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EFFICIENT SOLUTIONS OF TWO-DIMENSIONAL INCOMPRESSIBLE 
STEADP VISCOUS FLOWS 

ABSTRACT 

This paper provides a simple, efficient, and robust numerical technique 

for solving two-dimensional incompressible steady viscous flows at moderate- 

to-high Reynolds numbers. The proposed approach employs an incremental 

multigrid method and an extrapolation procedure based on minimum residual 

concepts to accelerate the convergence rate of a robust block-line-Gauss- 

Seidel solver for the vorticity-stream function Navier-Stokes equations. 

I Results are presented for the driven cavity flow problem using uniform 
I and nonuniform grids and for the flow past a backward facing step in a 
I 

I channel. For this second problem, mesh refinement and Richardson 
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I extrapolation are used to obtain useful benchmark solutions in the full range 

of Reynolds numbers at which steady laminar flow is established. 

M. Napolitano 

University of Bari, Italy and 
Institute for Computer Applications in Science and Engineering 

The work of the second author has been supported by NASA Contract No. NAS1- 
18107 while he was in residence at ICASE, NASA Langley Research Center, 
iiamptvn, VA 23665 arid by tile 'riinisteru d e i i a  i?ubbiicei Istruzione. 

I 

i 



INTRODUCTION 

This paper is concerned with the simulation of two-dimensional 

incompressible steady laminar separated flows at moderate-to-high Reynolds 

numbers (Re), using a simple, efficient, and robust numerical technique. 

Among the many numerical methods developed for the incompressible Navier- 

Stokes equations, those recently employed to solve high Re steady separated 

flows are very complex and sophisticated. For example, (i) Ghia et al. [ l ]  

use the cumbersome coupled strongly implicit method as a robust smoother for 

the already involved full-approximation-storage, full-multigrid method of 

Brandt [ 2 ] ,  and (ii) Schreiber and Keller [ 3 ]  solve a fourth order nonlinear 

problem for the stream function by a sequence of Newton and chord iterations, 

and use a costly L-U factorization with partial pivoting to solve the large 

sparse linear systems associated with the Newton iteration. In both 

techniques, the solution at a lower value of Re is to be used effectively to 

generate a sufficiently good initial condition. Therefore, it appears 

worthwhile to provide a numerical technique for solving high-Re separated 

flows, which is possibly as powerful and efficient as the best methods 

available to date but much simpler to implement and to use. 

In the last few years, the second author has developed approximate 

factorization [ 4 ]  and line relaxation [SI methods for solving the steady-state 

vorticity-stream function Navier-Stokes equations. These methods employ a 

two-level implicit Euler time stepping and the delta form [ 6 ]  to discretize 

and linearize in time the unsteady governing equations and make effective use 

of a deferred correction strategy for the finite-difference spatial 

discretization; namely, second-order-accurate central differences are used for 

all spatial derivatives except the advection terms in the left hand side (LHS) 
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implicit operator, which are discretized using first-order-accurate upwind 

differences. In this way, an artifical viscosity is introduced which is 

proportional to a time derivative and thus vanishes as the sought steady-state 

solution is reached (see Appendix A ) .  Also, the large 2x2 block-pentadiagonal 

matrix associated with the LHS implicit operator is diagonally dominant, so 

that the Alternating Direction Implicit (ADI) [ 4 ]  or line Gauss-Seidel (LGS) 

[ 51 solution procedures enjoy the robustness and stability of upwind schemes 

and the accuracy of central-dif f erence schemes. Both methods are very simple 

and have been reasonably successful in computing steady flows at moderate 

Reynolds numbers. However, their convergence rate invariably deteriorates 

when the computational mesh is refined and/or the Reynolds number is 

increased. In an attempt to overcome such a limitation, an incremental 

multigrid approach has been recently proposed [7], which is particularly 

suitable for this type of numerical methods, extremely simple, and does not 

require any additional storage with respect to the basic numerical scheme used 

as a smoother, nor any sophisticated strategy for cycling among the various 

grids. Therefore, it could be a viable alternative to more complicated 

multilevel methods. However, its validity has only been demonstrated for a 

model problem and is restricted to the case of uniform grids. It seems 

therefore necessary and appropriate to assess its merits and deficiencies 

versus more difficult problems and to further improve its performance, without 

affecting its major merit, namely, its simplicity. 

These goals are achieved in this paper, which: (i) provides an improved 

version of the incremental multigrid method of [7], capable of handling meshes 

with reasonably high stretching; (ii) supplements such a method with an 

extrapolation technique based on minimum residual concepts [81 to further 
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time stepping and linearized using the delta approach [ 6 ] ,  by neglecting terms 

of order A , to give: 2 
I 

I 
I 

enhance its efficiency; (iii) employs the resulting procedure to provide a 

benchmark solution for flow past a backward facing step in a channel in the 

full range of Re at which steady laminar flow is established. 

NUMERICAL METHOD 

The nondimensional vorticity-stream function Navier-Stokes equations are 

given in the standard Cartesian coordinate system, for simplicity, as 

1 
at + JIy ox - JI, wy - -  Re (wxx + w = 0 

YY 

+ w  = 0. 
JIXX + JIyy 

In Eqs. (1-2) ,  Re is the Reynolds number, w and J, are the vorticity and 

the stream function, t is the time, x and y are the horizontal and 

vertical Cartesian coordinates, and subscripts indicate partial derivatives. 

