e https://ntrs.nasa.gov/sea{réﬁjé6’?7R=71§8776002849 2020-03-20T13:41:14+00:00Z

N -BTEYD

D
5 7.

FINAL REPORT

EIGENVALUE ASSIGNMENT STRATEGIES
IN ROTOR SYSTEMS

by

John N. Youngblood
Professor of Mechanical Engineering
The University of Alabama

and

Kenneth J. Welzyn
Graduate Assistant
Department of Mechanical Engineering
The University of Alabama

Prepared for

National Aeronautics and Space Administration
Marshall Space Flight Center

NASA Grant NAG8034

The University of Alabama October 1986
College of Enginecri

P Bureau of Eng

University.
Telephone

BER Report No. 389-177
(NASA-CE-179906) EIGENVALUE ASSIGNHMENT NB87-122€2

STRATEGIES IN ROICR SYSTEMS Final Report
{Alakama Univ., Upiversity.) ¢SS p <CSCL 12A

Uuclas
G3/764 44879



THE UNIVERSITY OF ALABAMA
COLLEGE OF ENGINEERING

The College of Engineering at The University of Alabama has an undergraduate enroll-
ment of more than 2,300 students and a graduate enroliment exceeding 180. There are
approximately 100 faculty members, a significant number of whom conduct research in
addition to teaching.

Research is an integral part of the educational program, and research interests of the
faculty parallel academic specialities. A wide variety of projects are included in the overall
research effort of the College, and these projects form a solid base for the graduate
program which offers fourteen different master's and five different doctor of philosophy
degrees.

Other organizations on the University campus that contribute to particular research
needs of the College of Engineering are the Charles L. Seebeck Computer Center, Geologi-
cal Survey of Alabama, Marine Environmental Sciences Consortium, Mineral Resources
Institute—State Mine Experiment Station, Mineral Resources Research Institute, Natural
Resources Center, School of Mines and Energy Development, Tuscaloosa Metallurgy
Research Center of the U.S. Bureau of Mines, and the Research Grants Committee.

This University community provides opportunities for interdisciplinary work in pursuit of
the basic goals of teaching, research, and public service.

BUREAU OF ENGINEERING RESEARCH

The Bureau of Engineering Research (BER) is an integral part of the College of Engineer-
ing of The University of Alabama. The primary functions of the BER include: 1) identifying
sources of funds and other outside support bases to encourage and promote the research
and educational activities within the College of Engineering; 2) organizing and promoting
the research interests and accomplishments of the engineering faculty and students;
3) assisting in the preparation, coordination, and execution of proposals, including
research, equipment, and instructional proposals; 4) providing engineering faculty,
students, and staff with services such as graphics and audiovisual support and typing and
editing of proposals and scholarly works; 5) promoting faculty and staff development
through travel and seed project support, incentive stipends, and publicity related to
engineering faculty, students, and programs; 6) developing innovative methods by which
the College of Engineering can increase its effectiveness in providing high quality educa-
tional opportunities for those with whom it has contact; and 7) providing a source of timely
and accurate data that reflect the variety and depth of contributions made by the faculty,
students, and staff of the College of Engineering to the overall success of the University in
meeting its mission.

Through these activities, the BER serves as a unit dedicated to assisting the College of
Engineering faculty by providing significant and quality service activities.




EIGENVALUE ASSIGNMENT STRATEGIES IN
ROTOR SYSTEMS

by
John N. Youngblood
Professor of Mechanical Engineering
The University of Alabama
and
Kenneth J. Welzyn
Graduate Assistant

Department of Mechanical Engineering
The University of Alabama

Prepared for

National Aeronautics and Space Administration

Marshall Space Flight Center

NASA Grant NAG8034

October 1986

BER Report No. 389-1T77



PREFACE

This report documents the work done on NASA Grant NAG8034
to establish the control and direction of effective eigenvalue
excursions of lightly damped, speed dependent rotor systems
using passive control. Both second order and sixth order
bi-axis, quasi-linear, speed dependent generic models were
investigated. In every case a single, bi-directional control
bearing was used in a passive feedback stabilization loop to
resist modal destabilization above the rotor critical speed.

Assuming incomplete state measurement, sub-optimal control
strategies were used to define the preferred location of the
control bearing, the most effective measurement locations, and
the best set of control gains to extend the speed range of
stable operation. Speed dependent control gains were found by
Powell’s method to maximize the minimum modal damping ratio
for the speed dependent linear model. An increase of 300
percent in stable speed operation was obtained for the
siXth order linear system using passive control.

Simulations were run to examine the effectiveness of the
linear control! law on nonlinear rotor models with bearing
deadband. The maximum level of control effort (force)
required by the control bearing to stabilize the rotor at
speeds above the critical was determined for the models with

bearing deadband.
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CHAPTER 1

INTRODUCTION

This study investigates the stabilization of
self-excited rotor vibrations by active control. Rotor-
dynamic systems under the influence of self-exciting
mechanisms exhibit unstable behavior above some thresh-
old speed. Quasi-linear, speed dependent models of
these systems show eigenvalue excursions into the
unstable zone as this threshold speed is approached.
Nonlinear models with bearing deadband exhibit unstable
oscillations above this same threshold speed. By the
application of control forces as can be produced by
magnetic bearings, the eigenvalues of the linear models
are re-positioned such that the systems are stable. The
control is then applied to the linear and nonlinear
models by simulation. The effectiveness of the control
is judged by the resulting stability characteristics of
the nonlinear models and by the control bearing force
levels required to maintain rotor stability.

Two rotor models are used in this study. The
first of these is a two degree-of-freedom model resem-

bling a modified Jeffcott model. Control bearing forces
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are struciure
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to counteract the self-exciting forces,
resulting in stable operation at any rotor spin speed.
By the use of a2 speed dependent control strategy, the
eigenvalues of the closed-loop system are maintained at
fixed locations. The control is chosen such that these
locations match those of the original system at its
optimally damped speed.

The second rotor model used in this study is a six
degree-of-freedom model. It is shown to possess three
natural modes, each becoming unstable at a different
rotor spin speed. Thé stabilization of all three modes
using one magnetic bearing set is investigated. The
ability of the control bearing to stabilize each mode is
dependent upon such factors as bearing location, feed-
back signals, and control gains. The magnetic bearing
focation is determined by examining the uncontrotlled
rotor's mode shapes, with placement attempting to maxi-
mize the bearing'’'s effect on each mode. Feedback is
provided through combined output signals with incomplete
state information. The combination of the output sig-
nals and the control gains are determined by using a
search method, which maximizes the damping of the least
damped mode. Control strategies using constant and
speed dependent control! gains are compared based upon
the effect that each has on the excursions of the linear

systems'! eigenvalues towards the unstable zone.



