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Middle Atmosphere Composition Revealed by Satellite Observations

by

James M. Russell III I, Susan Solomon 2, M. P. McCormick I,

A. J. Miller 3, J. J. Barnett _, R. L. Jones 6, and D. W. Rusch 5

Introduction

A significant step forward has occurred in middle atmosphere studies with

the launches of the Nimbus 7, Atmospheric Explorer II (AEM-II), Solar

Mesospherlc Explorer (SME), and Earth Radiation Budget (ERBS) satellites.

These flights, coupled with earlier Nimbus missions, now provide a good data

base for scientific investigation of photochemistry, dynamics, and radiation

processes and for study of coupling among these processes and between solar

variations and the atmosphere. The earlier flight of the Backscatter

Ultraviolet (BUV) instrument on Nimbus 4 and the flight of the Solar

Backscatter Ultraviolet (SBUV) experiment on Nimbus 7 has provided data for

study of long-term ozone trends and their relation to solar flux. In

addition, for the first time, a comprehensive near-global data base on the odd

nitrogen (NOx) chemistry is available from the Nimbus 7 Llmb Infrared

Monitor of the Stratosphere (LIMS) experiment, the Stratospheric and

Mesospherlc Sounder (SAMS), the Solar Mesosphere Explorer (SME), and the AEM

II Stratospheric Aerosol and Gas Experiment (SAGE) which collectively provided

data on vertical profiles of temperature, 03, N02, N20 , HNO3, H20 , CH4, CO,

and aerosols. In addition, the SAGE II experiment on the ERBS is now

collecting data on ozone, NO2, H20 , and aerosols. These data will be

available in the future after the validation period is over. No global data

exist at present on the odd chlorine (C_ x) and odd hydrogen (HOx)

chemistry although important information has been obtained on the HO x source

molecules CH 4 and H20 by SAMS and LIMS, respectively. The odd chlorine

chemistry is one focus of the Upper Atmosphere Research Satellite (UARS) to be

launched near the end of this decade. UARS wlll also provide the first

opportunity for simultaneous global observation of two chemical families

(NO x and C£x).

Much of the data collected has been reduced and archlved, and a number of

scientific studies have been conducted. Data from Nimbus 7 that have been

archived at the National Space Sciences Data Center (NSSDC) includes I year of

INASA Langley Research Center, Hampton, Virginia

2NOAA, Environmental Research Laboratory, Boulder, Colorado

3NOAA, National Weather Service, Washington, D.C.

_Oxford University, Oxford, England

5U. of Colorado, Laboratory for Atmospheric and Space Physics, Boulder,

Colorado

6British Meteorological Office, Bracknell, England. Work performed while at

Oxford University.



SBUVresults, 2 yearsof SAMS temperature, N20 , and CH 4 results, all 7 months

of LIMS data (temperature, 03, NO2, HNOs, and H20), and 4 years of aerosol

data from the Stratospheric Aerosol Measurement II (SAM II). All 3 years of

aerosol, 03, and NO 2 data from the SAGE experiment launched in February 1979

have been archlved as have 1 year of data (1982) from SME launched October 6,

1981. The SME data includes solar flux in the llO0 A region and vertical

proflles of 03, NO2, and temperature. Daily averaged 0 3 is available from SME

in 5 ° latitude bins for the pressure range 0.002 mb to = 30 mb in the first 3

months and - 0.002 mb to I mb in the remainder of the year. NO 2 data are

available in the 2 mb to 30 mb range for the first 3 months only. After that

time, eruption of the E1 Chichon Volcano caused an atmospheric aerosol loading

that swamped or severely contaminated the signal. Beginning April 1982, SME

provlded data on the spatial extent and variability of the volcanic cloud.

Data reduction is continuing for later years of the mission. For the first

time, the data base exists to address many of the key middle atmosphere

questions outlined in Table I. A summary of investigations and findings from

all these missions is included in the following paragraphs.

Several general features of the upper atmosphere have emerged from the

data analyses conducted thus far. It is clear from LIMS, SAGE, and SME data

that NO 2 exhibits rapid latitudinal variations in winter and shows hemispheric

asymmetry with generally higher vertical column amount in the summer

hemisphere. It also appears that southern summer values are greater than

mixing ratios in the northern summer presumbably because of differences in the

circulation patterns. LIMS HNO 3 data show that this gas is highly variable

TABLE I - KEY MIDDLE ATMOSPHERE QUESTIONS

• WHAT ARE THE GLOBAL DISTRIBUTIONS OF KEY CONSTITUENTS?

• WHAT ARE THE DALLY AND SEASONAL CHANGES IN THESE CONSTITUENTS?

• HOW DRY IS THE STRATOSPHERE? IS THERE A HYGROPAUSE?

• IS METHANE OXIDATION AN IMPORTANT STRATOSPHERIC H20 SOURCE?

• HOW ARE WATER VAPOR AND OTHER CONSTITUENTS TRANSPORTED INTO AND OUT OF THE

UPPER ATMOSPHERE?

• WHAT IS THE REASON FOR THE STEEP NO 2 DECREASE WITH INCREASING LATITUDE IN

WINTER?

• IS THE THERMOSPHERE/MESOSPHERE A NO X SOURCE OR SINK FOR THE STRATOSPHERE?

• WHAT ARE THE GLOBAL BUDGETS OF NO X AND H20?

• IS THERE A POLAR NIGHT NO X STORAGE MECHANISM, AND IF SO, WHAT IS IT?



with both latitude and season. The mixing ratio is smallest in the Tropics

and largest in the winter hemisphere at high latitudes. The data also show

that 03, NO2, and HNO 3 levels are strongly affected during a major

stratospheric warming event. The results demonstrate for example, that 0 3

tends to propagate downward in altitude during a high latitude warming

situation, NO 2 latitudinal gradients are greatly reduced, and the HNO 3 high

latitude longitudinal gradients are diminished. LIMS has also provided the

first detailed view of the global water distribution. There is a persistently

low mlxing ratio of about - 3 ppmv in the tropical lower stratosphere, a

poleward gradient at all times during the mission, and evidence of increasing

mixing ratio with altitude at tropical and mid-latitudes. Perhaps even more

interesting is the picture of the general two-dimenslonal stratospheric

circulation suggested by the data. The strongest circulation appears to be

toward the winter pole at high altitudes as theory would predict and there is

evidence of lower altitude stratospheric transport toward the summer pole.

This picture is reinforced in CH_ and N20 data from the SAMS experiment which

shows mixing ratio enhancements or depressions that tend to coincide with

areas where the LIMS H20 would suggest strong or weak circulations.

In other studies using SME data, results show that ozone density in the

mesosphere changes from day to day and with the seasons (Barth et al., 1983).

The largest variations appear to be temperature induced. Ozone density and

temperature are inversely related, i.e., when temperatures are high, ozone

levels are low and vice versa. This dependence is also seen in seasonal

patterns and orbit-to-orbit variations. In the lower mesosphere (I-0. I mb),

maximum mesospheric ozone occurs in the winter hemisphere and the variations

are greater in winter than in summer (Thomas et al., 1983). Ozone time series

from SME for 45°S show greater variability in Southern Hemisphere winter and

less in summer. In the upper mesosphere (near 0.01 mb), a systematic

semiannual cycle is observed, with maximum 0 3 occurring at the equinoxes.

This interesting feature probably reflects the influence of breaking small

scale gravity waves, and shows the important role of mesospheric transport

processes (Thomas et al., 1984; Garcia and Solomon, 1985). Comparison of

ozone levels with the latest model calculations at I mb and 0. I mb show

observations by SME to be higher by I0 percent to 30 percent. This is the

case for all other satellite results as well.

Perhaps one of the most exciting results to date from SME is the

measurement of ozone during a solar proton event in July 1982 (Thomas et al.,

1983). The ozone levels were observed to decrease by up to 60 percent at 76

km and 70°N latitude. These changes are well outside the natural variability

observed by SME prior to and after that time. Solomon et al. (1983a) have

carried out coupled ion-neutral chemistry I-D model calculations (time scales

are short so transport effects can be neglected) and obtain good agreement

with the observed 03 depletion. A similar event was observed previously by

the Backscatter Ultraviolet (BUV) experiment on Nimbus 4 (Heath et al., 1977).

The primary cause for this effect is believed to be production of odd hydrogen

(H+OH+HO 2) which catalytically destroys ozone. The proton flux leading to

ionization rates used in the calculations was measured by instrumentation on

the NOAA-6 satellite.

There have also been several investigations published or submitted for

publication which show great potential for using existing data to calculate

the mixing ratios of some gases not measured directly. Pyle et al. (1983)



showeda calculationof the hydroxylradical (OH)altitude versuslatitude
distribution usingLIMSNO2andHNO3 datawhichqualitatively compareswell
with theory. Similarly, Solomon et al. (1983b) have used SME NO 2 results to

infer an N205 latitudinal distribution. More recently, Callls et al. (1986)

conducted studies using LIMS and SAMS data to infer altitude versus latitude

cross sections of O(SP), O(ID), OH, HO2, H202, NO, NOs, N205, HNO_, total odd

nitrogen, and total odd hydrogen.

The purpose of this paper is to provide a collection of satellite results

obtained to date in the form of monthly zonal mean cross sections and polar

stereographlc projections, to provide a description of the data and their

limitations, and to point out salient features of the morphology of

constituent distributions. An overview of measurements, latitude coverage,

altitude coverage, vertical resolution, accuracy, and precision is provided in

Table 2. It is intended that this paper be a convenient reference document

for use in comparing observations with two-dlmenslonal model results and for

crude checks of three-dlmenslonal models. These data also provide improved

background information for chemical and dynamical studies. The data period

presented will cover the first year after the Nimbus 7 launch and the first

12 months of SME data. The focus of the results is on minor constituents.

Ozone and temperature results are Included since both are needed in

photochemical studies; however, detailed discussion of these variables is not

presented since these will be discussed in three concurrent activities

sponsored by COSPAR and MAP. These efforts include generation of a COSPAR

International Reference Atmosphere (CIRA) for ozone, the MAP proJect--OZMAP,

to analyze variability, and the Pre-MAP Project, PMP-I, to intercompare

satellite and in sltu temperature results (Rodgers, 1984; Grose and Rodgers,

1986). The next section of this paper provides a brief description of each

experiment including instrument description, measurement approach, altitude

range, vertical resolution, latitude coverage, data accuracy, and data

precision.

This section is followed by a description of the data highlighting significant

features.

