
~ ~~

I ' A a' Q w d .

L 3 1, 7JqH / L v J T d q
' !

Semi-Annual Progress Repor t

Gran t No. NAG-1-260
March 5, 1982 - December 31, 1986

THE IMPLEMENTATION AND USE OF ADA ON
DISTRIBUTED SYSTEMS WITH HIGH RELIABIL ITY REQUIREMENTS

Submitted to:

National Aeronautics and Space Admin is t ra t ion
Langley Research Center

Hampton, VA 23665

At tent ion: Mr . Edmond H. Senn
ISD M/S 125

Submitted by :

J. C. Knight
A sstc i ate P r t f essor I

I
(NASA-CR-173842) THE IClPLEMEhZATION A N D USA N87-12205

E E L I A B I L I T Y R EQUI EEMENTS S e E i a n r u a l
Progress R e p o r t , 5 Har. 1 4 8 2 - 3 1 Dec. 1986 Unclas
(Virginia Univ.) 7 3 p i S C L 09B G3/62 44667

OE R E A ON D I S T R I B U T E D SYSTEES k I i H H I G H

Repor t No. UVA/528213/CS87/109

August 1986

1 t

DEPARTMENT OF COMPUTER SCIENCE

UNIVERSITY OF V IRGINIA I

CHARLOTTESVILLE, V IRGINIA 22901

https://ntrs.nasa.gov/search.jsp?R=19870002832 2020-03-20T13:41:00+00:00Z

Semi-Annual Progress Repor t

Gran t No. NAG-1-260
March 5, 1982 - December 31, 1986

THE IMPLEMENTATION AND' USE OF ADA ON
DISTRIBUTED SYSTEMS WITH HIGH RELIABIL ITY REQUIREMENTS

Submitted t o :

National Aeronautics and Space Admin is t ra t ion
Langley Research Center

Hampton, VA 23665

At tent ion: M r . Edmond H. Senn
ISD M/S 125

Submitted by :

J. C. Knight
Associate Professor

Department o f Computer Science

SCHOOL OF ENGINEERING AND APPLIED SCIENCE

UNIVERSITY OF VIRGINIA

CHARLOTTESVILLE, V IRGINIA

Repor t No. UVA/528213/CS87/109

A u g u s t 1986

Copy No.

TABLE OF CONTENTS

Page

OVERVIEW . 1

APPENDIX 1 . 4

APPENDIX 2 . 12

APPENDIX 3 . 24

APPENDIX 4 . 68

PRECEDING PAGE BLANK NOT FILMED

iii

OVERVIEW

The purpose of this grant is to investigate the use and implementation

of Ada in distributed environments in which reliability is the primary

concern. In particular, we are concerned with the possibility that a

distributed system may be programmed entirely in Ada so that the

individual tasks of the system are unconcerned with which processors they

are executing on, and that failures may occur in the software or underlying

hardware.

*

Over the next decade, it is expected that many aerospace systems will

use Ada as the primary implementation language. This is a logical choice

because the language has been designed for embedded systems. Also, Ada

has received such great care in its design and implementation that it is

unlikely that there will be any practical alternative in selecting a

programming language for embedded software.

The reduced cost of computer hardware and the expected advantages of

distributed processing (for example, increased reliability through redundancy

and greater flexibility) indicate that many aerospace computer systems will

be distributed. The use of Ada and distributed systems seems like a good

combination for advanced aerospace embedded systems.

In previous work under this grant we have shown the general

inadequacy of Ada for programming systems that must survive processor

loss. We have also proposed a solution to the problem in which there are

* Ada is a trademark of the U.S. Department of Defense

- 1 -

no syntactic changes to Ada. While we feel confident that this solution is

adequate, we cannot be sure until the solution is tested. A major goal of

the current grant reporting period therefore is to evaluate the approach using

a full-scale, realistic application. The application we are using is the

Advanced Transport Operating System (ATOPS), an experimental computer

control system developed at NASA Langley for a modified Boeing 737

aircraft. The ATOPS system is a full authority, real-time avionics system

providing a large variety of advanced features.

We have also shown previously under this grant that Ada makes no

provision for software fault tolerance. We consider it to be important that

attention be paid to software fault tolerance as well as hardware fault

tolerance. The reliability of a system depends on the correct operation of

the software as well as the hardware. A second major goal of the current

grant reporting period is to extend previous work in new methods of

building fault tolerance into concurrent systems.

During this grant reporting period our primary activities have been:

(1) The preparation of a set of criteria by which the proposed method will

be judged.

(2) Extensive interaction with personnel from Computer Sciences Corporation

and NASA Langley to determine the requirements of the ATOPS

software.

-2-

(3) Preparation of a report summarizing the state of the art in backward

error recovery in concurrent systems.

The various documents that have been prepared in support of this

research during the grant reporting period are included in this report as

appendices. The criteria we have determined for evaluation of the approach

to fault tolerance are contained in appendix 1. A preliminary version of the

requirements for the ATOPS system is contained in appendix 2. This

requirements specification is incomplete and subject to change. Appendix 3

contains our survey of backward error recovery techniques. This survey

will appear in the text “Resilient Computing Systems, Volume 2” edited by

T Anderson, published by John Wiley. Section and figure numbers as they

will appear in the text have been retained in that appendix. A list of

papers and reports prepared under this grant, other than the annual and

semi-annual progress reports, is presented in Appendix 4.

-3-

EVALUATION CRITERIA

- 4 -

EVALUATION CRITERIA

In order to assess the quality of the proposed solution to Ada’s

limitations on distributed targets, a number of evaluation criteria are outlined

in this section. These criteria are intended to be general standards by which

any non-transparent approach can be judged in the context of any application

requiring tolerance of processor failure. They will be applied to the

software we develop in response to the ATOPS requirements specification.

Structure

The resulting program should be modular, comprehensible, and

modifiable. The extent to which the program fails stylistically is of great

concern, since the chosen f ault-tolerance approach places much of the burden

of recovery on the programmer, and the effect of that onus on a realistic

program structure is unknown at this time. In order for non-transparent

fault tolerance to be feasible for Ada programs, those programs must be

well-structured.

This criterion is particularly subjective, but we will decide if the goal is

met by determining whether or not information hiding and object isolation

techniques can be used effectively for a particular application.

- 5 -

Dynamic Service Degradation

A distributed program intended to survive hardware failures must match

the processing load following a failure with the processing capacity remaining.

One way to avoid the waste inherent in adding extra computing power to

the original system is to specify degraded or safe service to be provided

following failure. If the application is amenable to such a specification, the

non-transparent approach can allow a high percentage of the overall

computing power of the system to be used at all times. In contrast, the

transparent approach normally must be only lightly loaded so as to be able

to provide identical service before and after the loss of an entire processor.

The suitability of an application for provision of safe service following

hardware failure should be determined during the specification process.

Experts should be consulted, and their knowledge about the particular

application should be incorporated into the requirements document.

Task Distribution Flexibility

At a certain point in the design process, task redistribution may require

massive code revision. If this point in time is early in the design process,

design-time flexibility will be drastically reduced by the non-transparent

approach. Additionally, ordinary software maintenance should not be

prohibitively expensive when it involves task redistribution. In sum,

flexibility of distribution of tasks among the processors should not be overly

affected by those aspects of the program necessary for fault-tolerance.

- 6 -

Distribution flexibility should be evaluated upon the completions of both

design and coding. Flexibility can be determined by measuring the percentage

of the relevant product, the design document or the code itself, which

requires modification in order to accommodate task redistribution.

Efficiency

The percentage of the total system computing power devoted to

execution of statements necessary for fault-tolerance should be reasonably

small. The memory and time overhead for both the source program and the

underlying support system should be considered.

[Describe general efficiency measurement techniques which we will use.]

[Since many of the computational details of our application are being

neglected, how do we measure percentages accurately? . Cpu overhead will be

particularly difFicult to measure.] The overhead due to fault-tolerance is

categorized in the following sections:

Entry Call Renaming

Since a replacement for a lost task cannot be given the same name,

application program code must sometimes be embedded in the normal

program algorithms when calls to entries of tasks located on other machines

are involved. The following code can be omitted only when the calling task

is always aborted upon failure of the machine which runs the receiving task:

-7-

if beforeFailure then
Perform normal pre-rendezvous computat ions;
SoonToBeDeadTask.EntryCall;
Perform normal post-rendezvous computat ions;

Perform alternate pre-rendezvous computations;
ReplacementTask.EntryCall;
Perform alternate post-rendezvous computations;

e l s e

end if;

Exception Handlers

An exception handler must be associated with each task which calls an

entry in a task which runs on a different machine. These handlers do not

use CPU cycles during normal execution, but they do add bulk to the

program.