Equations (1-2) are discretized in time by means of a two level implicit Euler 

n + w n  1 n n  n n  1 
= -  JIy wx + JIX wy + R e  (wxx 

AJIxx + Il+yy 

yy 

+ Aw = - JIxx n -  $ey - u n ( 4 )  
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where A t  i s  t h e  t i m e  s t e p ,  t h e  s u p e r s c r i p t  n i n d i c a t e s  t he  known 

s o l u t i o n  a t  t h e  t i m e  l e v e l  tn and Aw, A$ are t h e  unknowns t o  be 

computed. Equations (3-4) are d i s c r e t i z e d  i n  space us ing  second-order- 

a c c u r a t e  c e n t r a l  d i f f e r e n c e s  throughout ,  except f o r  t h e  advec t ion  

d e r i v a t i v e s  Awx, A$y,  Aw and A$x i n  t h e  LHS of Eq. ( 3 )  which are 

d i s c r e t i z e d  us ing  f i r s t -o rde r -accu ra t e  upwind d i f f e r e n c e s  according t o  t h e  

and solved approximately by a block-AD1 141 o r  

block-LGS method [ 5 ] .  Only b lock- t r id iagonal  systems need t o  be solved along 

each row and column of t he  computational domain, and t h e  double boundary 

condi t ion  f o r  + can be e a s i l y  imposed t o  provide t h e  va lue  of t h e  

v o r t i c i t y  at the  wall  d i r e c t l y  ( s e e  Appendix B).  Two p o i n t s  are of 

i n t e r e s t :  ( i >  a r e l axa t ion - l ike  t i m e  d e r i v a t i v e  needs t o  be added t o  t h e  

stream funct ion  equat ion  i f  an AD1 s o l u t i o n  procedure is  employed [91; (ii) 

t h e  advection terms i n  the r i g h t  hand s i d e  of Eq. (4)  are rep laced  by t h e  

corresponding conserva t ive  form 

Y 

n n n n  
Y’ 

s i g n s  of $f Ox’ Q X Y  w 

- cJlyw>,  + ( 5 )  

which has been shown t o  provide more a c c u r a t e  r e s u l t s  ( s ee ,  e.g., [51) .  This  

amounts aga in  t o  employing a de fe r r ed  c o r r e c t i o n  approach, which is  made 

p a r t i c u l a r l y  e l egan t  and simple t o  implement by t h e  use of t h e  d e l t a  form 

141. Notice,  i n  f a c t ,  t h a t  a s tandard  c e n t r a l  d i f f e r e n c e  d i s c r e t i z a t i o n  of 

Eq. (5 )  r equ i r e s  va lues  of $ from t h e  NW (North-West), SE (South-East) ,  NE 

and SW gr idpoin ts  i n  t h e  computational s t e n c i l  and, i f  used i n  t h e  i m p l i c i t  

l e f t  hand s i d e  ope ra to r ,  would inc rease  the  number of nonzero d iagonals  i n  t h e  

r e s u l t i n g  mat r ix  and reduce i t s  d iagonal  dominance. Af t e r  every AD1 o r  LGS 
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sweep, t h e  s o l u t i o n  is advanced as 

and t h e  process  i s  repea ted  u n t i l  a s a t i s f a c t o r y  convergence c r i t e r i o n  is  m e t .  

In orde r  t o  desc r ibe  t h e  mul t ig r id  procedure employed i n  t h i s  s tudy ,  E q s .  

( 3 - 4 )  are r e w r i t t e n  in a more gene ra l  form, by dropping t h e  s u p e r s c r i p t  n 

and in t roduc ing  s u p e r s c r i p t s  H and h t o  i n d i c a t e  t h e  c u r r e n t  and t h e  

f i n e s t  g r i d s  used in t he  computations (H = h,  2h, 4h, and 8h) 

H + AmH = <[- $,, h -  $yy - 0 1  h AJlxx + 

where C i  i n d i c a t e s  t he  s tandard  9-point c o l l e c t i o n  ope ra to r ,  app l i ed  as 

many times as needed t o  go from the  f i n e s t  mesh h t o  the  cu r ren t  mesh H. 

S t a r t i n g  from an a r b i t r a r y  i n i t i a l  condi t ion ,  E q s .  (7-8) are solved on t h e  

f i n e s t  g r i d  h -- where they co inc ide  wi th  E q s .  ( 3 - 4 )  -- by means of a two 

sweep a l t e r n a t i n g  d i r e c t i o n  block-LGS i t e r a t i o n ,  t o  provide A' , A$ ; t h e  

s o l u t i o n  w , $ is updated and E q s .  (7-8) are solved on success ive ly  

c o a r s e r  g r i d s  (H = 2h, 4h, and 8h);  the e n t i r e  process  i s  repeated u n t i l  t h e  

f l n e s t - g r i d  r e s i d u a l  is  reduced t o  a s u i t a b l y  small value.  In more d e t a i l ,  a t  

every  g r i d  l e v e l  H ,  t h e  fo l lowing  s t e p s  are requi red  by the  proposed 

m u l t i g r i d  s t r a t e g y :  a)  t h e  c o e f f i c i e n t s  in t h e  LHS of E q s .  (7-8) are 

h h  
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evaluated at the H-mesh gridpoints using t..e finest-grid solution (oh, $h) 

locally, whereas the RHS steady state residuals are evaluated on the finest 

grid h and collected up to the current grid H; b) Eqs. (7-8) are then 

solved approximately, using a single sweep of the aforementioned block-LGS 

smoother and homogeneous Dirichlet boundary conditions, to provide Ao , A$H; 

