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NDE RELIABILITY AND PROCESS CONTROL FOR STRUCTURAL CERAMICS 

George Y. Baak l i n l  
Nat ional  Aeronautics and Space Admin is t ra t ion  

Lewis Research Center 
Cleveland, Ohio 44135 

ABSTRACT 

The r e l i a b i l i t y  o f  microfocus x-radiography and scanning l a s e r  acoust ic 
microscopy f o r  de tec t i ng  microvoids I n  s i l i c o n  n i t r i d e  and s i l i c o n  carb ide  was 
s t a t i s t i c a l l y  evaluated. Mater ia ls -  and process-related parameters t h a t  
in f luenced the  s t a t i s t i c a l  f i nd ings  I n  research samples are  discussed. The use 
o f  conventional x-radiography i n  c o n t r o l l i n g  and op t im iz ing  the  processing and 
s i n t e r i n g  o f  an SI3N4-Si02-Y203 composition designated NASA 6Y i s  described. 
Radiographic eva lua t ion  and guidance helped develop uni form high-densi ty 
SI3N4 modulus-of-rupture bars w i t h  improved four -po in t  f l e x u r a l  s t rength  
(857, 544, and 462 MPa a t  room temperature, 1200 OC, and 1370 O C ,  respec- 
t i v e l y )  and reduced s t rength  sca t te r .  

INTRODUCTION 

Advanced nondestruct ive evaluat ion (NDE) techniques t o  r e l i a b l y  de tec t  
c r i t i c a l  f laws are  needed i f  f r a c t u r e  mechanics p r i n c i p l e s  a re  t o  be app l ied  
e f f e c t i v e l y  i n  the  design of ceramic heat engine components (1,2). These 
techniques are  a l so  needed t o  monitor and c o n t r o l  the  f a b r i c a t i o n  process I n  
the  ma te r ia l s  development program t o  make stronger and more r e l i a b l e  ceramics 
(2) .  Re l i ab le  ceramics requ i re  f a b r i c a t i o n  process c o n t r o l  t o  reduce the  
incidence o f  various f laws and t o  ensure t h a t  any f laws t h a t  occur a r e  non- 
c r i t i c a l .  The dominant c r i t i c a l  f l a w  type i n  mono l i th ic  ceramics i s  a pore 
(3,4,5), which can cause wide strength va r ia t i ons  and unacceptably low 
strength.  
l i s h e d  the  r e l i a b i l i t y  o f  microfocus x-radiography and scanning l ase r  acoust ic 
micrcscopy fc: de tec t i ng  seeded !nterna! w ! A s  !n S!$4 and S i c  t e s t  specimens. 
Pre l im inary  radiographic charac ter iza t ion  o f  s in te red  SI3N4 specimens (2 )  
revealed the  presence o f - l a r g e  density gradients ( a  high-densi ty case w i t h  a 
low-density core s t ruc tu re ) ,  which were bel ieved t o  be de t r imenta l  t o  s t rength  
p roper t i es .  Therefore a program was undertaken a t  NASA Lewis (3 )  t o  i nco r -  

. porate conventional x-radiographic techniques i n  an extensive i n v e s t i g a t i o n  o f  
one Si3Nq-Si02-Y203 composition i n  order t o  monitor i t s  f a b r i c a t i o n  process. 

a f f e c t e d  the  r e l i a b i l i t y  o f  microfocus x-radiography and scanning l ase r  acous- 
t i c  microscopy f o r  de tec t ing  i n t e r n a l  voids i n  SI3N4 and SIC. The c a p a b i l i t y  
of the  conventional x-radiographic technique i n  gu id ing  powder processing and 
s i n t e r i n g  parameter changes t o  improve the  absolute dens i ty  o f  s in te red  
S13N4 and t o  e l im ina te  de t r imenta l  densi ty va r ia t i ons  i s  emphasized. 
ments i n  f l e x u r a l  strengths and reductions i n  s t rength  sca t te r  a r e  a l s o  
described. 