Data Management

Data distribution tasks must exist on each machine to provide the

programmer with the means to generate consistent copies of critical data

items on all machines. Embedded in each task, calls to the data distribution

task will increase the complexity of the algorithms and slow their execution.

The resulting increase in bus traffic also will burden the system. The key

parameters here are the number of data items required for failure survival

and the frequency at which they must be recorded on the other machines.

- 8 -

Reconfiguration

Tasks existing on each machine will be responsible for reconfiguration of

the system. They will use CPU cycles only at recovery time, but the sheer

volume of reconfiguration work required during that critical period may be

so large as to cause failure of the system. Most applications which are

desired to be hardware fault-tolerant have critical real-time requirements. If

the services to be provided after failure are radically different from those

offered before failure, the aborting of unwanted tasks and the initialization

of newly desired tasks could be prohibitively time-consuming.

This is not a simple issue. Reconfiguration tasks do not necessarily have

to complete before application processing resumes. For example, the high-

priority reconfiguration task could terminate after performing only critical

operations and start a low priority task which eventually would put the

entire system in perfect order without disrupting critical processing.

Failure Detection

In order to detect failure when it occurs, a small constant overhead

must be paid to produce heartbeats and to listen for those of the other

machines. If an implicit token-passing protocol is used for inter-processor

communication, failure detection costs nothing, so we will ignore this source

of overhead in our analysis.

- 9 -

Message Logging

In order to assess the damage to tasks not on the failed machine, all

program-level communications will be recorded. The overhead from this

source will vary with the message traffic between machines, so, ceteris paribus,

inter-processor communication should be minimized.

Alternate Service Casing

Code m y be embedded in the normal program algorithms in order to be

provide alternate service after hardware failure:

if beforeFailure then
Perform normal computations;

Perform alternate computations;
e l a e

end if;

Complexity

The complexity of the software could increase geometrically as the

number of tolerable hardware failures in the system increases. As an

example of this case proliferation consider a structure based on a four

processor system that provides different services depending upon which

machines are operational. The following code is written from the perspective

of machine 1:

- 10-

case systemstatus i s
when A114Up =>

when 134Up =>

when 124Up =>

when 123Up =>

when 14Up ->

when 13Up =>

when 12Up =>

when 1Up =>

Process normally;

Process w i t h machine 2 down;

Process w i t h machine 3 down;

Process w i t h machine 4 down;

Process w i t h machines 2 and 3 down;

Process w i t h machines 2 and 4 down;

Process w i t h machines 3 and 4 down;

Process w i t h machines 2 , 3, and 4 down;
end case;

The target architecture and the complexity of failure response, then, are

critical application-dependent variables in this evaluation process.

- 11-

APPENDIX 2

ATOPS SYSTEM REQUIREMENTS

- 12-

ATOPS SYSTEM REQUIREMENTS

This document is the high-level software requirements specification for

an aircraft computing system capable of performing all flight tasks from

take-off through landing. The realization of this specification will not be

adequate for any real system. We intend the structure of the desired

program to be identical to that of a practical aircraft computing system, but

low-level computations will be omitted wherever their absence will not

result in a simplification of the overall program structure. This document,

then, neglects numerous areas which should be addressed by any

comprehensive aircraft computing system software specification.

System Overview

The computing facility on which this program. will run should be

viewed as a general distributed system comprising M loosely coupled

processors and N memories where M and N exceed zero. Processors and

peripherals will communicate via a global bus.

The computing system will access a number of peripheral devices.

Flight sensors will provide situational information as input to computations

which drive the effectors and provide corresponding situational data to the

cockpit. Devices accessed by the pilot select the format and general content

of the situational information provided to the cockpit displays, and an

additional control panel allows the pilot to access or modify the current

flight plan. Still another control panel allows the pilot to select the aircraft

- 13 -

flight mode. A number of modes requiring varying degrees of direct pilot

control of the aircraft are available.

System Data Flow

The high-level system data flow is depicted in figure 1.1. This section

is devoted to descriptions of the data transformations represented by the

boxes in the figure.

Positional Indicator Coarol Panels

The positional indicator control panels inform the positional indication

computation module of the format and general content of the information to

be represented on the positional indicator displays.

Path Control Panel

The path control panel provides the path definition module with three

different kinds of information. Initialization data inform the system of the

ground-level barometric pressure, starting latitude and longitude, and the

time, among other things. Flight plan specifications determine the aircraft

flight plan. Holding patterns and offset paths provide the path definition

module with parameters necessary for configuration of the situational

displays.

- 14-

Positional
Indicator
Control
Panels

A . 4

- - - -
T - o

r

L

...........

Read-only
Database

Control Control Sensors

I I

.....................
Fig. 1.1.1 i i . .

......................
Fig. t.1.2:

.................
I

......

......
1.1.3

Fig. 1.1. System Data Flow

- 15 -

Flight Control Panel

The flight control panel provides the remainder of the system with

facilities for the specification of velocity, altitude, and direction, for the

selection of one of many flight modes ranging from direct pilot control to

completely automatic operation, and for the activation of a variety of

navigational sensor systems.

Flight Sensors

The flight sensors provide the computing system with navigational data,

the operational statuses of various mechanical systems, and inputs from the

brolly handles used to steer the aircraft in certain flight modes.

Read-only Database

The system database contains information about terrain, airfields,

ground-based navigational aids, routes, etc., which is used for guidance, path

definition, and situational display.

Path Definition

The path definition module accepts instructions from the path control

panel. It provides general data from the read-only database and specifics

regarding the flight plan to the path control display for perusal by the pilot.

It directs the positional indicator computation module to configure the

positional indicators for display of pilot-specified holding patterns and offset

- 16-

r------ 1
I Path I
I Control I Raw Input
I Panel I
L - - - - - - J

*

r---

r------ 1
I I

Input I Read-only I
Processing I Database I

I I

I f 0
)r
lisp lay

Holding Patterns
and
Offset Paths

Raw Output

L - - - - - - J

Flight Plan Specifications

General
;ocation, nfo
Time,
etc.

.ight Plan
:vel

"1 r

Nation,
ime,
c. 'ath

nfo

I avigation, 1
1 Guidance, I

I Positional I I Path I I FCP I
I Indicator I I Control Input I

I and I I I : Computations I Display I : Processing I
I Control I

L---,--J L--,---J L---,--J L - - - - - - J

Fig. 1.1.1. Path Definition Data Flow

- 17-

paths. It informs the flight control panel input processing module of the

current flight plan level. It provides the particulars of the flight plan to the

navigation, guidance, and control module. Details of the data flow associated

with path definition are shown in figure 1.1.1.

Flight Controls and Flight Sensors I n p Processing

Details of the data flow associated with flight control and sensor

processing are shown in figure 1.1.2.

Navigation, Guidance, and Control

Details of the data flow associated with navigation, guidance, and controi

are shown in figure 1.1.3.

Navigation

A further refinement of the details of the data flow associated with

navigation is shown in figure 1.1.3.1.

Microwave Luruiing System

The Microwave Landing System (MLS) software uses the . elevation,

azimuth, and range inputs from the MLS hardware and the acceleration

inputs from the body-mounted accelerometers to determine accurately

position, velocity, and acceleration of the aircraft. MLS navigation

information is accurate enough to support fully automatic landing of the

aircraft. MLS is a component of the navigation module and a further

- 18 -

L,-----J

Raw
nput

L-----,J

elected
ensor

L----,-J

Raw Flight
Plan nput
Level

V V

Filtering

Conversion

Failure
Lktection,

Signal
Selection

iltered
:nsor
'aluea

Mode
c Computation

(Requested)

Selected
FCP Inputs

- - -

Rquested Flight Mode Info

I
(Actual)

light Mode Info and
ctive Navig. Systems

perational
Light
lode
If0

-1
' 0 I

Fig. 1.1.2 Flight Controls and Flight Sensors Input Processing Data Flow

- 19-

r------ 1 r------ 1 r------ 1

h t a

Flight Plan

I I I I I FCP I
I Input I

I Database I I hiinit ion I I I I I I : Processing ,
I Read-only I I Path I

t nformation
4 1

- Authorized 3eacons -

a . *I
Automatic
Guidance

Computation Location -

S
IC

r-

Desired
Behavior

;ensor
leadings

Signal
Desired Limiting/
Signals unit

Conversion

>ME -
7

Control
Panel
Lighta

Operational
Mode

0

Effector
Control
Commands

Fig. 1.1.3 Navigation, Guidance. and Control Data Flow

- 20 -

Beacon Frequencies
and Locations Active Beacons

Enable
Infc -

3ME and 'NS MLS bise
VOR Sensors

En;

r-

Flight
uode
'nfo

ble

Ballpark) r

: Microwave i
: System (MLS) :

Navigation Landing
Correstions System (INS) Correction

Il'

Miscellaneous
Air

Data

Enable Synthesis
and
Unit

Conversion

Instrument *
Landing

ILS ILS
%-

A A
.NS Measurements * * ' * * * " * ' ' LS MeLsLiements

Aircraft I

Airspeed,
Baroalt.,
etc.