Experiment Descriptions

Limb Infrared Monitor of the Stratosphere (LIMS)

The LIMS experiment used a thermal infrared llmb scanning radiometer with

six channels centered at wavelengths ranging from 6.2 _m to 15.0 _m _ee

Russell and Gille (1978), Gille et al. (1980), Gille and Russell (1984) and

Russell, 1984)]. The experiment was turned on In orbit on October 24, 1978,

and it operated nearly flawlessly for the planned 7-I/2 month lifetime until

May 28, 1979, measuring vertical radiance profiles across the atmospheric llmb

of the Earth. These profiles were later processed on the ground to infer

middle atmosphere temperature profiles and the concentrations of key compounds

believed to be important in the stratospheric ozone photochemistry. The

experiment lifetime was limited by the NH S - CH 4 solid cryogen cooler used t 9

cool the six HgCdTe-detectors to a temperature of 64°K. The six channels

included two in the 15 _m CO 2 band for two color temperature-pressure sensing,

and others at 11.3 _m for nitric acid (HNO S) retrieval, 9.6 _m for ozone (Os) ,

6.9 Bm for water vapor (H20) , and 6.2 _m for nitrogen dioxide (NO 2)" The

standard approach for thermal infrared remote sensing was used. First, by

measuring emission In the band of a gas whose mixing ratio is known (i.e.,



TABLE2 - MIDDLE ATMOSPHERE COMPOSITION MEASUREMENTS AND COVERAGE

EXPERIMENT

LIMS

CONSTITUENT

03

NO 2

H20

HNO 3

MEAS.

RANGE (KM)

10-65

10-50

10-50

10-50

SAMS CH 4

N20

CO

SAGE/ 03

SAM II NO 2

28-52

28-58

45-100

10-50

25-45

SME

SBUV

aerosols

03

NO 2

03

10-35

50-90

20-40

25-55

VERT.

ACC. * PREC. RES. LATITUDE

(%) (%) (KM) COVERAGE

±15-40 3 2.8

±20-50 3 5

±18-36 6 5

±17-45 4 2.8

±17-50 3-15 >8

±20-50 6-20 >8

-57+130 25 >8

64 °S-84 °N

150°S-70°N**

± 6-40 5-40 1 80°S-80°N (SAGE)

± 30 10 3 64°-80 ° N & S

± 5-20 5 I (SAM II)

± 8-50 6-20 3.5 84°S-85°N

±20-60 2-25 3.5 (SUNLIT PORTION)

± 7-9 8 8 80°S-80°N

(SUNLIT PORTION)

*Root Sum Square of Systematic and Random Errors

**CO data are averaged over 6-month time period and 35 ° wide latitude bands

COLLECTIVE LIST - 03, NO2, N20 , HNO3, CH_, H20 , CO, and AEROSOLS )

CO2) , the temperature profile was inferred and then by measuring emission in

other bands, the unknown mixing ratios were retrieved. Since the observed

parameter was horizon thermal emission, data were collected both night and day

providing a data base for diurnal change investigations to be conducted and

allowing the high latitude polar night region of the Northern l_misphere to be

sounded. _is region of the globe has been of particular interest recently

because of questions and theories that have arisen concerning storage of NO x

compounds in the polar night, the possibility of a high altitude polar night

source of NO x for the stratosphere, build-up of water vapor at low altitudes,

and mesospheric ozone increases with time. The L_S measurements were made nearly

continuously during the mission with a duty cycle of II days on and 1 day off.



TheLIMSradiometerscannedthe atmospherichorizonvertically onceevery
12seconds(_ 84kmalongthe groundtrack) obtainingradianceprofiles in
eachof six spectralbandsasa functionof tangentheight (H). Tangent
height is definedas the point of closestapproachof a ray pathto the
Earth'ssurface(Fig. I). Theinstrumentviewdirectionwas33.5° eastof the
negativespacecraftvelocity vectorsoas to provideuniformcoverage(Fig. 2)
in the NorthernI_mispherefor the _ 99.3° orbital Sunsynchronoous
inclination. _le geometryprovideddaily coveragefrom64°Sto 84°N. The
upwardanddownwardarrowsin Fig. 2 denoteascending(generallydaytimedata)
anddescending(generallynighttimedata)nodesfor the 14orbits which
occurredeachday. Therepeatcycleovera glvenlatitude andlongitudewas

6 days. Thealtitude coveragevariedfor eachchanneldependingmostlyon
slgnal-to-noise(S/N). n_erangefor temperatureandozonewas- I0 kmto
65km,andfor NO2,HNO3,andH20it was_ I0 kmto 50km. Theloweraltitude
limit variedwith latitude beinghighestin the Tropicsdueto interferenceby
highcloudsandlowestin the high latitudes. Also, at certain times,mostly
in thehigh latitude deepwinter period, the slgnal-to-nolse(S/N)becametoo
lowin the NO2andH20channelsfor certain regionswherethe temperatures
werecold. Thiscommentappliesmostlyto latitudes greaterthanabout60°N
andfor pressuresgreaterthanaboutI0 mb. Thevertical resolutionof the
measurementswas- 2.5kmin the temperaturechannels,2.8kmin the Os and
HNO3 channels,and_ 5kmfor NO2andH20. Horizontalresolutionis muchmore
coarseandis dictatedbythe limbgeometryandatmosphericabsorption
characteristicsto be - 300km.

Theinstrumentwassubjectedto a thoroughgroundcalibration prior to
launch,whichincludedamongother things, characterizationof noiselevels,
field of views,the optical encoderthat providedpreciserelative angular
measurementsof radiancepoints onthe horizon,anda primaryradiometrlc
calibration to the 1 percentaccuracylevel. Detailsof thesemeasurementsas
well as othertests doneon the instrumentbeforelaunchare presentedin
Gille andRussell(1984). TheLIMSscanmirror scannedthe limbof the Earth
at a rate of 0.25°/secstarting at analtitude of _ 150kmandscannlngdown
to a point _ 38kmbelowthe hardhorizon. At the top of everyotherscan (_

2

I

f

Figure 1 - LIMS Viewing Geometry.
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Figure 2 - LIMS Daily latitude-longitude coverage.

every 48 seconds), the detectors viewed radiation from a small cavity

blackbody operating at 308°K. This in-fllght calibration (IFC) blackbody

served as a transfer standard to provide nearly continuous updates to the

ground calibration in orbit to insure that any scale factor changes were

accounted for in data reduction. The IFC temperature was stable to a small

fraction of a degree, and the changes in scale factor over the entire mission

were small. These results provided a sound and complete data base to gage

experiment precision and accuracy in orbit.

An extensive program of correlative balloon underflights was carried out

to aid in validation of LIMS data. The intent of the program was to obtain

comparative data under a variety of atmospheric conditions at low, mid, and

high latitudes. The general coincidence criteria were for the LIMS and

correlative data to both occur within 3 hours time and 2 ° great arc distance

from each other. _lese criteria could be met in some cases, but not all.

Temperature data from rockets, for example, could be obtained with even

smaller time and space differences. The extreme was for NO 2 where all data

were collected from balloon remote sensors using the occultation technique.

In this case, the time differences were on the order of 4-I/2 hours.

Comparisons were made with 60 rocket temperature profiles, 14 rocket ozone

profiles, 28 balloon ozone sondes, 13 H20 balloon profiles, 7 NO 2 balloon

profiles, and 14 HNO 3 balloon profiles. Further comparisons have been made

with the Nimbus 7 SAMS temperature results, SBUV ozone data, and SAGE ozone

and NO 2 results.

The validation criterion was that the error bars of the correlative and

LIMS data overlap. It is recognized that since the balloon data also have

errors, they cannot be used to assess LIMS accuracy. This was done through

detailed computer simulations using all the systematic error estimates for the



experiment. Measurement precision was calculated using computer simulations

that included the known experiment random error components as well as the

orbital data. In using orbital data to assess precision, the standard

deviation of six sequential retrievals (covering ± 2 ° of latitude) about the

slx-scan mean was calculated at a series of latitudes to obtain an upper limit

on precision. This is the worst case value since there will be some component

of variation due to atmospheric changes. The results of the correlative

measurement comparisons, accuracy calculations, and precision estimates are

given in Table 3. In all cases, the error bars overlap for LIMS and

correlative data. Accuracies range from < 2=K in temperature to I0 to - 20

percent for gases. The measurement precision is - 0.4°K for temperature and

0.15 ppbv to 0.25 ppmv for constituents, depending on the channel. Details of

the comparisons, descriptions of accuracy studies, and discussion of methods

TABLE 3 - LIMS ACCURACY, PRECISION, AND CORRELATIVE COMPARISON RESULTS

ESTIMATED* CORRELATIVE ESTIMATED

PARAMETER ACCURACY COMPARISON PRECISION

Temperature <2 K** < 2 K < 0.2=K - 0.6°K

Ozone 16-41% < 10% < 0.25 ppmv

Water Vapor 18-36% < 20% < 0.25 ppmv

Nitric Acid 17-45% 20-50% < 0.15 ppbv

Nitrogen Dioxide 20-50% < 20% < 0.25 ppbv

*Range is Variation over Altitude

**For Pressure > I mb

for estimating precision are presented in a series of LIMS validation papers.

[Remsberg et al. (1984a), Russell et al. (1984a, b), and Gille et al. (1984a,

b)]. The mapping procedure and discussions of the maps are included in papers

by Haggard et al. (1986a, b) and Remsberg et al., 1986.

Stratospheric and Mesospheric Sounder (SAMS)

The SAMS instrument is a multlchannel limb scanninng infrared radiometer

which measured thermal llmb radiances that were ground processed to provide

vertical profiles of atmospheric temperature versus pressure and the mixing

ratios of methane (CH_), nitrous oxide (N20) , and carbon monoxide (CO). The

15 _m CO 2 band was used for temperature and the 1200 cm -I (8.3 _) to 1340

cm-* (7.5 _m) spectral region was used for CH 4 (v_ band) and N20 (v I band)

(e.g. Jones and Pyle, 1984). Carbon monoxide data were obtained using

measurements of resonant fluorescent scattering of sunlight near 4.7 um.

Although data are not yet available, SAMS also had channels for measuring the



vertical mixingratio profiles of water vapor (H20) , and nitric oxide (NO).

Measurements were made using the method of pressure modulation radiometry

(PMR). Energy from the atmospheric CH 4 and N20 bands was passed through two

PMR cells in tandom; one containing CH 4 and the other N20. These cells then

acted as selective optical filters (see Drummond et al., 1980). Temperature

was measured using CO 2 cells. The scanning geometry was the same as for LIMS

(Fig. I) except that the view direction was on the beam of the spacecraft

velocity vector giving a different geographical coverage (Fig. 3). The orbit

configuration and viewing geometry provided latitude coverage from 50°S =o

70°N each day.

90°N

60°N

30°N

LRT I TUDE,
DEG. 0

30os

60os

9°°iS_oow
I I I I I I I I I I I

150°W 120°W 90°W 60°W 30°W 0 30°E 60°E 90°E 120°E 1,50°E 18O°E

LONG! TUDE, OEG.

Fig. 3 -Typtcal SAHSclatly latttude versus longitude coverage.

The use of a common optical chain and detector for both the CH 4 and N20

channels meant that these gases could not be observed simultaneously, so the

instrument was set to measure either one or the other gas in time blocks of !

day. The SAMS duty cycle of 3 days on and 1 day off meant that each gas was

measured about 12 days per month. The slgnal-to-noise ratios were not

sufficient to measure individual profiles. Therefore, the approach taken was

to zonally average radiance and temperature profiles before retrieval.

Radiances wece averaged over I0 ° latitude bands and , 1.4 km in the vertical.

