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SUMMARY 

This is the second annual report of the first 3-year phase of a 2 phase, 
5-year program. 
predominant modes of degradation of a plasma sprayed thermal barrier coating 
system and to develop and verify life prediction models accounting for these 
degradation modes. The primary TBC system consists of an air plasma Sprayed 
ZrO-Y203 top coat, a low pressure plasma sprayed NiCrAlY bond coat, and a 
Rene' 80 substrate. 

The objectives of the first phase are to determine the 

The first task (Task I) was to evaluate TBC failure mechanisms. Both bond 
coat oxidation and bond coat creep have been identified as contributors to TBC 
failure. 
and the top coat, including tensile strength, Poisson's ratio, dynamic 
modulus, and coefficient of thermal expansion. 

Key property determinations have also been made for the bond coat 

The second task (Task 11) is to develop TBC life prediction models for the 
predominant failure modes. These models will be developed based on the 
results of thermomechanical experiments and finite element analysis. 
thermomechanical experiments have been defined and testing initiated. Finite 
element models have also been developed to handle TBCs and are being utilized 
to evaluate different TBC failure regimes. 

The 
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INTRODUCTION 

The object ives o f  t h i s  program are t o  determine t h e  predominant modes o f  

degradation o f  a plasma sprayed thermal b a r r i e r  coa t ing  system and t o  develop 

and v e r i f y  l i f e  p r e d i c t i o n  models accounting f o r  these degradation modes. The 

program i s  div ided i n t o  two phases, each c o n s i s t i n g  o f  several tasks. 

Government w i l l  have t h e  op t ion  t o  exercise Phase I 1  a f t e r  the  f i r s t  phase has 

been successful ly completed. 

The 

The work i n  Phase I i s  aimed a t  i d e n t i f y i n g  t h e  r e l a t i v e  importance o f  the  

var ious f a i l u r e  modes f o r  a thermal b a r r i e r  coa t ing  system and developing and 

v e r i f y i n g  a l i f e  p r e d i c t i o n  model(s) f o r  t h e  predominant mode. 

ob ject ives w i l l  be accomplished i n  a 36-month e f f o r t  cons is t ing  o f  th ree  

technica l  tasks p lus a r e p o r t i n g  task. Task I w i l l  i d e n t i f y ,  through the  

design and performance of a ser ies o f  experiments, t h e  r e l a t i v e  importance o f  

t h e  var ious f a i l u r e  modes f o r  a basel ine thermal b a r r i e r  coat ing system. 

Pre l iminary models w i l l  then be tested and modi f ied based on conf i rmat ion 

tes ts .  This TBC system consis ts  o f  a low pressure plasma sprayed (LPPS) 

Ni-22Cr-lOA1-0.3Y bond coat (0.13 - + 0.025 mm t h i c k )  and a plasma sprayed 

Zr02-8%Y203 top coat (0.25 - + 0.050 mm t h i c k )  on convent ional ly-cast  

These 

Rene' 80 a l l o y  substrate. Task I a lso  includes determinat ion o f  key 

proper t ies  o f  the coat ing mater ia ls  such as t e n s i l e  strength,  Poisson's r a t i o ,  

dynamic modulus, and c o e f f i c i e n t  o f  thermal expansion. 
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In Task 11,--life prediction models for the predominant 

be developed. This will be accomplished by designing a su 

experiments and concomitant analyses, thus creating a life 

means of a combined analytical and experimental program. 

f ai 1 ure modes wi 1 1  

table set of 

prediction model by 

These models will be verified in Task I11 through a series of selected 

tests and analyses. 

better understanding of the behavior of TBC systems and the suitability of the 

developed models. This understanding will be used to formulate 

recommendations for further research required to arrive at a fully 

satisfactory engine life prediction methodology. 

The results obtained from this task should provide a 

The work in Phase I1 will develop design-capable, causal, life prediction 

models for thermomechanical and thermochemical failure modes, and for the 

exceptional conditions of foreign object damage and erosion. This will be 

accomplished in a 24-month effort consisting of five technical tasks plus a 

reporting task. In Task V, thermomechanical life models will be developed. 

This involves the development of fracture mechanics and continuum mechanics 

based, and possibly other life prediction models. 

failure models will be developed, including oxidation and hot corrosion 

failure models.' In Task VII, models for erosion and foreign object damage 

will be developed. The integration of appropriate combinations of models into 

In Task VI, thermochemical 
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a comprehensive--life prediction model will be accomplished in Task VIII. 

the final technical task, Task IX, the integrated model developed in Task VI11 

will be exercised through a combination of critical tests and analyses to 

determine its applicability and accuracy. 

In 

This report describes the work performed during the period April 1985 to 

March 1986 on Tasks I and I1 of the first phase. 

4 



- 
TASK I FAILURE MECHANISM DETERMINATION 

One o f  t h e  p o t e n t i a l  f a i l u r e  mechanisms being invest igated i n  Task I i s  

bond coat oxidat ion.  Many studies (1-4) i n d i c a t e  t h a t  bond coat ox ida t ion  may 

be a major f a i l u r e  mechanism. Pre-exposures i n  a i r  and argon were u t i l i z e d  t o  

t r y  t o  i s o l a t e  t h e  e f f e c t  of bond coat ox ida t ion  on ceramic l a y e r  spa l l ing .  

Another f a i l u r e  mechanism invest igated was bond coat creep. GE evidence 

has ind ica ted  t h a t  the  thermal cyc le  l i f e  o f  TBC systems can be extended by 

using strong bond coat a l l o y s  ( 5 ) .  

a t  elevated temperatures leads t o  a s h i f t  i n  t h e  s t ress  f ree temperatures and 

l a r g e r  compressive stresses develop i n  the  z i r c o n i a  l a y e r  on r e t u r n  t o  room 

temperature, thus causing a greater propensity f o r  spa l l ing .  

I t i s  be l ieved t h a t  creep o f  the  bond coat 

Task I also includes determination o f  key proper t ies  o f  t h e  coat ing 

mater ia ls  such as t e n s i l e  strength, Poisson's r a t i o ,  dynamic modulus, and 

c o e f f i c i e n t  o f  thermal expansion. 
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Experimental Procedures 

.- 

Specimen Preparation 

The basel ine system i n  t h i s  e f f o r t  cons is ts  o f  a low pressure plasma 

sprayed (LPPS) Ni-22Cr-lOA1-0.3Y ( w t .  %) bond coat  and an a i r  plasma sprayed 

(APS) y t t r i a  p a r t i a l l y  s t a b i l i z e d  z i r c o n i a  (Zr02-8%Y203) top  coat on 

convent ional ly  cast  Rene' 80 a l l o y  subst rate (Table I ) .  Bond coat  th ickness 

was 0.13 - + 0.025 mm (0.005 2 0.001 inch), and z i r c o n i a  thickness was 

0.25 2 0.05 mn (0.010 2 0.002 inch).  

The bond coat and top  coat  were appl ied t o  two types o f  specimens. The 

f i r s t  i s  a tube specimen (Figure 1) which simulates t h e  curvature o f  engine 

components, and t h e  second i s  a but ton specimen (F igure 2) which has become a 

standard t e s t  specimen a t  GE f o r  evaluat ing TBCs. The specimens were given 

t h e  standard Rene '80 s o l u t i o n  heat treatment [1204OC (2200°F) f o r  2 hours, 

fo l lowed by 1093OC (2000°F) f o r  4 hours, both i n  vacuum] and t h e  subst rate 

surface was then g r i t  b lasted and vapor honed p r i o r  t o  app l i ca t ion  o f  the  bond 

coat. 

p lanetary  holder, and was appl ied on 35 but ton  specimens a t  a t ime using a 

r o t a t i n g  drum. Both types o f  specimens were coated i n  an automated LPPS 

system. 

The bond coat was appl ied on f o u r  tube specimens a t  a t ime us ing a 

A bond coat powder s i z e  of -230 + 400 mesh (see Appendix 1, Powder 

C h a r a c t e r i s t i c s )  was used t o  produce surface roughnesses greater  than 400 p i n  

i n  Ra* (necessary t o  produce good bond coat / top coat bonding). Next, the  bond 

coated specimens were cleaned i n  acetone. Tube specimens were a lso  shadow 

* Ra i s  the  average peak and v a l l e y  he igh t  o f  the  surface. 
6 



.- 

TABLE I 

BASELINE THERMAL BARRIER COATING SYSTEM (WEIGHT PERCENT) 

Substrate (Rene '80) : Ni-14Cr-9.5Co-5Ti-4W-4Mo-3Al-O. 17C-O.03Zr-0.015B 

Bond Coating : Ni-22Cr-lOA1-0.3Y (Low Pressure P1 asma Spray) 

Top Coating : ZrO2-8Y203 (Air Plasma Spray) 
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Round Specimen to Better 
1.3 .cm Simulate Curvature of 

I - 1  

7- 
6 . 5  cm 

Engine Components 

ZrO2-8%YzO3 Layer (0.25 mm) 
Ends.Free of Zirconia to 
Eliminate End Effect 
Complications 

1.3 cm Dia x 9.1 cm R e d  80 
Tube Fully Coated with U P S  
NiCrAlY Bond Coat (0.13 m) 

1.3 cm 

f 
a) Test specimen configuration 

5 )  As-sprayed specimen 

Figure 1 Tubular thermal barrier coating specimen 
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b- 2.54 cm 4 

- 
Zr02 - 8% Y2O3 Layer (0.25 mm) - N i C r A l Y  Layer (0.13 mm) 

T 
0.32 cm 

a) Test specimen c o n f i g u r a t i o n  

b) As-sprayed specimen 

Figure 2 Button thermal b a r r i e r  coa t ing  specimen 
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I 

masked p r i o r  t o  the top coat app l i ca t ion  t o  produce a tapered edge (Figure 3) 

on the  zirconia--coating l a y e r  t o  he lp reduce premature coat ing  s p a l l a t i o n  

dur ing thermal cycle tes t ing .  The top coat  (see Appendix 1 ' f o r  Powder 

Character is t ics)  was appl ied t o  each tube specimen i n d i v i d u a l l y  us ing a GE P50 

robot  and a Metco Computerized Plasma Process C o n t r o l l e r  Spray System. 

robot  cont ro ls  the plasma t o r c h  manipulat ions, w h i l e  t h e  Metco system c o n t r o l s  

the  spray parameters. 

specimens simultaneously us ing a semi-automated Metco APS System. 

parameters used f o r  both t h e  bond coat and t o p  coat  are l i s t e d  i n  Table 11. 

The microst ructure o f  the  r e s u l t a n t  TBC System i s  shown i n  F igure 4. 