I Navigation I
I Radio :

Tuning I
L------J

ME and VOR
uning

I Automatic I : Guidance I I
I Computation I
L - - - - - - J

Situational Information

(I

I Positional I
I Indicator I

I Computations
L------J

Fig. 1.1.3.1 Navigation Data Flow

- 21 -

I and I
I Filtering I
L - - 7- --A

0

.cceleration
MLS Frame)

I
I Processing
L-,--,,J

YZ
ocation

Roll, Pitch, Yaw.
Acceleration
(Vehicle Frame)

redicted
LS Inputs

Status of

Predictor

Fig. 1.1.3.1.1 Microwave Landing System (MLS) Data Flow

refinement of the data flow associated with MLS is shown in figure 1.1.3.1.1.

- 22 -

Positional Indicator Displays

The positional indicator dLplays provide the pilot w h attitudinal and

horizontal situation information in a number of formats.

Path Control Display

The path control display is the screen, similar to that of a computer

I terminal, on which the current path, a new path being input, or general

I information from the system database can be represented.

I Sensor Feedback and Tuning

The sensor feedback and tuning module provides two kinds of feedback.

The flight control panel display conveys information to the pilot regarding

his efforts to control the aircraft. For example, if he selects a mode which,

due to failure of a sensor, cannot be activated, the lighting configuration on

the panel will alert him to the limitation. The radio tuner sets the

navigation beacon receiver to the frequency of the desired beacon.

Effectors

The aircraft effectors control the mechanical functions of the aircraft.

The ailerons, delta elevators, rudder, and throttle are all linked to the

computing system via effectors.

- 23 -

APPENDIX 3

CONCURRENT SYSTEM RECOVERY

-24-

CONCURRENT SYSTEM RECOVERY

Samuel T. Gregory

(Depar tma of C o m p e r Science, University of Virginia)

and

John C. Knight

(Department of Compzaer Science, University of Virginia)

9.1. Communicating Processes

Recovery blocks provide a mechanism for building backward error

recovery into sequential programs. However, many programs such as

operating systems and real-time control systems, are concurrent. A

concurrent system consists of a set of communicating sequential processes.

The processes execute in parallel and cooperate to achieve some goal. In so

doing, they usually exchange data and synchronize their activities in time.

Many concepts such as semaphores, monitors, ports, and rendezvous have

been proposed to control the synchronization and communication of

concurrent processes.

It is important that the technique of backward error recovery be

extended to concurrent systems. These systems are very prone to error

- 25 -

because they are usually extremely complex. The incorporation of fault

tolerance may be a practical method of improving their reliability.

Unfortunately, backward error recovery in concurrent systems cannot be

provided merely by using recovery blocks in each separate process. Many

new problems arise when concurrent systems are considered and they are the

subject of this chapter.

When two processes communicate, obviously information is passed

ue Lween them. If two processes merely synchronize without explicitly

passing data values, they still pass information. The information gained by

each process in that case is (at least) that the other process has made a

certain amount of progress. The utility of that kind of information depends

upon the amount of knowledge about one process’ design that was

incorporated into the other process’ design. Any form of synchronization,

message passing, or shared variable update allows information to pass from

one process to another.

t _I_._

Suppose two processes communicate between the time that a fault in one

of them produces the first error and the time that an error is detected.

Since the information transfer is two-way, whichever process has developed

the error may have spread that error to the other. Further, the error might

not be detected by the process containing the fault. A solution to these

problems is to roll back, Le. perform backward error recovery, on both

processes. If the recovery points for all of the processes involved are not

carefully coordinated, a problem called the domino efect 1371 could result.

- 26 -

Figure 9.1 illustrates the domino effect with three processes P1, P2 and

P3 progressing with time to the right. Suppose each process has established

recovery points at arbitrary times shown as the letters A , B , C, D , and E

in the figure. The vertical dashed lines represent communications between

the processes. An error detected in P1 at X causes process PI to be rolled

back to E and process P2 to be rolled back to D . But this rollback

invalidates information exchanged between P2 and P3, so P3 must also be

rolled back. The closest recovery point for process P3 is C. Since PI and

P3 communicated between points C and E, P1 must again be rolled back,

this time to B . The effect could conceivably spread to other processes and

continue from recovery point to recovery point (like falling dominos) until

the entire software system was rolled back to its initial state, thus

discarding all information gathered during its operative life.

p1

p2

p3

B E X
I I I

I I I
I I I

I I
A I D I I - I

1 I

I I
I I I
I I I

I
I

I C I I >

The Domino Efect

Figure 9.1

- 27 -

Clearly, the domino effect has to be avoided. To do this, the backward

error recovery method employed must coordinate the establishment of

recovery points for communicating processes and limit the “distance” they

can be rolled back.

The domino effect is the major problem in the provision of backward

error recovery in concurrent systems. But unrecoverable objects have to be

dealt with just as they do in sequential systems, and other subtle problems

of program structure arise. In this chapter we describe various methods of

dealing with the domino effect including conversdions, exchanges, IT-Actions,

dialogs, andcolloquys. We also describe two other approaches to dealing with

recovery of concurrent systems, c h e prorocok, and spheres of comrol.

Finally, we summarize the problems of program structure.

9.2. Conversations

The conversation [37] is the canonical proposal for dealing with

communicating processes via backward error recovery. In a conversation, a

group of processes agree about when recovery points will be created and

discarded. Each may create a recovery point separately, but they must

synchronize the time at which the recovery points are discarded. The set of

recovery points is referred to as a recovery line. Only processes within the

group may communicate. At the end of their communication, which may

include the passage of multiple distinct sets of information, they each wait

for the others to arrive at an acceptance test for the group. If they pass

- 28 -

R = recovery I ine A - acceptance t e s t

14 R...

Q.

I : I t : I :
I : I t : I :

I I : I t : I :

I : 1 1 : I :
I : : t i : I :

I I R.............A 1 : I I : I :

I
I

I - .
: I
: I
: I
: I
: I - . .
: I : I 1 : I

................

I I I
- 1 I
I I I \

................
..

Three Nested Conversations

Figure 9.2

the acceptance test, they commit to the information exchange that has

transpired by discarding their recovery line and proceeding. Should they fail

the acceptance test, they all restore their states from the recovery line. No

process is allowed tosmuggle information out or in by communicating with a

process that is not participating in the conversation’s organization.

Conversations may be nested. From the point of view of a surrounding

conversation, a nested conversation is an atomic action. The encased activity

seems either not to have begun or to have completed, and no information

that would be evidence to the contrary escapes.

- 29 -

Figure 9.2 shows an example in which three processes communicate

within one conversation and two subsets of two each communicate separately

within two nested conversations. The dotted rectangles represent the

recovery lines on the left verticals, the acceptance tests on the right verticals,

and the prohibition of smuggling on the horizontal portions.

The recovery lines are shown as simultaneously established, but that is

not required. Note that, if an error were detected in process PI while

processes P2 and P3 were conversing, all effects since the larger recovery line

(including the already-completed conversation between P I and P2) would be

undone. Once individually rolled back and reconfigured, the same set of

conversant processes attempt to communicate again, and eventually reaches

the same acceptance test again. Also any other failure of one of the

processes is equivalent to a failure.of the acceptance test by all of them.

Thus, a conversation is a kind of parallel recovery block where each of the

primary and the alternates are execution segments of a set of processes.

Conversations were originally proposed as a structuring or design concept

without any syntax that might be used in a practical programming language.

The Name-Linked Recovery Block was proposed by Russell as a syntax for

conversations [381. The syntax appropriates that of the recovery block:

CONV <conversation i d e n t i f i e r > : <recovery block>

What would otherwise be a recovery block within a process, becomes part of

a conversation by associating a name with the recovery block. The name is

called the conversation identifier, and all processes executing recovery blocks

- 30 -

with the same conversation identifier become members of the conversation.