c) Au , AJlh are evaluated as 

H 

h 

(Auh, A$ h ) = 1: (AoH, A$H) 
(9 )  

h 
IH where 

grid H to the finest grid h; d) the finest-grid solution is updated as 

is the standard bilinear interpolation operator from the current 

e) the vorticity at the boundaries is finally corrected so as to satisfy the 

no-slip boundary condition on the finest mesh (see Appendix B). All of the 

aforementioned steps are performed twice, with the block-LGS solution method 

marching from left to right and from top to bottom of the computational 

domain, respectively. A multigrid cycle is shown schematically in Figure 1, 

where it is seen to differ from both the more usual V and saw-tooth 

cycles. It is noteworthy that the proposed methodology is very simple, since 

it does not require any logical choices to be made and employs a single free 

parameter, namely, the time step At. Furthermore, it does not need any 

additional storage with respect to the basic smoother, insofar as only the 

finest-grid solution is computed and a single array is used for the deltas at 

all grid levels. However, its work per iteration is slightly greater than 
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that required by most current multigrid methods, due to the additional 

interpolations and collections needed t o  visit and update the finest-grid 

solution after every coarse-grid calculation and, due to its extreme 

simplicity, it is likely to be less efficient than more sophisticated 

multigrid methods. 

The present approach, as described above, can be applied without any 

modifications to the vorticity-stream function equations written in a general 

curvilinear coordinate system 6, n. The scale factors and the Jacobian of 

the transformation (x, y) + ( 5 ,  TI) are evaluated once and for all on the 

finest mesh and treated as the other variable coefficients in the linearized 

discrete equations arising at every grid level. However, numerical 

experiments performed for the case of the driven cavity flow problem have 

shown that the efficiency of the method rapidly deteriorates as the 

computational grid in the physical plane becomes increasingly nonuniform. 

Therefore, following the lead of several other workers (see, e.g., [lo]), the 

9-point collection operator for the residual has been modified so as to use 

weighed areas in physical space, and the bilinear interpolation operator has 

been modified so as to use distances among gridpoints also in physical 

space. More precisely, in order to collect a quantity f from the finest 

mesh h to the mesh H = 2h at point P, the standard 9-point collection 

operator is given as: 
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whereas the modified collection operator is 

2h 1 (At(fi,j + fi-1,j + fi,j-l + ‘i-1,j-l ) +  Ch f = (A1+A + A j + A )  2 4 

where AI, A2, A3 and A4 are the areas of the four cells surrounding the 

gridpoint P (see Figure 2 which shows the 9-point computational stencil in 

the physical (x, y) and computational ( E ,  n) planes). On the other hand, 

in order to interpolate a quantity f at point Q using the fiYj and 

values available on the coarser mesh, the standard bilinear fi+2,j 

interpolation operator is given as 

h fi+2,j + fi,j 
12h f = 2 

whereas the modified interpolation operator is 

i+2, j (xi+l - xi) + fi, j(xi+2 - x  i+l 1 12h h f = 

i ’X i+2 X 

Finally, in order to further enhance the convergence rate of the method, 

the following extrapolation technique based on minimum residual concepts [81 

is used, after every k multigrid cycles, to obtain a new initial condition 

for the finest-mesh solution. Let fn-*, fn’l, fn be the solution vectors 

(the vectors of all w and J, gridpoint values) at the end of the last 



Rn-2, Rn-l, Rn t h r e e  c y c l e s  and the corresponding r e s i d u a l s .  A new 

i n i t i a l  s o l u t i o n  f *  i s  obtained as 

* 
fn-l + C1(f" - f n- 1 ) + q f n - 1  - f n-2) f =  

evaluated as follows. The r e s i d u a l  R* 2 w i t h  c 1  and 5 

depend l i n e a r l y  on r l  and 5 as 2' 

n-1 - Rn-2) 1 + T2(R 
* n-1 Rn- 1 

R = R + c1(Rn - 

* 
and t h e  dot  product R* R is minimized wi th  respect t o  

t o  g ive :  

where 

i s  assumed t o  
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It is noteworthy t h a t  such a procedure,  which can be implemented us ing  an 

181, i s  extremely s i m p l e  a r b i t r a r y  number of e x t r a p o l a t i o n  parameters  

and employs a n e g l i g i b l e  amount of CPU t i m e  with respect t o  t h e  b a s i c  

s o l v e r .  On the  o the r  hand, i t  r e q u i r e s  a d d i t i o n a l  memory, i n s o f a r  as both t h e  

s o l u t i o n  and the  r e s i d u a l  vec to r s  are needed a t  previous i t e r a t i o n  l e v e l s ,  and 

in t roduces  an a d d i t i o n a l  parameter i n  t h e  proposed numerical  method, namely, 

t h e  i n t e r v a l  of a p p l i c a t i o n  of t he  e x t r a p o l a t i o n  procedure,  k. However, 

memory i s  not a problem, e s p e c i a l l y  f o r  t h e  p re sen t  case of two-dimensional 

f lows and the convergence ra te  of t he  method has  been found he re  t o  be r a t h e r  

i n s e n s i t i v e  t o  the  va lue  of k ( see  a l s o  [ 8 ] ) .  A f i n a l  remark is needed. I n  

t h e  present  s tudy,  both t h e  two-parameter e x t r a p o l a t i o n  descr ibed  above and 

have been employed. The t h e  s i m p l e r  one based on a s i n g l e  parameter 

two-parameter technique has c o n s i s t e n t l y  provided b e t t e r  r e s u l t s ,  but  t h e  

e f f i c i e n c y  ga in  achieved wi th  respect t o  the  s i m p l e r  one-parameter approach 

has  been r a t h e r  l imi t ed ,  so  that no a t tempt  a t  us ing  t h r e e  o r  more parameters  

was made. 