. a t  

The 

The top  coat was deposited on up t o  100 bu t ton  

The spray 

Thermal Cycle Test in9 

Thermal cyc l ing  of the TBC specimens, t o  a maximum temperature o f  1093OC 

(200OOF) , was accomplished i n  a programmable, microprocessor c o n t r o l  led, 

rapid-heat ing furnace w i t h  MoSi2 heat ing elements (F igure 5) .  

tubu la r  specimens o r  up t o  60 but ton specimens were cyc led simultaneously i n  

the  furnace. 

approximately 10 minutes heat up, 45 minutes a t  temperature (1093"C), and 15 

minutes forced-a i r  cool ing. Tube specimens were removed from t h e  t e s t  a f t e r  

every f i f t h  cycle and v i s u a l l y  examined f o r  evidence o f  cracking and loss  o f  

the z i r c o n i a  layer. 

cycle. 

the  z i r c o n i a  layer had spalled. 

metal lographical ly. 

Up t o  36 

The thermal cyc le  was approximately 70 minutes long w i t h  

Button specimens were examined a f t e r  every twent ie th  

Each specimen was removed from t e s t  when 10 percent (surface area) o f  

Selected specimens were evaluated 

10 



Coat 0 ver 

Figure 3 Tapered top  coat edge developed by shadow masking 

:oat Edge 
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Plasma Gun 

PrimaryISecondary Gas 

Gun Power 

Powder Feed Rate 

Preheat 

Spray Distance 

Other 

TABLE I1 

PLASMA SPRAY PARAMETERS 

APS - 
Metco 7MB 

N2/H2 

36 KW 

6 Lbs./Hr. 

5 In. 

90" a i r  impingement, 
and center of  tube 

coo 1 i ng . 

LPPS - 

Metco 7MB 

Ar /H2 

50 KW 

5 Lbs./Hr. 

1800°F 

12 I n .  

A1 203 g r i t  b l  as t  
and vaper hone cleaning 

12 



- 1  

face 

Coat 

=2'3 - 
particles 

coat 

a) As-sprayed microstructure 

,Top Coat 

porosity 

b) Bond coat/top coat interface 

Bond Coat 

Figure 4 Baseline TBC as-sprayed microstructure (Rene '80, NiCrAlY, 
ZrO -Y 0 2 2 3) 
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low velo 
f an 

RAPID TovlpERATURE FURNACE 

--- 10 minute heat w 
--- 45 minute emsure at 1093 c 
--- 15 minute forced uir coolirig 

Figure 5 Rapid temperature thermal cycle furnace 
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- - Bond Coat Oxidation Effect Experiments 

Three experiments were uti l ized t o  evaluate the effects  of bond coat 

oxidation on coating failure.  

In the f i r s t  experiment, thermal cycle tests (Table 111) were performed i n  

- a i r  on specimens that  had received isothermal pre-exposures i n  e i ther  

oxidizing ( s t a t i c  a i r )  or inert  ( s t a t i c  argon) atmospheres fo r  selected times 

a t  1093OC ( 2000°F). In this experiment, a1 1 pre-exposed specimens should 

contain "predarnage" resulting from the thermally activated processes other 

than oxidation, b u t  only specimens pre-exposed i n  a i r  should contain, i n  

addition, the "predamage" due to  oxidation (oxide scale growth on the bond 

coat). Thus ,  the difference i n  thermal cycle test lives of the two groups 

should ref lect  the effect  of bond coat oxidation and allow evaluation o f  the 

magnitude of the other thermally-activated phenomena (sintering of the bond 

coat and zirconia layer, bond coat and ceramic coat creep, and bond 

coat/substrate interdiffusion). Tube specimens were uti l ized i n  this 

experiment. 

15 



TABLE I 1 1  

EXPERIMENT #1 - PRE-EXPOSURE (1093C) TIMES FOR BOND COAT OXIDATION EFFECT 

SPECIMENS (THERMAL CYCLE TESTING I N  A I R )  

Pre-Exposure 

Time (hours) 
a t  1 0 9 3 O C  

0 

10 

50 

100 

500 

Specimens 
Pre-exposed 

i n  Arson 

3 

3 

3 

3 - 

Spec i mens 
Pre-exposed 

i n  A i r  

3 

3 

3 

3 

3 - 

12 15 
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The second ixper iment  was s i m i l a r  t o  the  f i r s t  except t h a t  some o f  t he  

specimens were a lso  thermal ly  cyc led i n  argon, and t h e  e f f e c t  o f  d i f f e r e n t  

pre-exposure temperatures was evaluated. 

achieved by seal ing specimens i n  argon f i l l e d  Inconel 718 can is te rs  (F igure  6) 

and t e s t i n g  them i n  the  thermal cyc le  furnace. 

can is te rs  was adjusted t o  be approximately 1 atmosphere a t  t e s t  temperature 

1093OC ( 2000°F) . Some specimens received no pre-exposure (as-sprayed) , others 

received 100 hour isothermal pre-exposures a t  1093OC (2000°F) i n  e i t h e r  s t a t i c  

a i r  o r  s t a t i c  argon (Table I V ) .  Baseline specimens i n  unsealed can is te rs  t h a t  

had rece i  ved no pre-exposure (as sprayed), 100 hour isothermal pre-exposure a t  

1093OC (2000°F) i n  e i t h e r  s t a t i c  a i r  o r  s t a t i c  argon, o r  250 hour isothermal 

pre-exposure a t  982OC (18OOOF) i n  e i t h e r  s t a t i c  a i r  o r  s t a t i c  argon were a lso  

included i n  t h i s  experiment (Table I V ) .  These were run  t o  assess t h e  e f f e c t  

o f  reduced heat ing and coo l ing  ra tes  (experienced i n  t h e  can is te r  t es ts ) ,  and 

t o  assess the e f f e c t  o f  d i f f e r e n t  pre-exposure temperatures. By thermal 

c y c l i n g  i n  argon, t h e  advantage o f  minimum scale growth dur ing c y c l i n g  was 

achieved. Button specimens were u t i l i z e d  i n  t h i s  experiment. 

Thermal c y c l i n g  i n  argon was 

Argon pressure i n  the  

I n  the  t h i r d  experiment, thermal cyc le  t e s t s  were performed i n  a i r  on 

specimens t h a t  had received combinations of isothermal pre-exposures i n  s t a t i c  

a i r  and/or s t a t i c  argon before and/or a f t e r  t he  top  coat  app l i ca t i on  (Table 

V ) .  

t h e  thermal cyc le  l i f e  o f  TBCs (observed i n  t h e  f i r s t  experiment). 

be discussed i n  d e t a i l  i n  t he  next section. But ton specimens were u t i l i z e d  i n  

t h i s  experiment. 1 7  

This experiment was aimed a t  understanding how argon pre-exposures reduce 

This  w i l l  



, 2 c m  

Figure b Inconel  718 c a n i s t e r  u t i l i z e d  f o r  thermal cyc le  t e s t i n g  
i n  argon 

1 8  
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Results - Bond Coat Oxidation Effect Experiments 

As reported previously (6), thermal cycle testing in air of Experiment #1 

specimens (pre-exposures in static air or static argon for 10, 50, 100, and 

500 hours) has been completed. Unexpectedly, the specimens pre-exposed in 

argon failed (failure was defined as when 10% of the surface area of the 

ceramic top coat had spalled) with thermal cycle lives less than the specimens 

pre-exposed in air (Figure 7). Failures in all cases occurred in the ceramic 

top coat approximately 0.025-0.050 mn (0.001-0.002") from the bond coat/top 

coat interface (this is the normal TBC failure location). Continuous oxide 

scales of approximately 4 pm (excluding the 472 hour pre-exposure specimens) 

were observed at the bond coathop coat interface for the as-sprayed and air 

pre-exposed specimens at failure after thermal cycle testing (Figure 8). This 

is contrasted with the specimens pre-exposed in argon where oxide scales 

generally less than 1 v m  developed and appeared non-continuous by optical 

microscopy (a detailed examination of pre-exposure microstructure and failed 

specimen microstructure is presented in the First Annual Report [6]). The 

observation that, at failure, the bond coat oxide scale thicknesses were 

essentially identical fhr the specimens that received no pre-exposure or air 

pre-exposures is-consistent with the work of Miller ( 7 ) ,  who noted similar 

weight gains (oxidation) at failure o f  specimens with a CaSi04/MCrALY TBC 

regardless of test temperature. 

bond coat oxidation to the overall TBC failure mechanism. 

These results demonstrate the importance of 
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The detrimental effect  of argon is  believed t o  be associated w i t h  i t s  

effect  on the oxidation of the bond coat. 

the bond coat and the substrate was clearly documented i n  the First Annual 

Report [6j). 

argon may be affecting the thermal cycle l i f e  of TBCs. This study indicated 

that  a possible cause of the shortened l i f e  was the diffusion of Cr, Ta, W ,  

and other substrate elements t o  the bond coat/top coat interface d u r i n g  the 

argon pre-exposure prior t o  significant bond coat oxidation. 

the precipitation of carbides (presumably MZ3 C6 carbides) was noted i n  

the bond coat at the bond coat/top coat interface (also noted i n  other 

locations i n  the bond coat). T h i s  was observed to  a greater degree i n  

specimens that  were pre-exposed i n  argon. Therefore, the decrease i n  l i f e  may 

be associated w i t h  the formation of Cr, Ta, W ,  and other less  protective 

oxides which interfere w i t h  the formation of stable,  adherent A1203 

scales. 

of the bond coat will  occur upon thermal cycling. Since significant d i f f u s i o n  

occurs d u r i n g  the pre-exposure, a less  protective scale may form, which 

results i n  a less adherent oxide scale a t  the bond coat/top coat interface. 

T h i s  reduction in chemical bonding would therefore resul t  i n  e a r l i e r  fa i lure  

of the TBC. The TBC i n  this case i s  held on only by mechanical bonding 

resulting from the h i g h  surface roughness of the bond coat. Therefore, 

cracking which leads to  spalling s t i l l  occurs i n  the ceramic, b u t  only because 

the roughness o f  the bond coat makes the preferred crack in i t ia t ion  locations 

a t  the peaks of the bond coat. 

(Extensive interdiffusion between 

A n  internal investigation (8) was performed t o  understand how 

In most cases, 

In the case of specimens pre-exposed i n  argon, significant oxidation 

The cracks in i t ia ted  a t  these peaks then 
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propagate through the  ceramic resu l t i ng  i n  f a i l u r e  i n  t h e  normal TBC 

locat ion.  More i nves t i ga t i on  o f  t h i s  phenomenon i s  required, however, the  
- 

f o l l o w i n g  two experiments a lso tend t o  i n d i c a t e  t h a t  t he  det r imenta l  e f f e c t s  

can be a t t r i b u t e d  t o  how argon exposure i s  a f f e c t i n g  the  bond coat. 

I n  the  second experiment, thermal cyc le  t e s t i n g  i n  argon was performed i n  

a sealed canister, wh i le  thermal cyc le  t e s t i n g  i n  a i r  was performed i n  an 

unsealed canis ter .  To compensate f o r  the  slower coo l i ng  r a t e  o f  t he  specimens 

enclosed i n  canisters, the  coo l ing  per iod was increased f rom 15 minutes t o  30 

minutes f o r  t h i s  thermal cyc le  t e s t  t o  assure coo l i ng  t o  s i m i l a r  temperatures 

t o  those experienced i n  regu la r  tests .  

