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1. S

A study has been campleted of mathematically proper boundary conditions for
unique numerical solution of intermal, viscous, subsonic flows in the SSME. The
study has concentrated on well-posed considerations, with emphasis on
canputational efficiency and numerically stable boundary condition statements.
The method of implementing the éstablished boundary conditions is applicable to
a wide variety of finite difference and finite element codes, as demonstrated.

The results of this study are reported herein.

II. TECHNICAL DISCUSSION

A. Introduction

Over the past several years a focus at NASA Marshall Space Flight Center has
been adaptation and application of camputational fluid dynamics (CFD) analysis
techniques to flowfield prediction in components of the SSME. Several
"olympiads" have been held, wherein purveyors of CFD codes have developed and
compared solutions for model problem definition analyses to the turn-around
duct-transfer duct SSME geametry. The SSME geametry is defined to these codes
via construction of meshes that possess boundary segments roughly coincident
with solid walls and containing convenient flow inlet and outlet planes. The
numerical simulation of the associated flowfield is defined via appropriate
specification of constraints on the (Navier-Stokes) conservation law system
variables, e.g., velocity and pressure, over the entire boundary of the mesh.

This study examined boundary condition specifications for the CFD models,
with emphasis on mathematical well-posedness with physical consistency. The
SSME flowfield is characterized as complex turbulent three-dimensional and
unsteady, at high Reynolds number and low subsonic Mach number, ie., essentially
incompressible. Mathematically, the CFD algorithms/codes applied to this

problem definition fall into two distinguishable categories. One family (GIM,




conservation law system with the assumption of a compressible f luld s‘;a.tisfying a
polytropic gas law statement. Conversely, the second family (INS3D, PHOENIX,
SIMPLE, FIDAP) specifically assumes an incompressible fluid, and directly seeks
the steady-state solution without specifying a (physically significant) equation
of state. The PHOENIX and SIMPLE algorithms seek the steady-state through a
pressure relaxation procedure that explicitly requires pressure boundary
condition specifications. FIDAP uses a finite element penalty method to totally
replace the appearance of pressure. Alternatively, the INS3D theory employs a
pseudo—campressibility concept, yielding a hyperbolic conservation law-appearing
statement for pressure that (only) requires approximation of the normal pressure
gradient at boundaries. Thus, the mathematical boundary condition aspect of
INS3D is more analogous to that of GIM, et.al., than PHOENIX, et.al.

The fol lowiné sections examine CFD algorithm boundary condition issues fram
the standpoint of, a) hyperbolic conservation law systems, and, b) pressure

relaxation in an incompressible flow specification.

B. Hyperbolic Conservation Law Algorithms
The conservation law system governing the kinematics, kinetics and
thermodynamics of a viscous, heat-conducting fluid is generally termed the

Navier-Stokes equations. The Cartesian tensor indicial form is,
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where p is density, puy is the momentum vector, p is pressure, 8 is the

ij
Kronecker delta, e is specific total energy, and v is the ratio of specific

heats for a polytropic gas law fluid. The expression of constitutive properties

of the fluid is contained in the stress tensor °ij and heat flux vector a5 For

simple fluids and laminar flow, the accepted forms are,
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where the dynamic (molecular) viscosity u(T), and the thermal conductibity k(T),
are weak functions of temperature T, and the Reynolds number is Re=(pUL/u) ref.
In the limit of large Reynolds number, an inviscid, non-heat conducting
assumption renders equations 5-6 identically zero. The resulting form of egn 1-
4 is termed the Euler equations, a homogeneous hyperbolic conservation law
system. Alternatively, enforcing a statistical averaging procedure yields a
Reynolds—averaged Navier-Stokes system that introduces the concept of a Reynolds
stress tensor and additional governing partial differential equations, egq., the
two—equation turbulent kinetic energy-isotropic dissipation function system.

In either instance the generic form of the governing equation system is,

oq afj
; a‘:+s=0 (7)

where q contains the Navier-Stokes/Euler/Reynolds-—averaged Navier-Stokes

dependent variable set, fj is the corresponding flux vector and s is a

source/sink term, eq.,
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The single-point closure equations for 9. ., qye kj and €4 are (cf., Baker,

1)
1986), o, = 0; = pu'iu'j
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e = (C pu'u' -) —_

The Euler equation form is contained in eqn 22 by deletion of k, ¢, kj, ej, qj,
0 and s, and replacement of g bype + yp.