This provided slgnal-to-noise ratios of about 30 in the low stratosphere.

The noise level for CO measurement was high, and it was necessary to

average the data over long time periods (6 months) and wide latitude bands

(30 ° to 50°). Consequently, the total number of "profiles" obtained was

small. It should be noted that beca_tse of the geometry of the orbit, the

density of observations is greatest at 50 ° and 70°N. As a result, averages

for bands that include this range are biased towards the highest 20 ° of

latitude.
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A statistical methodwasusedto retrieve temperatureandmixingratio
fromthe radiancedata. Detailsof this methodandtheinstrumentcalibration
proceduresare discussedbyRodgerset al. (1984)andWaleandPeskett(1984),
respectively. Theinstantaneousvertical field of viewwas- 8 kmfor all
channels.Temperaturemeasurementscoveredthe rangefrom_ I0 kmto _ I00
km. Theuseful altitude rangefor monthlyzonalmeancrosssectionsof CH_
includesfrom28km(- 20mb)to 52km(- 0.6 mb)andfor N20from28kmto
about58km(- 0.3mb).

A detailedinvestigationof the sourcesof errors in the SAMSCH_andN20
observationshasbeendescribedbyJonesandPyle (1984). Theyfoundthat
systematicerrors in the retrievedCH4 fields fell into four maincategories:
uncertaintiesin the spectroscopyof the primarygasesandof anyother
overlappinggases(mainlyN20for theCH4measurementandvice versa),
instrumentalandcalibration uncertainties, limitations andsimplifications in
the retrieval methodandalgorithm,andinaccurateknowledgeof the
atmosphericstate (mainlythe temperaturestructure).

Toestimatethe impactsof thesevarioussystematicerror sources,a
syntheticradianceprofile wascomputedusingtypical mixingratio and
temperatureprofiles withall the uncertainparametersset to their nominal
values. Thesimulateddataset wasthenretrievedwith the uncertain
parametersoffset in turn to their uncertaintylimits, andthe profiles thus
obtainedwerecomparedeachtimewith the original.

Therewasa significant randomcomponentto the error budgetevenwhen
zonalmeanswereconsidered.Theeffects of this on the retrievedprofiles
werequantifiedduringthe retrieval processby meansof anerror covariance
matrix. In practice, only the diagonalelementsof this matrixareused.
Thissimplification, whichignorescorrelationsbetweenmeasurementerrorsat
different levels of the atmosphere,tendsto overestimatethe randomerror at
all levels.

Overall, themostimportantCH4 and N20 error sources are thought to be

due to uncertainties in spectroscopy, effects due to retrieval using zonal

radiance averaging and zonally averaged temperatures, and uncertainties in the

line of sight altitude and atmospheric temperature. According to Jones and

Pyle (1984), the CH 4 measurements appear to be superior to those of N20 over

much of the stratosphere. The estimated CH_ RSS accuracy is < 20 percent as

compared with 20 to 50 percent for N20. This occurs mainly because of the N20

signal sensitivity to unwanted Doppler shifts and CH 4 interference, and it is

worsened by the more rapid decrease of N20 with increasing altitude. Random

errors or precision is much better and is - 3-15 percent for CH 4 and 6-20

percent for N20 below the 0.6 mb level.

The carbon monoxide signal levels are much lower and, therefore, the

precision (- 25 percent) is worse than for N20 and CH_. Also, the accuracy

(-57 to 130 percent) is considerably worse. There were no simultaneous

correlative measurements of CH 4 and N20 to aid in validation. The

investigators have, however, compared annual mean profiles to the few in situ

profiles that exist. In general, the SAMS data reproduce the general features

seen by other measurements quite well, i.e., vertical gradients, the low

stratosphere, low latitude maxima, the essentially linear CH 4 decrease with
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altitude, andthemorerapid N20 decrease. There appears to be a positive

bias in N20 by - 20 - 30 percent relative to in situ data at 30 km and below.

Stratospheric Aerosol Measurement II (SAM II)

The SAM II measurement uses the method of solar occultation to provide

vertical profiles of aerosol extinction. The instrument is a single spectral

channel Sun photometer with a passband centered at 1.0-_n. Solar radiation is

reflected by a scan mirror and collected by a Cassegralnian telescope to

produce an image of the solar disk on the telescope's focal plane. On the

focal plane is a circular aperture that defines a 0.6 arcmln instantaneous

field of view (IFOV). This provides an instantaneous vertical field of view

on the horizon of approximately 0.5-km altitude. Sunlight passing through the

aperture is directed by a lens through a bandpass filter to a silicon

photodiode used for measurement of atmospheric extinction.

Immediately before a satellite sunrise or sunset event, the SAM II

instrument is activated by a sun-presence sensor indicating that the Sun is

within the instrument's field of view. The instrument then locks onto the Sun

in azimuth and scans in elevation until the Sun is acquired by the IFOV. The

scan mirror then scans vertically, with respect to the Earth's horizon, across

the solar disk at a rate of 15 arcmin per second, reversing the scan direction

each time a Sun edge crossing occurs. The orbit of the Nimbus 7 satellite is

a high-noon Sun-synchronous one, so SAM II performs 14 sunset and 14 sunrise

measurements each day, wit], all sunsets occurring in the Arctic region and all

sunrises occurring in the Antarctic region. In the course of a single day,

measurements of the stratospheric aerosol will be obtained at 14 points spaced

26 ° apart in longitude in the Northern llemlsphere, and similarly for the

Southern l_mlsphere. All of the points obtained during I day in a given

hemisphere will be at very nearly the same latitude, but as time progresses,

the latitude of the measurements will slowly change with the season from 1 to

2 degrees per week, gradually sweeping from 64 ° to 80 °• During a whole year,

lowest latitude coverage occurs at the solstices, whereas the highest

latitudes are measured at the equinoxes. The orbital viewing geometry and

latitude versus time coverage is shown in Fig. 4.

The basic data product generated from each measurement is an aerosol

extinction profile (extinction as a function of altitude) at 1.0 _m

wavelength. Using a typical size distribution for stratospheric aerosols,

their concentration as a function of altitude_ longitude, latitude, and time

can be determined. Since the measurements are confined to high latitudes

(640-80 °) in both hemispheres, the results have provided the most detailed

data set of stratospheric aerosol behavior ever obtained in the polar regions.

The altitude range for the aerosol extinction profile is typically from

cloud top to approximately 35 km altitude covering all of the stratospheric

aerosol layer in the polar regions. The vertical resolution for the inverted

aerosol extinction profile is one km, with an accuracy of l0 percent and

precision of about 5 percent. The accuracy at higher altitudes (>20 km)

generally decreases due to the lower content of aerosols in that region of the

stratosphere. The SAM II data have been validated by comparing to near

simultaneous measurements by lidar and balloonborne dustsondes. Details of
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the comparisons have been presented in two of the SAM II validation papers

(Russell et al., 1981a, b).

Stratospheric Aerosol and Gas Experiment (SAGE)

The SAGE measurement is a direct follow-on to SAM II and is also based on

the method of solar occultation. SAGE measures aerosol extinction as well as

vertical profiles of 03 and NO 2.

The SAGE instrument is a four-channel Sun photometer and is very similar

to the SAM II instrument. Spectral discrimination for SAGE is achieved by

using a holographic diffraction grating which disperses the incoming sunlight

in different directions depending on wavelength. By placing four sensors at

appropriate locations along the Rowland circle, one can measure the sunlight

intensity at four different wavelengths. The wavelengths selected are 0.385,

0.45, 0.60, and 1.00 _m. _lese were selected for the following reasons: at

0.385, 0.45 and 1.00 _m, absorption by stratospheric gases is quite small

below 25 km, and solar extinction in these channels is almost entirely due to

scattering by aerosol particles and air molecules. At higher stratospheric

altitudes, attenuation at 0.60 _m is primarily due to ozone. Above an

altitude of about 25 km, the extinction at 0.385 and 0.45 _ is mainly due to

absorption by nitrogen dioxide.

In operation, the instrument is similar to SAM II, and is activated just

before a sunrise or sunset is encountered by the satellite. The instrument

searches for the Sun and nulls the center of intensity of the solar image. A

scan mirror then begins scanning up and down across the face of the Sun. This

mlrro_ reverses in direction each time a llmb crossing occurs. Solar light is

reflected from the scan mirror to the aperture of a small Cassegratnian

telescope which defines about a i/2 km instantaneous field of view on the

horizon and focuses this light onto the diffraction grating. The intensity of

light dispersed by the grating at the four wavelengths of interest is measured

by the four sensors. The data are inverted in ground processing to yield

extinction as a function of altitude for each spectral channel at each

location and time of a SAGE measurement.

The SAGE instrument was launched on February 18, 1979, on a dedicated

orblt-tailored Applications Explorer Mission (AEM-2) satellite and obtained 34

consecutive months of data. The orbit is inclined at 55 ° with an apogee of

660 km, a perigee of 548 km, and a period of 96.8 minutes. This highly

precessing orbit provided measurement opportunities distributed around the

earth for latitudes from about 80°N to 80°S (depending on season). Unlike the

emission experiments and SBUV, SAGE measurements are made over a wide range of

longitudes but relatively small (< i °) latitude ranges each day; generally one

in the Southern I_mlsphere and one in the Northern Hemisphere. Latitude

versus time coverage for the period from launch to December 31, [980, is shown

in Fig. 5. The measurements were made each time the satellite entered or left

the Earth's shadow, that is, during each sunrise and sunset encountered by the

satellite. Due to the orbital motion of the satellite, the rotation of the

Earth, and the motion of the Earth around the Sun, successive measurements are

separated by about 24 ° in longitude and occurred at slightly different values

of latitude.
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The basic data product generated from each SAGE measurement is an

extinction profile (extinction as a function of altitude) for each of the four

spectral channels. These contain information on the concentrations of

stratospheric aerosols, ozone, and nitrogen dioxide as a function of altitude,

longitude, latitude, and time. A corresponding temperature profile is

provided by the National Meteorological Center (NMC) of the National Oceanic

and Atmospheric Administration (NOAA) for the same time and location of each

SAGE measurement. These proEiles were constructed by interpolation from the

NMC gridded global sets and used to convert SAGE derived gas concentrations to

mixing ratios.

The altitude range for the four data products varies due to the

difference in signal level for the four spectral channels. Vertical

resolution for the inverted products is typically I km except for the nitrogen

dioxide profile and the aerosol extinction at 0.45 _m, where vertical

smoothing to 3 km has been performed. Table 4 summarizes the altitude range,

vertical resolution, estimated accuracy, and precision of the four SAGE data

products. An extensive program of validation for the SAGE aerosol and ozone

data has been carried out. The comparison of SAGE aerosol data with
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correlativemeasurementshasbeenreportedbyRussellet al. (1984)andYueet
al. (1984). Thecomparisonof SAGEozonedatawithballoonozonesondes,
rocketsondes,andSBUVdatahasbeenreportedin a series of papers(Reiter
andMcCormick,1982;McCormicket al., 1984,Cunnoldet al., 1984).