The primary and alternate activities of the recovery block become that

process’ primary and alternate activities during the conversation, and the

recovery block‘s acceptance test becomes that portion of the conversation’s

acceptance test appropriate to this process. The conversation’s acceptance test

is evaluated after the last member of the conversation reaches the end of its

primary or alternate. If any of the processes fail their acceptance tests, all

conversants are rolled back.

In other work [391, Russell proposed loosening the structure of

conversations. He proposed that the establishment, restoration, and discard of

recovery points for processes be under the dynamic control of the

applications’ programmer rather than encased in a rigid syntax. He gave

three primitives for these operations: MARK, RESTORE, and PURGE respectively.

They are all parameterized to designate the subject recovery point and apply

to an individual process. This allows the programmer to save many states

and restore the one he chooses, rather than the most recent. Recovery points

are not constrained to be REsToREd in the reverse of the order MARKed. The

proposal assumes message buffers for inter-process communication. As part

of backing a process up to a recovery point, previously received messages are

placed back into the message buffers.

This mechanism ignores the possibility that the information within a

Such an approach only applies to

Many concurrent systems are feedback systems.

message can contaminate a process’ state.

producer-consumer systems.

- 31 -

A producer almost always wants to be informed about the effects of the

product, and a consumer almost always wants to have some influence over

what it will be consuming in the future. The relationships between sensors

and a control system and between a control system and actuators can be

viewed as pure producer-consumer relationships, but sensors and actuators are

more accurately modeled as unrecoverable objects. The proposal allows

completely unstructured application of the MARK, RESTORE, and PURGE primitives.

This fact, along with the complicated semantics of conversations, which the

primitives are provided to implement, affords the designer much more

opportunity to introduce faults into the software system. For example, the

use of the PURGE primitive on a recovery point represents a “promise” never

to use a RESTORE primitive on that recovery point. There is no enforcement

of this “promise”. Also, the utility of the ability to save two recovery

points A and B and later restore A before restoring B is unclear.

Kim has proposed several syntaxes for conversations [241. His

approaches assume the use of monitors 1141 as the method of communication

among processes. In the Conversation Monitor, shown in Figure 9.3, the

conversing activities are grouped with their respective processes’ source code,

but are well marked at those locations. In the Conversation Data Type, shown

in Figure 9.4, the conversing actions of the several processes are grouped into

one place so that the conversation has a single location in the source code.

The issue these variations address is whether it is better to group the text of

a conversation and scatter the text of a process or to group the text of a

process and scatter the text of a conversation.

- 32 -

ENSURE <boolean expression>
USJNCiCM <conversation monitor identifier>

4 <conversation monitor identifier> 1
BY

ELSE BY
<primary>

<alternate 1>
...

ELSE BY

ELSE ERROR
<alternate n>

Kim's Conversation Mc~itcr Syr'-tax

Figure 9.3

- 33 -

TYPE c = CONVERSATION(<conversation
PARTICIPANTS proca(<forma I

procb(<formal

VAR cml : <conversation mon
cm2 : <conversation mon

ENSURE <acceptance test> BY

...

...

names >)
parameters>);
parameters>);

tor type> ;
tor type>;

BEGIN proca : <statements>
procb : <statements>
...

END
ELSE BY BEGIN

proca : <statements>
procb : <statements>
...

...
ELSE ERROR
BEGIN

I N I T cml ,cm2.. .
END

VAR convl : C;

convl.proca(<actual parameters>);

(b)

Kim's Conversation Data Type Syntax

Figure 9.4

Kim's third scheme, the Concurrent Recovery Bbck shown in Figure 9.5,

attempted to resolve the differences between the first two by enclosing the

entirety of the processes within the conversation. Here, a conversation is a

special case of a recovery block, within a single parent process, in which the

primary and the alternates consist solely of initializations of monitors and

- 34 -

activations of processes.

The concurrent recovery block is not really a construct for programming

concurrent systems. Rather, it is a construct for programmi.ng sequential

systems in which a particular execution order for occasional statement

sequences is not required.

None of Russell’s or Kim’s conversation schemes enforce the prohibition

against smuggling. If processes use monitors, message buffers, or ordinary

ENSURE <boo1 eon expression> BY BEGIN
I N I T moni tor.1;

I N I T processl.l(tactual parameters>);
I N I T process2.1(tactual parameters>);

END

...

...
ELSE BY BEGIN

I N I T moni tor.2;

I N I T processl.2(tactual parameters>);
I N I T process2.2(tactual parameters>);

END

...

1..

...
ELSE BY BEGIN

I N I T monit0r.n;

I N I T processl.n(tactual parameters>);
I N I T process2.n(tactual parameters>);

END
ELSE ERROR

...

...

Kim’s Concurrent Recovery Block Syntax

Figure 9.5

- 35 -

shared variables, other processes can easily “reach in” to examine or change

values while a conversation is in progress. The conversation monitor is

designed to prevent smuggling but, as Kim’s description stands, it allows a

problem that is even more insidious than smuggling. A monitor used within

a conversation is initialized for each use of the conversation, but not for

each attempt within a conversation. This allows partial results from the

primary or a previous alternate to survive state restoration within the

individual processes. Since such information is in amobability erroneous,

it is likely to contaminate the states within all subsequent alternates.

A major difficulty of the conversation scheme and of all its follow-up

syntactic proposals lies in the acceptance test(s>. The strategies involved in

the primary and in the many alternates may be so divergent as to require

separate checks on the operation of each “try” as well as an overall check

for acceptability as regards the goal of the statement.

Another difficulty involving acceptance tests appears when we consider

that each process in a conversation has its own individual reasons for

communicating, while the system of which these processes are a part has

more global concerns for bringing them together. A single, monolithic

acceptance test would be too concerned with acceptability in terms of the

surrounding system to detect errors local to the component processes.

Similarly, the combination of local acceptance tests of the individual processes

is insufficient since it does not incorporate the design of the surrounding

system. A conversation needs a check on satisfaction of the surrounding

- 36 -

system’s goal in the communication as well as checks on satisfaction of the

component processes’ goals.

Desertion is the failure of a process to enter a conversation when other

processes expect its presence. Whether the process will never enter the

conversation, is simply late, or enters the conversation only to take too long

or never arrive at the acceptance test(s), does not matter to the others. The

processes in a conversation need a means of extricating themselves if the

conversation begins to take too long. Each process may have its own view

of how long it is willing to wait, especially since processes may enter a

conversation asynchronously. Only the concurrent recovery block scheme

addresses the desertion problem. The solution there is to enclose the entirety

of each participating process within the conversation. This is too restrictive

in that not only cannot a process fail to arrive at a conversation, it cannot

exist outside of the conversation.

The original proposal of conversations made no mention of what was to

be done if the processes ran out of alternates. Two presumptions may be

made (1) that the number of alternates is unbounded, or (2) that an error is

to be detected automatically in each of the processes, as is assumed in all of

the proposed syntaxes. What the syntactic proposals do not address is that,

when a process fails in a primary attempt at communication with one group

of processes to achieve its goal, it may want to attempt to communicate

with an entirely different group as an alternate strategy for achieving that

goal. The name- This is the kind of divergent strategy alluded to above.

- 37 -

linked recovery block and the conversation monitor schemes do not mention

whether it is an error for different processes to make different numbers of

attempts a t communicating. Although those schemes may assume that is

covered under the desertion issue, it may not be if processes are deliberately

allowed to converse with alternate groups.

It can occur that a nested conversation commits to a change in an

unrecoverable object only to have the surrounding conversation fail. This

presents a problem. One suggestion was that the object be marked for

alteration but that the change not actually occur until the outermost

conversation commits [271.

How to construct meaningful acceptance tests was an open problem for

recovery blocks. It remains so for conversations. An acceptance test must

be able to detect errors in results of any alternate in the context of

independently constructed algorithms. Yet the same acceptance test must be

able to pass results of any alternate, no matter how degraded the service it

provides. The test must not be so complex or slow as to duplicate the

algorithms of the primary or alternates. Although some thought has been

given to this problem [271, it too remains open.

9.3. Exchanges and Simple Recovery

Many real-time systems are concurrent and are used frequently in

Real-time systems using a cyclic applications requiring very high reliability.

executive have a relatively simple structure which can be used to advantage

in implementing backward error recovery.