The t e s t  r e s u l t s  of thermal cyc le  i n  argon experiment again i nd i ca te  t h a t  

exposing TBCs i n  argon can subs tan t i a l l y  decrease thermal cyc le  l i f e ,  and the  

decrease i n  l i f e  i s  probably associated w i t h  an e f f e c t  on bond coat 

oxidation. I n  t h i s  tes t ,  t he  longest thermal cyc le  l i f e  was associated w i t h  

specimens t h a t  received a pre-exposure i n  a i r  p r i o r  t o  thermal c y c l i n g  i n  

argon (F igure 9, l e f t  side). Thei r  l i v e s  were longer than those o f  t h e  

specimens t h a t  received no pre-exposure and specimens t h a t  had been 

pre-exposed i n  argon. The longer l i f e  o f  specimens pre-exposed i n  a i r  may be 

associated w i t h  the  development o f  a more continuous adherent A1203 scale 

p r i o r  t o  thermal c y c l i n g  i n  argon. Mic ros t ruc tura l  examination ind ica ted  t h a t  

thermal c y c l i n g  i n  argon was h igh l y  e f f e c t i v e  i n  min imiz ing bond coat  

oxidation. 

received pre-exposures i n  argon, essen t ia l l y  no oxide scale was present a t  

For t h e  specimens t h a t  received no pre-exposure (F igure loa)  o r  

25 
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Coat 

a )  No p r i o r  pre-exposure 

b) 100 hour a i r  pre-exposure a t  1093 0 C 

.Bond 

- 0.1 

Subs  

Coat 

itrate 

Coat 

ck 

scale 
.d Coat 

t ra te  

Figure 10 Micros t ruc ture  of specimens(Rene' 80/NiCrAlY/ZrO -Y 0 ) a f t e r  

i n  t h e  1093OC test 
thermal cyc le  t e s t i n g  i n  a s e a l e d  c a n i s t e r  conta ing  2 2 3  argon 
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the bond coat/top coat interface (less than 1 p m  of non-continuous oxide 

scale), while no measurable increase in oxide scale thickness during thermal 

cycling was noted for the specimens that had been pre-exposed in air (Table I V  

and Figure lob). 

The results for the specimens thermal cycled in the unsealed canister 

indicate that pre-exposures in argon were detrimental for this TBC system 

regardless of pre-exposure temperature. For both the 982OC (1800OF) and the 

1093OC (20OOOF) pre-exposures, the specimens pre-exposed in argon f ai 1 ed 

before the specimens pre-exposed in air. 

Another interesting result was the extremely short lives exhibited by the 

specimens that received no pre-exposure or pre-exposures in air that were 

thermal cycled in the unsealed (air) canister. Typically, these button 

specimens with no prior pre-exposure will have thermal cycle lives of 

approximately 400 cycles when cycled in an alumina holder outside the 

canister. However, in this test, specimens with no prior pre-exposure failed 

in less than 100 cycles when cycled in this unsealed canister (Figure 9, 

right side). Microstructural examination of these specimens indicated that 

significant frontal oxidation (oxidation of bond coat at bond coat/top coat 

interface) of the bond coat had occurred for these specimens (Figure 11). 

Electron microprobe mapping of these oxide scales (Figure 12) revealed that 

they contained high levels of Cr and Ni. These high levels of Cr and Ni 

indicate that less protective oxide scales with higher growth kinetics had 

formed on the bond coats of these specimens cycled in the unsealed canister. 

General Electric baseline specimens ( Hast-X/NiCrAlY/ZrO2-8Y2O3) , which 

are included in all GE thermal cycle tests, also failed early in this test. 
28 



Coat 

a) Low magnif icat ion 

c 

Scale  
Coat 

:rate 

Coat 

Scale 

Coat 

, 40 pm , S u b s t r a t e  

b) High magnif icat ion 

Figure 11 Micros t ruc ture  of specimens (no p r i o r  pre-exposure) 
a t  f a i l u r e  a f te r  thermal cyc le  t e s t i n g  i n  a unsealed 
c a n i s t e r  (94 cycles) i n  t h e  1093OC: t e s t  
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Bond ,Coat Oxide S c a l e  Crack Top Coat 

a) Backsca t te r  E l e c t r o n  Image 

b)  E l e c t r o n  microprobe map f o r  Al 

Figure  12 Elec t ron  microprobe map of specimen (no pre-exposure) thermally 
cycled i n  a n  unsealed c a n i s t e r  i n  t h e  1093°C tes t  ( con t ' d ) .  
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c) E lec t ron  microprobe map f o r  C r  

d)  Elec t ron  microprobe map fc r  N i  

Figure 1 2  E lec t ron  microprobe map of specimen (no pre-exposure) thermal ly  
cycled i n  an unsealed c a n i s t e r  i n  t h e  1093°C tes t  (cont'd). 
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e )  E l e c t r o n  microprobe map f o r  0 

f) Elec t ron  microprobe map f o r  Z r  

F igure  12 E lec t ron  microprobe map of specimen (no pre-exposure) thermally 
cycled i n  an  unsealed c a n i s t e r  i n  t h e  1093OC test 

3 2  



These baseline Specimens which normally last 400-450 cycles failed in only 60 

cycles when tested in the canister. 

coat also occurred in these specimens. These results clearly demonstrate the 

importance of bond coat oxidation. 

formed which resulted in significantly shorter thermal cycle life. 

Significant frontal oxidation of the bond 

In this case, thick Cr and Ni scales 

In the third experiment, an alternative method was used to evaluate bond 

coat oxidation and determine if the detrimental effect of argon could be more 

definitely traced to the bond coat or top coat changes. To accomplish this, 

combinations of pre-exposures in air and/or argon were performed before, 

and/or after the top coat application (Table V ) .  This experiment was run 

concurrently with the second experiment in the same test furnace but without 

using the canister (the same, 30 minute cool down period was used). In this 

test, the specimens with no prior exposure had the expected thermal cycle life 

of approximately 400 cycles. 

In one evaluation, specimens were given a 100 hour pre-exposure in both 

air and argon after the top coat application. One set of specimens received 

the air pre-exposure prior to the argon pre-exposure, while the other set of 

specimens received the argon pre-exposure first. l4 e hypothesis was that if 
argon affects the top coat (stoichiometry), any reduction o f  the oxide state 

of the ceramic by the argon pre-exposure should be eliminated by the 

subsequent air pre-exposure. Similarly, by pre-exposing in air first, the 

more protective A1203 scale should form prior to the argon pre-exposure 

and provide a chemical bond similar to those normally observed. The specimens 

33 



pre-exposed for 100 hours in argon followed by 100 hours in air had very short 

lives (14 cycles), while the specimens pre-exposed for 100 hours in air 

followed by 100 hours in argon had substantially longer lives (237 cycles), 

(Figure 13). A i  further evidence, x-ray diffraction analysis of specimens 

that were pre-exposed in air for 100 hours or pre-exposed in argon for 100 

hours at 1093OC (2000°F) indicate that no major phase changes during the argon 

pre-exposure had occurred (Table VI). Hence, the results of this third 

experiment (Figure 9, right side), combined with the x-ray results and results 

from the second experiment, clearly indicate that the detrimental effect of 

argon primarily is associated with the bond coat oxidation. 

As depicted in Table V ,  pre-exposures in argon prior to the top coat 

application were also examined. These tests were designed to further explore 

the effects of argon. Again, the argon pre-exposures significantly shortened 

thermal cycle life. The results also again indicate that the detrimental 

effect is associated with bond coat oxidation. 
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TABLE V I  

TOP COAT X-RAY DIFFRACTION RESULTS* 

100 Hour A i r  Pre-Exposure 

100 Hour Argon Pre-Exposure 

Monoclinic Tetraqon a1 

8.8% 71 .O% 

9.7% 77.4% 

Cubic - 
20 0 2% 

12.9% 

* Performed by the Un ivers i ty  of Cincinnat i  
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- Bond Coat Creep Effect Experiment 

The experiment to evaluate the 

thermal cycle life utilized four d 

have significantly different creep 

coats include various additions of 

effect of bond coat creep strength on 

fferent bond coat alloys (Table VII) that 

strengths. The modified NiCoCrAlY bond 

Mo, Ta, W, Re, Hf, C, 6, Si, Zr, and Ti. 

The bond coat layers on these specimens also received an aluminide (Codep) 

coating (Figure 14) before the ceramic layer was deposited in order to reduce 

the effect of any differences in oxidation resistance on thermal cycle life. 

All specimens were coated with the same Zr02-8%Y203 ceramic layer. Six 

specimens of each TBC system were thermal cycle tested. Two specimens were 

exposed in argon for 100 hours at 1093OC (2000°F), two were exposed in air for 

the same time and temperature, and two specimens received no pre-exposure 

(Table VIII). 

bond coat creep strength and pretest conditions. The intent of this 

experiment was to evaluate the effect of bond coat creep strength on TBC 

failure and to obtain a measure of its effect relative to that of oxidation. 

Tube specimens were utilized in this test. 

The difference in thermal cycle lives should be a function of 
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TABLE V I 1  

BOND COAT CREEP EFFECT TBC SYSTEMS 

Systems Substrate Bond Coating Over Coating Top Coating 

1 

2 

3 

4 

t 

Rene'80 Bond Coating 1 '  Aluminide Zr02-Y203 

Rene'80 Bond Coating 2* Aluminide Zr02-Y203 

Rene'80 Bond Coati ng 3* A1 umi n i  de ZrOp-Y 203 

Rene'80 bond Coating 4* Alumi n i  de Zr02-Y 203 

I Ni-ZZCr-lOA1-0.3Y 
* Modif ied NiCoCrALY bond coats 

Bond Coat Creep 
( Laron/Mi 1 1 er  
Parameter @ 3 
KSI - rup tu re  

t e s t  

39.0 

45.7 

47.0 

48.4 
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Bond 

-Top Coat 

a) As-sprayed microstructure 

Coat 

b) Bond coat/top coat interface 

 top 

'Alum 

Coat 

inide 

Figure 14 Microstructure of as-sprayed TBC with aluminide 
coated bond coat(Rene '80/NiCrAlY/Aluminide/ 
Zro*-Yp3) 
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TABLE VI11 

PRE-EXPOSURE (1093C) TIMES FOR BOND COAT CREEP EFFECT 

SPECIMENS (THERMAL CYCLE TESTING I N  AIR) 

TBC 
System 

Specimens 
With No 

Pre-Exposure 
# 

1 

2 

3 

4 

2 

2 

2 

2 - 

8 

Specimens 

Pre-Exposed 
i n  Argon 

(1093OF. 100 hrs) 

2 

2 

2 

2 - 

8 

Spec i mens 
Pre-Exposed 

i n  A i r  
(1093OC, 100 hrs) 

2 

2 

2 - 

8 
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- 
Results - Bond Coat Creep E f f e c t  Experiments 

As-Sprayed Microst ructure 

The as-sprayed microstructures (Figure 15) conta in  smal d i f fe rences  i n  

s t ruc tu re  associated w i t h  the  changes i n  composition. I n  a 1 TBC systems, an 

aluminide overcoat is present and i s  c l e a r l y  ev ident  i n  the  photomicrographs. 