The Solar Backscatter Ultraviolet (SBUV) Experiment

The SBUV is a nadir-vlewing double monochromator which measures radiances

backscattered from the atmosphere at 12 discrete wavelengths from 255 nm to

340 nm with a l-nm bandpass (Heath et al., 1975; McPeters et al., 1984; Flelg

et al., 1982). It is an extension, with modification, of the BUV measurement

TABLE 4 - SAGE ALTITUDE, RANGE, RESOLUTION, ACCURACY, AND PRECISION

DATA

Aerosol Extinction

at 1.0 _m

Aerosol Extinction

at 0.45 _m

Ozone

Nitrogen Dioxide

ALTITUDE VERTICAL ESTIMATED

RANGE RESOLUTION ACCURACY PRECISION

Cloud Top

to 35 km 1 km 10% 5%

10-35 km 3 km 20% 5%

Cloud Top 1 km <35 km 5-10% 5%

to 50 km >35 km 20-40%

25-45 km 3 km 30% 10%

system flown on Nimbus 4 (1970-1977). Radiances between 255 nm and 206 nm are

used to infer the ozone vertical profile distribution, while radiances between

312 nm and 340 nm are used to calculate total ozone. In order to calculate

backscattered albedo, the ratio of backscattered radiance to extraterrestrial

solar irradiance must be measured daily by deploying a diffuser plate. The

scan-to-scan precision of the albedo measurement is very high--a few tenths of

a percent.

Inferral of an ozone profile is possible because light at a given

wavelength originates mostly in a limited-altltude region of the atmosphere,

and this alitude region varies with wavelength. Thus, a wavelength scan is

equivalent to an altitude scan. As sunlight penetrates the atmosphere, the

scattering term increases exponentially with increasing density of air

molecules, but the increasing depth of ozone causes the transmission of direct

and backscattered sunlight to exponentially decrease, The balance between an

exponentially increasing source term and exponentially decreasing transmission

term produces a well-deflned scattering layer of about 14 km half width. The

wavelength of maximum ozone absorption, 255 nm, produces a scattering layer

(contribution function) at the maximum possible altltude--50 km to 55 km,

depending on solar zenith angle. Light at wavelengths longer than 310 nm
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penetratesthe ozonelayer to bescatteredby the troposphereandreflected by
thegroundandclouds. Thesewavelengthsareuseful for inferring the total
ozonecontent of the atmosphere.

The inferral of an ozone profile from a set of measured backscattered

albedos is done by using a partial derivative inversion algorlthm that was

described by Schneider et al. (1981). The optimum statistical concepts of

Rodgers (1976) are used in the algorithm. Because of the width of the

contribution functions, there is a limit to the altitude resolution that can

be obtained in the retrieved profile. The inversion uses a-priori information

in the form of climatological profiles (as a function of season and latitude)

and an associated covarlance matrix containing standard deviations and

expected correlations between layers. Total ozone calculated from the longer

wavelengths channels represents a strong additional constraint. A solution

profile is obtained by minimizing the differences between the observed and

calculated albedos and total ozone. The constraints are imposed in a

statistically optimum manner by including the full covariance matrix of

radiance errors and errors in estimating the a-priori profile. Two or three

iterations normally suffice. It is estimated that an altitude resolution of

approximately 8 km is achieved in the retrieved profiles. The limit to the

altitude resolution from an inversion is set by the width of the contribution

functions, the accuracy of the albedo measurement, and the magnitude of the

off-diagonal elements of the a-priori covarlance matrices.

The SBUV makes only daytime measurements since it uses backscattered

sunlight. Measurements are made continuously over a broad latitude range at a

spacing of 200 km along the orbit track and in longitude at the orbit spacing

- 26 ° (Fig. 6). The upper and lower altitude limits vary with season

depending on the Sun angle, but over the course of the year, the coverage is

from - 80°S to _ 80°N. As an example, Fig. 6 shows coverage for mid-January.

The estimated accuracy of ozone profile measurements is _ 8 percent. The

precision is estimated to be _ 8 percent.

90°N

60('N

30_N

LRTITUDE, 0
DEG.

60 _,,

90 o

180°W l'50°w 120 °w 90 °w 60°w 30°w 0 50°E 60°E 90°E 120°E 150°E
LONGITUDE, DEG.

\

I 1 I 1 I I I
180°E

Fig. 6 - SBUY daily latitude versus longitude coverage for mid-January and a sun
elevation angle > 10°.
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Total ozone measurements made by the SBUV have been compared with those

from over 60 Dobson stations (Bhartla et al., 1984a). The result is that SBUV

is lower, on average, by about 8 percent and the standard deviation of the

differences is consistent with the estimates of 2 percent precision on each

instrument type.

With respect to comparisons of SBUV profiles, Bhartia et al. (1984b) have

compared the results with Umkehr and balloon ozonesonde information. The

biases are generally less than I0 percent, but are functions of layer height

and latitude. The standard deviation of the differences between SBUV and in

sltu measurements is found to be better than 8 percent for pressures between 1

and 64 mbar and better than 15 percent from 64 to 253 mbar.

The biases between SBUV and the ground-based observations, discussed

above, are believed to be largely due to inconsistences in the ozone

absorption cross sections used for the various measurement systems. This

comparison has recently been reexamined using data from SBUV obtained with the

new absorption coefficients derived by Bass and Paur (private communication).

This study has resulted in a recommendation by the International Ozone

Commission that the new absorption data be used for reduction of satellite

data.

Solar Mesosphere Explorer Satellite (SME)

Instruments on the Solar Mesosphere Explorer have been used to measure

the ozone density in the Earth's atmosphere from about 1.0 to 0.001 mb and the

NO 2 density from about I0.0 to 2.0 mb starting January I, 1982, until the

present. A full description of the mission objectives can be found in Thomas

et al. (1980) and Barth et al. (1983). In this report, we present ozone data

for all of 1982 and NO 2 data for the first 3 months of 1982.

The three instruments involved are spectrometers; one operating in the

ultraviolet (UVS), one in the visible (VS), and one in the infrared (IRS).

The UVS and the IRS measure ozone and the VS measures NO 2. Altitude coverage

for ozone is from - 50 km to 90 km and for NO2, it is from 20 km to about 60

km. The vertical resolution of the measurements is 3.5 km, and the latitude

coverage Is from 85°S to 85°N.

Instrument descriptions, data analysis techniques, and early results have

been published for each instrument: For the UVS see Rusch et al. (1984); for

the IRS see Thomas et al. (1984); and for the VS see Mount et al. (1984).

All atmospheric instruments on SME take data in the limb scanning mode.

The satellite spins once in 12 seconds and the forward llmb is sampled once

each spin as the spin axis is perpendicular to the orbital plane. The

satellite is in a near polar, Sun-synchronous orbit with the local time of the

ascending mode near 3 p.m. Data are collected daily in four orbits centered

in the = 50°W and _ 100°W range.

The UVS measures Rayleigh scattered sunlight at two wavelengths, one

where ozone efficiently absorbs (265 nm) and one where the ozone absorption is

less efficient (296.5 nm). The shape of the llmb profile of Rayleigh
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scatteredintensity is determinedby the dlstr[bution of ozonein the
atmosphere.Theprofiles are invertedto producea profile of ozonemixing
ratio as a function of pressurefrom1.0 mbto 0.I mb.

Theuucertalntiesin a single inversionof six mergedlimbprofiles are
about18percentat all altitudes. About65percentof this uncertaintyis
dueto systematicerrorsandthe remainderto the statistical uncertainties.
Thecompleteerror analysisis presentedin Ruschet al. (1984).

TheIRSmeasuresradiation fromtheO2(iAg)moleculesat 1.27_m
resulting fromthe photolysisof ozone. A knowledgeof themechanismsof
02(iAg)productionandlossallowsthe ozonedensityto be inferred in the
1.0to 0.001mbregionof the atmosphere.Randomerrorsvary fromabout4
percentat 1.0mbto about20percentat 0.001andsystematicerrors areabout
15percentat all pressures.Thecompleteerror analysisis givenin Thomas
et al. (1984).

NO2 is measuredby the VSusinga differential absorptiontechnique.The
Rayleighscatteredsignal is measuredasa functionof altitude at a wave-
lengthwhereNO2 absorptionis lowandat anothernearbywavelengthwhereit
is severaltimeslarger. TheNO2 density is determined by a comparison of the

ratio of the intensities of the two wavelengths measured to that expected if

no NO 2 were present. The total _MS error varies from 21 percent at 28 km to

about 60 percent at 38 km. _le complete error analysis is given in Mount et

al. (1984).

Satellite Data Description

All of the satellite data collected thus far for the time period of this

report are displayed in subsequent figures in terms of monthly zonal mean

pressure versus latitude cross sections or polar stereographic projections.

In some cases, seasonal means are presented to allow a better comparison to be

made with SAGE results, which are limited in coverage. The discussion which

follows is divided according to the parameter measured. Intercomparison of

results are discussed where data overlap occurs (i.e., temperature, 03, and

NO 2) and significant features of the plots are described.

Temperature

As already indicated, the focus of this paper is on constituents; but

since temperature is such a fundamental quantity needed in photochemical

studies and for numerous other reasons, monthly zonal mean cross sections and

the I0 mb polar stereographic projections are included in Figs. TI-T14 for

LIMS and Figs. TI5-T38 for SAMS. Both LIMS and SAMS temperatures have been

compared to many rocketsonde/rawinsonde profiles (see Gille et al., 1984b and

Barnett and Corney, 1984). In addition, LIMS and SAMS results have been

extensively compared with each other and SSU satellite data, and with analyses

from the Berlin Free University, the U.S. National Meteorological Center

analyses, and the European Centre for Medium Range Forecasting. This work was

done by a Pre-MAP Working Group, PMP-I, which compared daily zonal means and
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polar stereographlcprojectionsat variouspressurelevels. Resultswere
publishedin MAPHandbookNo.12, July 1984(Rodgers,1984). In a second
workshopof the group,monthlyzonalmeansandpolarstereographicprojections
werecomparedusingsimilar datasourcesandtheseresults will bepublished
in a future MAPhandbook(GroseandRodgers,1986). Theagreementbetween
LIMSandSAMSis excellentundermostconditions. Usually,the largest
differencesoccurin regionswheresharphorizontalandor vertical gradients
occursuchas in high latitude warmingsituations. Theworkinggroup
attributed this as beingprobablycausedby thevast differencesin vertical
resolutionof the twoexperimentsandthe fact that in the LIMSprocessing,
horizontalgradientswereaccountedfor to first orderin the retrieval,
whereastheywerenot includedin the SAMSprocessing.Theconclusionwas
that overmostof the globeandmostof the time, the twodatasetsagreeto
within a fewdegreesKelvin.

