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OVERVIEW 

The purpose of this grant is to investigate the use and implementation 

of Ada in distributed environments in which reliability is the primary 

concern. In particular, we are concerned with the possibility that a 

distributed system may be programmed entirely in Ada so that the 

individual tasks of the system are unconcerned with which processors they 

are executing on, and that failures may occur in the software or underlying 

hardware. 

* 

Over the next decade, it is expected that many aerospace systems will 

use Ada as the primary implementation language. This is a logical choice 

because the language has been designed for embedded systems. Also, Ada 

has received such great care in its design and implementation that it is 

unlikely that there will be any practical alternative in selecting a 

programming language for embedded software. 

The reduced cost of computer hardware and the expected advantages of 

distributed processing (for example, increased reliability through redundancy 

and greater flexibility) indicate that many aerospace computer systems will 

be distributed. The use of Ada and distributed systems seems like a good 

combination for advanced aerospace embedded systems. 

In previous work under this grant we have shown the general 

inadequacy of Ada for programming systems that must survive processor 

loss. We have also proposed a solution to the problem in which there are 

* Ada is a trademark of the U.S. Department of Defense 
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no syntactic changes to Ada. While we feel confident that this solution is 

adequate, we cannot be sure until the solution is tested. A major goal of 

the current grant reporting period therefore is to evaluate the approach using 

a full-scale, realistic application. The application we are using is the 

Advanced Transport Operating System (ATOPS), an experimental computer 

control system developed at NASA Langley for a modified Boeing 737 

aircraft. The ATOPS system is a full authority, real-time avionics system 

providing a large variety of advanced features. 

We have also shown previously under this grant that Ada makes no 

provision for software fault tolerance. We consider it to be important that 

attention be paid to software fault tolerance as well as hardware fault 

tolerance. The reliability of a system depends on the correct operation of 

the software as well as the hardware. A second major goal of the current 

grant reporting period is to extend previous work in new methods of 

building fault tolerance into concurrent systems. 

During this grant reporting period our primary activities have been: 

(1) The preparation of a set of criteria by which the proposed method will 

be judged. 

(2) Extensive interaction with personnel from Computer Sciences Corporation 

and NASA Langley to determine the requirements of the ATOPS 

software. 
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(3) Preparation of a report summarizing the state of the art in backward 

error recovery in concurrent systems. 

The various documents that have been prepared in support of this 

research during the grant reporting period are included in this report as 

appendices. The criteria we have determined for evaluation of the approach 

to fault tolerance are contained in appendix 1. A preliminary version of the 

requirements for the ATOPS system is contained in appendix 2. This 

requirements specification is incomplete and subject to change. Appendix 3 

contains our survey of backward error recovery techniques. This survey 

will appear in the text “Resilient Computing Systems, Volume 2” edited by 

T Anderson, published by John Wiley. Section and figure numbers as they 

will appear in the text have been retained in that appendix. A list of 

papers and reports prepared under this grant, other than the annual and 

semi-annual progress reports, is presented in Appendix 4. 
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EVALUATION CRITERIA 

In order to assess the quality of the proposed solution to Ada’s 

limitations on distributed targets, a number of evaluation criteria are outlined 

in this section. These criteria are intended to be general standards by which 

any non-transparent approach can be judged in the context of any application 

requiring tolerance of processor failure. They will be applied to the 

software we develop in response to the ATOPS requirements specification. 

Structure 

The resulting program should be modular, comprehensible, and 

modifiable. The extent to which the program fails stylistically is of great 

concern, since the chosen f ault-tolerance approach places much of the burden 

of recovery on the programmer, and the effect of that onus on a realistic 

program structure is unknown at this time. In order for non-transparent 

fault tolerance to be feasible for Ada programs, those programs must be 

well-structured. 

This criterion is particularly subjective, but we will decide if the goal is 

met by determining whether or not information hiding and object isolation 

techniques can be used effectively for a particular application. 
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Dynamic Service Degradation 

A distributed program intended to survive hardware failures must match 

the processing load following a failure with the processing capacity remaining. 

One way to avoid the waste inherent in adding extra computing power to 

the original system is to specify degraded or safe service to be provided 

following failure. If the application is amenable to such a specification, the 

non-transparent approach can allow a high percentage of the overall 

computing power of the system to be used at all times. In contrast, the 

transparent approach normally must be only lightly loaded so as to be able 

to provide identical service before and after the loss of an entire processor. 

The suitability of an application for provision of safe service following 

hardware failure should be determined during the specification process. 

Experts should be consulted, and their knowledge about the particular 

application should be incorporated into the requirements document. 

Task Distribution Flexibility 

At a certain point in the design process, task redistribution may require 

massive code revision. If this point in time is early in the design process, 

design-time flexibility will be drastically reduced by the non-transparent 

approach. Additionally, ordinary software maintenance should not be 

prohibitively expensive when it involves task redistribution. In sum, 

flexibility of distribution of tasks among the processors should not be overly 

affected by those aspects of the program necessary for fault-tolerance. 
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Distribution flexibility should be evaluated upon the completions of both 

design and coding. Flexibility can be determined by measuring the percentage 

of the relevant product, the design document or the code itself, which 

requires modification in order to accommodate task redistribution. 

Efficiency 

The percentage of the total system computing power devoted to 

execution of statements necessary for fault-tolerance should be reasonably 

small. The memory and time overhead for both the source program and the 

underlying support system should be considered. 

[Describe general efficiency measurement techniques which we will use.] 

[Since many of the computational details of our application are being 

neglected, how do we measure percentages accurately? . Cpu overhead will be 

particularly difFicult to measure.] The overhead due to fault-tolerance is 

categorized in the following sections: 

Entry Call Renaming 

Since a replacement for a lost task cannot be given the same name, 

application program code must sometimes be embedded in the normal 

program algorithms when calls to entries of tasks located on other machines 

are involved. The following code can be omitted only when the calling task 

is always aborted upon failure of the machine which runs the receiving task: 
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if beforeFailure then 
Perform normal pre-rendezvous computat ions; 
SoonToBeDeadTask.EntryCall; 
Perform normal post-rendezvous computat ions; 

Perform alternate pre-rendezvous computations; 
ReplacementTask.EntryCall; 
Perform alternate post-rendezvous computations; 

e l s e  

end if; 

Exception Handlers 

An exception handler must be associated with each task which calls an 

entry in a task which runs on a different machine. These handlers do not 

use CPU cycles during normal execution, but they do add bulk to the 

program. 