Bond coat Y 1 ,  which i s  the basel ine system, p lus  an aluminide overcoat, has a 

mic ros t ruc ture  cons is t ing  of Y'+ B + Y. The aluminide coat ing produces a 

N i A l ( B )  coat ing a t  the surface of t he  bond coat. The other  th ree  bond coats, 

which conta in  numerous a l l o y  strengthening addi t ions,  have a bond coat 

cons is t ing  o f  Y'+ Y + carbides. The aluminide a lso produces a NiAl (8)  coat ing 

a t  the  surface o f  bond coats #2, Y3, and #4. 

Pre-Exposures 

I n  a l l  cases, a continuous A1203 scale formed a t  the bond coat / top 

coat i n te r face  i n  specimens t h a t  were pre-exposed i n  a i r  f o r  100 hours a t  

1093OC (20OOOF) (F igure 16)*, and the  oxide scale thickness var ied  from 3 t o  

5 vm f o r  the  f o u r  d i f f e r e n t  bond coat systems t h a t  were pre-exposed i n  a i r  f o r  

100 hours (Table I X ) .  

M23C6 14J) was a lso  noted a t  the bond coat/substrate i n te r face  f o r  t he  

The presence o f  a continuous carbide layer  (presumably 

* Phase i d e n t i f i c a t i o n  o f  bond coat microst ructure a f t e r  pre-exposure and 
thermal cycle t e s t i n g  i s  shown i n  Appendix 11. 
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TABLE I X  

OXIDE SCALE THICKNESS AT BOND COAT/TOP COAT INTERFACE 

AFTER 100 HOUR A I R  PRE-EXPOSURE ( 1 0 9 3 ~ )  FOR THE 

BOND COAT CREEP EFFECT SPECIMENS 

Bond Coatinq 

3 

4 

Oxide Scale Thickness (MI) 

3 .O 

5.3 

2.8 

4.3 

4 4  



NiCrAlY + alumiXide system (TBC System tl). 

significantly depleted due to bond coat oxidation and bond coat/substrate 

interdiffusion. Bond coat Y3 also developed blocky carbides during the 

pre-exposure. Unique changes for each bond coat were expected due to the 

significant differences in bond coat compositions. 

The aluminide in all cases was 

The use of canisters was again (6) very effective in retarding oxidation 

In all cases, essentially no during argon pre-exposures at 1093OC (2000°F). 

A1203 scale was detected at the bond coat/top coat interface by optical 

microscopy after pre-exposure (Figure 17). The aluminide in all systems did 

not appear depleted since little bond coat oxidation had occurred. 

Interestingly, a continuous carbide layer was not present at the bond 

coat/substrate interface in bond coat #I  although the presence o f  significant 

quantities of presumably MZ3C6 carbides were noted at this interface 

following air pre-exposure. The presence of blocky carbides was again noted 

in bond coat if3 following the argon exposure. 
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Thermal Cycle Tes t i nq  

- 
Test Results: Thermal cyc le  tes t ing  i n  a i r  o f  specimens t o  evaluate the 

ef fect  o f  bond coat creep s t rength on TBC thermal cyc le  l i f e  has been 

completed. These specimens had received pre-exposures a t  1093OC (20OOOF) 

e i t h e r  i n  a i r  o r  argon f o r  100 hours, o r  no pre-exposure. As discussed, an 

aluminide overcoat was appl ied t o  a l l  four bond coats t o  reduce any 

d i f ferences i n  ox tda t ion  resistance. 

The r e s u l t s  c l e a r l y  show t h a t  t h e  TBC specimens w i t h  the M C r A l Y  + 

aluminide bond coat, which has the lowest creep strength, resu l ted  i n  the 

shor test  thermal cyc le  l i f e  f o r  a l l  pre-expsoure condi t ions (Figures 18 & 

19). However, the thermal cyc le  l i f e  d i f ferences f o r  the o ther  TBC systems 

appears t o  be minimal. The small d i f ferences may ind i ca te  t h a t  the  bond coat 

creep s t rength d i f ferences (Table V I I )  were no t  la rge  enough t o  o f f s e t  the  

e f f e c t  o f  other f a i l u r e  mechanisms ( N i C r A l Y  is s i g n i f i c a n t l y  lower i n  s t rength 

than the  other  three).  

I n te res t i ng l y ,  the  100 hour a i r  pre-exposure d i d  no t  s i g n i f i c a n t l y  a f f e c t  

the thermal cyc le  l i f e  o f  these systems w i t h  "h igh strength" bond coats (2, 3, 

& 4). This ind ica tes  that ,  as the thermal cyc le  l i f e  increases (due t o  

increased l i f e  w i th  increasing bond coat creep s t rength) ,  t he  r e l a t i v e  

cont r ibu t ions  o f ' t he  pre-exposure t o  the o v e r a l l  ox ida t ion  o f  t he  bond coat i s  

reduced. 

ove ra l l  TBC l i f e .  

The data suggest t h a t  bond coat creep can p lay  a s i g n i f i c a n t  r o l e  i n  
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A weakness of t h i s  experiment was the  p o t e n t i a l  o f  d i f f e r e n t  i n t e r a c t i o n s  

between the  aluminide overcoat, and the  d i f f e r e n t  bond coats. 

t h i s  e f fec t ,  a recent study a t  GE (10) evaluated d i f f e r e n t  bond coat creep 

strengths produced by applying var ious heat treatments t o  the-  bond coat 

(Bond Coat #4).  I n  t h i s  study, bond coat  X4 was heated i n  vacuum a t  each o f  

four temperatures, 1079OC (1975OF), 1148OC (21OO0F), 1204OC (22OO0F), and 

126OOC (23OOOF). The creep s t rength o f  bond coat 14 heat t rea ted  a t  these 

temperatures var ies by approximately 5 Larson-Mi 1 l e r  parameter un i ts .  The 

bond coat was also given the  aluminide overcoat ( a f t e r  vacuum heat treatment) 

p r i o r  t o  the top coat appl icat ion.  

and s i m i l a r  specimens no t  given t h e  bond coat  heat treatment are shown i n  

F igure 20. The r e s u l t s  i n d i c a t e  t h a t  TBC thermal c y c l e  t e s t  l i f e  increases 

w i t h  heat treatment temperature (and creep s t rength) ,  i n d i c a t i n g  t h a t  creep 

s t rength o f  the bond coat does indeed in f luence TBC l i f e .  

To e l im ina te  

The thermal c y c l e  l i v e s  o f  these specimens 

The b e n e f i c i a l  

e f f e c t  was no t  observed on specimens t r e a t e d  a t  126OOC (23OOOF). This very 

h igh  temperature may have resu l ted  i n  r a p i d  l o s s  o f  strengthening elements 

f rom the  bond coat by d i f f u s i o n  i n t o  t h e  substrate, or i n c i p i e n t  me l t ing  i n  

t h e  bond coat. 

0 Specimen Appearance I n  a l l  cases, i n i t i a l  s p a l l i n g  occurred a t  t h e  top 

coat edges of the specimen w i t h  s t rong bond coats (Figure 21 & 22). These 

r e s u l t s  are consistent wi th  t e s t  r e s u l t s  f o r  t h e  basel ine N i C r A l Y  system (6) .  

However, the  N i C r A l Y  + aluminide bond coat  was unique, i n  t h a t  w h i l e  i n i t i a l  

s p a l l i n g  occurred a t  the top coat edges, some s p a l l i n g  a lso occurred a t  the 
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II 

Figure  2 1  F a i l e d  TBC specimens a f t e r  thermal  cyc le  t e s t i n g  i n  
a i r  f o r  TBC s y s t e m s  #1 and #2 (Bond Coat Creep E f f e c t  
Experiment ) 

5 2  



I .  

Figure  22 Fa i i ed  TBC specimens a f t e r  thermal cyc le  t e s t i n g  i n  
a i r  for TBC systems # 3  and #4 (Bond Coat Creep E f f e c t  
Experiment) 

5 3  



center of some specimens for all pre-exposure conditions. Spallation of these 

specimens also tended to be more catastrophic (true also for the baseline) 

than the TBCs with the higher creep strength bond coats. This phenomenon is 

consistent with other GE work and is under investigation. 

Microstructure The microstructures after thermal cycle testing are shown 

in Figures 23, 24, and 25. In all cases, significant depletion of the bond 

coat had occurred through A1 depletion via A1203 scale growth and bond 

coat/su bst rate i nterd i f f us i on. Coati ng /substrate i nterdi f f us i on had a1 so 

resulted in the development o f  large Y I ayers in the bond coat and the 

substrate at this interface (for all three pre-exposure conditions) for bond 

coats #2 and #3. Bond coat P1 (NiCrAlY + aluminide) also includes a Y 1 ayer 

in the bond coat with the presence of MZ3C6 precipitates in the substrate 

near the bond coat/substrate interface. Bond coat #4 appears to have the 

smallest degree of microstructural change of the four different specimens for 

both the bond coat and the substrate. In all cases, significant changes have 

occurred in the bond coat for the four different systems due to thermal 

cycling. 
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Bond Coat Fai  1 ure C r i t e r i a  Experiment 

I n  t h i s  experiment, specimens were removed from thermal cyc le  t e s t i n g  

p r i o r  t o  f a i l u r e  a t  various i n t e r v a l s  (Table X ) .  

o f  these specimens w i l l  a l low exahination of changes i n  the  TBC p r i o r  t o  

fa i l u re .  

are the  primary goals o f  t h i s  e f f o r t .  

f a i l u r e  c r i t e r i a  f o r  TBC l i f e  p r e d i c t i o n  models. 

y i e l d  the thermal cyc le  growth k i n e t i c s  o f  t h e  ox ide scale a t  t h e  bond 

coat / top coat  in ter face.  

M ic ros t ruc tu ra l  examination 

Observation o f  t h e  development and growth o f  cracks i n  t h e  top  coat  

The data w i l l  be u t i l i z e d  t o  de f i ne  

This  examination w i l l  a l so  

Tube specimens are being u t i l i z e d  i n  t h i s  experiment. 

A l l  t e s t i n g  has been completed and m ic ros t ruc tu ra l  and scanning e lec t ron  

microscope examination o f  these specimens i s  underway. 

should be concluded e a r l y  i n  the  t h i r d  year o f  t h i s  contract .  