Variationsin monthlycrosssectionsshowtheexpectedfeaturesof the
cold tropopauseandwarmstratopause.Thelatter featureoccursat aboutthe
1 mblevel duringall monthsat virtually all latitudes. Themostnoticeable
exceptionis duringOctoberthroughJanuaryat highlatitudes whenthe
stratopausemovesup to aboutthe 0.6 mblevel. Thesteepestlatitudinal
gradientin thestratopauseregionalwaysoccursin the winter hemispherewith
temperaturedecreasingpoleward.Thereare transition periodsin April and
Augustwhengradientsare reduced.Maximumchangesoccurin Juneand
December.Warmesttemperaturesat the 1mbleveloccurat high latitudes of
the summerhemispherein accordwith theotherobservationsandtheorywhich
predicts a meanflow fromthesummerto winter hemisphere.DuringDecember
andJanuary,there is a wave-liketemperaturestructureas a functionof
latitude at thehighestlevels of the datawhichis not presentat other
times. Themonthof February1979showssignificant differencesfromprevious
winter monthsdueto occurrenceof a majorstratosphericwarming.Notein
Januarythe cold temperaturesuorthwardof about60° whichextendto the I0 mb
level. In February,therearemajorchangesfromthe Jauuarypatternandthe
temperaturehasincreasedby 20° K in this region. Significant changesare
also seenin the polar stereographicprojections.

Ozone(0___.)

Ozone was measured by four experiments for the time period covered by

this report. These included LIMS, SAGE, SBUV, and SME. The first three

e×perlments were operating simultaneously during February to May of 1979 while

SME was launched much later. Extensive comparisons with in situ and Umkehr

profiles have been done for LIMS, SAGE, and SBUV and reported on in the

literature (Remsberg et al., 1984; McCormick et al., 1985; and Bhartla et al.,

1984a). In addition, a preliminary effort has been made to intercompare data

from these experiments (Fleig et al., 1984). One such comparison is shown in

Fig. O3-I for the March zonal mean LIMS and SBUV results and the 2-day zonal

mean for SAGE at 42°N. In this comparison, the LLMS and SBUV agree better

with each other than w[th SAGE above about 4 mb with SAGE values being higher

than LLMS and SBUV. Below 10 mb, LIMS and SBUV data differ from SAGE values

by about the same amount but with opposite sign. The differences reach - 25

percent at the highest altitudes but are only 10-15 percent below the I0 mb

level. This is not a typical result, however, and in general, the agreement
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of the datafor the threeexperimentsis muchbetter. Evenin this case,
differencesamongthe results are well within the error barsof the individual
datasets. Therehavenot beenenoughdetailedanalysesdoneat this point to
drawconclusionsconcerningpatternsof differencesin variousaltitude
ranges. This level of agreementis consideredto beverygoodin viewof the
vastly different measurementapproaches,i.e., thermalemission,solar
occultation, andsolar backscatterobservations._lerehasbeensomelimited
reprocessingof SBUVdatausingnewUVabsorptioncoefficients (Bhartia,
private communication,1985)but therehavenot beenenoughcomparisonsto
evaluatethe statistical significanceof changes.Thereappearsto bevery
little differencein the results exceptat loweraltitudes wherethe SBUVnow
agreesbetter with SAGEresults thandoesLIMS. Final judgmenton the new
SBUVdatamustawaita moredetailedandcareful study.

Onlyvery limited comparisons have been performed with SME results in the

region from I mb to 0. I mb _lere LIMS and SME data overlap. At higher levels,

the only satellite data are from SME. It is possible to extend LIMS results

higher with special radiance averaging processing, but this has not yet been

done. A January comparison of zonal mean latitude variations at 0.56 mb and

0. 134 mb (Fig. 03-2) shows good SME/LLMS agreement (within 15 percent) at the

lower altitude, but large discrepancies at 0. l mb where the LIMS values are

higher than SME by as much as a factor of two. A recent study by Solomon et

al. (1986) shows that the 9.6 _m ozone band is not in local thermodynamic

equilibrium (LTE) at the higher altitude and that large errors occur if LTE is

assumed in the retrieval. When the effect of non-LTE is accounted for, the

agreement between LIMS and SME at 0. 136 mb is within the error bars of the two

experiments. This is particularly encouraging in light of the fact that LIMS

data were collected in 1979, and SME results were obtained in 1982. This

suggests that the small interannual variability in ozone, indicated by SME

during the time it has been operating, extends to other years as well. There

still is a difference in shape of the latitude variation at 0.136 mb between

LIMS and SME, which is not currently understood. A wave-like oscillation in

temperature with latitude appears in the satellite derived temperature cross

sections for December and January and the photochemlcally expected ozone

oscillation accompanying the temperature changes is present in both LIMS and

SME data sets at 0.56 mb but is seen only in LIMS at 0.134 mb. The true

causes for these differences are not known at present, but they may be related

still to the non-LTE effect in LIMS results. Monthly zonal mean cross

sections and polar stereographic projections are shown in Figs. 03-3 to 03-30

for LIMS and in Figs. 03-31 to 03-86 for SBUV.

Monthly and seasonal zonal mean cross sections are shown in Figs. 03-87

to 03-96 for SAGE sunset data. All contour plots are in units of

parts-per-milllon by volume (ppmv), and all polar stereographlc projections

are for the Northern Hemisphere. As already noted, the SAGE data coverage is

sparse in some months because of the occultation experiment coverage; and

since there were only sunset data taken after June, coverage was even less.

During those months where SAGE data are particularly sparse, no contour plots

are shown. For the months where all three experiments (i.e. LIMS, SBUV, SAGE)

were operating, the general contour shapes are similar and the same features

are apparent. The maximum March mixing ratio occurs at about the I0 mb

level. At the Equator, the latitudinal gradients in each hemisphere are

similar, and the vertical gradients at various latitudes are comparable.
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Thereare somenoticeabledifferenceswhendetails areexamined.TheMarch
1979maximummixingratio is about10.2ppmvfor LIMS(Fig. 03-7), 10.7ppmv
for SBUV(Fig. 03-35),and11.5ppmvfor SAGE(Fig. 03-87). This is in accord
with zonalmeanprofile comparisonsalreadydiscussed.Thereare also some
differencesin contourshapes.TheLIMSandSBUV7 ppmvcontoursin April for
example(Figs. 03-8and03-36),extendto a highersouthernlatitude and
higheraltitude. In August1979(Figs. 03-40and03-90),the SBUVandSAGE
latitudinal gradientsarequite different in somealtitude regions. In
general,the SBUVandLIMScontourshapesagreebetter with eachother than
with SAGE._lis mayberelated to the samplinglevel associatedwith the
occultatlonexperiment.Thereare, however,someimportantLIMS/SBUV
differences. Perhapsthemostsignificant pointsto noteare the differences
in JanuaryandFebruarycontours(Figs. 03-5and03-6for LIMSand03-33and
03-34for SBUV).It shouldbe recalledthat Februarywasa monthwhenthere
wasa majorstratosphericwarming.Notefirst that in January,the maximum
mixingratio levels occurin the samelocation for the twoexperimentsbut the
levels aredifferent by almost2 ppmv.Thecontourshapesat I0 mband60°S
arenoticeablydifferent andthe 8 ppmvcontourat the samelevel in the
NortheruHemisphereextendsto only _ 28°Nfor LIMSbut to - 45°Nfor SBUV.
Themostsignificant differencesoccurin Februarybelowthe I0 mblevel.
Herethere is a largechangein the LIMSpolewardgradientat 60°Nand20mb,
for example,andthe "ozonehole" suggestedbythecootourfills in; but in
the SBUVresults, there is essentially nochangein the gradient. These
differencesare mademoreevidentin the I0 mbpolarplot whichshowsthe SBUV
ozonegradient(Fig. 03-62)remainingessentiallyconstantto the polewhereas
the LIMSgradientchangessignificantly at about30°N(Fig. 03-20). Downward
propagationassociatedwitha warmingeventwhlchwouldbringhigherozone
levels downwardis expected.It couldbethat thedifferencesare causedby
the highervertical resolutionprovidedbyLIMS(_ 3 kmversus_ 8kmfor
SBUV).Also, at this time, thereweresharphorizontaltemperaturegradients
presentat high latitudes whichare difficult to includein a llmbexperiment
retrieval. Thus,someLIMSozoneerror is expecteddueto temperatureerrors
at thehighest latitudes. _ere arenoticeableLIMS/SBUVdifferencespresent
in horizontalozonegradientsrevealedbypolarstereographicprojectionsat
all levels andmonths.Thereasonsfor the LIMS/SBUVdifferencesare unclear
at present. Otherfeaturescanbecomparedanddifferencesnoted,but in
general,the natureof the importantdifferencesfor all monthsare
essentially characterizedbythesemajorpoints.

Theozonecrosssectionsshowthe expectedqualitative featuresof an
equatorialmid-stratospheremaximumin mi_i_gratio dueto chemicalactivity
anddownwardandpolewardslopesof the isolinesin the lowerstratospheredue
to the meancirculation. Thereis alsoa hemisphericassymetrypresentin the

2 mbto 7 mbrange_ere elongatedcontoursemanatingin the Tropicsextend
upwardandpolewardat certain timesof yearmostlyin onehemisphere(see
e.g. LIMSFigs. 03-7and03-9). _lere ls still someuncertaintyaboutthe
relative importanceof photochemistryandtransportin this region, but the
correlation with dry watervaporcontours(e.g. Figs. 03-9andCHN-31)
suggeststhat transportplaysa definite role in controlling the distrlbutlon
in this region. All of the crosssectionsshowrather lowlatitudinal
gradientsabovethe 4 mblevel. TheSMEdatashownin Figs. 03-97to 03-108
for the UVand03-109to 03-120for the IRextendto a muchhigheraltitude
thanSBUV,LIMS,or SAGE,but theyextenddownwardonly to aboutI mb
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pressure. SMEresults showa ratheruniformvertical slopeat all latitudes
andonly small latltudinal gradients. Sincethe climatologyandvar[atlonsof
ozonewill be treatedin depthby anotherMAPproject, nomorewill besaid
here.

Nitrogen Dioxide (NOp)

Nitrogen compounds arise in the stratosphere primarily from a sequence of

chemical reactions initiated by the reaction of nitrous oxide (N20)

transported up from the surface with atomic oxygen in an excited state

_(ID)]. Nitrogen dioxide results from the combination of nitric oxide (NO)

(which is an initial product of the N20 - O(ID) reaction) and ozone.

_lerefore, it is a central molecule in the chain of ozone destroying chemical

reactions, and it is of great importance to our understanding of ozone

temporal and spatial variations. At night, after NO has essentially all

converted to NO 2 through reaction with 03, NO 2 further reacts with 03 and NO 3

to form the radical N205. This reaction and subsequent photolysis which

dissociates N205 is highly temperature sensitive and altitude dependent.

Therefore, measurement of NO 2 variations provide some revealing, important,

and stringent tests to theory.

As noted earlier, NO 2 measurements have been obtained by three different

instruments; LIMS, SAGE, and SME, all of which use different experiment

approaches. The measurements represent a remarkable sclentiEic achievement in

view of the importance of the data and the very low NO 2 mixing ratio which is

in the ppbv range. These three experiments, combined, provide measurements at

five different times of day, i.e., LIMS measured at approximately II:00 p.m.

and i:00 p.m. local time over a wide range of latitudes, SAGE made

measurements at sunrise and sunset, and SME conducted observations at - 3 p.m.