Under a cyclic executive, time is divided into “frames”. Inputs are

accepted at the beginning of each frame, and outputs are produced at the end

of each frame. Anderson and Knight proposed exchanges 121 in an attempt

to adapt conversations to this real-time program structure.

An exchange is a conversation in which all of the communicants are

created at the recovery line and destroyed at the acceptance test. The

beginning of a frame represents the “recovery line”, and the acceptance test

is at the end of the frame. Failure of the acceptance test causes alternate

outputs to be generated for the current frame using some simple alternate

computation, e.g. repeating those of the previous frame. The only

information saved at the “recovery line’’ is that needed to provide the

alternate outputs since the communicating processes will be started anew

rather than backed up. The execution-time support keeps track of which

processes fail individually and how often the group fails. This information

transcends frame boundaries and is used to determine when a process is to

be replaced for the next or subsequent frames.

The idea of exchanges has direct utility only in systems employing the

cyclic executive scheduling regime. The proposal does not address systems of

fully asynchronous processes or systems employing mixed disciplines. The

exchange concept thus imposes a cobeg i n ... coend programming structure,

- 39 -

which may not always be suitable. For example, it becomes difficult to

program multiple frame rate systems, the first variation that is often

imposed on the cyclic executive theme [311.

9.4. Deadlines

The Deadline Mechanism was proposed by Campbell, et a1 to deal with

timing faults in real-time systems 181. When a goal must be achieved before

a certain amount of time passes, a preferred algorithm is supplied along with

an alternate algorithm and a duration. The alternate algorithm is assumed

to be correct and deterministic so the amount of time it requires is known

apriori. The underlying scheduler is responsible for ensuring that, if the

preferred algorithm cannot be completed before the deadline (duration plus

time the preferred algorithm started), then the alternate algorithm can be.

Several simulation studies have been performed showing a reduction in timing

failures when such a mechanism is employed [8,49,291.

The deadline mechanism assumes that the alternate algorithm is correct.

Nothing is said about checking the acceptability of the preferred algorithm’s

results if it does complete on time. The proposal assumes that the amount

of time required by the alternate algorithm is known a priori, yet provides

no method of communicating this information to the underlying scheduler.

The additional (alternate) processes in the scheduling mix could even be the

cause of a failure of a preferred algorithm to complete on time. No mention

is made of how the data states of the preferred and alternate algorithms are

- 40 -

to be kept separate. This proposal focuses too narrowly upon only one

issue, that of timing, and provides incomplete coverage of that.

9.5. Chase Protocols

Some concurrent systems do not require the sender of a message to wait

for message receipt. In some of these systems, a message can be “in transit”

for long periods of time. In such systems, backward recovery in the sender

may require that the message be “chased down” and removed or, if already

received, that the message’s effects be undone. For systems such as these,

the idea of chaseprorocoZs was invented [331.

As a process backs up to a recovery point, all messages which it has

sent since establishing that recovery point are chased down. Messages caught

in transit are simply deleted. If a message has already been received, the

receiving process is backed up to the most recent recovery point it

established before it received the message. The receiving process then enters

a chase protocol to deal with messages it had sent since establishment of the

recovery point.

Also, as a process backs up to a recovery point, all messages which it

has received since establishing that recovery point are gathered for replaying.

For those messages which are unrecoverable, e.g. the message was issued in

response to a message that has been retracted, the senders are made to back

up and enter the chase protocol. A chase protocol terminates when a

- 41 -

recovery line is found dynamically.

For cases in which data exists independently of any process, the data

items themselves “send” and “receive” the special fail messages required to

chase down other information. Copies of the data are considered to have

been sent to processes as messages, and for updating purposes, back from

processes to the data items themselves. It is under these circumstances that

the recoverability of messages that might otherwise be replayed at a process

Lmomes important. If’ a copy-of-data message is not recoverable, the data

item must be backed up by backing up the processes responsible for its

current value to recovery points beyond their setting of that value.

Chase protocols work on the assumption that the consequences of the

domino effect will usually be limited, and that very extensive rollback is

pathological. Rather than attempting to prevent the domino effect explicitly,

they attempt to find a recovery line by systematic search. Thus, the most

obvious and damning drawback of chase protocols is that they leave a

system open to the possibility (perhaps remote) of the domino effect. This

may be unacceptable in critical applications.

9.6. Spheres of Control

Davies catalogued many of the concepts of concurrent systems, recovery,

and integrity in a taxonomy he called data processing spheres of contro2 11 11.

Spheres of control are intended to address many problems such as keeping

- 42 -

processes from interfering with each other, backing processes to a previous

state, and preventing other processes’ use of uncommitted data. The concepts

allow for multiple processes to cooperate within recovery regions while

describing the restrictions on their activities necessary for maintaining

integrity within such an environment. These multiple processes may be

(largely) independent, but may be using partial (uncommitted) data from

each other. Spheres of control can cross machine boundaries; one of the

examples given is of remote procedure call, but predates the term.

Spheres of control make use of the concepts of process atomicity,

commitment, recovery before a process has committed, recovery after a

process has committed, and maintaining consistency by controlling dependence

of processes’ activities on those of others.

The concepts were described without implementation advice for generality

of application. Indeed, the description can be considered a taxonomy or

catalogue of techniques already used in some systems. The emphasis is on

placement, or what needs to be done in a system to ensure integrity and

recoverability, without prescribing how.

The descriptions are in terms that might be used by accounting auditors

of business-oriented applications.

As a catalogue of ideas, without an enforceable basis for their

application, spheres of control are rather disorganized. However, Davies’

concluding remark was that many of those ideas need to be included in a

- 43 -

programming language to permit their use and enforcement in applications.

9.7. FT-Actions

All of the other approaches described in this chapter attempt to provide

backward recovery. The Fault-Tolerant Atomic Action (FT-Action)

introduced by Jalote and Campbell 1201 (also known as the S-Conversation

[191) is an attempt to unify the concepts of backward and forward recovery

for concurrent systems. Backward recovery is provided using conversations

8

and forward recovery by a systematic approach to exception handling

combined with atomic actions. All of the concepts in the FT-Action are

introduced as extensions to the language CSP [171.

Central to the theme of FC-Actions is a revised form of atomic actions.

Jalote and Campbell distinguish between the original definition of atomic

action in which atomicity is combined with state restoration and a reduced

concept in which no state restoration takes place. The former they refer to

as recoverabk atomic actions and the latter as basic atomic actions. Both

concepts are required since the former implies backward error recovery. To

allow for forward recovery, the more fundamental notion is used.

The FT-Action is defined in terms of the language CSP because CSP

provides a particularly simple framework in which to study concurrent

systems. The language has no shared memory between processes, and all

inter-process communication must be programmed explicitly. These simple

- 44 -

semantics eliminate most potential forms of smuggling and constrain

communication.

As with all the other proposals discussed in this chapter, when used for

backward recovery an IT-Action is basically a construct for forcing processes

to communicate in an orderly fashion to prevent the domino effect. In

general, processes may only communicate within an FT-Action and then only

with other processes in the same FT-Action. IT-Actions may be nested to

provide multiple recovery regions.

If backward error recovery is required, the syntax of the FT-Action

provides a notation for describing conversations. The processes participating

in the FT-Action are listed in a declaration and each process describes its

primary and alternate modules in a recovery-block-like syntax. For any

given FT-Action each participant is required to have the same number of

alternates.

The processes execute their primaries, communicating with each other as

necessary, and then evaluate their acceptance tests. If any test fails an

exception is raised, but an exception may also be raised at any point by any

process to signal failure during execution of its primary. The FT-Action

completes if all acceptance tests are successful. If they are not, all processes

back up and try the next alternate. If the alternates are exhausted without

success, an exception is raised in the surrounding block (if there is one) to

signal that the entire FT-Action has failed.

- 45 -

If forward error recovery is to be used, the FT-Action for each process

describes the code sequence that the process will attempt together with an

exception handler. Failure of the attempt is signaled by the process raising

an exception and, in that case, the exception is raised in aU the processes

which then all execute exception handlers. Forward and backward recovery

are combined by allowing any alternate in a backward-error-recovery

structure to contain an exception handler. If an exception is raised and a

handler is present, the handler deals with the situation if it can. If no

handler exists, or a further exception is raised in a handler, then backward

error recovery is invoked.

The mappings of the various forms of the FT-Action into CSP primitives

are given by Jalote and Campbell. They point out that these mappings

could be implemented easily in a preprocessor thereby allowing programs

written in CSP enhanced with FT-Actions to be translated into CSP and

thereby executed.