Data Management 

Data distribution tasks must exist on each machine to provide the 

programmer with the means to generate consistent copies of critical data 

items on all machines. Embedded in each task, calls to the data distribution 

task will increase the complexity of the algorithms and slow their execution. 

The resulting increase in bus traffic also will burden the system. The key 

parameters here are the number of data items required for failure survival 

and the frequency at which they must be recorded on the other machines. 
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Reconfiguration 

Tasks existing on each machine will be responsible for reconfiguration of 

the system. They will use CPU cycles only at recovery time, but the sheer 

volume of reconfiguration work required during that critical period may be 

so large as to cause failure of the system. Most applications which are 

desired to be hardware fault-tolerant have critical real-time requirements. If 

the services to be provided after failure are radically different from those 

offered before failure, the aborting of unwanted tasks and the initialization 

of newly desired tasks could be prohibitively time-consuming. 

This is not a simple issue. Reconfiguration tasks do not necessarily have 

to complete before application processing resumes. For example, the high- 

priority reconfiguration task could terminate after performing only critical 

operations and start a low priority task which eventually would put the 

entire system in perfect order without disrupting critical processing. 

Failure Detection 

In order to detect failure when it occurs, a small constant overhead 

must be paid to produce heartbeats and to listen for those of the other 

machines. If an implicit token-passing protocol is used for inter-processor 

communication, failure detection costs nothing, so we will ignore this source 

of overhead in our analysis. 
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Message Logging 

In order to assess the damage to tasks not on the failed machine, all 

program-level communications will be recorded. The overhead from this 

source will vary with the message traffic between machines, so, ceteris paribus, 

inter-processor communication should be minimized. 

Alternate Service Casing 

Code m y  be embedded in the normal program algorithms in order to be 

provide alternate service after hardware failure: 

if beforeFailure then 
Perform normal computations; 

Perform alternate computations; 
e l a e  

end if; 

Complexity 

The complexity of the software could increase geometrically as the 

number of tolerable hardware failures in the system increases. As an 

example of this case proliferation consider a structure based on a four 

processor system that provides different services depending upon which 

machines are operational. The following code is written from the perspective 

of machine 1: 
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case systemstatus i s  
when A114Up => 

when 134Up => 

when 124Up => 

when 123Up => 

when 14Up -> 

when 13Up => 

when 12Up => 

when 1Up => 

Process normally; 

Process w i t h  machine 2 down; 

Process w i t h  machine 3 down; 

Process w i t h  machine 4 down; 

Process w i t h  machines 2 and 3 down; 

Process w i t h  machines 2 and 4 down; 

Process w i t h  machines 3 and 4 down; 

Process w i t h  machines 2 ,  3, and 4 down; 
end case; 

The target architecture and the complexity of failure response, then, are 

critical application-dependent variables in this evaluation process. 
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ATOPS SYSTEM REQUIREMENTS 

This document is the high-level software requirements specification for 

an aircraft computing system capable of performing all flight tasks from 

take-off through landing. The realization of this specification will not be 

adequate for any real system. We intend the structure of the desired 

program to be identical to that of a practical aircraft computing system, but 

low-level computations will be omitted wherever their absence will not 

result in a simplification of the overall program structure. This document, 

then, neglects numerous areas which should be addressed by any 

comprehensive aircraft computing system software specification. 

System Overview 

The computing facility on which this program. will run should be 

viewed as a general distributed system comprising M loosely coupled 

processors and N memories where M and N exceed zero. Processors and 

peripherals will communicate via a global bus. 

The computing system will access a number of peripheral devices. 

Flight sensors will provide situational information as input to computations 

which drive the effectors and provide corresponding situational data to the 

cockpit. Devices accessed by the pilot select the format and general content 

of the situational information provided to the cockpit displays, and an 

additional control panel allows the pilot to access or modify the current 

flight plan. Still another control panel allows the pilot to select the aircraft 
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flight mode. A number of modes requiring varying degrees of direct pilot 

control of the aircraft are available. 

System Data Flow 

The high-level system data flow is depicted in figure 1.1. This section 

is devoted to descriptions of the data transformations represented by the 

boxes in the figure. 

Positional Indicator Coarol Panels 

The positional indicator control panels inform the positional indication 

computation module of the format and general content of the information to 

be represented on the positional indicator displays. 

Path Control Panel 

The path control panel provides the path definition module with three 

different kinds of information. Initialization data inform the system of the 

ground-level barometric pressure, starting latitude and longitude, and the 

time, among other things. Flight plan specifications determine the aircraft 

flight plan. Holding patterns and offset paths provide the path definition 

module with parameters necessary for configuration of the situational 

displays. 

- 14- 



Positional 
Indicator 
Control 
Panels 

A .  4 . .  . .  . .  . .  . .  .............................................. 

- - - -  
T -  o 

r 

L 

........... 

Read-only 
Database 

Control Control Sensors 

I I 

..................... 
Fig. 1.1.1 i i . .  

...................... ........ 
Fig. t.1.2: 

................. 
I 

...... 

...... 
1.1.3 

Fig. 1.1. System Data Flow 

- 15 - 



Flight Control Panel 

The flight control panel provides the remainder of the system with 

facilities for the specification of velocity, altitude, and direction, for the 

selection of one of many flight modes ranging from direct pilot control to 

completely automatic operation, and for the activation of a variety of 

navigational sensor systems. 

Flight Sensors 

The flight sensors provide the computing system with navigational data, 

the operational statuses of various mechanical systems, and inputs from the 

brolly handles used to steer the aircraft in certain flight modes. 

Read-only Database 

The system database contains information about terrain, airfields, 

ground-based navigational aids, routes, etc., which is used for guidance, path 

definition, and situational display. 

Path Definition 

The path definition module accepts instructions from the path control 

panel. It provides general data from the read-only database and specifics 

regarding the flight plan to the path control display for perusal by the pilot. 

It directs the positional indicator computation module to configure the 

positional indicators for display of pilot-specified holding patterns and offset 
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paths. It informs the flight control panel input processing module of the 

current flight plan level. It provides the particulars of the flight plan to the 

navigation, guidance, and control module. Details of the data flow associated 

with path definition are shown in figure 1.1.1. 

Flight Controls and Flight Sensors I n p  Processing 

Details of the data flow associated with flight control and sensor 

processing are shown in figure 1.1.2. 

Navigation, Guidance, and Control 

Details of the data flow associated with navigation, guidance, and controi 

are shown in figure 1.1.3. 

Navigation 

A further refinement of the details of the data flow associated with 

navigation is shown in figure 1.1.3.1. 