In addition, LIMS provided data at a variety of local times at high latitudes

where the terminator was crossed. Therefore, there is a wealth of data

available for conducting diurnal change and solar zenith angle dependent

investigations.

Since NO 2 varies significantly over the diurnal cycle, it is difficult to

intercompare results from the three experiments. In addition, SME data were

collected about 3 years later in time. Therefore, the approach for

Intercomparing these data which we will take here is to briefly describe the

nature of the zonal mean cross sections for each experiment and include in the

discussion a mention of similarities and differences. There are a few cases

at high latitudes where LIMS and SAGE took data at essentially the same time

and these comparisons will be discussed. Finally, comparisons of results will

be made through the medium of a model.

The LIMS monthly zonal mean cross sections are shown in Figs. N-I to N-7

for daytime and in Figs. N-8 to N-14 for nighttime. A detailed discussion of

the "NO 2 climatology" as observed by LIMS is in preparation (Russell et al.,

1986). The low latitude boundary of stippled areas in the high latitudes

represents the region where the terminator is crossed and the measurement

period changes from day to night or vice versa. The cross-hatched area below

the 40 mb level reflects the fact that starting at about that level, an NO 2

"climatology" was used according to the degree of molecular oxygen interfer-
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eucein the NO2 channel. At the I00mblevel, for example,the result is
almostall climatologysinceundermostcircumstancesat thoselevels,
emissionby 02madeupnearly I00percentof the radianceusedfor retrieval.
Thus,little NO2 informationwasavailable. Severalfeaturesin the data
standout. Thecontourstendto slopepolewardanddownward,andthere is
evidenceof upwardmotionat theEquatorbringingNO2poorair into the
stratosphere. Thediurnal differencesare obviouswith maximumdaytimevalues
reaching- 6 ppbvandnight valuesreaching- 19ppbv. Thealtitude of the
peakmixingratio occursat the i0 mblevel duringthe dayand- 5mbat
night, lu bothtimeperiods,the regionof maximumNO2 is biasedtowardthe
TropicsandSouthernHemispherethroughmostof themission. Thedaytime
contoursbecomealmostsymmetricalaboutthe EquatorbyMay. Nighttime
results areneveras symmetricalbut aremoresoin Maythanpreviousmonths.
Thedistributions exhibit a layeredstructure in altitude andthereare
distinct latitudinal gradientswhichare largestin the altitude regionof the
peakmixingratio. Thenight distribution in January(Fig. N-10)showsa
particularly sharpgradientwhichis indicative of the so called "Noxon
cliff," a termusedto describeveryrapid decreasesin mixingratio with
latitude whichwerefirst observedfromthegroundby Noxon(1979). This
featurehasbeencarefully analyzedandis believedto bedueto
chemlstry-dynamlcsinteractionsassociatedwith thepolar vortexandNO2
conversionto N20S(seee.g. SolomonandGarcla,[983andCallls et al.,
1983). _le gradientis not as steepduringthe daydueto alreadydepressed
NO2 levels resulting fromphotolysis. Examinationof descending(nlghtt[me)
polar stereographlcprojectionsat 3 mbin Figs. N-15to N-17for November
throughJanuaryshowthat the NO2 decreaseoccursovera broadlongitude
region. ThesemapsweremadeusingKalmanfiltering. In doingthis, since
NO2 haslarge diurnal changes,it wasassumedthat the nighttimedistribution
doesnot changeovera 36-hourtimeperiod. Therefore,in analyzinghigher
wavenumberfeaturesof themaps,this assumptionshouldbeconsidered.Asa
minimum,the mappingallowsa moreaccuratedeterminationof the 36-hourzonal
meandistribution. Anotherfeatureof the datawhichis not obviousfromthe
contoursis the effect of mesosphericNO2 on thestratospherelevels. Russell
et al. (1984c)performedspecialprocessingof LLMSdatausingradiance
averagingmethodsto showthat the polar night mesospherecanleadto
significant increasesin upperstratosphereNO2levels.

SAGEmonthlyzonalmeansunsetpressureversuslatitude crosssections
are shownin Figs. N-22to N-28andsunriseplots areshownin Figs. N-29to
N-31. Seasonalsunsetzonalmeansareshownin Figs. N-32to N-34. The
mixingratio patternsbasedonseasonalzonalmeansare similar to thosefor
LIMS.TheNO2 mixingratio is a ma×imumin equatorialregionsanddecreases

toward the poles in both hemispheres. The maximum mixing ratlo contour of 8

ppbv typically covers altitudes from - 32 km to 36 km and llke LIMS, there is

a bias in location toward the Southern |_mlsphere in winter months becoming

essentially symmetric about the Equator in spring and then the bias shlfts

toward the Northern Hemisphere in summer and fall. SAGE also observes an NO 2

"cliff" type behavior in the winter hemisphere, which is somewhat steeper than

LIMS daytime latitude gradients and as expected, it is less than the nlghtt[me

gradients. The behavior of the NO 2 column content at mid to high northern

latitudes during the local winter season has been investigated with the SAGE

observations (Chu and McCormick, 1986) and variations were found to be

strongly correlated with the large scale horizontal flow pattern.
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DaytimeLIMSandSAGEdatafor winter andspringarecomparedin Figs.
N-35andN-36for 31°N. TheLIMSresults are for JanuaryandMay,
respectively,andSAGEdataare 3-yearseasonalmeansfor winter andspring.
Therefore,thesecomparisonsaremorequalitative in nature,but nevertheless,
theyare instructive. Notethat in bothperiods, the profile shapesagree
verywell. LIMSis biasedlowrelative to SAGEbyabout15-20percentas
expectedbasedondiurnal changeconsiderations.Theerror barsof the two
datasets overlapin bothcasesand,therefore, lendcredenceto the combined
dataset.

SMEmonthlyzonalmeanNO2 crosssectionsare shownin Figs. N-37to
N-39. UnlikeLIMSandSAGE,thesecrosssectionsshowseveraldistinct
regionsof anNO2 maximum and they show considerable variability. Maximum

values of 12 ppbv occur at about the I0 mb level and the regions of maximum

NO 2 persist through the period January to March. Part of the reason for the

difference of the SME cross sections compared to those from LIMS and SAGE may

be due to the fact that SME covers only a small longitL*de range whereas the

other experiments cover a full 360 ° range. The signal contamination caused by

aerosol loading associated with eruption of the E1 Chlchon volcano prevented

NO 2 data collection in later months. The tendency for there to be a bias of

maximum NO 2 toward the summer hemisphere that was seen in LIMS and SAGE data

is not seen in SME results. Also, there is no indication of poleward and

downward sloping of contours as was the case in LIMS and to some degree in

SAGE. There is a move towards symmetry of the cross section as the summer is

approached in agreement with the other two data sets.

Another way to compare these three data sets is through use of a time

dependent photochemical model. Solomon et al. (1986b) have used LIMS and SAGE

observations of 03 and temperature to study expected NO 2 diurnal variations.

The calculations use the daytime LIMS NO 2 data to constrain the amount of

NOx. In this case, the daytime LIMS data are assumed to be exact, but the

calculated diurnal variations around this value depend strongly on

photochemistry and therefore provide a means of comparing daytime LIMS data to

SME at 3 p.m., SAGE data at sunrise and sunset, and LIMS data at night. A

typical comparison of this type for the month of March using zonally averaged

results at the Equator and the i0 mb level is shown in Fig. N-40. The general

conclusion is that the satellite results are in good agreement with one

another and with the model.

In summary, the available satellite NO 2 data base reveals that:

I. This gas is highly variable diurnally and with altitude, latitude,

longitude, an 4 time.

2, There are strong photochemical-dynamics interactions associated with

winter conditions when a polar vortex is established. This leads to

formation of the "Noxon Cliff."

3. The mesosphere is a source for stratospheric NO 2 in the polar night

region.

4. Peak zonal mean mixing ratios of 18 ppbv at night and 8 ppbv in the

day occur in the Tropics mostly south of the Equator.
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5. Thethreesatellite datasets are in goodagreementwith time
dependentphotochemicaltheory.

Methane (CH4) , Nitrous Oxide (N_O), and Water Vapor (H?O)

The S_MS satellite instrument has yielded the first global observations

of the long-llved tracers, N20 and CH 4. These constituents are believed to be

produced exclusively in the troposphere, and their stratospheric distributions

therefore directly reflect a balance between transport processes and photo-

chemical destruction. If these chemical processes are well known, then the

observed distributions of these species can be used to critically evaluate our

understanding of stratospheric transport.

Chemical destruction of N20 takes place via photodissoclation and by

reaction with O(ID), a species produced in turn by ozone photolysls. Thus,

its loss rate is relatively well known, although it should be noted that the

N20 photolysis cross section exhibits important temperature sensitivity as a

function of wavelength. The chemical destruction of methane takes place by

reaction with O(ID), C_ and particularly OH; this latter species has not yet

been measured directly in the lower stratosphere below about 30 km. Further,

the OH densities are tightly coupled to those of other poorly characterized

species such as HNO 4 and HOC£. These chemical uncertalntles must be

considered in the interpretation of CH 4 and N20 as tracers.

The chemical loss of CH 4 results in the production of U20 , a constituent

which has now been observed globally by LIMS and currently by SAGE II. H20 is

also long-llved at stratospheric altitudes and can, therefore, provide

information on transport. It also plays a strong role in the photochemistry

of stratospheric ozone through production of odd hydrogen radicals.

With these considerations in mind, we will briefly review what has been

lear_led from the satellite observations of these constituents and discuss

their general comparison to models. Monthly zonal mean cross sections for CH_

are shown in Figs. CHN-I to CHN-12 and for N20 in Figs. CHN-13 to CHN-24.

The morphology of these first satellite observations of N20 and CH 4 have

supported trends suggested by on the available limited balloon data. In

partlc_11ar, the global distributions of these species exhibit a "vaulted"

structtlre, with much higher mixing ratios observed in the Tropics than at high

latitudes. Such structure suggests that most, if not all, of the air entering

the stratosphere from the N20 and CH 4 rich troposphere must enter in the

Tropics. The lower abundances observed at high latitudes probably reflect

downward transport of air photochemlcally depleted in these tracers. Model

calculations by Jones and Pyle (1984), _ithrie et al. (1984), Ko et al.

(1984), Solomon and Garcia (1984), Gray and Pyle (1985), and Solomon et al.

(1985a) are in general agreement with the SAMS observations in this respect.

The model by Jones and Pyle (1984) is a classical Eulerian model while

the other three cited above are formulated in the dlabatlc or residual

Eulerian frameworks. Comparison of the SAMS observed tracer distributions to

the latter model calculations suggest mean vertical (Kzz) and horizontal

(Kyy) mixing (dispersion) coefficients of the order of I x I0 3 cm 2 s -I and

I-3 x 109 cm 2 s I, respectively, in fair agreement with theoretical estimates
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of the approximateglobally averagedstrengthof mixingby Kida(1983)and
Tung(1984). Onthe otherhand,MclntyreandPalmer(1983)andPlumband
Mahlman(1984)havesuggestedthat locally muchmorevigorousmixingmaybe
importantin tracer transportat particular points andtimes. Further
analysisof SAMSobservationsandcomparisonto modelgradientsis likely to
yield importantinformationon the strengthof dispersiveprocesses.