The i r  examination 
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TABLE X - 

EVALUATION OF TBC INTEGRITY VS. THERMAL CYCLES 

SPECIMENS 

3 

3 

3 

3 

3 

3 

3 

3 

PRE-EXPOSURE 

None 

None 

None 

None 

None 

None 

None 

None 

THERMAL CYCLES* 

1 

10 

30 

50 

75 

100 

110 

115 ( F a i l u r e )  

*Thermal Cycle - 10 Minute Heat Up, 45 Minutes a t  1093OC, 15 minute Cool 
(Normal Inspection a t  5 Cycles) 

5 9  



KEY PROPERTY DETERMINATIONS 

Bond Coat Propert ies 

Tensi le  strength, Poisson's r a t i o ,  dynamic e l a s t i c  modulus, and 

c o e f f i c i e n t  o f  thermal expansion were determined from room temperature t o  

approximately 1093OC (20OOOF). Standard t e s t i n g  procedures and t e s t  specimens 

(F igure 26) were u t i l i z e d  f o r  the  N i C r A l Y  bond coat  specimens. These 

specimens were machined from 5.1 cm ( 2  inch) by 15.2 cm ( 6  inch) heat t r e a t e d  

LPPS N i C r A l Y  b i l l e t s  of var ious heights. The as-sprayed b i l l e t s  received a 

f o u r  hour vacuum heat treatment a t  1093OC (20OOOF) t o  increase t h e  

mach inab i l i t y  o f  t h e  b i l l e t s .  

i s  the  soak temperature u t i l i z e d  i n  thermal cyc le  tes t ing .  

The 1093OC heat treatment was chosen since t h i s  

Tensi le  Strenqth: Tensi le  s t rength was determined a t  room temperature, 

538OC ( 1000°F), 7 6 O O C  (14OO0F), 982OC ( 18OO0F), and 1093OC (2000°F). 

sumnary of the t e s t  r e s u l t s  i s  l i s t e d  i n  Table X I .  Some d i f f i c u l t i e s  were 

encountered when t e s t i n g  a t  room temperature and a t  538OC (lOOO°F). 

A 

Unfortunately, N i C r A l Y  i s  extremely b r i t t l e  a t  room temperature and two of t h e  

th ree  t e s t  specimens f a i l e d  i n  the  g r i p s  and these r e s u l t s  were n o t  included 

i n  Table X I .  A t  the  538OC t e s t  temperature, some s l i p  o f  the  extensometers 

was noted and although the data was included, these t e s t s  w i l l  be repeated and 

any d i f ferences noted i n  the  f i n a l  repor t .  
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c 

Poisson's Ratio: Poisson's r a t i o  was determined a t  room temperature, 

538OC (lOOO°F), and 76OOC (1400OF) (Table XII). Attempts were a lso  made t o  

ob ta in  values a t  982OC (18OO0F), and a t  1093OC (200OoF), However, due t o  the  

extremely d u c t i l e  na ture  o f  t he  N i C r A l Y  mater ia l ,  t h e  e l a s t i c  reg ion  was n o t  

measurable a t  t he  elevated temperatures. A Poisson's r a t i o  o f  0.5 w i l l  be 

assumed f o r  these temperatures, based on the  laws o f  p l a s t i c i t y .  

Dynamic E l a s t i c  Modulus: The dynamic e l a s t i c  modulus was determined from 

room temperature t o  approximately 1075OC f o r  two d i f f e r e n t  specimens. A p l o t  

o f  t h e  r e s u l t s  for both specimens i s  shown i n  F igure 27. The dynamic e l a s t i c  

modulus var ies  from 200 GN/m2 a t  ROT. t o  20 GN/m2 a t  1075OC. 

C o e f f i c i e n t  o f  Thermal Expansion: Coe f f i c i en t  o f  thermal expansion was 

determined using t h e  Chevenard dilatometer, 

approximately 11 x 

1000°C (F igure 28). 

t he  specimens. 

The c o e f f i c i e n t  var ies  from 

in / in /C a t  R.T. t o  about 18 x in / in /C a t  

The same values were obtained when heating and coo l i ng  

Top Coat Proper t ies 

E l a s t i c  modulus, shear modulus, Poisson's r a t i o ,  and c o e f f i c i e n t  o f  

thermal expansion were determined f o r  t he  top coat. These p roper t i es  were 

6 3  



1 TABLE X I 1  

ELASTIC MODULI AND POISSON'S RATIO OF LPPS Ni-22Cr-lOAl-0.3Y 

Temperature OC  E (Axial) GPa 

20 (R-T.) 206 (29.9 M S I )  

538 ( 1000°F) 

760 (14OOOF) 101 (14.7 MSI) 

180 (26-1 MSI) 

982 (18OOOF) -- 
1093 (20OOOF) -- 

E (Diametral) GPa 

696 (100.8 M S I )  

602 (87.3 MSI) 

273 (39.6 MSI) 

-- 

Poisson's 
Ratio 

0.30 

0.30 

0.37 

-,* 

- -* 

* No linear portion to stress/strain curves. 

6 4  
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determined from-R.T. t o  approximately 1093OC (2000°F). 

free-standing a i r  plasma sprayed (APS) specimens were u t i  1iZed. Free-standing 

specimens were produced by depositing the ceramic material on stainless steel 

substrates and inducing a thermal shock t o  cause spal la t ion of the in tac t  

ceramic sheet. Some f ina l  machining was required t o  achieve the desired 

specimen configurations (Figure 29). These specimens also received a 

four-hour heat treatment i n  a i r  a t  1093OC ( 2 0 O O O F )  prior t o  testing. The bend 

I n  all tests, 

strength of similar free-standing specimens will a lso be determined i n  the 

t h i r d  year of this contract. 

Elastic Modulus, Shear Modulus, and Poisson's Ratio - The apparatus and 

methodology used f o r  measurement of elastic modulus, shear modulus, and 

Poisson's ratio o f  the ceramic specimen conform t o  t h a t  of Spinner and Tefft 

( l l ) ,  the accepted standard of the industry.  

The dynamic e las t ic  and dynamic shear moduli were measured continuously 

from R.T. t o  1093OC (2000°F)* by a resonant frequency method. The 

free-standing ceramic specimen (Figure 30) was suspended i n  a furnace, and the 

flexural and torsional frequencies were measured as the furnace temperature 

was raised. 

i ts  resonant frequency. The flexural resonant frequency was determined by 

A P t  wire or cotton thread was used t o  excite the specimens i n t o  

*Tested performed by I ITRI . 
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* 
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(b) COEFFICIENT OF THERMAL EXPANSION SPECIMEN 

- 
(c) BEND STRENGTH SPECIMEN 

Figure 29 Top coat specimen configurations (all dimensions in centimeters) 
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Figure 30 -. 

Flexura l :  Suspended Near Flexural  
V ibra t ion  Nodes 

Torsional:  From Opposite Corners 

Method of suspending samples for f lexural  and torsional 
modes of vibration 
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- 
suspending the free-standing specimen from points just adjacent to the 

flexural nodal point, which permits detection of the resonant frequency. The 

elastic modulus was then calculated from the following relationship. 

0.94642 P L 4 f  *T 
E=386.09 t2 

where E = Young's elastic modulus for flexural resonance of a prism of 
rectangular cross section, psi 

P = density, lb in. -3 

L = sample length, in. 

f = flexural resonant frequency (fundamental mode), Hz 

t = sample thickness, in. 

T = correction and shape factors given by Spinner and Tefft. 

The specimen was then suspended at opposite corners, where torsional as 

well as flexural vibrations are induced. The shear modulus was then 

calculated from the measured torsional resonant frequency using the following 

re1 at ionship. 

4f2  PRL2 
=386.09 

where G = shear modulus for torsional resonance, psi 

f = torsional fundamental resonant frequency, Hz 

R = shape factor 

L = sample length, in. 
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Poisson's ratio (P) was then calculated from the elastic and shear moduli 

using the following relationship. 

E- 
p=-- 1 (1-3)  26 

The cot ton thread was used a t  R.T t o  check the accuracy of the frequencies 

measured w i t h  the P t  wire. Two different specimens were evaluated a t  room 

temperature w i t h  the cotton thread. The average elastic modulus aetermined 

was 210 GPa (30.5 x 10 psi), while the average shear modulus was 91.2 GPa 

(13.2 x lo6 psi), (Table XIII). This compares t o  an elastic modulus of 

20b GPa (30.2 x lo6 psi), and a shear modulus of 90.3 GPa (13.1 x l U 6  p s i )  

for  specimen Y2 for the system u t i l i z i n g  the P t  wire. Since good correlation 

was observed between the two tests (cotton thread and P t  wire), the P t  wire 

was used for a l l  measurements from R.T. t h r o u g h  1093OC on specimen Y2. The 

values measured for elastic modulus and shear modulus, and calculated for 

Poisson's ratio are shown i n  Table XV. 

6 

A four p o i n t  (quarter flex) bend test was performed on specimen Y 1  t o  

allow comparison of elastic modulus values measured from this test  t o  the 

values measured from the resonant frequency test. Specimen Y 1  was sectioned 

i n t o  three flex specimens (0.635 cm x 0.229 cm x 0.635 cm). The specimens 

were strain gaged and tested. The average elastic modulus determined from 

this test  at.R.T. was 21 GPa (3.0 x lo6 psi) ,  (Table XIV). 

value is  a factor of ten less t h a n  the values measured by the resonant 

This average 

frequency method. The difference i s  possibly associated w i t h  the presence of 

cracks, porosity, and splats decreasing the apparent modulus i n  the bend 

test. These factors should play a smaller role i n  the resonant frequency 

method. These results will  be further evaluated and elaborated on i n  the 

final report. 
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TABLE XI11 

- 
VALUES FOR ROOM TEMPERATURE MEASUREMENTS OF ELASTIC MODULUS 

AND SHEAR MODULUS OF APS Zr028Y203 (ON COTTON THREAD) 

E G 

E l a s t i c  Shear 
Sample Resonant Frequency Modulus Modulus 
I .D. Flexural  Torsional  GPa (MSI) GPa ( M S I )  

1 1500 3734 210.9 (30.57) 90.4 (13.10) 

2 1472 3697 210.2 (30.47) 91.1 (13.20) 

Average 210.5 (30.52) 91.2 (13.15) 

Poisson's 
Rat io* 

0.17 

0.15 

0.16 

* Calculated Value. 
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TABLE X V  

ELEVATED - TEMPERATURE DETERMINATION OF ELASTIC MODULUS, SHEAR MODULUS, 

AND POISSON'S RATIO OF APS ZrOp8Y703 

E 
E l  a s t i  c 

G 
Shear 

Temp. 3 Resonant Frequency Modulus Modulus Poi soon 's  g "C Flexura l  Torsional  'GPa M S I  Rat ios 

25* 1472 3697 210 (30-5) 91 (13-2) 0-15 

25 1466 3672 208 (30.2) 90 (13.1) 0-16 

100 1453 3630 205 (29.7) 88 (12.8) 0-16 

150 1444 361 0 202 (29.3) 87 (12.6) 0.16 

200 1436 3573 200 (25.0) 86 (12.4) 0.19 

300 1425 3443 197 (28.6) 79 (11.5) 0-24 

400 

450 

500 

538 

600 

700 

800 

900 

982 

1000 

1038 

1412 

141 1 

1401 

1395 

1387 

1375 

1360 

1342 

1340 

1362 

1374 

3343 

3325 

3299 

3281 

3265 

3209 

31 60 

31 35 

3122 

31 47 

31 63 

193 (28.0) 

193 (28.0) 

190 (27.6) 

189 (27.4) 

187 (27.1) 

184 (26.6) 

179 (26.0) 

175 (25.3) 

175 (25.3) 

179 (26.1) 

183 (26.5) 

75 (10.8) 

74 (10-7) 

72 (10.5) 

72 (10.4) 

71 (10.3) 

69 (10.0) 

67 ( 9.7) 

66 ( 9.5) 

65 ( 9-4) 

66 ( 9.6) 

67 ( 9.7) 

0.29 

0.31 

0.31 

0.31 

0.31 

0.33 

0.34 

0.33 

0.34 

0.36 

0.37 

I 1093 1342 31 85 175 (25.3) 68 ( 9.8) 0.29 

I * Specimen suspended on co t ton  thread, a l l  others suspended on P t  w i re -  
1 
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Coefficient of Thermal Expansion: Coefficient of thermal expansion was 

determined using the Chevenard dilatometer from R.T. t o  1073OC. 

the coefficient--was essentially constant (Figure 31) over t h i s  temperature 

regime w i t h  a value of approximately 9 x 10 i n / i n / C .  These results will be 

compared t o  other published results i n  the f i n a l  report. 