‘i 

‘1 

RESULTS 

The numerical technique,  as descr ibed  i n  the  previous s e c t i o n ,  has been 

app l i ed  to  so lve  two v iscous  flow problems f o r  s e v e r a l  va lues  of Re. The 

computations were always s t a r t e d  from rest and used a nonoptimized time s t e p ,  

u s u a l l y  equal to one. 
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Flow i n  a d r iven  c a v i t y  

The classical d r i v e n  c a v i t y  flow [ l l ]  w a s  considered a t  f i r s t  i n  o rde r  t o  

assess t h e  performance: (i) of the basic  mul t ig r id  method f o r  i nc reas ing  

va lues  of R e ,  wi thout  and with the ex t r apo la t ion  procedure; (ii) and of t he  

modified method f o r  i n c r e a s i n g l y  nonuniform g r i d s .  As f a r  as t h e  f i r s t  po in t  

i s  concerned, c a l c u l a t i o n s  were performed f o r  Re = 1000 us ing  a 129x129 

uniform g r i d  and from one t o  four  gr id  l e v e l s ,  without and with t h e  

e x t r a p o l a t i o n  technique app l i ed  every 20 i t e r a t i o n s .  The convergence 

h i s t o r i e s  are given i n  F igures  3 and 4, where t h e  logari thm of t h e  (L1 norm 

of the )  v o r t i c i t y  r e s i d u a l  i s  p l o t t e d  versus the work u n i t s ,  one work u n i t  

being t h e  CPU t i m e  requi red  t o  complete a two-sweep i t e r a t i o n  on t h e  f i n e s t  

mesh. In a l l  cases, t h e  r e s i d u a l  has been dropped t o  machine zero  on a Gould 

PN9005 computer us ing  s i n g l e  p r e c i s i o n  a r i thmet ic .  It c l e a r l y  appears  t h a t  

t h e  m u l t i g r i d  method provides  a cons iderable  improvement over t h e  b a s i c  

smoother and t h a t  t h e  e x t r a p o l a t i o n  technique f u r t h e r  enhances i t s  

e f f i c i e n c y .  In  o rde r  t o  a s s e s s  t h e  inf luence  of t h e  i n t e r v a l  of a p p l i c a t i o n  

of t h e  e x t r a p o l a t i o n  procedure,  k ,  on the convergence rate of t h e  method, 

r e s u l t s  have been obtained f o r  var ious  values of k and are g iven  i n  Table 1, 

as t h e  work u n i t s  necessary f o r  t h e  v o r t i c i t y  r e s i d u a l  t o  reach  The 

va lue  of k is seen t o  have a minor inf luence  on t h e  convergence rate of t h e  

method (see a l s o  [8]) and can thus be chosen somewhat a r b i t r a r i l y .  

I 
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k 10 15 20 25 

work u n i t s  149 167 145 161 

Table 1. In f luence  of k on t h e  convergence rate of t h e  method 

The more d i f f i c u l t  Re  = 3200 flow case was then considered i n  o rde r  t o  

f u r t h e r  tes t  t h e  robus tness  of t h e  method. Figure 5 provides  t h e  convergence 

h i s t o r i e s  of t h e  b a s i c  smoother and of t he  four-gr id  mul t ig r id  method without  

and w i t h  t he  e x t r a p o l a t i o n  procedure app l i ed  every 20 i t e r a t i o n s .  The b a s i c  

smoother, a l though s t a b l e ,  is extremely slow t o  converge and a l s o  t h e  

mul t igr id  method exper iences  r a t h e r  s eve re  d i f f i c u l t i e s  before  being a b l e  t o  

reduce the r e s i d u a l  e f f e c t i v e l y .  Also, due t o  t h e  l ack  of smoothness i n  the  

convergence h i s t o r y  of t h e  scheme, t h e  e x t r a p o l a t i o n  procedure is  found t o  

a c t u a l l y  de lay  convergence. I n c i d e n t a l l y ,  f o r  R e  = 10,000, convergence 

r equ i r e s  more than 10,000 work u n i t s ,  t h e  e x t r a p o l a t i o n  procedure aga in  being 

bene f i c i a l .  In conclusion,  t he  p re sen t  mu l t ig r id  method is  extremely robus t  

but  becomes i n e f f i c i e n t  f o r  very high va lues  of Re.  