CHAPTER 11
BACKGROUND

The first published work dealing with the dynamics
of rotating shafts was by Rankine [1] in 1869. At that
time Rankine showed that rotating systems were unstable
above the critical speed (the speed at which synchronous
resonance occurs). Because of this, for many vyears
manufacturers designed rotating systems to operate below
the critical speed. 1In 1919, Jeffcott [2) identified
the critical speed, not as a speed of instability, but
as a natural frequency of lateral vibration. By includ-
ing damping in his analysis, Jeffcott showed that stable
operation was possible above the critical speed.

The increased demands on rotor systems for more
power and lighter weight soon led manufacturers to
design rotors for operation above the first critical
sSpeed. This led to instability problems, as rotors
reached speeds above which stable operation was impos-
sible. Several mechanisms of rotor instability have
been identified and are the subject ¢f works by
Ehrich [3,4]. These include hydrodynamic bearings and

seals, 1internal rotor friction, and turbine blade

3
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effects. Each of the mechanisms of instability possess
a common characteristic in that they produce forces
tangential to radial deflections. This cross-coupling
effect generally increases with speed until it overcomes
the restoring and dissipative forces and the rotor
becomes self-excited., Violent whirling or "whipping"” of
the rotor occurs as the stability threshold is reached.

wWhile most instability mechanisms are nonlinear
phenomena, they can generally be modelled as linear
systems with variable coefficients. A significant non-
linearity occurs, however, in bearings with radial
clearances or "deadbands". Although these are not
usually considered mechanisms of instability, their
effect is significant on rotor performance. This effect
has been examined by Childs [S] and others [6,7] whose
results show that these nonliinearities often result in
subsynchronous oscillations at frequencies exactly
one-half of rotor spin speed. It has also been shown
that bearings with radial clearances do not affect the
overall stability of rotor systems.

The need for still greater performance from rotor
systems requires operation at speeds above what is now
the limit of stability. For this reason, the focus of
much recent work has been on the improvement of rotor
stability characteristics. This area has appeared more

promising with the advent of active magnetic bearings.
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Haberman and Liard [8] present an excellent discussicoen
on the practical applications of these bearings.
Schweitzer and Lange [9] present a more detailed
description of magnetic bearing characteristics, and
show how they can be implemented in a closed-loop
control system. Gondhalekar and Holmes [10] discuss the
various designs of magnetic bearings for controlling
rotors. They show, both analytically and experimen-
tally, how suitable configurations of magnetic bearing
systems can lead to linear, uncoupled, completely
determined control forces.

For stabilizing rotor systems, Burrows and
Sahinkaya [11] examine the use of magnetic bearings to
control oil-whirl. They apply pole-placement technigues
to a single-mass, rigid rotor supported by hydrodynamic
journal bearings. They determine the contol gains
neccessary to position the unstable pair of eigenvalues
sufficiently far from the imaginary axis, and they
discuss the constraints which affect reachable pole
Zones. More recently, Stanway and Burrows ([i12] examine
rotor stabilization by applying control to the rotor’'s
support structure. They find that, with full state
feedback, it is possible to obtain some degree of stabi-
lization. They discuss the use of observers to construct
the full state vector when it is not directly obtain-

able. Schweitzer [13] examines stabilization, using
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magnetic bearings, of a linear multi-body rotor with
internal damping. He uses one magnetic bearing set and
defines an approach to locate the bearing based on the
rotor’s mode shapes. He determines an "optimal" control
by maximizing the lowest damping of the system’s modes.
In a later work [14] he applies magnetic bearing control
to a low order model obtained from a higher order modal~-
based model., Schweitzer then develops the control for
the lower order model and examines the "spillover®
effects on the higher order system.

The purpose of this study is to investigate the
stabilization of self-excited rotor systems by active
control. In particular, the application of linear
control to nonlinear rotor systems under the influence
of bearing deadband is examined. Its importance results
from the fact that nearly all physical rotors supported
by radial rolling element bearings are affected by
deadband. While this factor is usually neglected in
most rotor studies, it is one which must be understood
for the full benefits of stability enhancement to be

achieved.



CHAPTER I1I

THE TWO DEGREE-OF-FREEDOM MODEL

Introduction

The first phase of this study deals with the
stabilization of a two degree-of-freedom model which is
similar to a modified Jeffcott model. The equations of
motion for the model are developed and converted to
dimensionless form. The control strategy for rotor
stabilization is developed for the linear rotor and
applied to the linear and nonlinear models. Maximum
control bearing forces required to stabilize the rotor
are taken from dynamic simulations of linear and nonlin-
ear models. Finally, the frequency spectrum of the
nonlinear simulation is analyzed to observe the charac-

teristic behavior of the nonlinear system.

Model Development

The two degree-of-freedom model is shown 1in
Fig. 3.1. Although simple, this model 1s actually a
very useful tool in dealing with realistic rotor prob-
lems. It is widely used for conducting analytical rotor
studies, as well as gaining insight into various rotor

phenomena. More significantly, this model exhibits many
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of the types of behavior found in more complex rotor
systems.

As shown in Fig. 3.1, the model consists of a uni-
form disk of mass m suspended by a massless rigid shaft.
The bearings have a radial clearance g which provides a
"deadband" in the force-deflection curve. The shaft is
supported on each end by massless radial bearings having
a combined linear stiffness Kp. Damping is introduced
by hydrodynamic seal type elements which provide stiff-
ness and damping Kg and Cg, respectively, and cross-
coupled stiffness and damping Qg and Cq, respectively.
Although for true rotor systems most parameter values
are functions of rotor spin speed, the most significant
is the cross-coupled stiffness Qg. Since this term is a
source of self-excited vibration, it is sufficient to
introduce speed dependency with this term only. Thus,
it will be given the familiar approximate form for

hydrodynamic seals,

Qg = —— (3.1)

The rotor is unbalanced with the mass m at a radius €.
The rotor is assumed to be symmetric, both radially and
laterally. The rotor spin speed w is constant, aithough
different speeds will be examined. Motion occurs in the

Y and Z directions only.
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A force diagram is shown in Fig. 3.2, where Fp,

and Fby are the restoring forces from the support bear-

ings, Fg, and Fgy are the "seal" forces, and mew? is

unbalance force. Fig. 3.3 shows a force-deflection

curve for the support bearings. The magnitude of the

radial force produced by the bearings is given by

0 ,|r| < 8

Fpp = (3.