Recent studies a t  t he  NASA Lewis Research Center (6,7) have estab- 

This paper describes the mater ia ls-  and process-related f a c t o r s  t h a t  

Improve- 



I MATERIALS AND PROCEDURES 

The preparat ion o f  SIC and Si3N4 specimens needed f o r  the  NDE r e l i a b i l i t y  
determinations i s  shown i n  Fig.  1. The Si3N4 powder had the  S I + J N ~ - S I O ~ - Y ~ O ~  
composition. The S I C  powder contained s i n t e r i n g  a ids and b inder  mater ia ls  o f  
boron and carbonaceous res ins.  Styrene d i v i n y l -  benzene microspheres o f  var ious 
s izes (50, 80, 115, 220, and 528 pm diam) were seeded i n  green specimens and 
l a t e r  burned out t o  create voids w i t h i n  t h e  green and s in te red  specimens. 
seeded t e s t  bars had the  same dens i t ies ,  compositions, and shapes as t y p i c a l  
modulus-of-rupture (MOR) bars o f  the  same mater ia ls .  D e t a i l s  on specimen 
f a b r i c a t i o n ,  void character izat ion,  dimension o f  specimens and voids, and 
densi ty  determinat ion are  given I n  Ref. 6. Microfocus radiography (F ig.  2) and 
scanning l a s e r  acoustic microscopy (F ig.  3) were used t o  de tec t  the  seeded 
voids (20 t o  477 pm i n  diam) I n  t h e  fabr ica ted  ceramic samples. References 6 
and 7 descr ibe i n  d e t a i l  the  radiography and SLAM systems, respec t ive ly .  

The 

The powder-processing steps o f  the NASA 6Y SI3N4 composition, con ta in ing  
6 w t  x each o f  Y2O3 and Si02, a re  shown i n  Fig.  4. 
( g r i n d i n g  time, t , 24, 100, o r  300 hr ) ,  d i e  pressed i n t o  bars a t  21 MPa, and 
then isopressed a! 414 MPa . 
a t  a t ime a t  2140 O C  I n  a tungsten cup. 
bars from one another and from contact  w i th  t h e  tungsten cup. 
t imes t, were 1, 1.25, 1.5, and 2 hr .  Ni t rogen overpressures PN o f  2.5, 
3.5, and 5.0 MPa were employed. A l l  batches were rad iograph ica l l y  evaluated 
a t  a l l  stages of  f a b r i c a t i o n  as described i n  Fig.  5. Test bars were rad io-  
graphed (F ig .  6) I n  t w o  modes: (1) the (W,L) mode, where x-rays are  t rans-  
m i t t e d  through the thickness o f  the  bar, and (2)  the  (T,L) mode, where x-rays 
are  t ransmi t ted through the w id th  o f  the bar. Radiographic feedback on the 
densi ty  un i fo rmi ty  o f  the  bars was used t o  a d j u s t  t h e  powder-processing and 
s i n t e r i n g  parameters. Four-point f l e x u r a l  s t rength t e s t s  were conducted i n  
a i r  a t  room and elevated temperatures (1200 and 1370 "C)  w i t h  inner  and outer  
spans o f  9.53 and 19.05 mn, respect ive ly .  Strength data and radiographic 
densi ty  data were used t o  f u r t h e r  modify the processing and s i n t e r i n g  
var iab les.  

Powders were m i l l e d  

A t o t a l  o f  690 bars (23 batches) were s in te red  1 5  
High-pur i ty  BN d isks  separated the  

S i n t e r i n g  

NDE RELIABILITY 

R e l i a b i l i t y  assessment of  microfocus x-radiography and scanning l a s e r  
acoust ic microscopy i s  p r o b a b i l i s t i c  because o f  the  combined u n c e r t a i n t i e s  
associated w i t h  the equipment, the  operator, t h e  f l a w  c h a r a c t e r i s t i c s ,  e tc .  
Therefore a s t a t i s t i c a l  approach must be used t o  determine t h e  d e t e c t i o n  
r e l i a b i l i t y .  This examination o f  the  seeded specimens was based on e i t h e r  
de tec t ing  o r  n o t  de tec t ing  known e x i s t i n g  voids. 
t h i s  examination were possible,  the p r o b a b i l i t y  o f  de tec t ion  (POD) can be 
described by a binomial d i s t r i b u t i o n .  
i n t e r v a l s  and f u r t h e r  rearranged by the  opt imized p r o b a b i l i t y  method (8) t o  
c a l c u l a t e  the PO0 values a t  the  0.95 confidence l e v e l .  