In practice, there are several issues that FT-Actions do not address. For

example, there is no explicit provision for dealing with deserter processes.

The designers of the concept acknowledge the problem, and point out that

some form of time-out needs to be included. In addition, as will be shown

later, the use of the original conversation mechanism limits the diversity that

the can be achieved in the alternates and the coverage of the acceptance

tests.

- 46 -

9.8. Dialogs and the Colloquy

In an effort to solve the general problems associated with conversations

as discussed in section 9.2, Gregory and Knight developed the dialog and

colloquy 112,131. These concepts permit true independence of algorithms

between alternates, allow time constraints to be specified, and are

accompanied by syntactic proposals that are extensions to the language Ada.

A dialog is a way of enclosing a set of processes in an atomic action.

A colloquy is a construct in which a set of atomic actions (specified by

dialogs) can be described. From the perspective of each process, the set of

atomic actions in which it participates constitutes the primary and the series

of alternates of. a f ault-tolerant structure.

Further flexibility is introduced in these concepts by providing both a

local acceptance test for each process and a global acceptance test for the

group.

9.8.1. Dialogs

In a dialog, a set of processes establish individual recovery points, and

communicate among themselves and with no others. They then all either

discard their recovery points or restore their states from their recovery

points, and then proceed.

- 47 -

Success of a dialog is the determination that all participating processes

should discard their recovery points and proceed. Failure of a dialog is the

determination that they should restore their states from their recovery points

and proceed. Nothing is said about what should happen after success or

failure; in either case the dialog is complete.

Dialogs may be properly nested, in which case the set of processes

participating in an inner dialog is a subset of those participating in the outer

dialog. Success or failure of an inner dialog does not necessarily imply

success or failure of the outer dialog. Figure 9.7 shows a set of three

processes communicating within a dialog.

The discuss statement is the syntactic form that denotes a dialog.

The dia!og-nume Figure 9.8 shows the general form of a discuss statement.

19......................................k

I 1 D
I I
I I
I I
I I

PI

p2

...........
I a
I I
I I

*
.....................

I I

p3 I
I -

...............................

Three Processes Communicating in a Dialog

Figure 9.7

- 48 -

DISCUSS d i a I og-name BY

sequence-of-statements

TO ARRANGE Boolean-expression;

A DISCUSS Statement

Figure 9.8

associates a particular discuss statement with the discuss statements of the

other processes participating in this dialog, thereby determining the

constituents of the dialog dynamicaUy. At execution time, when control

enters a process’ discuss statement with a given dialog name, that process

becomes a participant in a dialog. Other participants are any other processes

which have already likewise entered discuss statements with the same dialog

name and have not yet left, and any other processes which enter discuss

statements with the same dialog name before this process leaves the dialog.

Either all participants in a dialog leave it with their respective discuss

statements successful, or all leave with them failed, i.e. the dialog succeeds

or fails.

The Boolean expression in the discuss statement is the local ,acceptance

test. It represents the process’ local goal for the interactions in the dialog.

If this Boolean expression or that in the corresponding discuss statement of

any other process participating in this dialog is evaluated false, the discuss

statement of each participant in the dialog fails. If all of the local

acceptance tests succeed, the common goal of the group, i.e. the gbba l

- 49 -

acceptance test is evaluated. If this common goal is true, the corresponding

discuss statements of all participants in the dialog succeed; otherwise they

fail. Syntactically, the common goal is specified by a parameterless Boolean

function with the same name as the dialog name in the discuss statement.

For the actions of the dialog’s participants to appear atomic to other

processes, all forms of communication must be controlled. The set of

variables shared by processes participating in a dialog are locked by the

compiler and execution-time support system to prevent smuggling. While

locked, the shared variables may only be used by processes in that dialog.

Which variables are to be shared, and therefore locked, is specified in dialog

declaraions. The dialog names used in discuss statements are also declared

in dialog declarations. The general form of a dialog declaration is:

DIALOG function-name SHARES (name-list);

The function-nrune is the identifier being declared as a dialog name and is the

name of the function defining the global acceptance test. The names in the

nume-lisf are the shared variables which will be used within dialogs that use

this dialog name.

9.82 The Colloquy

A colloquy is a collection of dialogs. At execution time, a dialog is an

interaction among processes. Each individual process has its own local goal

for participating in a dialog, but the group has a larger gbbal goal; usually

providing some part of the service required of the entire system. If, for

- 50 -

whatever reason, any of the local goals or the global goal is not achieved, a

backward error recovery strategy calls for the actions of the particular dialog

to be undone. In attempting to ensure continued service from the system,

each process may make another attempt at achieving its original local goal,

or somemodified local goal through entry into a different dialog. Each of the

former participants of the now defunct dialog may choose to interact with

an entirely separate group of processes for its alternate algorithm. The altered

constituency of the new dialog(s1 almost certainly requires new statement(s)

of the original global goal. The set of dialogs which take place during these

efforts on the processes' part is a co&py. A set of four processes engaged

in a colloquy that involves three dialogs is shown in Figure 9.9.

Time

Four Prczcesses in a Colloquy of Three Dialogs

Figure 9.9

- 51 -

A colloquy, like a dialog or a rendezvous in Ada, does not exist

syntactically but is entirely an execution-time concept. However, the places

where the text of a process statically indicates entry into colloquys are

marked by a variant of the Ada select statement called a dialog-sequence.

The general form of a dialogsequence is shown in Figure 9.10. At

execution time, when control reaches the select keyword, a recovery point is

established for that process. The process then attempts to perform the

activities represented in Figure 9.10 by attempt-1. The attempt is actually a

discuss statement followed by a sequence of statements. If the performance

of these activities is successful, control continues with the statements

following the dialog-sequence.. If the attempt was not successful, the

process’ state is restored from the recovery point and the other attempts will

SELECT
at tempt-1

at tempt-2

at t emp t-3

OR

OR

TIMEOUT simple-expression
requence-of,rtatement8

ELSE

END SELECT;
sequence-of-statements

Dialog-Sequence

Figure 9.10

- 52 -

be tried in order. Thus, the dialog-sequence enables the programmer to

provide a primary and a list of alternate algorithms by which the process

may achieve its goals at that point in its text. Note however that the

process may communicate with entirely different sets of processes in each

attempt, thereby allowing greater diversity in the alternates than is possible

in the conversation or similar. Also, each process may specify a different

number of alternates from the other processes to accommodate its own goal.

Exhaustion of all attempts for a given process with no success brings

control to the else part after restoration of the process’ state from the

recovery point. Theelse part contains a sequence of statements which allows

the programming of a “last ditch” algorithm for the process to achieve its

goal. If this sequence of statements is successful, control continues after the

dialog-sequence. If not, or if there was no statement sequence, the

surrounding attempt fails.

Timing constraints can be imposed on colloquys (and hence on dialogs).

Any participant in a colloquy can specify a timing constraint which consists

of a simple expression on the timeout part of the dialog-sequence. A timing

constraint specifies an interval during which the process may execute as

many of the attempts as necessary to achieve success in one of them. If the

interval expires, the current attempt fails, the process’ state is restored from

the recovery point, and execution continues at the sequence of statements in

the timeout part. The attempts of the other processes in the same dialog

also fail but their subsequent actions are determined by their own

- 53 -

dialog-sequences. If several participants in a particular colloquy have timing

constraints, expiration of one has no effect on the other timing constraints.

The various intervals expire in chronological order. As with the else part,

the timeout part allows the programming of a “last ditch” algorithm for the

process to achieve its goal, and is really a form of forward recovery since

its effects will not be undone, at least at this level.

The dialog and colloquy concepts provide implementable answers to the

dificulties of other backward error recovery proposals. These ideas afford

the error detection flexibility of multiple acceptance tests. They also invert

the relationship between operation of the recovery point and inter-process

communication. This permits truly independent alternate algorithms to the

extent that a process can communicate with different groups of processes to

achieve its goals.

Colloquys avail the programmer of many powerful facilities for

management of backward error recovery. It is tempting to think that this

solves all the problems that might arise, and that the syntax for the

colloquy can be integrated into a language for programming concurrent

systems with no further concern.

9.9. New Diaculties

Problems beyond the domino effect arise when including recovery in

They have to do with enforcement of the realistic concurrent systems [13].

- 54 -

prohibition on smuggling and organization of programs.