K (r - , >
ML SRR LI

with the force acting in the direction of radial
displacement. Resolving this force into the Y and Z

directions yields

0 ,|r| H / yz + z2 < B
FbY: g (3
K (1L -=)y,|r| >e&
b r
R
and
0 .|r| < g
sz = g (3.
K (1 - -)z ,]|r}] > 8
b o |"]
The forces due to the seals are given by
Fgy = Kg¥ + Cg¥ + Qgz + Cq2 (3.

and

Fsz = Ksz + Csi = GSY - qu. (3.

the

2)

.3)

&)

3)

6)
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The differing signs on the cross-coupling terms

indicates a mechanism of instability.

Fig. 3.2. Force Diagram for Rotor Model

Bearing
Force

|[¢— & —>| Radial Deflection (r)

Fig. 3.3. Support Bearing Force-deflection Curve
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Combining the force reiationships 1in their respec-
tive directions yields the equations of motion for the

two degree-of-freedom rotor,

g
my + Cg¥ + Kp(1 - — )y + Kgy + Cqz + Qg2
r
I* - mewlcos (wt) (3.7)
(1] L] g *
mz + Cgz + Kp(l - — )z + Kgz - Cqy - QgY
r
I*l : mewlsin(wt) (3.8)
Division by m yields
. Cs Kp g Ks Cq . Qg
¥+ — ¥+ — (1 -=)y+ —y+—12+—2
m m |r] m m m
= ewlcos (wt) (3.9)
and
“ C . K 4 K¢ Cq Qg
P+ —3+—(1-—)z4+—2-—Yy-—y
m m |r| m m m
: ewfsin(wt) . (3.10)

To effect a more general study, these equations
are nondimensionalized. First, a system frequency 1is
defined as the undamped, uncoupled frequency given by

Ks + Kp

wel = ————— . (3.11)
m
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By defining the dimensionless time parameter r as

T = wot (3.12)

. dy dy dr dy
Y = — = — — 2 Wg— = wyYy”’. (3.13)
dt dv dt dt
Similarly,
Y = Lo2y*e, (3.14)
Z = wyz?, (3.15)
and
Z = go2z¢”. (3.16)

Substituting for t, using (3.13) - (3.16) and dividing

by w2 yields

Y o+ Yy’ + (1 - — )y + Y + z*
mw mw Ir| mw @ mw
0 0 0 0
Qg we W
+ z = — cos| — v . (3.17)
mwy @ we? wg

and
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Cs Kp F=4 K¢ Cq
z” + 2’ + (1 - — )z + 2 - — vy
mw mnw It mw mnw
0 0 0 0
Qs wa W
= Y = — sin{ — 7] . (3.18)
mw 2 we? Wo

w Cs Cq
- =R s - ; tq *° '
Wo 2mw, 2mw,
Kp Kp Ks Ks
Rgp = : > Rgs = = >
Kg + Kp W, Kg + Kjp mwq
Csw Qg Csg w
Qg = — , so =z - =z LgR .
2 mwoa amwO Wo

Substituting these yields

g
y# + 2Lgy’ + Rgp(l - — )y + Rggy + 28q2’
Ry
+ LsRz = R2ecos(R7) (3.19)
and
g
2% + 2Lg2’ + Ryp(l - — )z + Rggz - 2fqy*’
I ‘
- LsRY = R2esin(Rv). (3.20)

Finally, division by a characteristic length, say

€, yYields the dimensionless model
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- - g _ - _
y” + 2fgy’ + Rgp(l - - )Y + Rgsy + quz'
|*]
+ LsRZ = R2cos(R7) (3.21)
and
i, - g _ - -
z# + 28g2’ + Rgp(1 - = )2 + RyggZ - quY'
||
- LsRY = R2sin(R7). (3.22)

Table 3.1 summarizes the dimensionless parameter defini-
tions.

Equations (3.2%) and (3.22) represent the non-
linear, uncontrolled rotor. Defining the state vector X

as
X = [¥ Ty V07 (3.23)

the system in first-order form becomes

X’ = Ax + d (3.24)
where
F 0 0 i 0
0 0 0 1
A = (3.295)
- (R + R ) -f R -2z -2t
ks Kb §s s q
I R -(R + R ) 2t -2
L S ( Ks Kb q gs_
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and
0
0
g
d - R2cos(Rr) + R ( — )Y (3.26)
E -—
R2sin(Rr) + R ( — )%
I Kb IFI |

Note that the vector d contains both the unbalance

forces and the nonlinear contributions from the support

bearings. The same restrictions apply as in equations

(3.3) and (3.4) to the nonlinear terms, i.e

v

(7]

Rgp(t -

1]

Also note that, by definition, Ryiyg + Rgp = 1, so the
system mairix becomes

0 0 1 0

0 0 0 i
A = (3.27)

-1 - R -2¢ -2f

s
I R -1 28 =27
s
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Dimensionless Parameter Definitions

Nomenclature Parameter Equivalent
K + K
Frequency w s D
o m
Cc
Damping 4 —
s 2mw
Q
Stiffness K
R — D
kb K + K
s b
X
R ——
ks K + K
S b
Cross-Coupled C
Damping 4 —<
q 2mw
0
Cross-Coupled I R I R
Stiffness s S
w
Spin Speed R -
W
0
Displacements - Y
y —
€
2
3 -
€
- 8
Deadband g -
€
Time T w t
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Characteristics of the Uncontrolled Rotor

This study concerns stabilization of rotors for
speeds at which the uncontrolled rotor is unstable. For
nonlinear systems, however, stability and instability
are amplitude dependent. When examining the instability
of a rotor with deadband, it is apparent that the effect
0f the deadband is diminished as the rotor’s amplitudes
of vibration begin to grow. Global stability can be
determined by neglecting the deadband, producing a lin-
ear system compatible with various linear analysis tech-
niques. Therefore, this study deals with analyzing lin-
ear systems obtained by neglecting deadband. The
results of these analyses are applied to the nonlinear
system, which is examined by simulation.