Interestingly, 

6 

Bend Strenqth Testinq: Bend testing of the free-standing ceramic will be 

ccmpleted i n  the t h i r d  year of this contract. Delays i n  procuring the 

necessary fixtures t o  r u n  this test  in-house, have resulted i n  the plan t o  

perform these t e s t s  a t  Southern Research Insti tute.  
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- 
TASK I1 - MAJOR MODE LIFE PREDICTION MODEL 

The objective of this task is to develop life prediction models for TBCs. 

To accomplish this goal, finite element analysis is being performed on the 

TBCs, and thermomechanical experi'ments are being utilized to evaluate the 

thermomechanical characteri stics o f  TBCs. 

(finite element modeling) includes evaluation o f  five analytical tasks, each 

dealing with a particular aspect o f  the TBC failure regimes, while three 

thermomechanical experiments are aimed at determining the strains induced by 

thermal cycling. The TBC life prediction model will be created by combining 

the results of the TBC Analytical Program, the results of the thermomechanical 

experiments, and the results of the failure criteria examinations of Task I. 

The TBC Analytical Modeling Program 
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F i n i t e  Element Model inq 

The CYANIDE f i n i t e  element program (GE in-house program) i s  being u t i l i z e d  

t o  analyze thermal b a r r i e r  coatings. I n i t i a l  use o f  t h i s  program w i l l  

consider the  mater ia l ' s  t ime independent behavior only. The time-dependent 

deformation w i l l  be included i n  the t h i r d  year o f  t h i s  contract .  

descr ip t ion  o f  how the CYANIDE program handles i n e l a s t i c  behavior i s  described 

below. 

A b r i e f  

CYANIDE i s  a two-dimensional f i n i t e  element program which can handle 

e i t h e r  plane stress, plane s t ra in ,  or axisymmetric deformation. The program 

can analyze s t ructures subjected t o  any complex c y c l i c  thermomechanical 

loading condi t ions inc lud ing  concentrated loads, pressure loads, thermal 

loads, and c e n t r i f u g a l  loads. CYANIDE accounts f o r  both time-independent 

p l a s t i c  f l o w  and time-dependent creep deformation. 

P l a s t i c i t y  i s  accounted f o r  by using a modi f ied Bessel ing subvolume method 

w i t h  m u l t i l i n e a r  s t ress-s t ra in  curves which are temperature dependent. 

t y p i c a l  s t ress-s t ra in  representat ion f o r  one temperature i s  shown i n  

F igure 32. This'method automat ica l ly  reproduces c e r t a i n  aspects of 

rea l -mater ia l  behavior important i n  t h e  analys is  o f  engine components. 

inc lude the Bauschinger e f fec t ,  cross hardening, and memory. 

A 

These 

I n  a d d i t i o n  t o  

78  



Strain (E), in.in. 

Figure 32 Point by point stress-strain curve representation 

a2 

ul 

Note 
al<a2<a3<u4 
Temperature Constant 

a 

Time, houra 

Figure 33 Creep curve representation f o r  constant tP-=pr=tu=g 
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simulating the material response very closely, Besseling's method is also more 

economical than other methods. Implementation of the method involves revising 

the force vector by computing plastic forces which account for the plastic 

flow: 

[K]  [SI = [F] + [F,] where K is the elastic stiffness, 
6 is the incremental displacement, 
F is the applied force and 
F is the plastic force. 

(2-1 1 

P 

Since the method does not require modification of the stiffness matrix in the 

plastic iterations, it is consequently very economical. 

The creep analysis utilizes one of two possible creep representations. 

When tertiary creep is not considered to be of importance, the equation used 

is: 

-n m -r ec= kuet + quet 

where 

- 
u = ue/lOOOOO, oe = effective stress e 

and 

k, m, n, q, r = material-dependent and temperature-dependent creep 

coef f i c i ent s . 

This type o f  response is shown for one temperature in Figure 33. 
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When the material exhibits a significant amount of tertiary creep 

capability, an alternate representation is Used. Primary creep is represented 

by the Bailey-Norton law. 

; A  A 2 t 3  P 
E c = A ~  e (2-3) 

Secondary creep is modeled with the expression proposed by Marine, Pao, and 

Cuff (12) 

S -A - A  A4 ue5 t + A6 a, 7 

Tertiary creep is represented with an equation of the form 

(2-4) 

(2-5) 

A1, A2 . . . A10 = material-dependent and temperature-dependent 

creep coefficients. This type of response is shown for one temperature in 

Figure 34. 

CYANIDE also contains an orthotropic creep formulation. The creep 

strain rate is assumed to be given by 

cij = 'ijkl ukl 
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where 

i i j  = s t r a i n  r a t e  tensor 

akl  = s t ress  tensor 

g i j k l  = 0 tensor w i t h  components t h a t  are funct ions o f  temperature, e, 

and hardening r u l e  and are der ivab le  from inpu t  creep curves. 

The user can se lec t  from t ime hardening, s t r a i n  hardening, o r  l i f e  

f r a c t i o n  creep ru le ,  depending on the  actual  mater ia l  charac ter is t i cs .  S t r a i n  

hardening i s  o r d i n a r i l y  adequate f o r  descr ib ing hardening behavior, p rov id ing  

t h a t  s t ress  reversa ls  do no t  occur. A s t ress  reversa l  i s  considered t o  occur 

when 

e i j C  o i j  < o (2-7) 

where c i j C  i s  creep s t r a i n  measured from the  cur ren t  o r i g in .  

reversa l  occurs the o r i g i n  i s  changed, and the  analysis proceeds (13). 

When a 
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- 
The combinaiion o f  general creep equations and creep r u l e  makes the  

program very general i n  app l i ca t i on  t o  s t ruc tu res  which undergo time-dependent 

i n e l a s t i c  deformation. A s o l u t i o n  i s  done f o r  each t ime step us ing an 

i t e r a t i v e  technique t o  p r e d i c t  incremental creep s t r a i n  components and r e v i s e  

the  r i g h t  s ide  of t h e  bas ic  s t r u c t u r a l  s t i f f n e s s  ma t r i x  equation by adding a 

p l a s t i c  f o r c e  vector t o  account f o r  t h e  creep e f f e c t s  

i n  a manner s i m i l a r  t o  t h a t  used i n  the  Bessel ing technique f o r  

time-independent p l a s t i c i t y .  Again, t h i s  method i s  very e f f i c i e n t ;  very l a r g e  

problems can be solved economically, and convergence has been shown t o  be very 

rapid. 

evident when creep re la t i onsh ips  are introduced l a t e r  i n  t h i s  TBC ana lys is  

e f f o r t  

The benef i t s  o f  t h e  CYANIDE f i n i t e  element program w i l l  be more 
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- 
TBC Ana ly t i ca l  Modeling Program 

F ive  d i f f e r e n t  ana ly t i ca  

the  TBC f a i l u r e  regimes, are 

f i n i t e  element analysis. The f i r s t  

of a m u l t i l a y e r  cy l inder ,  wh i le  the 

f i f t h  task i s  intended t o  combine f 

tasks, each dea l ing  w i t h  a p a r t i c u l a r  aspect o f  

tasks w i l l  u t i l i z e  

axisymnetric model 

d isk  model, and the  

t h  simple crack and 

d i f f u s i o n  models, The s p e c i f i c  condit ions o f  each task are discussed below. 

being investigated. A l l  f i v e  

three tasks i nvo l ve  an 

fou r th  task examines a 

n i t e  elements models w 

Task a, 

and ou ter  surfaces o f  the  specimen (i.e. no grad ien t  across t h e  TBC coated 

tubu la r  specimen). The GE cyc i c  temperature r i g ' s  c y c l e  (10-minute heat up, 

45-minute exposure a t  1093OC, 

This  model w i l l  be compared t o  a f r e e  thermal expansion experiment planned t o  

measure the  a x i a l  displacement o f  the  specimen. 

I n  t h i s  evaluation, t he  same temperature w i l l  be assumed a t  t h e  inner  

5-minute cooling, F igure 35) w i l l  be modeled. 

Task b. A temperature d i s t r i b u t i o n  which i s  a func t i on  o f  space r a t h e r  than 

t ime w i l l  be modeled (i.e., a gradient across the  TBC cooled tubu la r  

specimen). The work w i l l  model t h e  e f f e c t  o f  t h e  l a rge  gradients  (10O-15O0C) 

developed across t h e  ceramic. 

cond i t ions  w i l l  be applied. 

I n  t h i s  case, no t ime dependent boundary 
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Task c. 

coat interface, thereby producing a r ing crack. 

perpendicular t o  the f ree  surface will then be added. The goal is t o  examine 

crack t i p  d r i v i n g  forces to  determine any changes resulting from 

accommodations of displacements by the multiple cracks. Small submodels 

involving a number of cracks may be studied applying perturbation approaches 

(localized crack changes). The conditions f o r  this modeling will be based on 

the resul ts  of the f irst  two tasks described above. 

In this evaluation, cracks wil l  be "placed" along the bond coat/top 

One or more cracks 

Task d. The importance of edge effects i n  multilayer specimens (disks) will 

be briefly evaluated. T h i s  i s  an area of active research, so the task 

analysis will draw on published results. Since most GE TBC applications 

contain edges, i t  is important t o  examine how these edges may affect  thermal 

cycle l i f e  by evaluating the s t ress  s ta te  a t  these edges. 