A familiar alternative form for egn 7 is established following imposition of
a coordinate transformation Xj = xi(nj), where j = €&, n,t ) is any
(curvilinear) coordinate system. One particularly useful form is to align the

coordinate ¢ with the direction of principal flow, whereupon egn 7 can be

written as

+ + + +5s=0
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where E, F and G are the (Euler) f1lux vector components, Eyr Fy and G,, are the

constitutive closure model camponents (containing o ijr 95 k. and e-j). Both are

J
expressed in terms of scalar components in the N coordinate system, ie.,
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where J is the Jacobian of the coordinate transformation, and the convection
velocity (U) vector contravariant scalar components parallel to the ¢, n,z)

coordinate system are,

U = &xu + {yv + £zw

<

= qlu + nyv + rlzw
W=1(u+ (yv + (w (12)

The constitutive scalar components Ey, Fy, and G,, are formed in the similar
manner.

The conservation law system, eqn 7 or 10, is ‘either hyperbolic or an
initial-valued, incampletely elliptic boundary value problem, dependent upon the
constitutive closure definitions (inviscid, viscous/turbulent). The solution
domain @ X t is a bounded subregion of a portion of the SSME duct region, and
the boundary conditions on 32, mathematically consistent with a well-posed
problem, have been examined by Dutt(1985) following a dependent variable
transformation to "entropy variables." The entropy transformation of the
primitive (Euler) dependent variable set g = {, p u;, ‘ve}, eqn 1-3, has been
examined, cf., Harten(1981), Osher, et.al. (1984). For a family of strictly
convex entropy functions, Mallet(1985) and others show that for the (Euler)
extension to viscous and heat-conducting fluids, the sole "useful" entropy

function is the thermodynamic entropy ps. Hence, the transformation is,

Vig) =-ps=-p log (p/bé) (13)
and the entropy flux functions are

fj ==-pu;bs) =-mps) (14)

The transformation to V(qg) symmetrizes the conservation law statement, egn 1-3,
yielding a nonlinear energy estimate (for sufficiently smooth solutions to the
mixed initial-boundary value problem) that corresponds to the Clausius-Duhem

inequality (second law of thermodynamics).



For the (Euler equation) hyperbolic conservation iaw f;)m, the appropriate
number of boundary conditions on oo is (Strickwerda, 1977): supersonic inflow
(5), subsonic inflow (4), supersonic outflow (none), subsonic outflow (1).
For the Navier Stokes equations, 5 (4) boundary conditions are required at
inflow (outflow). Dutt(1985) develops the set of "maximal dissipative" boundary
conditions for egn 1-6 for the (Navier-Stokes) boundary condition statement
form,

q =
ER_aE-'.Sq_b (15)

where R is a matrix of rank at most 4, £ is the coordinate normal to'3, and for
the Euler definition (¢ = 0), Sg=b is a proper form for the (unperturbed Euler)

hyperbolic problem. The derived outflow boundary conditions are inner (dot)

products of egn 5-6 with the outward pointing unit normal vector ﬁj, ie.,
clj'ﬁj - alUl = bl ’ 1 _<_ i _<_ 3
q5-fiy = 0 (16)

where U; is the velocity contravariant scalar camponent parallel tof. Any SSME
application involves only subsonic outflow, hence a;(=af ) > 0 and b; is a
constant and all other components of a; and b; vanish as does the normal heat
flux. The derived inflow boundary condition couples the influx definition PU; =

b, with the more general form of egn l16.
W =b
oij .ﬁj—aiU_i_ =b;, ,1<iZ<3 (17)

- qj.ﬁj - a4T =D,

In egn 17, the subscript bar on the contravariant velocity vector U; denotes the
index is not summed, and a; and b; (0 < i < 4) are constants subject to
constraints. For the SSME definition of subsonic inflow (M’-E <1l), aj = 0= bl
while a, ay > bo /2 and ay > 1/2 (Yz -vy+2) b,‘o + ¢, where & corresponds to

the inverse Reynolds number, see egn 5. Of same interest, the last expression

ineqgn 17 is directly amenable to physical interpretation; in expanded form,




As = k-2 AL = KVILA = =
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Thus, a, is interpreted as the boundary heat convection coefficient h, and T, is
the heat exchange reference temperature.

Equations 15-18, in concert with Strickwerda's constraints, encompass the
range of boundary conditions, that are mathematically well-posed and numerically
stable, for SSME flow CFD simulations formulated as approximate procedures for
solving the hyperbolic conservation law Euler extension to Navier-Stokes. Since
SSME flowfields are uniformly subsonic, then only one exit Dirichlet boundary
condition is allowed, taken as the static pressure. Up to four inlet Dirichlet
boundary conditions are mathematically permitted; however, egn 17 suggests that
all but the mass influx be replaced by Neumann constraints. Further, if the
mass influx is specified, then the inlet pressure may not be specified (unless a
region of supersonic flow exists between inlet and outlet). Conversely, a
Dirichlet specification of inlet total pressure could be made, whereupon the
mass flux will become determined by the flowpath total pressure drop. The
reported SSME simulations using PAGE and VAST have generally employed the

former, while the INS3D simulations have generally used the latter.