The eigenvalues of the linear system can be
readily obtained and will provide neariy all of the
information required, both for examining the stability
of the rotor and for determining the desired control
laws. Examination of the system matrix A shows a speed
dependency in the term I R. Thus, for any given speed
R, a different linear system is obtained. At some
speed, the system becomes unstable. That speed is the
onset speed of instability or the instability threshold
speed. Using the parameter values shown in Table 3.2,

the system eigenvalues over the speed range 0 ¢ R ¢ 5
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are shown in Fig. 3.4. The system 1is at the threshold
of instability for a speed of R = 2.2. The frequency of
the unstable mode ("whirl") is 1.1, approximately one-
half that of the rotor spin speed, characteristic of
self-excited rotors. As expected, the nonlinear system
with deadband becomes unstable above R = 2.2. This is
shown by simulation results depicted in Fig. 3.5, using

a deadband g = {1 for R = 2.3.

Table 3.2

System Parameter Values

Parameter Value

L 0.5
[3

4 0.1
q

R 0.8
Kb

R 0.2
ks




20

S0

£0

(A0)

*90B1], 9T0d 1030§ pafloajuodupn *4°¢ 814

sy 09y

10— £0- g°0- L0- 60— N S
1 1 1 1 ] | 1 ] 1 1 1 ]

£ =
1

1=

(s>u>0)

S310d 4010d A3ITIOHLNOONN

00’0
oLo
0Z0
og°0
0+°0
0S0
09°0
os0
080
060
00°t
oL°t
0zt
(0] 3 §
or’'L
0S¢t

sixy Auoujbowy



ROTOR CENTER POSITION




22

The Control Actuator

The problems of applying completely definable
forces to high speed rotating machinery have been the
focus of much recent study [8,9,10]). The result of this
effort is a versatile class of devices widely Kknown as
magnetic bearings. These bearings utilize electromag-
netic interaction to produce forces on shafts suspended
within their housings. Many experimental studies and
several practical applications attest to the feasibility
of these bearings for use in rotating machinery.

The force produced by a magnetic bearing can be
made relatively proportional to the driving current. The
use of two bearings grouped together results in a device
which can produce two independent forces in arbitrary
directions. By structuring the input currents to be
functions of the states of the system, a closed-loop
control system is produced. The forces can be made to
resemble stiffness, damping, combinations of these, or
other suitable forms.

For the purposes of this study, the magnetic bear-
ing forces are assumed to act in orthogonal directions
coinciding with the Y and Z rotor coordinate directions.
The transients associated with the actuator and control
loop are assumed to be negligible compared with those of
the rotor. The input current is proportioned to the

state vector X through a gain matrix G so that
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u
u = 1} = -6x (3.28)
u
2
where
g & 8
G - g11 12 13 14 . (3.29)

gai 22 23 g84

Stabilizing the Rotor

Modifying equation (3.24) to include the control
forces acting through a control distribution matrix B

yields

X’ = AX + Bu + d. (3.30)

Again, since system stability is of interest,
bearing deadband is temporarily neglected. The stabilit
of linear systems is independent of input, so the vec-
tor d is neglected temporarily as well. The resulting

linear system is

xl

AX + Bu (3.31)

or

>
~
"

(A - BG)x. (3.32)

Y
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Since there are independent, unconstrained control
forces acting in each direction, it can be shown that
all states are accessible by the control, and the system
is controllable., Thus, by selection of the gain matrix
G, the eigenvalues of (A - BG) can be arbitrarily posi-
tioned.

A simple method for stabilizing the rotor can be
developed by examination of the closed-lo0op system mat-
rix (A - BG). From the definition of the state vector X
and the form of the input u, the control distribution

matrix B has the form

B = |---|. (3.33)

This results in the closed~loop system matrix

0 0 i 0

0 0 0 1

(A - BG) =

= {1+ - R+ -(2 -(2% +
gii) (CS 812) ( §s+g13) ( §q 814)

{f R~ ~(1+ 2L - -(2
;s 821) ( gaa) ( §q €a3) ( §s+ga4)J

L

(3.34)

Since the rotor is radially symmetric, it foilows

that the control should conform to the same symmetry.
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821 = -g12 {(3.35)

822 = g2t (3.36)

€23 = -gi4 (3.37)
and

24 = g13 . (3.38)
Thus,

[ 0 0 1 0 ]
0 0 0 1

(A - BG) =

-{i+ - R -(2 =(2
( 811) (CS +812) ( §s+g13) ( §q+g14)

R - (1 2 -(2
L(gs +812) ( +€11) ( §q+s14) ( §s+813)J

(3.39)
Examination of this matrix shows a speed depen-
dency only with the term (fgR + gqp). By selection of
€12 as a linear function of R, this term can be held
constant for any spin speed. Furthermore, by setting
€14 = 813 = 814 = 0, the above matrix at an arbitrary
spin speed can be made equal to the open-loop matrix A

at some speed, say Ry . In other words, making

812 = fg(Ryg - R) (3.40)

will make
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(A - BG)R = Apo - (3.41)

This essentially cancels the effect of the cross-coupled
stiffness, which is the mechanism of instability in this
model. Furthermore, the eigenvalues of.(A - BG) at any
spin speed R remain constant and equal to those of A at
fhe speed Ry. Thus, the problem of control determina-
tion is reduced to choosing the speed Ro for which the
system has the desired characteristics.

One logical choice of the "reference speed" Ry can
be made by examining the pole-trace of Fig. 3.4. At the
speed R = 0, the system has the highest relative damping
of any speed. Relative damping associated with the ith

mode 1s defined as

-61
ERD = (3.42)
J 82+ w2
where Ay = &; * jwj represents the il eigenvalue of the

system. As an eigenvalue moves towards the unstable
zone, its relative damping decreases. The minimum rela-
tiye damping thus becomes a useful measure of the sta-
bility of the system. At R = 0, this value is maximum
(Irp = 0.497), with both modes being equally damped.

For comparison, the minimum relative damping at the
uncontrolled first critical speed of R = 0.78 is

frp = 0.323. Thus, the choice of Ry = 0 results in an
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"optimally" stable system with a 544 increase in criti-
cal speéd damping. ("Optimal" of course, refers only to
the control approach chosen here.)

