

• 359 nodes total, of which 267 are metal nodes

• 632 conductances per network of Appendix C

• Material conductivity of IN-792 per Figure 24.

• Cooling heat transfer coefficients:

on back face per Figure 25

in holes A (Fig. 22); _c = 765 Btu/hft2F
B 808 " "

C 449 " "

D 701 " "

no contact resistance between the two disc parts

adiabatic wall film temperatures per Figure 8-b

the heat exchange with the blade takes place between

each disc surface node and a blade boundary node

9.2 BLADE MODEL (Fig. 23; Appendix D)

Only half a blade was modeled using the external streamwise h.t.c, distribu-

tion of Figures 9-I and 9-2 for both suction and pressure sides, and from

hub to shroud. This is realistic as the cooling air, the blade cavity end

caps, the webs, the pin fins and the disc altoghether tend to equalize the

leading and trailing wall metal temperatures. A three-layer model (see Fig.

23) was used for each wall (star and exducer) including the associated edges

with the nodes placed on the external and internal surfaces and at mid-wall
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thickness, thereby accounting for the full wall resistance to heat flow. In

the vicinity of the disc hub, each layer is connected to a single local disc

node whose temperature has been iteratively calculated with the disc model.

The disc model (A@ = 360"/10 = 36") concerns one full blade, and each of the

hub surface nodes is connected to a single equivalent local blade node (in

fact, the mid-wall layer node) through a conductance _uivalent to six con-

ductances of the blade model (three layers and two half blades).

Each half blade region is cooled by half of the local cooling air flow. The

effect of rotation on the coolant temperature has been neglected.

Figures 26 and 27 show the internal heat transfer coefficients used inside

the star and exducer blade passages, respectively. Figure 28 gives the

several coolantilow networks used to simulate coolant temperaturerise, to

calculate mixed flow temperatures, .....

The blade model is characterized by a total of 271 nodes, of which 159 are

metal nodes.

9.3 CALCULATED TEMPERATURES

These can be consulted in Appendices C and D for the disc and blading models

of Figures 22 and 23, respectively.

A few predicted temperatures are shown in Figure 29 for the two-piece disc

and in Figures 30, 31-a and 31-b for the two-piece blade.

Maximum disc temperature has been estimated at 1592°F at node 74 (Fig. 29).

The star disc rim is well cooled by backide impingement and film-cooled on

the gas-side (T2-__ 1400°F).

Maximum blade temperature occurs at node 76 (Fig. 30) where the external wall

is at 1825°F and the internal at 1529"F, i'e., a differential of 296°F exists

across a wall 0'170 inch thick. The star blade temperature in this attach-

ment region could be reduced by changing the star blade flow split, i.e., by

opening the S4 orifices (see Fig. 11). It is also conceivable to add a

radial row of film cooling holes where needed in the attachment region of

the star blade.

170



< •

X. FINAL D_MENSIONS (Figs. 11 and l-a)

S 2 10 holes dia. 0.110 E 8 0.430 x 0.050

S 3 10 holes 0.160 x 0,050 El0 0.275 x 0.050

S4 2 holes dia. 0.026 E12 0.430 x 0.050

S 5 0.220 x 0,050 E13 0.360 x 0.050

S 6 0.150 x 0.050 E 6 0.050 x 0.050

S 7 0.063 x 0.050 E14 " 0.260 x 0.050

S 9 0.070 x 0.050 E24 dia. 0.050

881-$84 4 holes dia. 0.0235 E15 d_a. 0.050

$10 0.160 x 0,050 E20 0.15 x 0.050

Sll 0.080 x 0,050 E19 0.14 x 0.050

$12 0.125 x 0.050 E18 0.15 x 0.050

S13 0.100 x 0.050 E17 0.14 x 0.050

814 0.095 x 0.050 E16 0.125 x 0.050

E1-E 2 10 holes dia. 0. 160 E91-E94 2 holes dia. 0,050

E31 10 slots 0.037 x 0.0625 Trip strips: height 0.010

E32 gap 0.025 spacing 0.100

E 4 dia. 0.160 88 pin fins: dia. 0.025

E 5 0.325 x 0.050 Tip thickness: t2 = 0.110

XI. CLOSING REMARKS

Every attempt has been made in this design to flow fresh cooling air in the

highly stressed attachment region of the blades. This is the case (Fig. 11)

for the passages $5-$6, $4-$14, and _. Highest calculated metal temperatures

occur in the star piece in the S14 region where the blade roots are quite

thick; note that the S 4 holes could be opened and that a larger number of the

the E31 slots could be used to improve the cooling effectiveness in that

region. Airfoil film-cooling could also be considered by means of a radial

row of film holes drilled in the $4-$14 region.

The present design achieves a minimum blading external wall cooling effective-

ness (Fig. 30) based on the entrance relative total gas temperature of;

2553-1825
= = 0.454

_b,e. 2553-950

which could be improved, as explained above.

Another approach would be to run the rotor at 2200°F relative total tempera-

ture, i.e., at 2450"F R.I.T. (minimum NASA goal being 2420°F), with the maximum

blading temperature left below 1630"F for longer life; the minimum cooling

effectivensss would still be:

2200-1630

Wb,e = = 0.456
2200-950
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The aerodynamic penalties associated with coolant flow reinjection have been

estimated to be 3.4 percentage points which would reduce the total-total

isentropic efficiency Wit0_ 3 from 0.848 for the uncooled turbine to 0.814 for
the cooled turbine.

A logical extension of this program would, of course, be to measure the per-

formances of this cooled rotor and to compare them to those of the uncooled

version,.
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APPENDIX E

NASA, AIR-COOLED RADIAL TURBINE WHEEL DRAWINGS

Proposal - Engine Assembly, With High Temperature Turbine Wheel

(Full Size to Fit T-62)

Layout - Turbine Wheel, Air-Cooled (Two-Piece 10X Size)

Proposal - Air-CooledTurbineWheel Assembly (Multi-Piece

Construction 10X Size)

Wheel, Turbine - Air Cooled (Cast Star Wheel)

Wheel, Turbine - Air Cooled (Brazed Star Wheel)

Insert, Blade - Air Cooled (Brazed Star Wheel)

Exducer, Turbine - Air Cooled (Cast One-Piece)

Blade, Exducer - Air Cooled (Cast and Machined)

Hub, Exducer - Air Cooled (Machined)

R/ng, Exducer - Air Cooled (Machined)

Retainer, Exducer Blade (Machined)

Wheel Assembly, Turbine - Air Cooled (Cast Wheel and Exducer)

Wheel Assembly (Brazed Wheel and Cast Exducer)

Wheel Assembly (Cast Wheel and Multi-Piece Exducer)

(Includes assembly, balancing and spinning)

Material Specification

pRF..CEOtNG PAGE BLANK NOT FILMED
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