Microfocus X-RadlosraDhy 

of  POD versus void s ize,  expressed as a percent o f  t o t a l  specimen thickness. 

Since only  two outcomes from 

Detect ion data were grouped i n t o  s i z e  

NDE r e l i a b i l i t y  data a re  presented i n  Figs.  7 and 8 i n  t h e  form of p l o t s  

2 

I -  - 



For green mater ia ls  the  POD curves i n  Fig. 7(a) i n d i c a t e  t h a t  t he  detec- 
L A - -  _ _ _ _  A A S . . a A . .  ~ i u r i  s r r i s i ~ i v i ~ y  o f  i ~ t e - i ~ a i  voids i n  S i c  W ~ S  about the 6s iii Si3ii4 
( i .e.,  2.5 percent of thickness a t  a POD o f  0.9). However, surface voids were 
easier t o  de tec t  than i n t e r n a l  voids i n  both ma te r ia l s  (Figs.  7(b) and (c ) ) .  
This was due t o  the  i n t e r n a l  voids being p a r t i a l l y  f i l l e d  w i t h  powder, which 
reduced the  cont ras t  on the  x-ray f i l m .  Even though i n t e r n a l  voids o f  t h i s  
type would s imulate an interconnected p o r o s i t y  s t r u c t u r e  i n  s i m i l a r  mater ia ls ,  
i t  i s  d i f f i c u l t  t o  e s t a b l i s h  r e l i a b i l i t y  s t a t i s t i c s  f o r  n a t u r a l l y  occur r ing  
i n t e r n a l  voids. Hence on ly  the  POD data f o r  surface voids presented here in  
would apply t o  n a t u r a l l y  occurr ing i n t e r n a l  voids i n  green dry-pressed, 
inject ion-molded, o r  s l i p -cas t  mater ia ls.  
de tec t ion  s e n s i t i v i t y  was about 1.5 percent o f  th ickness f o r  surface and 
i n t e r n a l  voids i n  SIC, 1.5 percent o f  th ickness f o r  surface voids I n  SI3N4, 
and b e t t e r  than 1.5 percent of thickness f o r  i n t e r n a l  voids i n  SI3N4 a t  a POD 
o f  0.9. This h igh  s e n s i t i v i t y  t o  i n t e r n a l  voids i n  s in te red  SI3N4 was due 
t o  vo id  morphologies t h a t  enhanced the x-ray a t tenua t ion  depending on the  
densi ty,  chemical composition, and thickness o f  the  s h e l l  surrounding the  
voids. Thus the  image con t ras t  of  some voids was improved. A dense s h e l l  
format ion could occur f o r  mater ia ls  where high-atomic-number add i t i ves  are  
used t o  promote the s i n t e r i n g  process. When l o c a l  chemical o r  dens i t y  var ia -  
t l o n s  a r e  n o t  present, as i s  the  case i n  s ln te red  S i c ,  the  de tec t i on  r e l i a -  
b i l i t y  f o r  i n t e r n a l  voids can be i n f e r r e d  from the POD curves f o r  surface 
voids (F ig .  8(b)). 