Using equation (3.40) with Ry = 0 yields

g12 = -IgR (3.43)
and
0 - R 0 0
G = s . (3.44)
IR 0 0 0
S

This Keeps the poles of the closed-lo0op system at

Ay

-0.55723

I+

J(0.97366), and

Ao -0.44272 + j(0.T7366)
for any rotor spin speed R.

Control Performance

While Knowledge of the system poles gives an indi-
cation of the degree of stability and damping of the
system, it gives no insight into other factors relative
to the performance of the control. For example, while
the implemented gains may cause a stable eigenvalue
assignment, the force levels required to accomplish the
stabilization may be higher than the physical actuators

can produce. Also, the control of the nonlinear system
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is of concern. These questions can be addressed by
dynamically simulating the controlled rotor.

Using the control developed in the previous sec-
tion, numerous simulations were conducted for various
spin speeds and bearing deadband values. Fig. 3.6 shows
a typical simulation result. For each case, the maximum
control force required during the steady-state rotor
response was computed. These are plotted in Fig. 3.7
versus spin speed. The three cases include the linear
system (g = 0) and two nonlinear systems (g = 1, and
g = 10). This figure shows a nearly linear dependence
of the maxXximum control force on the spin speed R.
Furthermore, the variation between linear and nonlinear
cases is slight, if not negligible. Another interesting
performance indicator is how well the rotor responds to
an impulsive disturbance. Fig. 3.8 through Fig. 3.10
show the rotor response to an impulse velocity in one
direction. Again, the cases include the linear system
and two noniinear systems, showing the maximum control
force for each. While for these cases the maximum
forces are higher and increase with deadband, this is to
be expected. Loss of stiffness due to deadband causes a
greater excursion from the steady-state orbit, producing
2 higher control force.

Finally, the frequencies of a rotor orbit are

often of interest. Sub-synchronous whirls cause cyclic
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flexure of the rotor shaft and are often destructive.
They also indicate the presence of self-excited vibra-
tion mechanisms which lead to instability as the speed
is increased. Fig. 3.11 shows the frequency composition
of the rotor response of Fig. 3.10. it is predominantly
synchronous, as the self-exciting forces are counter-
acted by the coﬁtrol. and subsynchronous components are

not detectable.

Summary

In this chapter, a two degree-of freedom model was
developed and stabilized for an arbitrary speed . While
the control approach utilized was fairly simplistic, it
was shown to be quite effective. More importantly, it
allowed for an evaluation of the control performance.
While such indicators as control force levels and the
response of the nonlinear rotor may change quantita-
tively for different control schemes, the trend of each
would probably not differ substantially. The results of
this chapter will be applied to a more realistic, com-

plex rotor system in chapter four,
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ROTOR CENTER POSITION
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Fig. 3.6. Rotor Response at R = 5, § = 0.
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ROTOR RESPONSE TO IMPULSE

3=0, R=50, Fmox =9.3777

=3.00 -2.00 -1.00 0.00 1.00

Fig. 3.8. Rotor Response to Impulse at R = 5, g = 0.
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ROTOR RESPONSE TO IMPULSE

g=1R=50 Fmox =9.7128

4.00
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200
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Fig. 3.9. Rotor Response to Impulse at R = 5, g = 1.
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CHAPTER 1V

THE SIX DEGREE-OF-FREEDOM MODEL

Introduction

This chapter deals with stabilizing a siXx degree-
of-freedom rotor using one active magnetic bearing set.
In the previous chapter, a two degree-of-freedom rotor
was stabilized by using the control bearing to counteract
self-exciting forces. The result was a rotor that was
stable for any given spin speed. In many physical
rotors, however, the locations of self-exciting mecha-
nisms dimensionally restrict the positioning and number
of control forces that may be applied. Full state feed-
back for large rotor systems would also be impractical,
For these reasons, the six degree-of-freedom rotor model
is examined. This model enables the introduction of
several self-exciting mechanisms and nonlinearities
located away from the point of control application. To
investigate the stabilization of this rotor, the model
is presented in dimensionless form. Its uncontrolled
characteristics are studied to determine such factors as
control location and signal measurement. An "optimal"

stability criterion is defined using the eigenvalues of

36
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the linear system. The control gains are determined by
a search method. Finally, simulations are conducted to
determine required control force levels for the linear

and nonlinear systems.

The Model

The six degree-of-freedom model 1is shown in
Fig. 4#4.1. This rotor has three uniform lumped masses
my, mp, and m3 connected by two massless, flexible
shafts of stiffness Kgyq and Kgp. Acting at each mass
are support bearings K4, Kp; and K3, respectively. These
are radial type bearings, each with a deadband gj,
(i = 1, 2, 3). Also at each mass are elements which pro-
vide cross-coupled stiffness and damping QGgj and Cgqj,
as well as support stiffness and damping Kgj and Cgy.
Each mass is "unbalanced" by ils mass mj at a radius €,
where all three unbalanced radii are assumed to lie 1in
the same plane. The rotor is assumed to be radially
symmetric operating at a constant spin speed w. Only
motion in the Y and Z directions is considered. Gyro-
scopic effects, which can be shown to enhance rotor sta-
bility, are neglected.

The support bearings are initially assumed to have
zero deadband. This simplifies the form of the equa-
tions of motion. The nonlinear contributions frem dead-

band are included during the simulations by a

.
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disturbance vector. The resulting system is linear with

the following equations of motion:

my¥q + Cqyy + (Kgy + Kq)yy + Kgq(yy - ¥2)

+ quii + Qg12q = m1w2€1COS(wt) (4.1)

mifi + Ciii + (Kgq + Ky)zy + Kgq(zqg - 22)

- Cq191 - Qgq1Y1 = miwaeisin(wt) (4.2)

mp¥p + Co¥o + (Kgp + Ka)yp + Kgqlys - ¥y)

+ Kgplya - ¥3) + CqaZp + Qgpzp = mowlescos (wt) (4.3)

maia + Caiz + (Kgo + Kp)zp + Kf1(22 - Z4)

+Kfo(z2p - 23) - an).'a - Qgoyp = mawaeasin(wt) (4.4)

m3¥3 + C3¥3 + (Kg3 + K3)y3 + Kgaly; - v2)

+

Cqaz3 + Q5323 = M3W2ejcos (wt) (4.5)

m3i3 + C3i3 + (Kg3 + K3)z3 + Kgo(z23 - Z2)

- Cq3¥3 - Qs3Y3 = m3wle3sin(wt) (4.6)