Microwave Luruiing System 

The Microwave Landing System (MLS) software uses the . elevation, 

azimuth, and range inputs from the MLS hardware and the acceleration 

inputs from the body-mounted accelerometers to determine accurately 

position, velocity, and acceleration of the aircraft. MLS navigation 

information is accurate enough to support fully automatic landing of the 

aircraft. MLS is a component of the navigation module and a further 
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refinement of the data flow associated with MLS is shown in figure 1.1.3.1.1. 
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Positional Indicator Displays 

The positional indicator dLplays provide the pilot w h attitudinal and 

horizontal situation information in a number of formats. 

Path Control Display 

The path control display is the screen, similar to that of a computer 

I terminal, on which the current path, a new path being input, or general 

I information from the system database can be represented. 

I Sensor Feedback and Tuning 

The sensor feedback and tuning module provides two kinds of feedback. 

The flight control panel display conveys information to the pilot regarding 

his efforts to control the aircraft. For example, if he selects a mode which, 

due to failure of a sensor, cannot be activated, the lighting configuration on 

the panel will alert him to the limitation. The radio tuner sets the 

navigation beacon receiver to the frequency of the desired beacon. 

Effectors 

The aircraft effectors control the mechanical functions of the aircraft. 

The ailerons, delta elevators, rudder, and throttle are all linked to the 

computing system via effectors. 
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CONCURRENT SYSTEM RECOVERY 

Samuel T. Gregory 

(Depar tma of C o m p e r  Science, University of Virginia) 

and 

John C. Knight 

(Department of Compzaer Science, University of Virginia) 

9.1. Communicating Processes 

Recovery blocks provide a mechanism for building backward error 

recovery into sequential programs. However, many programs such as 

operating systems and real-time control systems, are concurrent. A 

concurrent system consists of a set of communicating sequential processes. 

The processes execute in parallel and cooperate to achieve some goal. In so 

doing, they usually exchange data and synchronize their activities in time. 

Many concepts such as semaphores, monitors, ports, and rendezvous have 

been proposed to control the synchronization and communication of 

concurrent processes. 

It is important that the technique of backward error recovery be 

extended to concurrent systems. These systems are very prone to error 
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because they are usually extremely complex. The incorporation of fault 

tolerance may be a practical method of improving their reliability. 

Unfortunately, backward error recovery in concurrent systems cannot be 

provided merely by using recovery blocks in each separate process. Many 

new problems arise when concurrent systems are considered and they are the 

subject of this chapter. 

When two processes communicate, obviously information is passed 

ue Lween them. If two processes merely synchronize without explicitly 

passing data values, they still pass information. The information gained by 

each process in that case is (at least) that the other process has made a 

certain amount of progress. The utility of that kind of information depends 

upon the amount of knowledge about one process’ design that was 

incorporated into the other process’ design. Any form of synchronization, 

message passing, or shared variable update allows information to pass from 

one process to another. 

t _I_._ 

Suppose two processes communicate between the time that a fault in one 

of them produces the first error and the time that an error is detected. 

Since the information transfer is two-way, whichever process has developed 

the error may have spread that error to the other. Further, the error might 

not be detected by the process containing the fault. A solution to these 

problems is to roll back, Le. perform backward error recovery, on both 

processes. If the recovery points for all of the processes involved are not 

carefully coordinated, a problem called the domino efect 1371 could result. 
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Figure 9.1 illustrates the domino effect with three processes P1, P2 and 

P3 progressing with time to the right. Suppose each process has established 

recovery points at arbitrary times shown as the letters A ,  B ,  C,  D ,  and E 

in the figure. The vertical dashed lines represent communications between 

the processes. An error detected in P1 at X causes process PI to be rolled 

back to E and process P2 to be rolled back to D .  But this rollback 

invalidates information exchanged between P2 and P3, so P3 must also be 

rolled back. The closest recovery point for process P3 is C. Since PI and 

P3 communicated between points C and E, P1 must again be rolled back, 

this time to B .  The effect could conceivably spread to other processes and 

continue from recovery point to recovery point (like falling dominos) until 

the entire software system was rolled back to its initial state, thus 

discarding all information gathered during its operative life. 

p1 

p2 

p3 

B E X 
I I I 

I I I 
I I I 

I I 
A I D I I - I 

1 I 

I I 
I I I 
I I I 

I 
I 

I C I I > 

The Domino Efect 

Figure 9.1 
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Clearly, the domino effect has to be avoided. To do this, the backward 

error recovery method employed must coordinate the establishment of 

recovery points for communicating processes and limit the “distance” they 

can be rolled back. 

The domino effect is the major problem in the provision of backward 

error recovery in concurrent systems. But unrecoverable objects have to be 

dealt with just as they do in sequential systems, and other subtle problems 

of program structure arise. In this chapter we describe various methods of 

dealing with the domino effect including conversdions, exchanges, IT-Actions, 

dialogs, andcolloquys. We also describe two other approaches to dealing with 

recovery of concurrent systems, c h e  prorocok, and spheres of comrol. 

Finally, we summarize the problems of program structure. 

9.2. Conversations 

The conversation [37] is the canonical proposal for dealing with 

communicating processes via backward error recovery. In a conversation, a 

group of processes agree about when recovery points will be created and 

discarded. Each may create a recovery point separately, but they must 

synchronize the time at which the recovery points are discarded. The set of 

recovery points is referred to as a recovery line. Only processes within the 

group may communicate. At the end of their communication, which may 

include the passage of multiple distinct sets of information, they each wait 

for the others to arrive at an acceptance test for the group. If they pass 
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the acceptance test, they commit to the information exchange that has 

transpired by discarding their recovery line and proceeding. Should they fail 

the acceptance test, they all restore their states from the recovery line. No 

process is allowed tosmuggle information out or in by communicating with a 

process that is not participating in the conversation’s organization. 

Conversations may be nested. From the point of view of a surrounding 

conversation, a nested conversation is an atomic action. The encased activity 

seems either not to have begun or to have completed, and no information 

that would be evidence to the contrary escapes. 
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Figure 9.2 shows an example in which three processes communicate 

within one conversation and two subsets of two each communicate separately 

within two nested conversations. The dotted rectangles represent the 

recovery lines on the left verticals, the acceptance tests on the right verticals, 

and the prohibition of smuggling on the horizontal portions. 