For s in te red  mater ia ls  (F ig .  8) t he  

Scanninq Laser Acoustic Microscopy 

POD ( a t  0.95 confidence l e v e l )  o f  surface-connected voids i n  s in te red  SI3N4 
(9) .  For a s - f i r e d  2-, 3-, and 4-m- th ick  specimens ( w i t h  surface roughness o f  
8 pm, peak t o  va l ley ,  t he  0.9 POD was no t  a t ta ined.  A f t e r  the  same speci- 
mens were pol ished t o  a surface roughness o f  2 pm, 0.9 POD was achieved f o r  
a l l  thicknesses. This acous t ica l  opaci ty o f  the  as - f i r ed  specimens was a t t r i b -  
uted t o  the  surface roughness. However, near-surface pore d i s t r i b u t i o n  might 
have sca t te red  the  sound wave and resu l ted  i n  poor vo id  d e t e c t a b i l i t y .  Figure 
10 shows how vo id  s i t e ,  void depth below the  laser-scanned surface. and m a t r i x  
ma te r ia l  a f fec ted  the  POD o f  i n t e r n a l  voids i n  s in te red  specimens having d ia -  
mond ground surfaces ( 7 ) .  
smal lest  vo id  sizes and the maximum depths a t  which 0.9 POD (0.95 confidence 
l e v e l )  was achieved. The de tec t ion  s e n s i t i v i t y  was grea ter  f o r  SI3N4 than i t  
was f o r  S IC .  
greater po ros i t y  o f  SIC. These mic ros t ruc tura l  d i f fe rences  might have 
increased the  u l t r a s o n i c  sca t te r  and resu l ted  i n  more u l t r a s o n i c  a t tenua t ion  
i n  SIC. 

Figure 9 shows how specimen thickness and surface cond i t i on  a f fec ted  the  

The boundaries o f  the  bar graphs i n d i c a t e  the  

This can be a t t r i b u t e d  t o  the  coarser g r a i n  s t r u c t u r e  and 

NDE PROCESS CONTROL 

Processing and s i n t e r i n g  condi t ions were modif ied on the basis o f  feed- 
back from radiography t o  ob ta in  the  uniform high-densi ty MOR bars associated 
w i t h  improved s t rength  and reduced strength sca t te r .  Figure 11 shows how 
these mod i f ied  procedures a f fec ted  the f l e x u r a l  s t rength  o f  NASA 6Y SI3N4 
s in te red  a t  2140 O C .  

i t y  d i s t r i b u t i o n  i n  the  basel ine and improved mate r ia l s  i s  shown i n  Fig. 12. 
E f f o r t s  were made t o  e l im ina te  the case-core s t r u c t u r e  (Figs.  6 and 12) and 
thereby strengthen the  ma te r ia l  and reduce i t s  s t rength  sca t te r .  

The s e n s i t i v i t y  o f  radiography t o  the  w i th in -bar  poros- 
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The case-core s t r u c t u r e  was examined as a f u n c t i o n  o f  the powder f ineness 

Radiography showed t h a t  increas ing 
and the  s i n t e r i n g  var iab les g r i n d i n g  time, s i n t e r  cup height,  n i t r o g e n  over- 
pressure, and degree o f  BN s e t t e r  contact .  
the  powder fineness (by using 100- and 300-hr m i l l i n g  t imes) resu l ted  i n  
th inner  and less  d i s t i n c t  cases and thus improved both s i n t e r a b i l i t y  and 
un i fo rmi ty .  Minlmizlng the BN s e t t e r  contact  resu l ted  i n  more uni form densi- 
f i c a t i o n  as a consequence o f  more uni form heating. 
overpressure f rom 2.5 t o  3.5 t o  5.0 MPa had no e f f e c t  on the  case-core s t ruc-  
tu re .  When using 100-hr m i l l i n g  time, smal ler  BN d isks,  and a n i t r o g e n  over- 
pressure o f  5.0 MPa, increas ing t h e  s i n t e r i n g  t ime from 1 t o  2 h r  and r a i s i n g  
the  s i n t e r  cup i n t o  a more uni form temperature zone were very e f f e c t i v e  I n  
g r e a t l y  reducing densi ty  gradients  i n  s in te red  bars. The most un i form mate- 
r i a l ,  batch 31 (Fig. 12), was the  r e s u l t  o f  the  cumulative p o s i t i v e  e f f e c t s  of 
Increas ing t h e  powder g r i n d i n g  t ime from 24 t o  300 hr,  increas ing t h e  s i n t e r -  
i n g  t ime from 1 t o  2 hr ,  min imiz lng the  BN s e t t e r  contact ,  a d j u s t i n g  the  
s l n t e r  cup height, and using powder wet-s ieving procedures. 
used t o  e l im ina te  agglomerates and t o  reduce t h e  s i z e  o f  impur i ty  p a r t i c l e s  i n  
green-pressed bars t h a t  vaporize dur ing  s i n t e r i n g  and leave voids i n  the  
s in te red  bars. 