By defining the dimensionless parameters shown in
Table 4.1, the equations are nondimensionalized and

become:

_ - Rg1 _ Rfy _ _
Y + 2L4Y4 + ¥y + (Y - ¥2)
Rmi Rm1
4R

+ 2Lq1Zqf + Zy = Re¢qRZcos(R7T) (4.7)

Rm1
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_ _ Ry _ Riy _
24” + 28424% + — 24 + (z¢ - 2p)
Rm1 Rmy
4R
- 28q1¥1’ - — ¥4 = ReyR®sin(R7r) (4.8)
Rmi
_ _ Rga _ Req - Rfa _ _
Yo + 2Lp¥p* + — ¥po + (Y2 - ¥q1) + (Y2 - ¥3)
Rmp Rmp Rmp
foR
+ 20qaZp’ + Zo = RepR2cos (Rv) (4.9)
Rmo
_ - Rga _ Rfy _ - Rfa _ _
22" + 20p2p% + —— Zp + (2p - 24) + (2o - Z3)
Rmp Rma Rmo
- 2R _
- 2lgqa¥2’ - — ¥2 = RepR2sin(Re) (4.10)
Rmo
- - Rg3 _ Ria _ _
Y3*” + 2L3¥3’ + — ¥3 + (Y3 - ¥2)
Rm3 Rp3
{3R _
+ 2Lq373‘ + Z3 = Re3R2cos (R7) (4.11)
Rm3
_ _ Rg3 _ Rip _
23% + 28323% + — I3 + (I3 - )
Rm3 Rm3
- f3R _
- 20q3Y3’ - — ¥3 = Re3RZsin(R7) (4.12)
Rmy
By choosing the state vector X to be
X = [?1 92 )73 VYi \-lya vy3 Ei ia z ‘721 VZZ 723]1‘ (4.13)
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the system in first-order form becomes

X’ = AXx + d (4.14)
where
- -
0 : 1 ' 0 ' 0
it e et e R
K : -D : -N : -H
Az |- = = 4= = = —p= - - 4= - - - (4.15)
0 : 0 ' 0 H I
ST T THET s s m s s - - -
N : H . K : -D
and

(R + R ) R -
[_ ke~ eq’ _£1 0
R R
mi mi
R (R + R + R ) R
K - £1 - _ k2 £1 £2 _f2 (4.16)
R R R
m2 m2 m2
R (R + R )
0 —f2 - _IL;LE_-J
- Rm3 Rm3
- -
2L 0 0
D = 0 2§a 0 (4.17)
0 0 2L
- -
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[ |
I R
4 0 0
R
mi r R
N - 0 - 0 (4.18)
R
me g R
0 0 3
R
L m3
o A
2 0 0
§q1
H = 0 2t 0 (4.19)
q2
0 0 et
L q3

and

d = disturbance vector of unbalance and nonlinear

bearing forces.

Characteristics of the Uncontrolled Rotor

This section describes the characteristics of the

rotor model developed in the previous section. Table
4,2 shows the parameter values used for this model.

As in the previous chapter, stability can be
determined by examination of the poles of the linear
system. Fig. 4.2 shows a trace of the rotor poles for
0 ¢ R ¢5. The first mode is unstable above R = 1.78,

the second above R - 4.1 and the third above R = 4.65.

Fig. 4.3, Fig. 4.4, and Fig. 4.5 show modal "orbit"




Table 4.1

Dimensionless Parameter Definitions
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Nomenclature Parameter Equivalent
K
Frequency W -
0 M
1
. m.
Mass R —1
mi M
t
C.
Damping 4 —_—l
1 2m w
i o
K + K
Stiffness R - S §
Ki K
t
K
R g1
fi K
t
Cross-Coupled C
Damping 4 —ai
ql 2m w
i o
Cross-Coupled I R I R
Stiffness si s1
w
Spin Speed R -
w
0
Displacements Y z
?.l .2- —4 ' -4
i i € €
t t
Deadband g
E —L
i €
T
Time T w t
o)
Where: Mt = my + mp + m3, €y = €4 + €2 + €3, and
Kt = Ki + KSi + Ka + KSZ + K3 + Ks3
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shapes for each of these modes at their respective
unstable speeds. For the chosen mode, the modal orbits
are obtained by combining the complex eigenvector and
eigenvalue into the form of a solution and retaining the
real part. These orbits show that the {(mainly) rigid
body *"bounce" mode is the first to become unstable, fol-
lowed by the rigid body "pitch" mode, and finally the
flexible mode. This is the expected order, as the lower

frequency (rigid) modes are most easily excited.




Table 4.2

Rotor Parameter Values

Parameter Value

R 0.25
mi

R 0.50
m2

R 0.25
m3

14 0.25
1

4 0

2

14 0.25
3

R 0.50
K1

R 0
Ke

R 0.50
kK3

R 0.50
f1

R 0.50
fe

4 0.05
qi

4 0
g2

4 0.05
q3

R 0
€1

R 1.00
€2

R 0
€3
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Control Structure

In this section, the control structure is devel-
oped and implemented on the linear rotor system.
Disturbances are neglected. Taking the system without

disturbances, the control u is added so that

X’ = AX + Bu. (4.20)
Now let

u = -Gy (.21)
where

Y = CX. (4.22)

The above control form is chosen because full state
feedback is impractical on physical rotor systems.

The closed-loop system becomes

x’ = (A - BGC)x. (4.23)

To produce the two control forces

: i (4.24)

I

the gain matrix must be based on the form of the

output y. The output y is chosen to take the form




[8)]
S

Y = [ Yo Vye Z¢ Vge 1T (4.25)
where

Y. is a linear combination of the Y-direction

displacements yy, Y2, Y3,

Vyc is a linear combination of the Y-direction

velocities vyy, Vyo, Vy3,

Zc. is a linear combination of the Z-direction

displacements z4, 2, z3 , and

Vzc is a linear combination of the Z-direction

velocities Vvgz4, Vgz2, Vgz3.

Obviously, there are many ways to structure the output
Y- The above choice is logical, however, in that it
simplifies the structure of both the output matrix C,
and the resulting gain magrix G. Recalling the radial
symmetry of the rotor, it is apparent that the Y and Z
direqtional measurements of the output should be symmet-

ric. This results in C having the form
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Also from symmetry and the results of the previous

chapter, the gain matrix G has the form

g
G = 11 12 13 14 | (4.27)

The apparent difference in equation (4.27) and the gain
matrix of the previous chapter results from the order of
the state vector. The control distribution matrix B
depends upon the chosen point of application of the con-
trol forces. It is assumed that both forces will be

applied at one mass only.