Perhapsthe mostsurprisingaspectof the SAMSobservationsof N20and
CH4wasthe discoveryof "double-peaks"in bothconstituentsasa functionof
latitude, particularly in spring. Thus,rather thanexhibiting a single
"vaulted"peaknearthe Equatoras is generallyfoundduringsolstice, the
springobservationstendto displaya doublemaxlum,onenear20°Sandanother
nearperhaps10°N. Thesepeaksgenerallycoincidewith the occurrenceof
doubleminimain the LIMSH20distribution (seee.g. CHN-30andCHN-31).This
tendencyis not apparentin anyof the publishedtwo-dimensionalmodel
studies,but recentworkby Pyleandco-workers(Grayet al., 1984)suggests
that this featuremaybe related to the semiannualoscillation of zonalwinds
in the tropical lowerstratosphere,possiblyforcedbyKelvinwaves.

In summary,then, the S_MSN20andCH_datahavethus far led to the
followinginterpretations:

1. Confirmationof balloonobservationsthat suggeststrongnet npward
transportin the Tropics,andlargely descendingmotionat
extra-tropical latitudes (the "Brewer-Dobson")net circulation
pattern)

2. suggestionof relatively smallglobally averagedmixing(dispersion)
coefficients in themean,and

3. indicationsof the importanceof largescale circulation modulation
associatedwith the semiannualforcing of the tropical circulation.

Finally, webriefly discussthe LIMSobservationsof H20. Monthlyzonal
meandescendingnodecrosssectionsandpolar stereographicplots for the I0
mblevel areshownin Figs. CHN-25to CHN-38.H20is of particular interest
becauseof balloonobservationsby Kleyet al. (1979),that suggestthat a
"hygropause"is foundnear20kmin the Tropics. Theseobservationshave
called into questionthe traditional belief (Brewer,1949)that the
stratosphericwatervaporcontentis limited by condensationat the tropical
tropopause(whichis locatedsubstantially lower,near16km). Johnstonand
Solomon(1979)andDanielsen(1982),suggestedthat transportvia cumulus
towersthat penetrateinto the lowerstratospheremightresult in colder
temperatures(andlowerwatervapormixingratios) thanthoseof the mean
tropical tropopause.Suchprocessescouldalso result in anelevationof the
locatlonof themixingratio minimumabovethe tropopauselevel. Thus,it
becomesimportantto askwhatfraction of troposphere- stratosphereexchange
occursvia suchtowers. NewellandGould-Stewart(1981)suggestedthat
preferentially enhancedtransportmayoccuroverMicronesiaduring the monsoon
season.

The LIMS observations of H20 have been discussed by Remsberg et al.

(1984) and a more detailed presentation of "climatology of H20" as seen by
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LIMSis in preparation(Remsberget al., 1986). These data do indeed display

a hygropause, most pronounced in the Tropics, where the observed water vapor

minimum is about 2-2.5 ppmv. Interestingly, however, the results show little

longitudinal variability in the Tropics even during the monsoon season. This

suggests that large-scale upward transport of water vapor may be important in

addition to localized convection, or the effects of localized convection as

viewed by LIMS are blurred, either by real atmospheric mixing or because of

the field of view of the llmb-sounding experiment. It is also conceivable

that some detail is lost due to the smoothing effects of the Kalman filtering

process.

Remsberg et al. (1984) also examined the quantity R = ACH_/AH20 and noted

that the observed increase in H20 with respect to altitude is roughly

consistent with the observed decrease in CH_ relative to the values obtained

near the tropical tropopause. While this method has merit for examining the

role of methane oxidation in the hydrogen budget of the stratosphere, there

are limitations. It implicitly assumes that air enters the stratosphere with

a constant hydrogen content or otherwise, transport processes would invalidate

the procedure. Also, since the quantity ACHe/A H20 is computed by taking

differences of mixing ratios of similar size, the technique is rather

sensitive to random measurement error. An alternate approach taken by Jones

et el. (1986) is to study the sum of total hydrogen which they consider asA

H = 2x _H 4 ] + _20], where the _2] component has been neglected or can be

considered as a bias offset. This approach tends to be less sensitive to

measurement errors and does not depend on the history of air parcels. They
A

find an essentially uniform latitude versus altitude field for H of = 6 ppmv.
A

This consistency of the field suggest that H is conserved. Both approaches to

analyzing the data give a similar conclusion, namely that the important role

of CH_ oxidation In producing stratospheric water vapor seems reasonably well
established.

One of the most interesting aspects of the LIMS H20 observations is the

magnitude of the observed vertical gradients between about I00 and 50 mb in

high latitudes. In winter at middle and high latitudes, for example,

northward of = 60°N, observed mixing ratios decrease abruptly from about 6.5

to 4.5 ppmv over this region. Because of the large abundances of H20 in the

upper troposphere, and because of the warm troposphere temperatures at middle

and high latitudes, such a gradient would be difficult to reconcile with much

appreciable net upward transport at these latitudes. As was shown by Brewer

(1949), gradients of approximately this magnitude are consistent with downward

velocities of the order of a few tenths cm s-1 coupled with very slow vertical

mixing (Kzz = 103 cm 2 s-l). Also, there is evidence that these high H20

levels in the winter hemisphere lower stratosphere gradually decay as spring

and summer approach. This can be clearly seen by examining the region north

and south of 45 ° and below about 50 mb during the LIMS mission. Note that the

high levels exist tn the north in November (CHN-25) and the south in May

(CHN-31).

Stordal et el. (1984) have presented a photochemical model employing a

diagnostically derived diabatic circulation and Kzz ffi10 3 cm 2 s -I. This

model yields large vertlcal gradients in H20 near the upper troposphere -

lower stratosphere region at middle and high latitudes, in approximate
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agreementwith the LIMSobservations.Similar results havebeenobtainedby
GuthrteandJackman(private communication).Thesenumericalmodelresults
coupledwith the LIMSobservationsstrongly supportthe suggestionof Brewer
(1949)that the meanvertical profile of H20at extra-tropical latitudes is
maintainedprincipally bya net downwardtransportcoupledwith slowvertical
mixing,althoughthe possibility of locally importantinjection of H20at
particular points cannotbe ruledout.

TheH20observationshave,therefore, led to the followinginterpre-
tation:

I. Confirmation of the existence of the hygropause in the Tropics on a

global scale, but no suggestion of local exchange that exceeds

large-scale exchange near the tropical tropopause.

2. Quantitative proof that a significant increase in H20 mixing ratio

occurs with altitude in the middle and upper stratosphere, and the

increase is roughly consistent with the CH_ oxidation mechanism.

3. Vertical profiles in the lowest part of the stratosphere at

extratropical latitudes strougly suggest the importance of net

downward motion (a "Brewer-Dobson" like circulation) and relatively

slow vertical mixing.

Nitric Acid (HNO_)

The LIMS instrument has provided the first global observations of HNO3; a

gas which is important as an end product and reservoir molecule in the chain

of nitrogen related photochemical reactions that destroy ozone. Formation of

nitric acid in the sunlit atmosphere takes place primarily through the

reaction

NO 2 + OH + M ÷ HNO 3 + M

Nitric acid transport to the troposphere and subsequent rainout is

thought to be the primary mechanism for removal of NO x from the stratosphere

and, therefore, it plays a central role in the NO x photochemistry. Further,

its close link along with its precurser, NO2, to the critical hydroxol radical

(OH) makes HNO 3 an extremely important gas in the stratosphere.

Monthly zonal mean LIMS HNO 3 pressure versus latitude cross sections and

30 mb polar stereographic projections are shown in Figs. H-I to H-14. A

detailed discussion of "HNO 3 climatology" observed by LIMS is in prepartion

(Gille et al., 1986). _le zonal mean altitude versus latitude distribution of

HNO 3 is in general agreement with prior balloon and aircraft measurements

which show low values in the Tropics and higher values at high latitudes.

This picture is consistent with the idea of HNO 3 poor air entering the

stratosphere from the troposphere at low latitudes. The high latitude buildup

raises questions and at present is not adequately explained by theory,

especially in the winter hemisphere. The data show considerable latitudinal

variability during all months of the LIMS mission. There are persistently low

mixing ratios in the Tropics (= 2-3 ppbv) and high values in high winter

latitudes (12 ppbv in November at 84°N). This distribution is suggestive of a
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high latitude nighttimeHNO 3 source (Austin et el., 1986). Other features of

the data common to all periods is the downward slope of the contours toward

each pole, and a significant hemispheric asymmetry. Although it is almost

always present, the asymmetry changes during the LIMS mission with highest

mixing ratios switching from the Northern Hemisphere to the Southern

Hemisphere in May (Fig. H-7). There is essentially no asymmetry during

February and March (Figs. H-4 and H-5). Models (both 2-D and 3-D) tend to

show the HNO 3 downward slope with latitude rather well, but the asymmetry

remains a problem. Also, models tend to show the HNO 3 peak mlxing ratio

occurring at a higher altitude (- I0 mb) than the 40 mb level shown by LIMS
data.

It is interesting to note HNO 3 variations during the major sudden warming

event of 1979. This warming, which occurred in late February and resulted in

the main polar vortex splitting into two vortEces, was preceded by a minor

dlsttlrbance in late January. Thus, there was significant dynamical activity

during this time. Figures H-10 and H-If show HN03 polar stereographic

projections on the 30 mb surface before and during the warming. It appears

that the HNO 3 mixing ratio was conserved when the main polar vortex split with

some of the gas being entrained in each resulting vortex. This can be seen by

study of the 8 ppbv, 9 ppbv, and I0 ppbv contours in both periods. Note that

the 8 ppbv contour is essentially unchanged, but the 9 ppbv contour shape has

significantly changed to conform to regions of low temperatures associated

wlth t1_e two vortices, and the I0 ppbv contour has disappeared in February. A

similar interpretation has been made for aerosols during the same event

(McCormick et el., 1983). This picture of dynamical control of HNO 3 is

reinforced by the strong correlations of HNO 3 and Ertel's potential vorticity

calculated from LIMS temperatures (Grose and Russell, 1986). Potential

vorticity and HNO 3 are positively correlated.

As a further test of the quality of HNO 3 data, Pyle et al. (1983), Gille

et el. (1984a), and Callls et al. (1986) used LIMS NO 2 and HNO 3 to calculate

the _H] global distribution. They calculated instantaneous _H] values with

no conslderat[on of the time required for photochemical equilibrium to be

reached. _le results from Pyle et el. (1983) which are typical are compared

to in situ data in Fig. H-15. Many of the in situ measurements have been

crudely adjusted to high Sun values. In view of these points, the agreement

between derived and measured _H] is encouraging and suggests that the LIMS

NO 2 and HNO 3 data are of high quality. One point to note is the divergence of

the agreement above about 35 km altitude. This is due mostly to a bias in the

LIMS HNO 3 values arising from an instrument artifact which causes high HNO 3

radiances. The LIMS team noted this bias in the HNO 3 validation paper [Gille

et al. (1984a)] and since then have confirmed the bias which is only about one

bit in size in the data stream. A study is underway to determine the best way
to correct the data.