The recovery lines are shown as simultaneously established, but that is 

not required. Note that, if an error were detected in process PI while 

processes P2 and P3 were conversing, all effects since the larger recovery line 

(including the already-completed conversation between P I  and P2) would be 

undone. Once individually rolled back and reconfigured, the same set of 

conversant processes attempt to communicate again, and eventually reaches 

the same acceptance test again. Also any other failure of one of the 

processes is equivalent to a failure.of the acceptance test by all of them. 

Thus, a conversation is a kind of parallel recovery block where each of the 

primary and the alternates are execution segments of a set of processes. 

Conversations were originally proposed as a structuring or design concept 

without any syntax that might be used in a practical programming language. 

The Name-Linked Recovery Block was proposed by Russell as a syntax for 

conversations [381. The syntax appropriates that of the recovery block: 

CONV <conversation i d e n t i f i e r >  : <recovery block> 

What would otherwise be a recovery block within a process, becomes part of 

a conversation by associating a name with the recovery block. The name is 

called the conversation identifier, and all processes executing recovery blocks 
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with the same conversation identifier become members of the conversation. 

The primary and alternate activities of the recovery block become that 

process’ primary and alternate activities during the conversation, and the 

recovery block‘s acceptance test becomes that portion of the conversation’s 

acceptance test appropriate to this process. The conversation’s acceptance test 

is evaluated after the last member of the conversation reaches the end of its 

primary or alternate. If any of the processes fail their acceptance tests, all 

conversants are rolled back. 

In other work [391, Russell proposed loosening the structure of 

conversations. He proposed that the establishment, restoration, and discard of 

recovery points for processes be under the dynamic control of the 

applications’ programmer rather than encased in a rigid syntax. He gave 

three primitives for these operations: MARK, RESTORE, and PURGE respectively. 

They are all parameterized to designate the subject recovery point and apply 

to an individual process. This allows the programmer to save many states 

and restore the one he chooses, rather than the most recent. Recovery points 

are not constrained to be REsToREd in the reverse of the order MARKed. The 

proposal assumes message buffers for inter-process communication. As part 

of backing a process up to a recovery point, previously received messages are 

placed back into the message buffers. 

This mechanism ignores the possibility that the information within a 

Such an approach only applies to 

Many concurrent systems are feedback systems. 

message can contaminate a process’ state. 

producer-consumer systems. 
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A producer almost always wants to be informed about the effects of the 

product, and a consumer almost always wants to have some influence over 

what it will be consuming in the future. The relationships between sensors 

and a control system and between a control system and actuators can be 

viewed as pure producer-consumer relationships, but sensors and actuators are 

more accurately modeled as unrecoverable objects. The proposal allows 

completely unstructured application of the MARK, RESTORE, and PURGE primitives. 

This fact, along with the complicated semantics of conversations, which the 

primitives are provided to implement, affords the designer much more 

opportunity to introduce faults into the software system. For example, the 

use of the PURGE primitive on a recovery point represents a “promise” never 

to use a RESTORE primitive on that recovery point. There is no enforcement 

of this “promise”. Also, the utility of the ability to save two recovery 

points A and B and later restore A before restoring B is unclear. 

Kim has proposed several syntaxes for conversations [241. His 

approaches assume the use of monitors 1141 as the method of communication 

among processes. In the Conversation Monitor, shown in Figure 9.3, the 

conversing activities are grouped with their respective processes’ source code, 

but are well marked at those locations. In the Conversation Data Type, shown 

in Figure 9.4, the conversing actions of the several processes are grouped into 

one place so that the conversation has a single location in the source code. 

The issue these variations address is whether it is better to group the text of 

a conversation and scatter the text of a process or to group the text of a 

process and scatter the text of a conversation. 
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ENSURE <boolean expression> 
USJNCiCM <conversation monitor identifier> 

4 <conversation monitor identifier> 1 
BY 

ELSE BY 
<primary> 

<alternate 1> 
... 

ELSE BY 

ELSE ERROR 
<alternate n> 

Kim's Conversation Mc~itcr  Syr'-tax 

Figure 9.3 
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TYPE c = CONVERSATION( <conversation 
PARTICIPANTS proca( <forma I 

procb( <formal 

VAR cml : <conversation mon 
cm2 : <conversation mon 

ENSURE <acceptance test> BY 

... 

... 

names > ) 
parameters> ); 
parameters> ); 

tor type> ; 
tor type>; 

BEGIN proca : <statements> 
procb : <statements> 
... 

END 
ELSE BY BEGIN 

proca : <statements> 
procb : <statements> 
... 

... 
ELSE ERROR 
BEGIN 

I N I T  cml ,cm2.. . 
END 

VAR convl : C; 

convl.proca( <actual parameters> );  

(b) 

Kim's Conversation Data Type Syntax 

Figure 9.4 

Kim's third scheme, the Concurrent Recovery Bbck shown in Figure 9.5, 

attempted to resolve the differences between the first two by enclosing the 

entirety of the processes within the conversation. Here, a conversation is a 

special case of a recovery block, within a single parent process, in which the 

primary and the alternates consist solely of initializations of monitors and 
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activations of processes. 

The concurrent recovery block is not really a construct for programming 

concurrent systems. Rather, it is a construct for programmi.ng sequential 

systems in which a particular execution order for occasional statement 

sequences is not required. 

None of Russell’s or Kim’s conversation schemes enforce the prohibition 

against smuggling. If processes use monitors, message buffers, or ordinary 

ENSURE <boo1 eon expression> BY BEGIN 
I N I T  moni tor.1; 

I N I T  processl.l( tactual parameters> ); 
I N I T  process2.1( tactual parameters> ); 

END 

... 

... 
ELSE BY BEGIN 

I N I T  moni tor.2; 

I N I T  processl.2( tactual parameters> ); 
I N I T  process2.2( tactual parameters> ); 

END 

... 

1.. 

... 
ELSE BY BEGIN 

I N I T  monit0r.n; 

I N I T  processl.n( tactual parameters> );  
I N I T  process2.n( tactual parameters> );  

END 
ELSE ERROR 

... 

... 

Kim’s Concurrent Recovery Block Syntax 

Figure 9.5 
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shared variables, other processes can easily “reach in” to examine or change 

values while a conversation is in progress. The conversation monitor is 

designed to prevent smuggling but, as Kim’s description stands, it allows a 

problem that is even more insidious than smuggling. A monitor used within 

a conversation is initialized for each use of the conversation, but not for 

each attempt within a conversation. This allows partial results from the 

primary or a previous alternate to survive state restoration within the 

individual processes. Since such information is in amobability erroneous, 

it is likely to contaminate the states within all subsequent alternates. 