Control Determination

To stabilize the rotor represented by the closed-
loop system of equation (4.23), it is sufficient to
position all of the poles in the left half plane. It is
not necessary, however, to place all the poles to
achieve stability. Thus, the system of equation (4.23)
need not be completely controllable. By using one mag-
netic bearing set in the absence of full state feedback,
the control is suboptimal.

The various analytical techniques available for
dealing with the linear suboptimal control problem gen-
erally influence a portion of the system in a specific

way, and minimize the influence of the control on the
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remainder of the system. Modal control, for example,
*"fine-tunes" a specific mode or modes, while the "spill-
over” of the control to other modes is not directly
controlled. The use of this technique for this applica-
tion limits the number of directly controllable modes to
one. While this allows the rotor to operate above
previously unstable speeds, the influence of the control
on the two remaining modes would be questionable.

For these reasons, a direct search method for
determining the control gains is used. Using Powell’s
method [15) a function is minimized by iteratively
searching an independent vector, in this case, the con-
trol gains. As discussed in the previous chapter, a
useful measure of the stability of the system is the
relative damping of the systems's modes. The relative

damping Igp of the ith mode is defined as before to be

_61
Erpl = - (4.28)
/7612 + wli2
where Aj = 8; * jwj 1is the eigenvalue associated with
that mode. It is the minimum relative damping which 1is

critical to the stability of the system. Maximizing
that minimum relative damping is equivalent to maxi-
mizing the shaded region of Fig. #&#.6. The minimum rela-
tive damping of the closed-loop system is determined by

a computational function. The negative of this function
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is minimized using Powell's method to determine the con-
tro! gains. The applications of this approach are dis-

cussed in the next section.

\
\

-
=)

-+

Least Damped
Mode

;\\

)

~

Fig. 4.6. Effect of Maximizing ERpD
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Control Application

Before the control gains are determined, two
factors must be specified concerning the control:

(1) Point of application of the bearing,

(2) Combination of measurements for the output

signal.

To best determine the location for applying the
control, it is useful to examine the uncontrolled
rotor's modal! orbit shapes. Recalling Fig. 4.3 through
Fig. 4.5, it can be seen that, for affecting the first
unstable mode (Fig. 4.3), the bearing can be located at
either three mass positions. This is because that mode
is very nearly a rigid body translational (or "bounce")
mode. Examination of the next unstable mode (Fig. &4.4)
clearly shows that a bearing located at the center mass
location offers no stabilizing effect for this mode.
Since this mode is unstable at a speed lower than the
third mode, controliling it takes priority over modes
that follow. Therefore, the magnetic bearing should be
located at an end mass location, say that of my.

The decision of where to measure and how to com-
bine the signals for the output y is not as simple as
the location of the control. It is helpful to make a
restriction regarding this factor. Since full state
feedback is impractical for most rotor systems, 1t is

assumed that the information from all three mass
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locations will not be available. The output can contain
information from two locations, at most. An examination
of the uncontrolled rotor's modal orbit shapes shows
that if information is provided from the center mass
location only, the second ("pitch") mode cannot be
affected. Thus, an end location must be measured. For
stabilization of the third mode, information from the
center mass is required as well,. To gain more insight
into the gquestion of measurement, the search program was
run for varying combinations of measuring locations.

For each trial, the stabilization capabilities were
observed. The results of these show that the best degree
of stabilization is obtained from signal measurement at
the center mass location and the end location where the
magnetic bearing is to be located. Furthermore, by
appropriate weighting of the measurements an even higher
degree of stabiliztion is achieved.

Using the end mass my as a location for the mag-
netic bearing and measuring the displacement and veloc-

ity signals at the end and center masses my and mp with
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the search program was used to determine the control
gains. For various spin speeds the gains were computed
to maximize the relative damping. For the chosen output
and bearing location, the rotor was stabilized for
speeds up to approximately R = 7.2. Fig. 4.7 shows the
control gains obtained over the speed range 0 < R £ 8.
This figure illustrates that for any given speed, there
are numerous solutions which optimize the damping.
Using the gains obtained from a prior speed as starting
values and incrementing the speed slightly, it was pos-
sible to "track" a particular solution over the speed
range. The irregularities observable in the figure,
however, show the difficulties associated with this
approach.

The poles of the controlled rotor system using the
gains of Fig. 4.7 are shown in Fig. 4.8. Enlarged views
of various sections are shown in Fig. 4.9 through
Fig. 4.11. Due to the somewhat irregular nature of the
control gain solutions, the behavior of the poles, espe-
cially at lower speeds, is somewhat erratic.

For comparison, the control gains from Fig. 4.7 at
the stability threshold speed (R = 7.2) are used and
held constant over the entire speed range. Fig. 4.12
shows the rotor poles for these constant gains. AS seen

in the enlarged views of Fig. #4.13 through 4.15, the
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poles are more well behaved than those obtained using
speed dependent'gains. More importantly, however, is
the fact that the system is stable over the same speed
range. A close comparison of Fig. 4.8 with Fig. %4.12
reveals that the overall behavior of the poles does not
differ significantly. This indicates that, at least for
this model, there is little advantage to using speed
dependent gains. Therefore, the rest of this chapter
will deal with systems controlled by the constant gains

obtained at R = 7.2
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Control Performance

The performance of the control is evaluated by
examining the maximum control force required to achieve
stabilization. This control force is obtained by simu-
lating the rotor at steady state, or in a limit cycle if
one exists. Both the linear and nonlinear rotors are
simulated. A power spectral density of a nonlinear
simulation reveals its frequency components.

Fig. 4.16 shows the maximum control force required
to stabilize the rotor over the speed range 0 ¢ R < 6.

Though the rotor is stable for speeds up to R

n

-3
n
[ag
o 3
o

ampl itudes of vibration become unrealistically large as
this speed is approached. For the nonlinear systems,
the deadband g is equal! in both the end supporting bear-
ings. Fig. 4.16 shows that, as deadband increases, the
force required to stabilize the rotor does also. The
slight peak in the force curves for g = 0 and g = 1
occurs at a speed slightly less than R = 1. This 1is
approximately the same as the first critical speed.
Comparison of Fig. 4.16 with the corresponding plot of
the previous chapter (Fig. 3.7) shows that nearly the
same level of force is required for this model with the
exception of that for the g = 10 case, which for this
model requires an order of magnitude greater force.