Task e. 

simple e l a s t i c  crack models, thermal mismatch s t ra ins ,  a diffusion model 

(e.g., 4 = D t ) ,  and a hydrostatic pressure will be used to  further examine 

crack t i p  d r i v i n g  force. 

model can be pushed, b u t  i t  may produce significant i n s i g h t  on cracking i n  the 

cerami c. 

In this task, the above f in i t e  element model resul ts ,  along w i t h  some 

Being e last ic ,  there i s  a limit as t o  how f a r  t h i s  
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In the first four tasks of the modeling work, emphasis will be placed on 

extracting stress and displacement data as a function of time and location 

under changes in geometry and boundary conditions. 

material data is available (crack initiation, propagation, or failure data), 

quantities predicted by the models will be compared to this data for failure 

information. 

In cases where sufficient 

The final task is the least defined and is the most difficult. Similar 

problems have been examined involving cracks perpendicular to the interface, 

but analysis of coating spallation has not been attempted. This is further 

complicated as a result of the presence of pore pressure and large amounts of 

thermal strain mismatch in the ceramic. However, the potential benefits of 

this examination are significant and warrant the investigation. 
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Results - TBC Analytical Proqram 

Two dimensional finite element models are being used to determine the 

stress and deformation fields in the TBC specimens. Several finite element 

models were examined and an axisymnetric model was selected to evaluate the 

fields. These results will provide the basis for the development of TBC life 

prediction models. 

For the axisymmetric model, a longitudinal slice of a multilayer cylinder 

In this case, the assumption is made that the (Figure 36) is being examined. 

specimen is sufficiently long that the cross-sectional planes (perpendicular 

to axis) remain planar after deformation. For this geometry, two different 

axisymnetric models were investigated. The first has two layers in the axial 

direction (Figure 36b), with the elements in the right layer set to be 

extremely rigid to resist the axial and shear deformation. The second model 

(Figure 36c) has many layers in the axial direction, with the last layer very 

long (1O:l aspect ratio, not shown) i n  the axial direction. 

the goal is to enforce the uniform axial deformation. 

In both models, 



1 
Top Coat 

Bond Coat 

Substrate 
- 
R 

9: 
v - t  
G 
0 
d 
U 
U 
aJ 

Radial Stress (aR) = Stress In Radial Direction 

Axial Stress 

Hoop Stress 

Effective Stress = 

(uA) = Stress In Axial Direction 

(uH) = Stress In Circumerential Direction 

a 2  a 2 + a 2  
R + A  H 

Axial Direction (A) 

Figure 36 Axismetric Model 
a) Longitudinal slice of multilayer cylinder 
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The evaluation of both types of models has allowed initial cross checking 

of data generated from the models. However, after careful examination, the 

decision was made to utilize the second axisymnetric model (Figure 36c). 

The axisymmetric finite element program (Figure 36a and 36c) has been 

applied to the first two analytical tasks. 

temperature was assumed to be 9820C (1800°F), while the top coat stress free 

temperature was assumed to be 204OC (40OOF). These are the temperatures of 

the substrate during application of these coatings. 

utilized in the model are listed in Appendix 111. 

effective, radial, axial, and hoop, have been determined across the top coat, 

the bond coat, and the substrate in the radial direction. 

both elastic and plastic deformation was included, but no plasticity developed 

for the temperature conditions selected (time at temperature was not 

included). 

discussed below. 

The bond coat stress free 

The material properties 

Stresses, which include 

In the analysis 

Analysis of the results for the first two analytical tasks is 

In Task a, the specimen was assumed to undergo the thermal cycle of 

21°C - 1093OC - 21OC in the cycling rig. Since this is a quasistatic test, 

the entire specimen was assumea to be at a given temperature. Effective, 

radial, axial, and hoop stresses versus distance in the radial direction are 

plotted in Figure 37 for four different temperatures [2l0C (7OoF), 204OC 

(4OO0F), 982OC (1800°F), and 1093OC (20OOOF)J. As indicated, the stress free 

temperature for the top coat is 204OC (4OO0F), therefore, zero stress is found 

in the top coat at this temperature. However, since the top coat was applied 

to the bond coat, 582OC (180OOF) is no longer the bond coat stress free 
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temperature. T-fierefore, small stresses due to the top coat application 

develop in the bond coat at this temperature. 

As observed in all plots, the model predicts extremely large stresses in 

the bond coat and top coat at 1093OC (2000°F). The high stresses in the top 

coat would probably be relieved by microcracking. The results also indicate 

that large compressive stresses do develop in the ceramic upon cooling. This 

is consistent with most theories associating TBC failure with the large 

compressive stresses that develop in the ceramic upon cooling. Further 

comment on the significance of the values will be made as experimental data 

becomes available in subsequent work on this program. 

In the Task b, a temperature distribution across the TBC system was 

modeled. 

(2000°C), the bond coat/top coat interface was set at 943OC (1730°F), the bond 

coat/top coat interface was set at 941OC (1725OF), and the inner wall of the 

tube was set at 927OC (17OOOF). These results (Figure 38) were plotted and 

compared with the results present when the system was at 21OC (7OOF). 

Interestingly, the largest effective stress is present in the ceramic near the 

bond coat/top coat interface which is the typical failure location for thermal 

barrier coatings; 

In this examination, the surface of the ceramic was set at 1093OC 

Future plans include evaluating the effect of temperature 

gradients at lower temperatures, closer to temperature at which TBCs are 

believed to fail. Comparison of the results of deformation behavior for Tasks 

a and b (Figures 37 and 38) indicate how significantly the presence o f  thermal 

gradients can affect the stress state present in TBCs. 
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Thermomechani cal Experiments 

Three different thermomechanical experiments have been planned to evaluate 

the thermomechanical characteristics of TBCs. The primary goal of these 

examinations is to measure the st'rains induced during thermal cycling of TBCs, 

and to relate these strains to the observed failure modes. 

In the first experiment (Experiment l), a thermal barrier coated LCF tube 

specimen (Figure 39) will be thermally cycled using an induction system and a 

forced air cooling system. The thermomechanical nature of two different 

thermal cycles will be evaluated. The first thermal cycle will be as close to 

the GE cyclic temperature rig's cycle (Figure 35) as possible. The conditions 

of the second cycle will be based on the results of the first cycle. A laser 

interferometer displacement gage, which has a higher level of sensitivity than 

an extensometer, will be used to measure surface displacements (axial 

direction) of both the substrate and the ceramic top coat during thermal 

cycling. The possibility of placing microstrain gages beneath the coating is 

also being investigated. To accomplish measurement of both the substrate and 

top coat simultaneously, the tube specimen will be masked during both the bond 

I 

I 

~ 

coat and top coat applications so that a strip in the gage section is not 

coated with the ceramic. Lasers will be positioned on both the ceramic top 

coat and the metal substrate (masked region). 

applied to these specimens. 

No mechanical load will be 
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Fu- Fu- 

Figure 39 Sketch of furnace system f o r  thermomechanical experiment 
I1 
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- 
This experiment (Experiment 1) is aimed at determining the magnitude of 

strains induced by thermal cycling of the TBC specimen under essentially zero 

mechanical load. The experiment will attempt to determine if any phasing 

exists between the strains observed for the substrate and the ceramic, or if 

the ceramic just follows the displacement of the metal substrate. 

In the second experiment (Experiment 2), a thermal barrier coated specimen 

will be thermally cycled in a thermomechanical fatigue (TMF) rig. An 

induction heating system and a forced air cooling system will be used to 

thermally cycle the specimens. Three different thermal cycles will be 

evaluated. One of the three thermal cycles will be as close to the GE 

temperature rig's cycle (Figure 35) as possible. For one (or several, 

depending on results) thermal cycle, a tensile load will be applied to keep 

the strains (axial direction) in the top coat from becoming compressive. The 

final part of this experiment will be to apply tensile, compressive, and zero 

loading to three TBC specimens. 

failure under these conditions for at least one of the thermal cycles. 

These specimens will be thermal cycled to 

This experiment (Experiment 2) is also aimed at determining the 

relationship of the strains induced by thermal cycling of TBC specimens to the 

failure mode. 

applied to balance the compressive strains developed due to thermal cycling. 

By applying tensile loads, the goal is to determine the magnitude of the 

compressive strains. 

cycle life can be achieved if the stress in the coating is not allowed to 

become compressive. 

However, in this case, tensile loads (axial direction) will be 

The experiment wi 1 1  also evaluate whether longer thermal 
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In the thira experiment (Experiment 3),  the thermal barrier coating will 

be applied t o  t h i n  Rene' 80 (substrate) s t r ips .  These specimens will  be 

heated and cooled u s i n g  induction heating and forced a i r  cooling. 

Extensometers will be used to  measure the displacements of the metal back side 

and the ceramic front  side of the specimen. 

the basis of Experiment 1 and 2 results will be evaluated. An uncoated Rene 

'80 strip and a free-standing ceramic s t r ip  will also be tested. 

One thermal cycle, selected on 

T h i s  experiment is also aimed a t  determining the magnitude o f  s t ra ins  

induced by thermal cycling. 

and their TBC coatings w i  11 bend measurably d u r i n g  thermal transients because 

of the stresses induced by thermal expansion differences. Permanent 

deformations may occur as the resul t  o f  creep and/or oxide scale formation on 

the bond coat. Observation of curvature changes d u r i n g  coating deposition and 

d u r i n g  subsequent thermal transients will be compared t o  predicted curvatures 

based on known properties of Rene' 80 and the coating materials. T h i s  data, 

i n  conjunction w i t h  data from the uncoated Rene' 80 strip and free-standing 

ceramic strip, should provide i n s i g h t  on the behavior of coated specimens and 

t h u s  contribute t o  a better understanding of fa i lure  mechanisms. 

I t  i s  anticipated tha t  the t h i n  Rene' 80 strips 
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Results - Therrnornechanical Experiments 

- 
The thermomechanical specimens (tubular LCF specimens) have received the 

NiCrAlY bond coat and the Zr02-Y203 top coat. 

specimens were produced by masking during the top coat and/or the bond coat 

application. Masking was employed to allow measurement of displacements by 

extensometers and/or lasers of both the ceramic top coat and the bond coat or 

substrate simultaneously. Type 1 specimens utilized masking during the 

application o f  both the bond coat and the top coat. The result was the 

presence of a thin strip of substrate on the gage section that received no 

bond coat and no top coat (Figure 41a). Type 2 specimens utilized masking 

Three different types of 

during the application of the top coat. The result was the presence of a thin 

strip of bond coat that received no top coat (Figure 41b). No masking was 

utilized for type 3 specimens. The result was complete coverage of the gage 

section with TBC (Figure 41c). The presence of uncoated regions in some 

specimens allows direct measurement of displacements in these regions. 

Thermocouples (TC' s) have also been embedded* between the substrate and 

the bond coat in two tubular LCF specimens. These TC's have been embedded in 

five different locations along the gage section of the specimen (Figure 42). 