A major difficulty of the conversation scheme and of all its follow-up 

syntactic proposals lies in the acceptance test(s>. The strategies involved in 

the primary and in the many alternates may be so divergent as to require 

separate checks on the operation of each “try” as well as an overall check 

for acceptability as regards the goal of the statement. 

Another difficulty involving acceptance tests appears when we consider 

that each process in a conversation has its own individual reasons for 

communicating, while the system of which these processes are a part has 

more global concerns for bringing them together. A single, monolithic 

acceptance test would be too concerned with acceptability in terms of the 

surrounding system to detect errors local to the component processes. 

Similarly, the combination of local acceptance tests of the individual processes 

is insufficient since it does not incorporate the design of the surrounding 

system. A conversation needs a check on satisfaction of the surrounding 
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system’s goal in the communication as well as checks on satisfaction of the 

component processes’ goals. 

Desertion is the failure of a process to enter a conversation when other 

processes expect its presence. Whether the process will never enter the 

conversation, is simply late, or enters the conversation only to take too long 

or never arrive at the acceptance test(s), does not matter to the others. The 

processes in a conversation need a means of extricating themselves if the 

conversation begins to take too long. Each process may have its own view 

of how long it is willing to wait, especially since processes may enter a 

conversation asynchronously. Only the concurrent recovery block scheme 

addresses the desertion problem. The solution there is to enclose the entirety 

of each participating process within the conversation. This is too restrictive 

in that not only cannot a process fail to arrive at a conversation, it cannot 

exist outside of the conversation. 

The original proposal of conversations made no mention of what was to 

be done if the processes ran out of alternates. Two presumptions may be 

made (1) that the number of alternates is unbounded, or (2) that an error is 

to be detected automatically in each of the processes, as is assumed in all of 

the proposed syntaxes. What the syntactic proposals do not address is that, 

when a process fails in a primary attempt at communication with one group 

of processes to achieve its goal, it may want to attempt to communicate 

with an entirely different group as an alternate strategy for achieving that 

goal. The name- This is the kind of divergent strategy alluded to above. 
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linked recovery block and the conversation monitor schemes do not mention 

whether it is an error for different processes to make different numbers of 

attempts a t  communicating. Although those schemes may assume that is 

covered under the desertion issue, it may not be if processes are deliberately 

allowed to converse with alternate groups. 

It can occur that a nested conversation commits to a change in an 

unrecoverable object only to have the surrounding conversation fail. This 

presents a problem. One suggestion was that the object be marked for 

alteration but that the change not actually occur until the outermost 

conversation commits [271. 

How to construct meaningful acceptance tests was an open problem for 

recovery blocks. It remains so for conversations. An acceptance test must 

be able to detect errors in results of any alternate in the context of 

independently constructed algorithms. Yet the same acceptance test must be 

able to pass results of any alternate, no matter how degraded the service it 

provides. The test must not be so complex or slow as to duplicate the 

algorithms of the primary or alternates. Although some thought has been 

given to this problem [271, it too remains open. 

9.3. Exchanges and Simple Recovery 

Many real-time systems are concurrent and are used frequently in 

Real-time systems using a cyclic applications requiring very high reliability. 



executive have a relatively simple structure which can be used to advantage 

in implementing backward error recovery. 

Under a cyclic executive, time is divided into “frames”. Inputs are 

accepted at the beginning of each frame, and outputs are produced at the end 

of each frame. Anderson and Knight proposed exchanges 121 in an attempt 

to adapt conversations to this real-time program structure. 

An exchange is a conversation in which all of the communicants are 

created at the recovery line and destroyed at the acceptance test. The 

beginning of a frame represents the “recovery line”, and the acceptance test 

is at the end of the frame. Failure of the acceptance test causes alternate 

outputs to be generated for the current frame using some simple alternate 

computation, e.g. repeating those of the previous frame. The only 

information saved at the “recovery line’’ is that needed to provide the 

alternate outputs since the communicating processes will be started anew 

rather than backed up. The execution-time support keeps track of which 

processes fail individually and how often the group fails. This information 

transcends frame boundaries and is used to determine when a process is to 

be replaced for the next or subsequent frames. 

The idea of exchanges has direct utility only in systems employing the 

cyclic executive scheduling regime. The proposal does not address systems of 

fully asynchronous processes or systems employing mixed disciplines. The 

exchange concept thus imposes a cobeg i n ... coend programming structure, 
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which may not always be suitable. For example, it becomes difficult to 

program multiple frame rate systems, the first variation that is often 

imposed on the cyclic executive theme [311. 

9.4. Deadlines 

The Deadline Mechanism was proposed by Campbell, et a1 to deal with 

timing faults in real-time systems 181. When a goal must be achieved before 

a certain amount of time passes, a preferred algorithm is supplied along with 

an alternate algorithm and a duration. The alternate algorithm is assumed 

to be correct and deterministic so the amount of time it requires is known 

apriori. The underlying scheduler is responsible for ensuring that, if the 

preferred algorithm cannot be completed before the deadline (duration plus 

time the preferred algorithm started), then the alternate algorithm can be. 

Several simulation studies have been performed showing a reduction in timing 

failures when such a mechanism is employed [8,49,291. 

The deadline mechanism assumes that the alternate algorithm is correct. 

Nothing is said about checking the acceptability of the preferred algorithm’s 

results if it does complete on time. The proposal assumes that the amount 

of time required by the alternate algorithm is known a priori, yet provides 

no method of communicating this information to the underlying scheduler. 

The additional (alternate) processes in the scheduling mix could even be the 

cause of a failure of a preferred algorithm to complete on time. No mention 

is made of how the data states of the preferred and alternate algorithms are 

- 40 - 



to be kept separate. This proposal focuses too narrowly upon only one 

issue, that of timing, and provides incomplete coverage of that. 

9.5. Chase Protocols 

Some concurrent systems do not require the sender of a message to wait 

for message receipt. In some of these systems, a message can be “in transit” 

for long periods of time. In such systems, backward recovery in the sender 

may require that the message be “chased down” and removed or, if already 

received, that the message’s effects be undone. For systems such as these, 

the idea of chaseprorocoZs was invented [331. 

As a process backs up to a recovery point, all messages which it has 

sent since establishing that recovery point are chased down. Messages caught 

in transit are simply deleted. If a message has already been received, the 

receiving process is backed up to the most recent recovery point it 

established before it received the message. The receiving process then enters 

a chase protocol to deal with messages it had sent since establishment of the 

recovery point. 

Also, as a process backs up to a recovery point, all messages which it 

has received since establishing that recovery point are gathered for replaying. 