I n  order  t o  address  t h e  second po in t  of i n t e r e s t ,  namely, t h e  performance 

of t h e  improved method f o r  t h e  case of nonuniform g r i d s ,  t h e  same d r iven  

c a v i t y  problem was considered,  aga in  f o r  Re = 1000 and 3200, by mapping t h e  

phys ica l  plane i n t o  a uniform-grid computational domain us ing  t h e  fo l lowing  

a n a l y t i c a l  t ransformat ion  141, [ 5 ] :  
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(;) = 0.5 + 0.5 tanh [C(25 2q - - ' ) ] / t anh(C) .  1 (23)  

For C << 1, the  x and y l i n e s  are p r a c t i c a l l y  equal ly  spaced,  whereas, 

as C i n c r e a s e s ,  more and more g r i d l i n e s  are concent ra ted  near  t h e  boundaries  

of t h e  uni t -square phys ica l  domain. The governing equat ions  i n  terms of t h e  5 

and rl v a r i a b l e s  are g iven  in [51 and the scale f a c t o r s  and t h e  Jacobian  of 

t h e  t ransformat ion  (23) are computed numerically us ing  second-order-accurate 

c e n t r a l  d i f f e r e n c e s  everywhere except a t  t h e  boundaries ,  where three-poin t  

one-sided d i f f e r e n c e s  are used [ 5 ] .  I n  t h e  present  c a l c u l a t i o n s  a 65x65 

uniform g r i d  i n  the  6 ,  q computational plane was used, f o r  s e v e r a l  va lues  

of C y  and a reduced va lue  of t he  t i m e  s t e p ,  A t  = 0.2, was always employed, 

as a l r eady  i n  [5]. The improved four-grid mul t ig r id  method converged without  

any d i f f i c u l t y  f o r  C as high as 1.4, fo r  which the  maximum-to-minimum 

Ax (Ay) r a t i o  i s  equal  t o  4.45. Also, t h e  e x t r a p o l a t i o n  procedure improved 

t h e  e f f i c i e n c y  of t h e  method f o r  both Re = 1000 and Re = 3200, convergence 

t o  machine zero  r equ i r ing  about 400 and 1000 work u n i t s ,  r e spec t ive ly .  For 

completeness,  t he  numerical  r e s u l t s  a r e  given i n  Table 2 as t h e  maximum va lues  

of t he  stream func t ion  and t h e  va lues  of t h e  v o r t i c i t y  a t  the  c e n t e r  

of t h e  moving p l a t e  (uc). The corresponding r e s u l t s  obtained us ing  

uniform g r i d s  of 97x97 and 129x129 g r i d p o i n t s  are a l s o  given f o r  

comparison. The 65x65 nonuniform-grid r e s u l t s  are as accu ra t e  as t h e  

129x129 uniform-grid ones,  so t h a t ,  for t h e  p re sen t  problem, t h e  nonuniform- 

g r i d  method r e s u l t s  t o  be more e f f e c t i v e  o v e r a l l .  However, t h e  p r e s e n t  

approach is considered t o  be inadequate t o  compute e x t e r n a l  f lows r e q u i r i n g  

h ighly  s t r e t c h e d  g r i d s .  

(I#,) 
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Re = 1000 

*M *C 

97x97 uniform .1174 14.95 

129x129 uniform .1180 14.88 

65x65 nonuniform .1181 14.88 

97x97 uniform .1166 26.98 

Re = 3200 129x1 29 uniform ,1187 26.16 

65x65 nonuniform .1193 25.96 

Table 2. Driven cavity flow results 

Flow past a backward facing step 

The flow past a backward facing step in a channel, see Figure 6, is a 

very interesting problem which has been chosen by the organizers of a GAMM 

workshop as the test case for comparing a great number of codes for solving 

the incompressible Navier-Stokes equations. From the results presented at the 

workshop [12], it clearly appears that f o r  Re > 500 most methods face 

convergence difficulties and/or need some kind of upwinding to handle the flow 

regions where convection dominates diffusion. Physically, as clearly shown by 

the very careful experiments of Armaly et al. [13], the structure of the flow 

becomes more and more complicated as Re increases: the flow, which always 

separates over the step, reattaches downstream at a distance which increases 

- 
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wi th  R e  and, f o r  s u f f i c i e n t l y  h igh  values of R e ,  a secondary s e p a r a t i o n  

r eg ion  develops on t h e  w a l l  oppos i te  t o  t h e  s t e p .  This  problem was thus  

chosen as a seve re  test f o r  t h e  p re sen t  approach us ing  c e n t r a l  d i f f e r e n c e s  f o r  

t h e  RHS s teady  s t a t e  r e s idua l .  The computational domain is l imi t ed  t o  t h e  

i n t e r i o r  of t he  channel immediately at t h e  r i g h t  of t h e  s t e p  and a f u l l y  

developed (Couette flow) pa rabo l i c  v e l o c i t y  p r o f i l e  is used as a boundary 

cond i t ion  i n  t h e  upper h a l f  of t h e  l e f t  boundary (h/H = 0.5, see Figure 6 )  

113, 141. The proposed approach, without and wi th  t h e  e x t r a p o l a t i o n  technique 

has  been employed us ing  uniform g r i d s  wi th  49x49, 65x49, 81x49 and 97x49 

g r i d p o i n t s  f o r  t h e  cases Re = 200, 400, 600 and 800, r e s p e c t i v e l y ,  t h e  

downstream boundary cond i t ion  being set  a t  a d i s t a n c e  from the  s t e p  equal  t o  

7.5, 10, 12.5 and 15. The nondimensional he igh t  of t he  channel H is  equal  

t o  1 and t h e  maximum va lue  of the nondimensional l o n g i t u d i n a l  v e l o c i t y  

component a t  i n l e t  i s  equal  t o  1.5 [14]. A t  t h e  o u t l e t  of t h e  channel ,  

second-order-accurate three-poin t  homogeneous Neumann boundary cond i t ions  are 

used f o r  both J, and w ,  t o  minimize the upstream in f luence  due t o  imposing 

an  asymptot ic  cond i t ion  a t  a f i n i t e  downstream d i s t ance .  A t  t h e  i n l e t  and a t  

a l l  of t h e  w a l l s ,  s tandard  no-sl ip  condi t ions are p resc r ibed ,  as shown i n  

which is  d iscont inuous  a t  t h e  Appendix B .  I n  p a r t i c u l a r ,  a t  the  i n l e t ,  J, 

corner  C ,  is eva lua ted  a n a l y t i c a l l y ,  with t h e  g r i d p o i n t  C obviously being 