C. Incampressible Navier-Stokes Algorithms

As noted at the end of Section A, the alternative SSME simulation CFD
construction class utilizes incompressibility directly to recast the Navier-
Stokes system into a non-hyperbolic conservation law form. In these procedures,
eg., PHOENIX, SIMPLE and FIDAP, the pressure distribution is derived indirectly
fram the velocity constraint of divergence-freeness, hence no equation of state
is (need be) assumed to exist. Thus, no (Dirichlet) pressure boundary
conditions are needed or appropriate in defining the CFD simulation, although it
is well published that PHOENIX and SIMPLE employ a "pressure correction
equation” to achieve convergence to a numerical approximation of divergence-

freeness. This is not strictly exact, as will be developed.




The mentioned class of incompressible Navier-Stokes algorithms can be viewed
in a unified manner as decisions made in evaluating a Taylor series on the time
evolution of the velocity field u,, where boldface defines a vector field.
Assuming knowledge of the solution at time t,s where t ., = t, + At, we have,

= P a4 Ll (19)
The incompressible form of eqgn 2, plus eqn 5, provides the expression for the
time—-derivative u in egn 19, hence,
W= @ —at [P +9p - ReTIV2AP] + ... (20)

The basic CFD algorithm theoretical choice lies in selection of Vp in eqn
20. A finite element penalty algorithm replaces the variable p with the
approximation to continuity,

p=-2vV ﬁ (21)
where A is a large 0(106) constant. The superscript tilde denotes that u is an

approximation to a divergence-free velocity field. Finally, egn 21 is evaluated

at the new time t"*1, hence eqn 20-21 is an implicit expression.

The basic theory for the SIMPLE-class of incampressible Navier-Stokes CFD
algorithms is similarly developed directly from egn 20. If /Vp" is employed,
then the solution 1_;n+1 does not satisfy the continuity equation. Hence, define
a new pressure f)n+l that produces (assumption) a divergence-free velocity field
3_1""'1. Writing egn 20 for both pressures, taking the sum and subtracting yields,

vx (@ - ) < o (22)
Thus, the distinction between the predicted and the continuity-satisfying
velocity fields at t™] can at most be the gradient of a scalar field ¢, ie.,
wtl gt o g (23)
Subtracting eqn 22 into the incompressible form of egn 1 yields
v = -v.*tl (24)
The boundary condition for egn 23, for the harmonic function ¢, is obtained fram

egn 22 as -
vo.h = (0™ - wtl) 4 (25)




where fi is the unit outwarding pointing vector normal to the solution damain o.
Once (Dh is determined, using an appropriate (CFD) algorithm for egn 23-24, then

the "corrected pressure" field is

n+l _ n _ __Q
P = p - (26)

At steady-state convergence, egn 23 becomes homogeneous, hence I(bhl ~Ofora
(single) Dirichlet boundary specification in concert with eqn 24. Thus in the
limit, P is the pressure field that coexists with a camputed approximation to
the divergence-free velocity field gh.

Viewing egn 20, 22-25, there is no admissible pressure boundary condition
specification for the SIMPLE-class, CFD incompressible Navier-Stokes algo-
rithms. Equations 16-17 remain appropriate for the remaining variables, and the
mass flowrate (eqn 17a) must be specified to create a SSME problem statement.
The auxiliary variable 0 carries the remaining boundary condition specification,
and egn 24 is hamogeneous Neumann everywhere that the distinction between }_lh and

h nust vanish, eg., inlet, solid (no-slip) walls, symmetry planes, etc. The

a
sole Dirichlet constraint for ¢! therefore can only be applied at a location on
the mass efflux boundary segment of oo. Assuming the CFD iteration sequence is
convergent, eqn 25 yields the corresponding static pressure distribution to

within an arbitrary constant, which can be specified (for example) to match p to

an inlet or an outlet pressure level.



D. Concluding Dlscussmn

The literature contains numerous results documenting the robustness of the
CFD algorithm boundary conditions developed in the preceeding sections. The
campressible hyperbolic conservation law formulation is exhaustively examined in
Dutt(1985); Chang and Kwak(1984) document the total pressure specification
option for the INS3D algorithm. To our knowleddge, the interpretation of
SIMPLE-type algorithms developed in Section C is not cammon knowledge. The (Dh
construction for incompressible parabolic Navier-Stokes algorithms is well
established; Baker(1983, Ch. 6-7) fully documents the range of application of

the solution statement given as egn 23-24.
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