For those messages which are unrecoverable, e.g. the message was issued in 

response to a message that has been retracted, the senders are made to back 

up and enter the chase protocol. A chase protocol terminates when a 
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recovery line is found dynamically. 

For cases in which data exists independently of any process, the data 

items themselves “send” and “receive” the special fail messages required to 

chase down other information. Copies of the data are considered to have 

been sent to processes as messages, and for updating purposes, back from 

processes to the data items themselves. It is under these circumstances that 

the recoverability of messages that might otherwise be replayed at a process 

Lmomes important. If’ a copy-of-data message is not recoverable, the data 

item must be backed up by backing up the processes responsible for its 

current value to recovery points beyond their setting of that value. 

Chase protocols work on the assumption that the consequences of the 

domino effect will usually be limited, and that very extensive rollback is 

pathological. Rather than attempting to prevent the domino effect explicitly, 

they attempt to find a recovery line by systematic search. Thus, the most 

obvious and damning drawback of chase protocols is that they leave a 

system open to the possibility (perhaps remote) of the domino effect. This 

may be unacceptable in critical applications. 

9.6. Spheres of Control 

Davies catalogued many of the concepts of concurrent systems, recovery, 

and integrity in a taxonomy he called data processing spheres of contro2 11 11. 

Spheres of control are intended to address many problems such as keeping 
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processes from interfering with each other, backing processes to a previous 

state, and preventing other processes’ use of uncommitted data. The concepts 

allow for multiple processes to cooperate within recovery regions while 

describing the restrictions on their activities necessary for maintaining 

integrity within such an environment. These multiple processes may be 

(largely) independent, but may be using partial (uncommitted) data from 

each other. Spheres of control can cross machine boundaries; one of the 

examples given is of remote procedure call, but predates the term. 

Spheres of control make use of the concepts of process atomicity, 

commitment, recovery before a process has committed, recovery after a 

process has committed, and maintaining consistency by controlling dependence 

of processes’ activities on those of others. 

The concepts were described without implementation advice for generality 

of application. Indeed, the description can be considered a taxonomy or 

catalogue of techniques already used in some systems. The emphasis is on 

placement, or what needs to be done in a system to ensure integrity and 

recoverability, without prescribing how. 

The descriptions are in terms that might be used by accounting auditors 

of business-oriented applications. 

As a catalogue of ideas, without an enforceable basis for their 

application, spheres of control are rather disorganized. However, Davies’ 

concluding remark was that many of those ideas need to be included in a 
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programming language to permit their use and enforcement in applications. 

9.7. FT-Actions 

All of the other approaches described in this chapter attempt to provide 

backward recovery. The Fault-Tolerant Atomic Action (FT-Action) 

introduced by Jalote and Campbell 1201 (also known as the S-Conversation 

[191) is an attempt to unify the concepts of backward and forward recovery 

for concurrent systems. Backward recovery is provided using conversations 

8 

and forward recovery by a systematic approach to exception handling 

combined with atomic actions. All of the concepts in the FT-Action are 

introduced as extensions to the language CSP [171. 

Central to the theme of FC-Actions is a revised form of atomic actions. 

Jalote and Campbell distinguish between the original definition of atomic 

action in which atomicity is combined with state restoration and a reduced 

concept in which no state restoration takes place. The former they refer to 

as recoverabk atomic actions and the latter as basic atomic actions. Both 

concepts are required since the former implies backward error recovery. To 

allow for forward recovery, the more fundamental notion is used. 

The FT-Action is defined in terms of the language CSP because CSP 

provides a particularly simple framework in which to study concurrent 

systems. The language has no shared memory between processes, and all 

inter-process communication must be programmed explicitly. These simple 
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semantics eliminate most potential forms of smuggling and constrain 

communication. 

As with all the other proposals discussed in this chapter, when used for 

backward recovery an IT-Action is basically a construct for forcing processes 

to communicate in an orderly fashion to prevent the domino effect. In 

general, processes may only communicate within an FT-Action and then only 

with other processes in the same FT-Action. IT-Actions may be nested to 

provide multiple recovery regions. 

If backward error recovery is required, the syntax of the FT-Action 

provides a notation for describing conversations. The processes participating 

in the FT-Action are listed in a declaration and each process describes its 

primary and alternate modules in a recovery-block-like syntax. For any 

given FT-Action each participant is required to have the same number of 

alternates. 

The processes execute their primaries, communicating with each other as 

necessary, and then evaluate their acceptance tests. If any test fails an 

exception is raised, but an exception may also be raised at any point by any 

process to signal failure during execution of its primary. The FT-Action 

completes if all acceptance tests are successful. If they are not, all processes 

back up and try the next alternate. If the alternates are exhausted without 

success, an exception is raised in the surrounding block (if there is one) to 

signal that the entire FT-Action has failed. 
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If forward error recovery is to be used, the FT-Action for each process 

describes the code sequence that the process will attempt together with an 

exception handler. Failure of the attempt is signaled by the process raising 

an exception and, in that case, the exception is raised in aU the processes 

which then all execute exception handlers. Forward and backward recovery 

are combined by allowing any alternate in a backward-error-recovery 

structure to contain an exception handler. If an exception is raised and a 

handler is present, the handler deals with the situation if it can. If no 

handler exists, or a further exception is raised in a handler, then backward 

error recovery is invoked. 

The mappings of the various forms of the FT-Action into CSP primitives 

are given by Jalote and Campbell. They point out that these mappings 

could be implemented easily in a preprocessor thereby allowing programs 

written in CSP enhanced with FT-Actions to be translated into CSP and 

thereby executed. 

In practice, there are several issues that FT-Actions do not address. For 

example, there is no explicit provision for dealing with deserter processes. 

The designers of the concept acknowledge the problem, and point out that 

some form of time-out needs to be included. In addition, as will be shown 

later, the use of the original conversation mechanism limits the diversity that 

the can be achieved in the alternates and the coverage of the acceptance 

tests. 
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9.8. Dialogs and the Colloquy 

In an effort to solve the general problems associated with conversations 

as discussed in section 9.2, Gregory and Knight developed the dialog and 

colloquy 112,131. These concepts permit true independence of algorithms 

between alternates, allow time constraints to be specified, and are 

accompanied by syntactic proposals that are extensions to the language Ada. 

A dialog is a way of enclosing a set of processes in an atomic action. 

A colloquy is a construct in which a set of atomic actions (specified by 

dialogs) can be described. From the perspective of each process, the set of 

atomic actions in which it participates constitutes the primary and the series 

of alternates of. a f ault-tolerant structure. 