= 12). I n  a l l  ca ses ,  no considered p a r t  of t he  in le t - f low domain 

convergence d i f f i c u l t y  was encountered, aga in  s t a r t i n g  a l l  computations from 

rest and always us ing  A t  = 1. The convergence h i s t o r i e s  f o r  t h e  method, 

u s i n g  from 1 t o  4 g r i d  l e v e l s ,  without and wi th  the  e x t r a p o l a t i o n  app l i ed  

every  20 i t e r a t i o n s ,  are g iven  i n  Figures 7 and 8 f o r  R e  = 200, and i n  

F igu res  9 and 10 f o r  Re = 800. For the s i m p l e r  Re  = 200 flow case, us ing  a 

YY’ 

(*YY 
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rather coarse 49x49 finest mesh, the multigrid approach reaches its peak 

efficiency when using 3 grid levels, without the extrapolation, and 2 grid 

levels, with the extrapolation. For the more difficult Re = 800 flow case, 

using a 97x49 finest-grid, the efficiency of the multigrid method always 

improves with increasing number of grid levels. In all cases, the 

extrapolation signiEicantly improves the performance of the approach. 

An efficient and second-order-accurate method being available, solutions 

were obtained for all four cases doubling the number of mesh intervals in both 

directions, so as to provide a benchmark solution for this very interesting 

problem. Figures 11 and 12 show the lower and upper walls vorticity 

distributions obtained using 97x97, 129x97, 161x97 and 193x97 gridpoints 

for Re = 200, 400, 600 and 800, respectively. On the same figures, the 

results obtained using the coarser grids are also given as symbols. It 

appears that for Re = 200 and 400 grid convergence has been achieved, 

whereas for Re = 600 and 800 further mesh refinement is probably 

warranted. However, the two different grid results in Figures 11 and 12 are 

reasonably close, so that Richardson extrapolation can be used with confidence 

to obtain a benchmark solution: Table 3 provides the values of the locations 

of the reattachment point for the primary separation bubble (XlR) and of the 

separation and reattachment of the secondary separation bubble (X2S, X2R), 

divided by the height of the step h [14], obtained using linear interpolation 

between the two gridpoints at which the wall vorticity changes sign and 

Richardson extrapolation to zero step size. Incidentally, the numerical 

results used for the extrapolation are converged to machine zero, using double 

precision arithmetic. 



R e  200 400 600 800 

XlR/h 5.34 8.63 10.72 12.16 

X2S/h - 7.96 8.71 9.67 

X2R/h - 10.44 16.23 20.96 

Table 3. Benchmark Resul t s  

It needs t o  be remarked t h a t ,  f o r  a l l  va lues  of R e ,  t he  f a r  downstream 

va lues  of the  v o r t i c i t y  on t h e  lower and upper w a l l s  should be 3 and -3, 

r e spec t ive ly .  From the  r e s u l t s  of Figures 11 and 1 2 ,  one may thus  b e l i e v e  

t h a t  t h e  outf low boundary condi t ions  have not  been imposed f a r  enough 

downstream, e s p e c i a l l y  f o r  t h e  h igher  values of Re. Therefore ,  t h e  c o a r s e r  

g r i d  computations were repea ted  f o r  t h e  cases  Re = 200 and R e  = 800, moving 

t h e  outf low boundary-condition loca t ions  t o  x = 15 and x = 25, 

r e s p e c t i v e l y ,  and inc reas ing  t h e  number of l o n g i t u d i n a l  g r i d p o i n t s  t o  main ta in  

t h e  same value  of Ax. The r e s u l t s  for  t h e  lower and upper walls v o r t i c i t y  

are given i n  F igures  13 and 14 f o r  both sets  of ca l cu la t ions .  The v o r t i c i t y  

is  seen  t o  tend t o  its asymptotic value c o r r e c t l y  and the  r e s u l t s  ob ta ined  

u s i n g  t h e  two d i f f e r e n t  l o c a t i o n s  f o r  the outf low boundary condi t ions  are i n  

p e r f e c t  agreement. The usefu lness  of using outf low condi t ions  of Neumann type  

i s  thus  c l e a r l y  demonstrated so  as the  v a l i d i t y  of t h e  r e s u l t s  i n  Table 3 as a 

benchmark s o l u t i o n .  
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CONCLUSIONS 

A simple, robust, and efficient method has been developed for solving 

two-dimensional steady viscous flows. An incremental alternating direction, 

block-line-Gauss-Seidel relaxation method using first-order-accurate upwind 

differences in the left hand side implicit operator and second-order-accurate 

central differences in the right-hand-side steady-state residual is used as 

smoother within a very simple multigrid algorithm, supplemented by an 

extrapolation procedure based on minimum residual concepts. The proposed 

technique has been tested versus the classical driven cavity flow, for values 

of the Reynolds number (Re) as high as 10,000, and used to provide useful 

benchmark solutions for flow past a backward facing step in a channel, for 

values of Re covering the full range at which steady laminar flow exists. The 

convergence rate of the method, which always starts from an arbitrary initial 

condition and marches towards steady state using a simple multigrid cycle 

without any optimization, logical choices or adjustable parameters, is very 

satisfactory for moderate-to-high values of Re. However, a more 

sophisticated approach is required for very high values of Re and/or highly 

nonuniform grids. 