But increas ing n i t r o g e n  

Wet s i e v i n g  was 

Microst ructures f o r  t h e  basel ine batch and the  optimized batch (31) were 
compared and re la ted  t o  p o s i t i o n  i n  the  bar by reference t o  radiographs 
(F ig .  12). The top and bottom surfaces (W,L) planes o f  batch 31 had essen- 
t i a l l y  pore-free zones o f  equal thickness. However, t h e  (W,L) planes o f  the  
basel ine batch contained zones o f  d i s s i m i l a r  th ickness and a pearance and had 

ab ly  less  than tha t  o f  the basel ine batch (3.12 g/cm3). 
f i n e  p o r o s i t y .  The i n t e r n a l  p o r o s i t y  o f  batch 31 (3.24 g/cm 0 ) was consider- 

The i n d i v i d u a l  and combined e f f e c t s  o f  powder f ineness and each o f  the  
s i n t e r i n g  var iables on the  f l e x u r a l  s t rength  o f  NASA 6Y a t  room temperature, 
1200 "C, and 1370 " C  are  explained i n  d e t a i l  i n  reference 3. Only the  cumu- 
l a t i v e  p o s i t i v e  e f f e c t s  o f  a l l  the var iab les on f l e x u r a l  s t rength are  shown i n  
Fig.  11. I n  processing from batch t o  batch (basel ine t o  28 t o  29 t o  31) the  
room-temperature s t rength c o n t i n u a l l y  increased, w i t h  an o v e r a l l  improvement 
o f  56 percent and more than a t h r e e f o l d  reduct ion i n  t h e  standard dev ia t ion .  
Strength Improved 38 and 21 percent a t  1200 and 1370 O C ,  respec t ive ly .  A l l  
successive improvements . i n  the mechanical p roper t ies  o f  s in tered SI3N4 were 
guided by x-radiographic charac ter iza t ion .  For the  most improved mater ia l  the  
prev ious ly  dominant fa i lure-causing voids were replaced by l a r g e  columnar 
grains,  which are less  det r imenta l  t o  s t rength proper t ies .  

CONCLUSIONS 

The r e l i a b i l i t y  o f  microfocus x-radiography f o r  nondestruct ive ly  evalu- 
a t i n g  s in te red  ceramics was a f f e c t e d  by the  seeded vo id morphologies, whqch 
enhanced the x-ray at tenuat ion depending on the  densi ty,  chemical composition, 
and thickness of the s h e l l  surrounding the  voids. The r e l i a b i l i t y  o f  scanning 
laser  acoust ic  mlcroscopy was af fected by the  specimen surface roughness and 
m i c r o s t r u c t u r a l  charac ter is t i cs .  Rough surfaces, l a r g e  grains,  and h igh  
p o r o s i t y  reduced t h e  de tec t ion  c a p a b i l i t y .  
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The successful use o f  conventional x-radiography i n  gu id ing  the  f a b r l -  
c ~ t : o i i  j j r o c e j j  .iejiilted iii deii5e.i aid iiiure U i i i i u i m  Si3ij4 over the  base l ine  
mater ia l .  The improved mate r ia l  reached fou r -po in t  average f l e x u r a l  s t rength/  
standard dev ia t i on  values o f  857/36, 544/33, and 462/59 MPa a t  room tempera- 
tu re ,  1200 O C ,  and 1370 O C ,  respect ive ly .  
ments o f  56, 38, and 21 percent over the basel ine p roper t i es  a t  t h e  th ree  t e s t  
temperatures. 
by l a rge  grains, which are  less  detr imental t o  s t rength  proper t ies .  

These s t rengths represented improve- 

Further, p rev ious ly  dominant fa i lu re -caus ing  voids were replaced 
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