The merging of recovery facilities into a real language can reveal

semantic difiiculties not readily apparent in the general discussion of the

ideas. Certain aspects of actual programming languages seem to conflict with

the goals and design of backward error recovery facilities. In this section,

we introduce some of the problems which arise in attempting to merge

backward error recovery into a modern programming language. This

exzmination discloses several new problems with backward error recovery in

real languagee. These problems arise because of the fundamental

requirements of backward error recovery in concurrent systems. We use the

dialog and colloquy merely as examples.

In their most general form, the problems are:

the many means of smuggling of information that are afforded by many

programming language constructs, and

the incompatibilities between the planned establishment of recovery lines

for backward error recovery and the existing explicit communication

philosophies of modern programming languages.

- 55 -

9.9.1. Smuggling

Smuggling is a transfer of information, or communication, between a

process engaged in a particular dialog and a process not so engaged. From

the point of view of a surrounding dialog, a nested dialog is supposed to be

an atomic action. The encased activity seems either not to have begun or to

have completed, and no information that would be evidence to the contrary

escapes. Were smuggling allowed, backward recovery of the participants in a

dialog could produce an inconsistent state. Thus smuggling must be

prevented.

We have so far ignored the many means of smuggling. Smuggling is

usually assumed to be controllable. All of the approaches mentioned in this

chapter depend for their avoidance of the domino effect upon the prohibition

of smuggling. The very term “sphere of control” evokes an image of a

barrier surrounding the communicating processes and their uncommitted

results. The FT-Action was defined in an language without means of

smuggling, so its presentation ignored the issue.

Many means of smuggling exist in modern programming languages.

They break down into explicit and implicit information flows. Explicit

information flows derive from deliberate communications attempts on the part

of the programmer using the explicit communications mechanisms in the

language such as messages or rendezvous. Implicit information flows occur

through shared variables, attributes and process manipulation.

- 56 -

A major potential form of smuggling lies in message traffic. In Ada,

smuggling through explicit information flows, is not problematic. The Ada

rendezvous is a specialized form of message communication through a

restricted set of protocols. When a process attempts to communicate with

another, it is suspended until the communication is complete. The sender

does not proceed immediately after sending a message. This is the only

form of explicit communication in Ada. The dialog prevents smuggling via

messages for an Ada-like language. A more general message-based language

would present more problems for backward error recovery.

The second form of smuggling, that through implicit information flows,

is much more involved. implicit information flows are methods by which one

process gains information about another process’ activities or status without

using the explicit communications statements provided in the language.

Implicit flows come in two categories. The first category is provided by the

facilities in a language which one would normally expect to allow implicit

information flows. The other category is provided by language facilities or

features which one would not normally think of as involving communication.

The first category, expected implicit information flows, is represented by

shared, variable objects. One normally expects implicit information flows

through these objects. They come in two sub-categories, based upon their

modes of access, Shared variables are objects with one access path. Aliasing

and pointers provide objects with multiple access paths.

- 57 -

The category of unexpected implicit information flows is represented by

process manipulations. Ada allows processes to be manipulated in several

ways. These are task creation, task destruction, and examination of other

processes’ execution states. This last one is represented by Ada’s task

attributes. The dynamic creation and destruction of processes are facilities

which one would not expect to afford implicit information flows. That

smuggling may occur through them is a very unusual concept.

9.9.2 Communication Philosophies

The second of the most general problems is the existence of

incompatibilities between the planned establishment of recovery lines for

backward error recovery and the explicit communication philosophies of

modern programming languages. These stem from coniiicts between the

planned establishment of recovery lines and modern programming precepts.

These incompatibilities are typified by detailed problems with service tasks in

Ada. Some of them are recapitulated here.

First, Ada allows a task to make nondeterministic choices among entries

when accepting calls. There is no corresponding nondeterminism when

choosing to enter a dialog. Second, Ada enforces mutual exclusion among

entry calls being serviced. The dialog allows any process to enter the

communication at will, Third, a server task may be requested to perform

its service at any time in Ada. Under the dialog regimen, it seems a server

must actively seek out its clients to achieve the same dialog nesting.

- 58 -

Finally, the server cannot leave a dialog after dealing with one client and

before seeking the next client until the first client is ready to leave (i.e. the

server can become trapped).

Ada has nondeterminism and exclusivity in its communication

mechanism. The dialog, which forms an envelope around communication, is

not nondeterministic. The envelope restricts severely one’s use of

nondeterminism. The envelope is also intentionally non-exclusive to

participants. These program structuring problems are not specific to the

dialog and colloquy concepts. Rather, they represent a general conflict of

planned establishment of recovery lines and languages designed to facilitate

use of modern programming precepts.

9.9.3. summary

The language facilities shown in this chapter seem on the surface to be

adequate for recovery in concurrent systems, however they turn out to be

incomplete solutions to these problems. A formal approach to recovery in

concurrent systems should have syntactic expression so its semantic rules

may be enforced automatically. The approach and its syntax cannot be

designed separately from other facilities of the programming language into

which they are to be included. To avert interaction of facilities that might

allow subversion of the recovery approach’s rules, the language must be

designed with recovery in mind from the outset.

- 59 -

References

(1) Reference Manual for the Ada Programming Language, ANSWMIL-STD-

1815A (22 January 1983).

(2) T. Anderson and J. C. Knight, “A Framework for Software Fault

Tolerance in Real-Time Systems,” IEEE Transactions on Sojhare

Engineering SE-9(3), pp. 355-364 (May 1983).

(3) T. Anderson, P. A. Lee, and S. K. Shrivastava, “A Model of

Recoverability in Multilevel Systems,” IEEE Transactions on Software

Engineering SE-4(6), pp. 486-494 (November 1978).

(4) T. Anderson and P. A. Lee, “The Provision of Recoverable Interfaces,”

Digest of Papers FTCS-9: Ninth Annual Symposium on Fault-Tolerant

Computing, pp. 87 (June 1979).

(5) T. Anderson and P. A. Lee, Fault-Tolerance: Principles and Practice,

Prentice Hall International, London (1981 1.

(6) A. Avizienis, “Fault-Tolerant Systems,” IEEE Transactions on Computers

C-25(12), pp. 1304-1312 (December 1976).

(7) E. Best, “Atomicity of Activities,” Lecture Notes in Computer Science, Vol.

84, ed. W. Brauer, Springer-Verlag, Berlin, pp. 225-250 (1980).

- 60 -

(8) R. H. Campbell, K. H. Horton, and G. G. Belford, “Simulations of a

Fault-Tolerant Deadline Mechanism,” Digest of Papers FTCS-9: Ninth

Annual Symposium on Fault-Tolerant Comping, pp. 95-101 (1979).

(9) J. R. Connet, E. J. Pasternak, and B. D. Wagner, “Software Defences in

Real-Time Control Systems,” Digest of Papers FTCS-2: Second A n n a

Symposium on Fau&-Tolerant Computing, pp. 94 (June 1972).

(10) C. T. Davies, “Recovery Semantics for a DB/DC System,” ACM 73

Annual Conference, pp. 136 (August 1973).

(11) C. T. Davies, “Data Processing Spheres of Control,” IBM Sys?ems Journal

17(2), pp. 179-198 (1978).

(12)s. T. Gregory and J. C. Knight, “A New Linguistic Approach to

Backward Error Recovery,” Digest of Papers FTCS-15: Fifteenth

International Conference on Fa&-Toleram Comping, pp. 404-409 (1985).

(13)s. T. Gregory, Programming Language Facilities for Backward Error

Recovery in Red-Time Sysrem, Ph.D. Dissertation, Department of Applied

Mathematics and Computer Science, University of Virginia,

Charlottesville, Virginia (1986).

(14) Per Brinch Hansen, The Architecture of Concurrent Programs, Prentice-Hall,

Englewood Cliffs, NJ (1977).

- 61 -

(15) H. Hecht, “Fault Tolerant Software for Real-Time Applications,” ACM

Computing Surveys 8(4), pp. 391-407 (December 1976).

(16) H. Hecht, “Fault-Tolerant Software,” IEEE Transactions on Reliability R-

28(3), pp. 227-232 (August 1979).

(17) C. A. R. Hoare, “Communicating Sequential Processes,” Communications of

the ACM 21(8), pp. 666-677 (August 1978).

(18) J. J. Horning, et al, “A Program Structure for Error Detection and

Recovery,” Lecture Notes in Computer Science, Vol. 16, ed. E. Gelenbe and

C. Kaiser, Springer-Verlag, Berlin, pp. 171-187 (1974).

(19) P. Jalote and R. H. Campbell, “Fault Tolerance Using Communicating

Sequential Processes,” Digest of Papers FTCS-14: Fourteenth International

Conference on Fault-Toleranl Computing, pp. 347-352 (1984).