ACKNOWLEDGMENTS 

The work of the first authour has been supported by NASA training grant 

NGT 47-004-808 while he was a graduate student at Virginia Polytechnic 

Institute and State University. His advisor, Professor B. Grossman, has 

provided continuous encouragement and support. 



REFERENCES 

t 

I [7] M. Napolitano, "An incremental multigrid strategy for the fluid dynamic 
I 

I equations," AIAA Paper No. 85-1517, 1985. 

[l] U. Ghia, K. N. Ghia, and C. T. Shin, "High-Re solutions for 

incompressible flow using the Navier-Stokes equations and a multigrid 

method," J. Comp. Physics, Vol. 48, 1982, pp. 387-411. 

[2] A. Brandt, "Multi-level adaptive solutions to boundary-value problems," 

Math. of Comp., Vol. 31, No. 138, 1977, pp. 333-390. 

[3] R. Schreiber and H. B. Keller, "Driven cavity flows by efficient 

numerical techniques," J. Comp. Physics, Vol. 49, 1983, pp. 310-333. 

[4] M. Napolitano, "Efficient AD1 and spline AD1 methods for the steady- 

state Navier-Stokes equations," Int. J. Num. Methods in Fluids, Vol. 4, 

1984, pp. 1101-1115. 

[5] M. Napolitano and R. W. Walters, "An incremental block-line-Gauss-Seidel 

method for the Navier-Stokes equations," AIAA Journal, Vol. 24, May 

1986, pp. 770-776. 

[6] R. M. Beam and R. F. Warming, "An implicit factored scheme for the 

compressible Navier-Stokes equations ,If AIAA Journal, Vol. 16, April 

1978, pp. 393-402. 



-20- 

[8] M. Hafez, E. Parlette, and M. Salas, "Convergence acceleration of 

iterative solutions of Euler equations for transonic flow computations," 

AIAA Paper No. 85-1641, 1985. 

[9] R. T. Davis, "Numerical solutions of the Navier-Stokes equations for 

symmetric laminar incompressible flow past a parabola," J. Fluid 

Mechanics, Vol. 51, Pt. 3, 1972, pp. 417-433. 

[lo] W. J. Usab, Jr., "Embedded mesh solutions of the Euler equations using a 

multiple-grid method," Ph.D. Thesis, M.I.T., Cambridge, MA, December 

1983. 

Ill] 0. R. Burggraf, "Analytical and numerical studies of the structure of 

steady separated flows," J. Fluid Mechanics, Vol. 24, Pt. 1, 1966, pp. 

113-151. 

[12] K. Morgan, J. Periaux, and F. Thomasset (Eds.), "Analysis of laminar 

flow over a backward facing step," Notes on Numerical Fluid Mechanics, 

Vol. 9, Vieweg, 1984. 

1131 B. F. Armaly, F. Durst, J. C. F. Pereira, and B. Schonung, "Experimental 

and theoretical investigation of backward-facing step flow," J. Fluid 

Mech., Vol. 127, 1983, pp. 473-496. 

[141 J. Kim and P. Moin, "Application of a fractional-step method to 

incompressible Navier-Stokes equations," J. Comp. Physics, Vole 59, No. 

2, June 1985, pp. 308-323. 



-21- 

[ 1 5 ]  P. K. Khosla and S. G. Rubin, "A diagonally dominant second-order- 

accurate Implicit scheme," Computers and Fluids,  Vol. 2 ,  1974, pp. 207- 

209. 



-22- 

APPENDIX A 

Consider the linear advection diffusion equation 

u + c u x - E u  = o  t xx 

where c is a function of x and can be either positive or negative. The 

discrete form of Eq. (Al) using the delta approach and a deferred correction 

strategy as done in this paper for the vorticity-stream function equations is 

- 
i+l 2ui+l ui-l - 2Aui + U - u  E U  Aui+l i-1 

+ 

i+ 1 = -c 
i 2A x 2 Ax 2 - E  

Ax 

The two incremental advection terms in Eq. (A2) can be written as 

so that Eq. (A2) is easily seen to be an implicit central-in-space finite 

difference discretization of Eq. (Al), plus an artificial viscosity term which 

is the backward-in-time central-in-space finite difference approximation of 1 

-Icil Ax At 
U ( A 4 )  2 xxt 
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and thus  vanishes  i d e n t i c a l l y  a t  s teady s t a t e .  S imi l a r ly ,  i t  i s  seen  t h a t  t h e  

f o u r  advec t ive  terms i n  t h e  LHS of Eq. (3 )  are equiva len t  t o  the  corresponding 

c e n t r a l  d i f f e r e n c e  approximations p lus  a r t i f i c i a l  v i s c o s i t y  terms which vanish  

a t  s t eady  state.  It i s  t o  be pointed out t h a t  t he  d i s c r e t i z a t i o n  used i n  Eq. 

( A 2 )  is t he  d e l t a  form of t h e  one proposed by Khosla and Rubin [161 and is 

e a s i l y  seen  t o  provide a diagonal ly  dominant matrix for the  LHS i m p l i c i t  

ope ra to r .  