Further flexibility is introduced in these concepts by providing both a 

local acceptance test for each process and a global acceptance test for the 

group. 

9.8.1. Dialogs 

In a dialog, a set of processes establish individual recovery points, and 

communicate among themselves and with no others. They then all either 

discard their recovery points or restore their states from their recovery 

points, and then proceed. 
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Success of a dialog is the determination that all participating processes 

should discard their recovery points and proceed. Failure of a dialog is the 

determination that they should restore their states from their recovery points 

and proceed. Nothing is said about what should happen after success or 

failure; in either case the dialog is complete. 

Dialogs may be properly nested, in which case the set of processes 

participating in an inner dialog is a subset of those participating in the outer 

dialog. Success or failure of an inner dialog does not necessarily imply 

success or failure of the outer dialog. Figure 9.7 shows a set of three 

processes communicating within a dialog. 

The discuss statement is the syntactic form that denotes a dialog. 

The dia!og-nume Figure 9.8 shows the general form of a discuss statement. 

19......................................k 

I 1 D 
I I 
I I 
I I 
I I 

PI 

p2 

........... 
I a 
I I 
I I 

* 
..................... 

I I 

p3 I 
I - 

............................... 

Three Processes Communicating in a Dialog 

Figure 9.7 
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DISCUSS d i a I og-name BY 

sequence-of-statements 

TO ARRANGE Boolean-expression; 

A DISCUSS Statement 

Figure 9.8 

associates a particular discuss statement with the discuss statements of the 

other processes participating in this dialog, thereby determining the 

constituents of the dialog dynamicaUy. At execution time, when control 

enters a process’ discuss statement with a given dialog name, that process 

becomes a participant in a dialog. Other participants are any other processes 

which have already likewise entered discuss statements with the same dialog 

name and have not yet left, and any other processes which enter discuss 

statements with the same dialog name before this process leaves the dialog. 

Either all participants in a dialog leave it with their respective discuss 

statements successful, or all leave with them failed, i.e. the dialog succeeds 

or fails. 

The Boolean expression in the discuss statement is the local ,acceptance 

test. It represents the process’ local goal for the interactions in the dialog. 

If this Boolean expression or that in the corresponding discuss statement of 

any other process participating in this dialog is evaluated false, the discuss 

statement of each participant in the dialog fails. If all of the local 

acceptance tests succeed, the common goal of the group, i.e. the gbba l  
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acceptance test is evaluated. If this common goal is true, the corresponding 

discuss statements of all participants in the dialog succeed; otherwise they 

fail. Syntactically, the common goal is specified by a parameterless Boolean 

function with the same name as the dialog name in the discuss statement. 

For the actions of the dialog’s participants to appear atomic to other 

processes, all forms of communication must be controlled. The set of 

variables shared by processes participating in a dialog are locked by the 

compiler and execution-time support system to prevent smuggling. While 

locked, the shared variables may only be used by processes in that dialog. 

Which variables are to be shared, and therefore locked, is specified in dialog 

declaraions. The dialog names used in discuss statements are also declared 

in dialog declarations. The general form of a dialog declaration is: 

DIALOG function-name SHARES ( name-list ); 

The function-nrune is the identifier being declared as a dialog name and is the 

name of the function defining the global acceptance test. The names in the 

nume-lisf are the shared variables which will be used within dialogs that use 

this dialog name. 

9.82 The Colloquy 

A colloquy is a collection of dialogs. At execution time, a dialog is an 

interaction among processes. Each individual process has its own local goal 

for participating in a dialog, but the group has a larger gbbal goal; usually 

providing some part of the service required of the entire system. If, for 
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whatever reason, any of the local goals or the global goal is not achieved, a 

backward error recovery strategy calls for the actions of the particular dialog 

to be undone. In attempting to ensure continued service from the system, 

each process may make another attempt at achieving its original local goal, 

or somemodified local goal through entry into a different dialog. Each of the 

former participants of the now defunct dialog may choose to interact with 

an entirely separate group of processes for its alternate algorithm. The altered 

constituency of the new dialog(s1 almost certainly requires new statement(s) 

of the original global goal. The set of dialogs which take place during these 

efforts on the processes' part is a co&py. A set of four processes engaged 

in a colloquy that involves three dialogs is shown in Figure 9.9. 

Time 

Four Prczcesses in a Colloquy of Three Dialogs 

Figure 9.9 
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A colloquy, like a dialog or a rendezvous in Ada, does not exist 

syntactically but is entirely an execution-time concept. However, the places 

where the text of a process statically indicates entry into colloquys are 

marked by a variant of the Ada select statement called a dialog-sequence. 

The general form of a dialogsequence is shown in Figure 9.10. At 

execution time, when control reaches the select keyword, a recovery point is 

established for that process. The process then attempts to perform the 

activities represented in Figure 9.10 by attempt-1. The attempt is actually a 

discuss statement followed by a sequence of statements. If the performance 

of these activities is successful, control continues with the statements 

following the dialog-sequence.. If the attempt was not successful, the 

process’ state is restored from the recovery point and the other attempts will 

SELECT 
at tempt-1 

at tempt-2 

at t emp t-3 

OR 

OR 

TIMEOUT simple-expression 
requence-of,rtatement8 

ELSE 

END SELECT; 
sequence-of-statements 

Dialog-Sequence 

Figure 9.10 
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be tried in order. Thus, the dialog-sequence enables the programmer to 

provide a primary and a list of alternate algorithms by which the process 

may achieve its goals at that point in its text. Note however that the 

process may communicate with entirely different sets of processes in each 

attempt, thereby allowing greater diversity in the alternates than is possible 

in the conversation or similar. Also, each process may specify a different 

number of alternates from the other processes to accommodate its own goal. 

Exhaustion of all attempts for a given process with no success brings 

control to the else part after restoration of the process’ state from the 

recovery point. Theelse part contains a sequence of statements which allows 

the programming of a “last ditch” algorithm for the process to achieve its 

goal. If this sequence of statements is successful, control continues after the 

dialog-sequence. If not, or if there was no statement sequence, the 

surrounding attempt fails. 

Timing constraints can be imposed on colloquys (and hence on dialogs). 

Any participant in a colloquy can specify a timing constraint which consists 

of a simple expression on the timeout part of the dialog-sequence. A timing 

constraint specifies an interval during which the process may execute as 

many of the attempts as necessary to achieve success in one of them. If the 

interval expires, the current attempt fails, the process’ state is restored from 

the recovery point, and execution continues at the sequence of statements in 

the timeout part. The attempts of the other processes in the same dialog 

also fail but their subsequent actions are determined by their own 
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dialog-sequences. If several participants in a particular colloquy have timing 

constraints, expiration of one has no effect on the other timing constraints. 