(20)P. Jalote and R. H. Campbell, “Atomic Actions for Fault-Tolerance Using

CSP,” IEEE Transactions on Software Engineering SE-12(1), pp. 59-68

(January 1986).

(21)K. H. Kim and C. V. Ramamoorthy, “Failure-Tolerant Parallel

Programming and its Supporting System Architecture,” AFIPS Conference

Proceedings 1976 NCC, Vol. 45, pp. 413 (June 1976).

- 62 -

(22) K. H. Kim, “Strategies for Structured and Fault-Tolerant Design of

Recovery Programs,” Proceedings COMPSAC 78, pp. 65 1 (November 1978).

(23) K. H. Kim, “An Approach to Programmer-Transparent Coordination of

Recovering Parallel Processes and its Efficient Implementation Rules,’’

Proceedings 1978 Imernational Conference on Parallel Processing (August

1978).

(24)K. H. Kim, “Approaches to Mechanization of the Conversation Scheme

Based on Monitors,” IEEE Transactions on Sofhvare Engineering SE-8(3),

pp. 189-197 (May 1982).

(25)K. H. Kim, “Distributed Execution of Recovery Blocks: An Approach to

Uniform Treatment of Hardware and Software Faults,” Proceedings: 4th

Conference on Distributed Computing Systems, pp. 526-532 (1984).

(26) H. Kopek, “Software Redundancy in Real Time Systems,” ZFZP Congress

74, pp. 182-186 (August 1974).

(27) P. A. Lee, “A Reconsideration of the Recovery Block Scheme,” Cornpuler

JOU& 21(4), pp. 306-310 (November 1978).

(28)Y-H. Lee and K. G. Shin, Design and EvaluQtion of a Fad-Tolerant

MuLtiprocessor Using Hardware Recovery Blocks, University of Michigan

Computing Research Laboratory Report CRL-TR-6-82 (August 1982).

- 63 -

(29)A. L. Liestman and R. H. Campbell, “A Fault-Tolerant Scheduling

Problem,” Digest of Papers FTCS-13: Thirteenth Annual Symposium on Fault-

Tolerant Computing, pp. 42-47 (1983).

(30) D. B. Lomet, “Process Structuring, Synchronization and Recovery Using

Atomic Actions,” ACM SIGPLAN Notices 12(3), pp. 128-137 (March

1977).

(31) L. MacLaren, “Evolving Toward Ada in Real Time Systems,” ACM

SIGPLAN Notices 15(11), pp. 146-155 (November 1980).

(32)P. M. Melliar-Smith and B. Randell, “Software Reliability: the Role of

Programmed Exception Handling,” ACM SIGPLAN Notices 12(3), pp. 95-

100 (March 1977).

(33)P. M. Merlin and B. Randell, “State Restoration in Distributed Systems,”

Digest of Papers FTCS-8: Eighth Annual Symposium on Fa&-Tolerant

Computing, pp. 129-134 (1978).

(34) G. J. Myers, Software Reliability: Principles and Practices, Wiley, NY

(1976).

(35)D. L. Parnas, “On the Criteria to be Used in Decomposing Systems into

Modules,” Communications of the ACM (December 1972).

- 64 -

(36)B. Randell, P. A. Lee, and P. C. Treleaven, Reliable Computing Systems,

University of Newcastle upon Tyne Computing Laboratory Report 102

(May 1977).

(37) B. Randell, “System Structure for Software Fault Tolerance,” IEEE

Transactions on Sofhvare Engineering SE-1(2), pp. 220-232 (June 1975).

(38)D. L. Russel and M. J. Tiedeman, “Multiprocess Recovery Using

Conversations.” Digest of Papers FTCS-9: Ninfh Annual Symmsium on Fa&-

Tokrant computing, pp. 106 (June 1979).

(39) D. L. Russel, “Process Backup in Producer-Consumer Systems,” ACM

S I W P S Operaling Systems Review 11(5), pp. 151-157 (November 1977).

(40) D. L. Russel, “State Restoration in Systems of Communicating Processes,”

IEEE Transactions Somare Engineering SE-6(2), pp. 183 (March 1980).

(41) K. G. Shin and Y-H. Lee, Analysis of Backward Error Recovery for

Concurrent Processes with Recovery Blocks, University of Michigan

Computing Research Laboratory Report CRL-TR-9-83 (February 1983).

(42) S . K. Shrivastava and J. P. Banatre, “Reliable Resource Allocation

Between Unreliable Processes,’’ IEEE Transactions on Sofhvare Engineering

SE-4(3), pp. 230 (May 1978).

- 65 -

(43) S. K. Shrivastava, “Concurrent Pascal with Backward Error Recovery:

Implementation,” Somare-Practice and Experience 9(121, pp. 102 1-1033

(December 1979).

(44) S, K. Shrivastava, “Concurrent Pascal with Backward Error Recovery:

Language Features and Examples,’’ Somare-Practice and Experience 9(121,

pp. 1001-1020 (December 1979).

(45) S. K. Shrivastava, “Structuring Distributed Systems for Recoverability

and Crash Resistance,” IEEE Transactions on Somare Engineering SE-7(4),

pp. 436-447 (July 1981).

(46)R. M. Simpson, A Study in the Design of Highly Integrated Systems,

University of Newcastle upon Tyne Computing Laboratory Report 67

(November 1 974).

(47) J. S . M. Verhofstad, On Mu2ti-Level Recovery: An Approach Using Par t idy

Recoverabk Interfaces, University of Newcastle upon Tyne Computing

Laboratory Report 100 (May 1977).

(48) J. S . M. Verhofstad, Recovery for Multi-Level Data Structures, University

of Newcastle upon Tyne Computing Laboratory Report 96 (December

1976).

(49)A. Y . Wei, K. Hiraishi, R. Cheng, and R. H. Campbell, “Application of

the Fault-Tolerant Deadline Mechanism to a Satellite On-Board Computer

- 66 -

System,” Digest of Papers FTCS-10: Tenth AnnuuL Symposium on F d -

ToZerant Computing, pp. 107-109 (1980).

(50)A. J. Wellings, D. Keeffe, and G. M. Tomlinson, “A Problem with Ada

and Resource Allocation,” ACM Ada Letters III(4), pp. 112-124 (January-

February 1984).

(51) W. G. Wood, Recovery Control of Communicating Processes in a Distribzded

System, Computing Laboratory, University of Newcastle upon Tyne

Report 158 (November 1980).

- 67 -

APPENDIX 4

REPORT LIST

\

- 68 -

REPORT LIST

The following is a list of papers and reports, other than progress

reports, prepared under this grant.

(1) Knight, J.C. and J.I.A. Urquhart, “Fault-Tolerant Distributed Systems

Using Ada”, Proceedings of the AIAA Computers in Aerospace Conference,

October 1983, Hartford, CT.

(2) Knight, J.C. and J.I.A. Urquhart, “The Implementation And Use Of Ada

On Fault-Tolerant Distributed Systems”, Ada LETTERS, Vol. 4 No. 3

November 1984.

(3) Knight, J.C. and J.I.A. Urquhart, “On The Implementation and Use of

Ada on Fault-Tolerant Distributed Systems”, IEEE Transactions on

Software Engineering. to appear.

(4) Knight J.C. and S.T. Gregory, “A Testbed for Evaluating Fault-Tolerant

Distributed Systems”, Digest of Papers FTCS-14: Fourteenth Ann&

Symposium on F&-Tokrant Computing, June 1984, Orlando, FL.

(5) Knight J.C. and S.T. Gregory, “A New Linguistic Approach To Backward

Error Recovery”, Digest of Papers FTCS-15: Fifteerzth Annuid Symposium

on Fad-Tolerant Computing, June 1985, Ann Arbor, MI.

- 69 -

(6) Gregory, S.T. and J.C. Knight, “Concurrent System Recovery” in Resiliem

Comptaing Systems, Volwne 2 edited by T. Anderson, Wiley, 1987.

(7) Knight, J.C. and J.I.A. Urquhart, “Difhculties With Ada As A Language

For Reliable Distributed Processing”, Unpublished.

(8) Knight, J.C. and J.I.A. Urquhart, “Programming Language Requirements

For Distributed Real-Time Systems Which Tolerate Processor Failure”,

Unpublished.

- 70 -