I 

f 
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APPENDIX B 

L e t  us cons ider  t h e  g r i d p o i n t s  ad jacen t  t o  the  boundary l i n e  BB, t o g e t h e r  

w i th  a mirror image po in t ,  0, ou t s ide  t h e  computational domain [ l l ]  as shown 

i n  Figure 15. A t  g r idpo in t  1, t he  double s p e c i f i c a t i o n  f o r  t h e  stream 

f u n c t i o n  is g iven  as :  

9, = a (B1) 

= b. 

Equation (B2) is  d i s c r e t i z e d  us ing  a third-order-accurate  fou r  poin t  

d i f f e r e n c e  

( -  9 3  + 6 9 2  - 3 9 1  - 2 9 0 )  
= b. 6 Ax 

I n  o rde r  t o  e l imina te  the  a d d i t i o n a l  unknown 

f u n t i o n  equation is a l s o  used a t  t h e  boundary g r idpo in t  1 [ l l ]  

Ito, t h e  s teady  s t a t e  stream 

which is  d i s c r e t i z e d  as: 

$0 - 291 + $ 2  
+ OYY + w1 = 0 2 Ax 

t e r m  i s  l e f t  unchanged f o r  convenience. By combining Eqs. 
YY 

where the 

(B3) and (B5), t he  fol lowing equat ion  f o r  t h e  v o r t i c i t y  a t  t h e  boundary, wl, 



is obta ined:  
6 b A ~ + 7 $ ~ - 8 $ * + $ ~  

= -  + 
J, YY 2 Ax2 *1  . 

Equat ions (Bl) and (B6) are w r l t t e n  i n  d e l t a  form and used, t oge the r  wi th  t h e  

i n t e r n a l - g r i d p o i n t s  d i s c r e t e  equat ions  and t h e  corresponding cond i t ions  f o r  

t h e  RHS boundary, t o  provide a 2x2 block-tr idiagonal  s y s t e m  which is solved 

very e f f i c i e n t l y  by b lock- t r id iagonal  e l iminat ion.  Notice t h a t  i n  Eq. (B6) 

is e i t h e r  zero ,  i€ l i n e  BB is  a s o l i d  boundary, o r  is known, i f  l i n e  BB 

i s  a f low- in le t  boundary. Also, from Eq. (B6), it  c l e a r l y  a p p e a r s  t h a t  a 

t h i r d  o rde r  accu ra t e  d i s c r e t i z a t i o n  of Eq. (B2) is needed t o  o b t a i n  a second 

o r d e r  accu ra t e  ( s e e  a l s o  111). F i n a l l y ,  i n  t h e  present  mu l t lg r id  

method, Eq. (B6) and t h e  corresponding ones are a l s o  used t o  c o r r e c t  t h e  

f i n e s t - g r i d  s o l u t i o n  a t  t he  boundaries,  a f t e r  every coarse-to-fine-grid 

i n t e r p o l a t i o n .  

$YY 
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FIGURE CAPTIONS 

Figure  1. Schematic of t h e  mul t ig r id  cyc le .  

F igure  2. F i n i t e  d i f f e r e n c e  s t e n c i l  in phys ica l  (x ,y)  and 

computational (E ,n ) planes.  

F igure  3. Convergence h i s t o r i e s  of t h e  mul t ig r id  method us ing  1, 2 ,  3 and 

4 g r i d  l e v e l s  f o r  R e  = 1000. 

F igure  4. Convergence h i s t o r i e s  of t h e  mul t ig r id  method with e x t r a p o l a t i o n  

using 1, 2 ,  3 and 4 g r i d  l e v e l s  f o r  Re = 1000. 

F igure  5. Convergence h i s t o r i e s  of t h e  b a s i c  s o l v e r  and of t h e  four-gr id  

mul t ig r id  without and wi th  e x t r a p o l a t i o n  (do t t ed  l i n e )  f o r  R e  = 

3200. 

Figure 6.  Flow p a s t  a backward f ac ing  s t e p  i n  a channel:  geometry and 

boundary condi t ions .  

F igure  7. Convergence h i s t o r i e s  of t h e  mul t ig r id  method us ing  1, 2 ,  3 and 

4 g r i d  l e v e l s  f o r  Re = 200. I 

1 

Figure  8. Convergence h i s t o r i e s  of t h e  mul t ig r id  method with e x t r a p o l a t i o n  I 

u s ing  1, 2, 3 and 4 g r i d  l e v e l s  f o r  R e  = 200. 

F igure  9. Convergence h i s t o r i e s  of t he  mul t ig r id  method us ing  1, 2 ,  3 and 

4 g r i d  l e v e l s  f o r  Re = 800. 

F igure  10. Convergence h i s t o r i e s  of t h e  mul t ig r id  method with e x t r a p o l a t i o n  

using 1, 2 ,  3 and 4 g r i d  l e v e l s  f o r  R e  = 800. 

F igure  11. E f f e c t  of g r i d  refinement on t h e  lower w a l l  v o r t i c i t y  f o r  

va r ious  va lues  of Re.  



-27- 

Figure 12. 

Figure 13. 

Figure 14. 

Figure 15. 

Effect of grid refinement on the upper wall vorticity for 

various values of Re. 

Effect of downstream boundary condition location on the lower 
wall vorticity for two values of Re. 

Effect of downstream boundary condition location on the upper 

wall vorticity f o r  two values of Re. 

Computational gridpoints around a boundary line. 
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