The various intervals expire in chronological order. As with the else part, 

the timeout part allows the programming of a “last ditch” algorithm for the 

process to achieve its goal, and is really a form of forward recovery since 

its effects will not be undone, at least at this level. 

The dialog and colloquy concepts provide implementable answers to the 

dificulties of other backward error recovery proposals. These ideas afford 

the error detection flexibility of multiple acceptance tests. They also invert 

the relationship between operation of the recovery point and inter-process 

communication. This permits truly independent alternate algorithms to the 

extent that a process can communicate with different groups of processes to 

achieve its goals. 

Colloquys avail the programmer of many powerful facilities for 

management of backward error recovery. It is tempting to think that this 

solves all the problems that might arise, and that the syntax for the 

colloquy can be integrated into a language for programming concurrent 

systems with no further concern. 

9.9. New Diaculties 

Problems beyond the domino effect arise when including recovery in 

They have to do with enforcement of the realistic concurrent systems [13]. 
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prohibition on smuggling and organization of programs. 

The merging of recovery facilities into a real language can reveal 

semantic difiiculties not readily apparent in the general discussion of the 

ideas. Certain aspects of actual programming languages seem to conflict with 

the goals and design of backward error recovery facilities. In this section, 

we introduce some of the problems which arise in attempting to merge 

backward error recovery into a modern programming language. This 

exzmination discloses several new problems with backward error recovery in 

real languagee. These problems arise because of the fundamental 

requirements of backward error recovery in concurrent systems. We use the 

dialog and colloquy merely as examples. 

In their most general form, the problems are: 

the many means of smuggling of information that are afforded by many 

programming language constructs, and 

the incompatibilities between the planned establishment of recovery lines 

for backward error recovery and the existing explicit communication 

philosophies of modern programming languages. 
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9.9.1. Smuggling 

Smuggling is a transfer of information, or communication, between a 

process engaged in a particular dialog and a process not so engaged. From 

the point of view of a surrounding dialog, a nested dialog is supposed to be 

an atomic action. The encased activity seems either not to have begun or to 

have completed, and no information that would be evidence to the contrary 

escapes. Were smuggling allowed, backward recovery of the participants in a 

dialog could produce an inconsistent state. Thus smuggling must be 

prevented. 

We have so far ignored the many means of smuggling. Smuggling is 

usually assumed to be controllable. All of the approaches mentioned in this 

chapter depend for their avoidance of the domino effect upon the prohibition 

of smuggling. The very term “sphere of control” evokes an image of a 

barrier surrounding the communicating processes and their uncommitted 

results. The FT-Action was defined in an language without means of 

smuggling, so its presentation ignored the issue. 

Many means of smuggling exist in modern programming languages. 

They break down into explicit and implicit information flows. Explicit 

information flows derive from deliberate communications attempts on the part 

of the programmer using the explicit communications mechanisms in the 

language such as messages or rendezvous. Implicit information flows occur 

through shared variables, attributes and process manipulation. 
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A major potential form of smuggling lies in message traffic. In Ada, 

smuggling through explicit information flows, is not problematic. The Ada 

rendezvous is a specialized form of message communication through a 

restricted set of protocols. When a process attempts to communicate with 

another, it is suspended until the communication is complete. The sender 

does not proceed immediately after sending a message. This is the only 

form of explicit communication in Ada. The dialog prevents smuggling via 

messages for an Ada-like language. A more general message-based language 

would present more problems for backward error recovery. 

The second form of smuggling, that through implicit information flows, 

is much more involved. implicit information flows are methods by which one 

process gains information about another process’ activities or status without 

using the explicit communications statements provided in the language. 

Implicit flows come in two categories. The first category is provided by the 

facilities in a language which one would normally expect to allow implicit 

information flows. The other category is provided by language facilities or 

features which one would not normally think of as involving communication. 

The first category, expected implicit information flows, is represented by 

shared, variable objects. One normally expects implicit information flows 

through these objects. They come in two sub-categories, based upon their 

modes of access, Shared variables are objects with one access path. Aliasing 

and pointers provide objects with multiple access paths. 
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The category of unexpected implicit information flows is represented by 

process manipulations. Ada allows processes to be manipulated in several 

ways. These are task creation, task destruction, and examination of other 

processes’ execution states. This last one is represented by Ada’s task 

attributes. The dynamic creation and destruction of processes are facilities 

which one would not expect to afford implicit information flows. That 

smuggling may occur through them is a very unusual concept. 

9.9.2 Communication Philosophies 

The second of the most general problems is the existence of 

incompatibilities between the planned establishment of recovery lines for 

backward error recovery and the explicit communication philosophies of 

modern programming languages. These stem from coniiicts between the 

planned establishment of recovery lines and modern programming precepts. 

These incompatibilities are typified by detailed problems with service tasks in 

Ada. Some of them are recapitulated here. 

First, Ada allows a task to make nondeterministic choices among entries 

when accepting calls. There is no corresponding nondeterminism when 

choosing to enter a dialog. Second, Ada enforces mutual exclusion among 

entry calls being serviced. The dialog allows any process to enter the 

communication at will, Third, a server task may be requested to perform 

its service at any time in Ada. Under the dialog regimen, it seems a server 

must actively seek out its clients to achieve the same dialog nesting. 
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Finally, the server cannot leave a dialog after dealing with one client and 

before seeking the next client until the first client is ready to leave (i.e. the 

server can become trapped). 

Ada has nondeterminism and exclusivity in its communication 

mechanism. The dialog, which forms an envelope around communication, is 

not nondeterministic. The envelope restricts severely one’s use of 

nondeterminism. The envelope is also intentionally non-exclusive to 

participants. These program structuring problems are not specific to the 

dialog and colloquy concepts. Rather, they represent a general conflict of 

planned establishment of recovery lines and languages designed to facilitate 

use of modern programming precepts. 

9.9.3. summary 

The language facilities shown in this chapter seem on the surface to be 

adequate for recovery in concurrent systems, however they turn out to be 

incomplete solutions to these problems. A formal approach to recovery in 

concurrent systems should have syntactic expression so its semantic rules 

may be enforced automatically. The approach and its syntax cannot be 

designed separately from other facilities of the programming language into 

which they are to be included. To avert interaction of facilities that might 

allow subversion of the recovery approach’s rules, the language must be 

designed with recovery in mind from the outset. 
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