These specimens will be used to calibrate the thermal cycle rigs for 

experiments 1 and 2 to obtain accurate temperature data. 

* 
substrate surface (axial direction). 
in the substrate prior to the bond coat and the top coat applications. 

Five 0.020" diameter grooves, 0.015" deep, were EDM wire cut in the 
Five 0.020'' diameter TC's were embedded 
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-- 
Top Coating-,, 

Substrate 

Top Coating 

(a) 
(b) 
(c) 

Type 1 - Uncoated Substrate on Gage Section 
Type 2 - Uncoated Bond Coat S t r i p  on Gage Section 
Type 3 - Fully Coated Gage Section 

Figure 40 Three Types of Masking for Thermomechanical 
Specimens. 
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Thermocouple No. 1 

Thermocouple No. 2 

Thermocouple No. 3 

Thermocouple No. 4 

Thermocouple No. 5 

0 

0 

I 

Thermocouple Leads 

Figure 41 Locations of Embedded Thermocouples in 
Thermomechanical Test Specimens. 
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The final preparations for the thermomechanical experiments are nearing 

completion. The actual testing should be initiated early in the third year of 

this contract. 
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CONCLUSIONS 

The first task of the study involves the determination of TBC failure 

mechanisms and key properties of both the bond coat and the top coat. The 

second task of the study involves the development of finite element models for 

TBCs and determination of thermomechanical properties of the TBCs. The 

information determined from Tasks #1 and #2 will be utilized to develop TBC 

life prediction models 

Three experiments aimed at evaluating the effects of bond coat oxidation 

were completed. The three experiments indicate that bond coat oxidation is a 

significant contribution to an overall TBC failure mechanism. 

the test data indicate that pre-exposures in argon are more detrimental to 

thermal cycle life (shorter thermal cycle life) then pre-exposures in air for 

TBCs. Analysis has indicated that the detrimental effects of argon are 

probably associated with bond coat oxidation effects. 

Unexpectedly, 

The experiment aimed at evaluating bond coat creep was completed. The 

results indicate that bond creep is a contributor to TBC failure and that TBC 

life increases with increasing bond coat creep strength. 
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Key propertqes f o r  the  bond coat and t h e  top  coat were determined. 

Tens i le  strength, dynamic e l a s t i c  modulus, Poissonls r a t i o ,  and c o e f f i c i e n t  o f  

thermal expansion were determined f o r  the bond coat. Poisson's r a t i o ,  dynamic 

e l a s t i c  modulus, dynamic shear modulus, and c o e f f i c i e n t  o f  thermal expansion 

were determined f o r  t he  top coat. Bend s t rength  f o r  the  top  coat  w i l l  be 

determined i n  the  t h i r d  year o f  t h i s  contract. 

F i n i t e  element models were developed f o r  TBCs and appl ied t o  two 

a n a l y t i c a l  examinations. These two models were appl ied t o  the  f i r s t  two 

a n a l y t i c a l  tasks. 

The specimens f o r  t h e  thermomechanical experiment have been prepared, and 

f i n a l  preparat ions p r i o r  t o  t e s t i n g  are near ing completion. These experiments 

w i l l  be u t i l i z e d  t o  examine the  thermomechanical cha rac te r i s t i cs  o f  TBCs. 
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APPENDIX I, POWDER CHARACTERISTICS 
- 

Manufacturer 

A l l o y  Metals, Inc. 
Union Carbide 
Union Carbide 
Union Carbide 
Metco 

TABLE X V I  POWDER MANUFACTURERS 

Powder 

Bond Coat #l (Ni-22Cr-lOA1-0.3Y) 
Bond Coat #2 (Special)  
Bond Coat #3 (Special)  
Bond Coat #4 (Special)  
Top Coat (ZrO2-8Y203) 

Powder S i  ze 
(Mesh) 

- 230 + 400 - 230 + 400 - 230 + 400 - 230 + 400 - 140 + 10 I rm 

TABLE X V I I  POWDER TRUE DENSITY* 

Powders Density (q/cc) 

Bond Coat #l ( N i  -22Cr- lOA1-0.3Y ) 

Bond Coat #2 
Bond Coat #3 
Bond Coat #4 

Top Coat ( Zr02-Y 203) 

7.31 

8.35 
7.88 
7.36 

5.53 

* Density o f  as-recei ved powder (Nul 1-Pychometer) 
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TABLE X V I I I  POWDER SIEVE ANALYSIS (WEIGHT X )  
- 

Sieve Size Bond Coats Top Coat 
(mesh) Y1 #2 $3 #4 ZrO7-8Y 703 

+ 170 0.0 0.0 0.0 0.0 10.0 
- 170 + ZOO 0.4 0.8 0.0 0.0 13.7 
- 200 + 250 14.7 7.6 0.8 0.0 5.7 
- 250 + 270 34.5 27.7 23.5 14.8 9.5 
- 250 + 325 29.2 32.4 34.6 36.7 13.7 
- 270 + 400 12.2 25.1 28.0 32.6 9.4 
- 400 4.0 6.3 13.0 15.8 38.1 

TABLE X I X  POWDER hICHOTRAC ANALYSIS 

Powders 10th Percent i le  50th Percent i le  90th Percent i le  Mean Diameter 
vm vm vm vm 

Bond Coat Y 1  34.5 52.8 83.2 54.9 

Bond Coat f 2  36.7 57.1 90.2 57.8 
Bond Coat #3 30.6 51.6 96.5 56.3 

Bond Coat f 4  37.7 55.2 84.4 56.3 
Top Coat 27.7 62.4 115.9 65.7 



APPENDIX 11, BOND COAT MICROSTRUCTURE 
- 

Phase identifications of bond coat microstructure after pre-exposure and 

thermal cycle testing are shown in this appendix. 

application of an aluminide overcoat has resulted in a microstructure 

containing a high A1 B(NiA1 Type) matrix. 

(Ni solid solution), Y' (Ni3A1) type, B(NiA1 type), and MZ3C6. 

cases, certain phases which can only be identified by x-ray diffraction or 

election microprobe are labeled as "Other Phases". 

include carbides, oxides, the Sigma phase, the Mu phase, and the a- Cr phase. 

In all cases, the 

The phases labeled include Y 

In some 

These "Other Phases" can 
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Top Coat Poros i ty  

0 t h  

Poros i ty  Top Coat 
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Ler Phases 

M23C6 
Y (Nil 

Carbide 
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nd Coat 

Subs t r a  te 

Figure  42 Phase i d e n t i f i c a t i o n  of bond coa t  mic ros t ruc tu re  a f t e r  
pre-exposure and thermal cyc le  t e s t i n g  (cont 'd )  

a )  
b) 

Bond Coat f 2  - 100 hour a i r  pre-exposure (no thermal cyc le s )  
Bond Coat #1 - 100 hour argon pre-exposure (no thermal 
cyc le s  ) 
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Coat 

-Bond Coat 

>Subs itrate 

F ~ o p  Coat 

-Bond Coat 

Figure 42 Phase identification of bond coat .microstructure after 
pre-exposure and thermal cycle testing 

c) 

d) 

Bond Coat #4 - 100 hour air pre-exposure(after 470 
thermal cycles) 
Bond Coat /I3 - 100 hour argon pre-exposure(after 320 
thermal cycles) 
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APPENDIX 111. MATERIAL PROPERTIES USED I N  CYANIDE PROGRAM (14-16) 

TABLE XX ELASTIC MODULUS OF TBC COMPONENTS 
- 

Temper a t  u re  Rene' 80 Ni-22Cr-lOA1-0.3Y Zr02-8Y203 
GPa ( M S I )  OC (OF) GPa ( M S I L  GPa ( M S I )  

21 (70) 

204 (400) 
427 (800) 
538 (1000) 
649 (1200) 
760 (1400) 
871 (1600) 
982 (1800) 

1204 (2200) 
1093 (2000) 

208 (30.1) 

198 (28.7) 
186 (27.0) 

175 (25.3) 
166 (24.0) 
157 (22.8) 
145 (21.0) 
116 (16.8) 
86 (12.5) 

180 (26.i j  

198 (28.7) 

189 (27.4) 
162 (25.5) 

151 (22.0) 

134 (19.4) 
129 (18.7) 
124 (18.0) 
119 (17.2) 

143 (20.7) 

-- 

TABLE X X I  POISSON'S RATIO OF TBC COMPONENTS 

48 (7.0) 

41 (5.9) 
33 (4.8) 

31 (4.5) 
28 (4.0) 
26 (3.8) 
23 '(3.4) 

21 (3.0) 

17 (2.5) 

20 (2.9) 

Temper a t  u r e  Rene' 80 Ni-22Cr-lOA1-0.3Y* Zr02-8Y203 
OC (OF) 

21 (70) 
204 (400) 
427 (800) 
538 ( 1000) 
649 (1200) 
760 (1400) 
871 (1600) 

982 (1800) 

1093 (2000) 

1204 (2200) 

0.31 

0.32 
0.32 
0.33 
0.33 
0.34 
0.34 

0.35 

0.37 

0.39 

0.31 

0.32 
0.32 

0.33 
0.33 
0.34 
0.34 

0.35 

0.37 

0.39 

0.076 

0.076 
0.076 
0.076 
0.076 
0.076 
0.076 

0.076 

0.076 

0.076 

*Assumea i d e n t i c a l  t o  Rene' 80 f o r  i n i t i a l  studies.  
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TABLE XXII COEFFICIENT OF THERMAL EXPANSION 

Temperature Rene' 80 Ni-22Cr-lOA1-0.3Y Zr02-8Y203 
"C (OF) i n/ i n/ O C  i n/in/"C i n/i n/"C 

21 (70) 
204 (400) 
427 (800) 
538 ( 1000) 
649 (1200) 
760 (1400) 
871 (1600) 
982 (1800) 
1093 (2000) 
1204 (2200) 

12.4 
12.7 
13.1 
13.4 
13.6 
14.3 
15.0 
16.0 
17.2 
18.4 

11.1 
11.7 
12.8 
13.3 
13.6 
14.0 
14.8 
15.6 
16.7 
-- 

7.6 
8.5 
9.4 
9.9 
10.3 
10.9 
11.2 
11.7 
12.2 
12.6 
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and bond coat creep have been i d e n t i f i e d  as contributors t o  TBC Sifbre. Key property 
determinations have also been made for the bond coat and the  top coat, inc lud ing tens i l e  
strength, Poisson's ra t i o ,  dynamic modulus, and coef f ic ient  o f  thermal expansion. 

f a i l u re  modes. These mod@Is w i l l  be developed based on the resul ts  o f  thennomechanical 
experiments and f i n i t e  element analysis. The thennomechanical experiments h a w  been defined 
and test ing i n i t i a t e d .  
are being u t i l i z e d  t o  evaluate d i f f e ren t '  TBC f a i l u r e  regims. 

The second task (Task 11) i s  to develop TBC l i f e  predic t ion models f o r  the predominant 

F i n i t e  element models have also been developed t o  handle TBCS and 
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