A typical simulation of the nonlinear system with

€ = 1 is shown in Fig. 4.17 through Fig. 4.19. At R = 2
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this system exhibits mainly synchronous motion. Increas-
ing the speed to R = 6, as shown in Fig. 4.20 through
Fig. 4.22 changes the system dramatically. While the
center mass exhibits mainly synchronous motion, the end
masses exhibit complex subsynchronous motions. This
results from the self-exciting mechanisms being located
at both end masses, and none at the center. In all
cases, the amplitudes at the mass where the control is
applied are significantly lower than at the other
masses. Fig. 4.23 shows the frequency components of the
end mass response indicating mainly subsynchronous
motion. The response of the rotor with g = 10 at
R - 6.0 can be seen on Fig. 4.24 through Fig. 4.26,
High amplitude subsynchronous motion is clearly evident,
resulting in high required control forces to maintain

stability.

Summary

In this chapter, a six degree-of-freedom model was
presented and stabilized to the maximum possible speed.
The control was supplied by one magnetic bearing set,
optimally located by examining the rotor's modal orbit
shapes. For the model parameters chosen, this location
was found to be the end mass of the rotor. The output
measurement combination for the highest degree of stabi-

lization combined the signals from the center mass and
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the end mass where the magnetic bearing was located.
The control gains were determined by use of a search
method which maximized the damping of the least damped
mode. Speed dependent gains offered little improvement
over constant gains for this model. All three natural
modes could be stabilized for speeds up to R = 7.2,
which resulted in nearly a 300%Z increase in the thresh-
old speed of the original rotor. The control forces
required to achieve stabilization were determined for
various spin speeds and bearing deadband values, and
were found to increase with increasing speed and bearing
deadband. Though the magnitudes of these forces grew
relatively large as the threshold speed was approached,
their magnitudes for the linear and low value (g = 1)
deadband systems were comparabie to those found for the
two degree-of-freedom model for speeds up to three times

that of the original threshold speed.
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ROTOR CENTER PQSITION

R=20, Mass 1
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Fig. 4.17. Rotor Response at Mass 1 for R = 2, g = 1.
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ROTOR CENTER POSITION

R=20, Moss 2
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Fig. 4.18. Rotor Response at Mass 2 with R = 2, g =1.
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ROTOR CENTER POSITION

R=20, Mas3s 3

Fig. 4.19. Rotor Response at Mass 3 with R = 2, g =1.



ROTOR CENTER PQSITION

R=60, Mass |
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Fig. 4.20. Rotor Response at Mass 1 with R =
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ROTOR CENTER POSITION

R =60, Mass 2
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Fig. 4.21. Rotor Response

Y

at Mass

T
1.00

2 with R =6, g =],

3.00



ROTOR CENTER POSITION

R=160, Mass 3
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Fig. 4.22. Rotor Response at Mass 3 with R = 6, g = 1.
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ROTOR CENTER POSITION

R=60, Mass 1
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Rotor Response at Mass 1 with R = 6,. §
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ROTOR CENTER POSITION

R =60, Mass 2

Fig. 4.25. Rotor Response at Mass 2 with R = 6, g = 10.
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ROTOR CENTER POSITION

R=160, Mass 3
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CHAPTER V
CONCLUSIONS

Using active control, the stabilization of
self-excited rotor systems has been investigated. Two
different rotor models have been used, and linear
and nonlinear cases of each examined. For each case,
the applied control has enhanced the stability charac-
teristics of the rotor significantly, allowing it to
operate above otherwise unstable speeds.

For the two degree-of-freedom model, the control
was structured to counteract self-exciting forces. In
the absence of these destabilizing forces, the rotor was
stabilized for any spin speed, The control forces
requiréd to maintain stability were found to vary nearly
linearly with spin speed, and were not significantly
affected by bearing deadband. While this control
approach seemed somewhat simplistic, it was shown to be
quite effective. The versatile nature of magnetic bear-
ings could allow implementation of such a control scheme
in a physical rotor, especially where dimensions would
permit locating a magnetic bearing near each major self-

eXxciting mechanism.
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The control approach used for the six degree-of-
freedom mode! was shown to be effective at improving the
stability of the rotor, although the improvement was
limited. The system was stabilized for speeds up to
nearly 3004 of the original instability threshold speed,
The significant result was the stabilization of each of
the rotor's three natural modes using one magnetic bear-
ing. The placement of the magnetic bearing was such that
it maximized the effect that the bearing could exert on
each of the rotor's natural nmodes. The feedback signal
for the control was structured to be a composite output
signal, with less than full state information. To offer
the most system improvement, it was found that this sig-
nal should contain information from at least the center
mass location and end mass location where the bearing
was located. The control forces required to stabilize
the rotor were shown to increase nonlinearly with spin
speed and deadband. However, the relative magnitudes of
these forces were comparable to those found for the two
degree-of-freedom model. Obviously, the particular
parameters chosen to describe the model affect the
improvement capabilities of the control. However, 1in
many cases even a small improvement in the stability
threshold speed is worthwhile goal.

Several interesting topics relating to this study

remain to be addressed. First, the function uzed to
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determine the optimal control gains for the six degree-
of -freedom model in this study was somewhat poorly
suited for iterative methods. The parameter being maxi-
mized, the minimum relative damping, was a value asso-
ciated with only one eigenvalue. As the eigenvalues
"moved" under the effect of the control, the one with
which the relative damping was associated would switch.
This led to there being many solutions for the optimal
gains, and erratic behavior of the eigenvalues under
speed dependent gain solutions. One possible research
question would be to examine alternative optimization
criteria, possibly based on independent eigenvalue
excursions.

Secondly, the accurate modeling of many of the
physical phenomena affecting rotor systems is presently
an issue of uncertainty. These often highly nonlinear
effects are generally treated by variable coefficients,
the values of which may vary significantly from one
effort to another. Of interest then, would be the
sensitivity of a control application to variations in
the modeling parameters.

Lastly, the dynamics associated with the control
loop should be investigated as they affect high speed
rotor systems, Delays from signal measurement, process-
ing, and control actuators could greatly affect the

performance of the control on machinery of this type.
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