In summary, the LIMS HNO 3 data show features that are consistent with

past balloon and aircraft data; they have been extensively validated, and they

show some characteristics which differ rather markedly from model results.

Most notable of these are the altitude of peak mixing and the hemispheric

asymmetry. The data suggest that HNO 3 is under strong dynamical control as

expected from chemical time constants for HNO 3 formation and the known

mechanisms for HNO 3 removal from the stratosphere. The general features of

the distribution are:
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I. Lowmixingratios persist in the Tropics(- 2-4ppbv);

2. mixingratio contourswhichslopedownwardandpoleward;

3. an interhemispher[casymmetrywith winterhigh latitude mixingratios
that are _ 50percenthigherthan for theoppositehemisphere;

4. significant longitudinalvariability;

5. HN03featuresthat correlatepositively with Ertel potential
vorticity, and

6. suggestionfromthe data that the HNO3sourceregionis in thehigh
lat [ tudes.

Carbon Monoxide (CO)

Carbon monoxide is of interest in the middle atmosphere primarily because

of its role as a tracer for study of transport. _Is is so because CO is

largely inert, and it is only in the mesosphere that its photochemical

lifetime becomes comparable to transport time scales. Ground-based

observations using microwave techniques (Clancy et al., 1984) and 2-D model

calculations (Solomon et al., 1985b) suggest that CO mixing ratios are higher

in the winter mesosphere than in summer primarily because of downward

transport by the mean meridional circulation.

Details of the SAMS carbon monoxide measurement have been reported by

Murphy (1985). Although the random errors are high, the S_MS data reveal

marked variations in CO (Fig. C0-1). Note that the dotted line is the

a-priori proflle used in the retrieval, and it is identical in all cases. The

most significant feature is that mixing ratlos are very high in the mesosphere

during the Northern l_misphere winter in accord with ground-based observations

and model results. This effect is clearly seen in the retrievals for the

1978/79 and 1979/80 winters for 35°N to 700N. There is a difference of well

over a factor of I0 between summer and winter mixing ratios at some levels.

This difference is far too large to be attributed to errors in the measure-

ments or the retrieval process. There is some evidence for a similar effect

in the Southern Hemisphere, at about 85 km (12 pressure scale heights), but

the most southerly latitude zone extends only to 500S. The variations between

the remaining profiles are generally comparable with the level of errors on

the retrievals. The central latitude band shows a profile which exhibits

little variation between the data periods, and the mixing ratios are compar-

able with summertime values in the Northern and Southern Hemisphere zones.

Aerosols

Prior to the satellite measurements by the SAM II and SAGE instruments,

stratospheric aerosols were monitored primarily with either a lidar system

(McCormick et al., 1978), or in sltu devices onboard aircraft (Lem et al.,

1979), and balloons (Rosen, 1964). These measurements are generally

restricted to a single locality, and extrapolation of the results in order to
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describethe stratosphericaerosolona global scaleis very difficult to do
satisfactorily. Also, thepoorsampling(bothspatial andtemporal)of these
measurementsis inadequatefor the studyof special events such as volcanic

injections with their subsequent dispersion and decay.

SAM II and SAGE measurements have now provided us with a global picture

of the behavior of stratospheric aerosols. The seasonal variation at all

latitudes from the Tropics to the high polar region has been surveyed. During

the nearly 3-year lifetime of the SAGE instrument, several volcanic injection

events with their dispersion and decay have been measured. Another example of

the usefulness of this new aerosol data base is the discovery of polar

stratospheric clouds (PSC's) by the SAM II instrument. This new data and the

volcanic set have contributed significantly to our understanding of

stratospheric aerosol formation mechanisms and their effects on the radiation

balance.

Monthly pressure versus latitude aerosol extinction ratio cross sections

from SAGE are shown in Figs. A-I to A-7. Seasonal means are shown in Figs.

A-8 through A-tO. Extinction ratio is the ratio of aerosol extinction to

molecular eKtinction at I _m wavelength. The data are consistent with the

idea of a tropical source for aerosols. Here_ the extinction ratio is a

maximum and decreases poleward in both hemispheres. These data represent

near-background stratospheric aerosol conditions, since the last major

volcanic stratospheric enhancement occurred in 1974 after the eruption of

Volcon De Fuego (Hofmann and Rosen, 1981), which was 5 years prior to the SAGE

launch.

The ability to observe volcanic injections of material into the

stratosphere by SAGE was first demonstrated during April 1979, when the La

Soufrlere volcano on St. Vincent Island (13.3°N, 61.2_W) erupted several times

sending a small amount of material into the stratosphere. SAGE observations

shortly after the volcanic eruption indicated enhanced aerosol extinction at

about an altitude of 20 km at locations near the volcano and extending

northeast over the Atlantic Ocean and the western shore of Africa. About a 2

percent global enhancement was recorded (McCormick et al., 1982).

In addition to the observations of the La Sourfiere volcanic injection,

SAGE has observed at least five other stratospheric volcanic injection events;

the Sierra Negra volca,_o (0.8°N, 91°W) which erupted in late November 1979,

the Mr. St. Helens volcano (46°N, 125°W) which erupted violently on May 18,

1980, the Ulawnll volcano (5.0°S, 151.3°E) which erupted on October 7, 1980,

the Alaid volcano (50.8°N, 155.5°E) which erupted on April 17, 1981, and the

Pagan volcano (18.1°N, 145.8°E) which erupted on May 15, 1981. All five

eruptions were accompanied by large amounts of volcanic materials (ash and

gas) injected into the stratosphere.

The polar stratospheric aerosol has been thoroughly mapped by the SAM II

measurements. The time histories for I year of stratospheric aerosols for the

Arctic and Antarctic regions are illustrated in Figs. A-f1 and A-12 (McCormick

et al., 1981). Figure A-lib shows isopleths of weekly averaged aerosol

extinction, as a function of altitude and time, for the Northern Hemisphere

for October 29, 1978, through October 27, 1979. The dashed quasi-horizontal

line near I0 km shows the position of the average tropopause for each week.

Figure A-lie shows the corresponding isopleths of temperature in Kelvins.
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TheS_MII resultshaveindicatedthat theseasonalbehaviorof the
stratospheric aerosol in the two polar regions are similar and that there are

strong correlations with temperature. In the winter period, increased aerosol

extinction is found in both hemispheres. The large increases in extinction

occurring d,iring periods of particularly cold temperatures are manifestations

of stratospheric clo_ids thought to be made up of ice crystals. These are

occasionally sighted in the arctic winter but are ubiquitous in the antarctic

winter. Toward the end of winter, the aerosol layer descends in both polar

regions, followed by a rapid ascent in early spring. Following this period,

the top of the aerosol layer falls steadily throughout the summer and stays

nearly constant through the fall season. Interesting dynamics are seen which

appear to be associated with the polar vortex (McCormick et al., 1983; Kent et

al., [985; and Wang and McCormick, [985).

We have shown, in this report, a series of plots that describe the state

of the stratosphere and to some degree, the mesosphere as revealed by

satellite observations. The pertinent instrument features, spatial and

temporal coverage, and details of accuracy and precision for the experiments

providing the data have been described. The main features of zonal mean cross

sections and polar stereographic projections have been noted and

intercomparlsons have been discussed where a parameter was measured by more

than one experiment. It was not our attempt to be exhaustive in this or to

present detailed results of scientific investigations. The main purpose was

to collect the available data in one place and provide enough information on

limitations or cautions about the data so that they could be used in model

comparisons and science studies. Without a doubt, when these data are used,

numerous questions will arise that were not addressed here. In such cases,

the reader is encouraged to contact the experimenters for proper

clarification.
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for November 1978 (contour tnterval ts 0.20 ppmv).
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for January 1979 (contour Interval ts 0.20 ppmv).
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Figure 03-13 - LIM$ ozone monthly mean polar stereographtc projection mt 2 mb

for February 1979 (contour tntervel ts 0,20 ppmv).
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Ftgure 03-17 - L%NSozone monthly mean polar stereographtc projection at 10
mb for November 1978 (contour tnterval ts 0.5 ppmv).
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Figure 03-18 - LIMS ozone monthly mean polar stereographtc projection at lO
Bib for December 1978 (contour tnterval Is 0.5 ppmv).



95

90.00

0

Q

%

2"/0. O

LI:ITI TUDE O. TO 8u_.

Ftgure 03-19 - LIMS ozone monthly moan polar stereographtc projection at 10
ml) for January 1979 (contour tnterval ts 0.5 ppmv).
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Ftgure 03-20 - LINS ozone monthly mean polar stereographtc projection at 10
mb for February 1979 (contour tnterval ts 0.5 ppmv)o
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Figure 03-21 - LIMS ozone monthly mean polar stereographlcprojection at I0
for Harch 1979 (contour interva] Is 0.5 ppmv).
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Ftgure 03-2Z - LIMS ozone monthly Man polar stereographtc projection at 10
mb for Aprtl 1979 (contour tnterval ts 0.5 ppmv).
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Ftgure 03-23 - L[NS ozone monthly mean polar stereographtc proJectfon at 10
mb for May 1979 (contour tnterval ts 0.5 ppmv),
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Ftgure 03-24 - LIMS ozone monthly mean polar stereographlc projection at 30
mb for November 1978 (contour Interval ts 0.2 ppmv).
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Figure 03-26 - LIHS ozone monthly mean polar stereographtc projection at 30

mb for January 1979 (contour Interval ts 0.2 ppmv).
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Figure 03-27 - LIMS ozone mnthly mean polar stereographlc projection at 30

mb for February 1979 (contour Interval is 0.2 ppmv).
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Figure 03-28 - LINS ozone monthly mean polar stereographtc projection at 30
mb for March 1979 (contour tnterval ts 0.2 ppmv).
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Figure 03-29 - LIMS ozone m0nthly mean polar stereographlc projection at 30

mb for Aprll 1979 (contour Interval Is 0,2 ppmv).



106

90.00

0

0

270.0

LATITUDE O. TO 84.

Figure 03-30 - LIMS ozone monthly mean polar stereographlc project|on at

mb for Nay 1979 (contour tnterval is 0.2 ppmv).



107

10-1

2

4

6

8

_10° 2

10_ 8

2

102

m

._.00 "I.00
--

6 m

8-

-90
l I I I I

-60 -30 0 30 60

LATITUDE, deg

Figure 03-31 - SBUVmnthly zonal mean ozone cross section for November 1978
(contour tnterva| ts 1.0 ppmv).

I
9O



108

I0-'

10 o
E3

...0

E

Li
C12

(Z)
U')
W

cY
el_

101

102

2-

4

6

8

2

4

6

8

2

4-

6-

8-

-90

- 'Z.,,_ _2.00 _-

oo___----_. _

/ .00 _.00

I I I I I
-60 -30 0 30 60

LATITUDE. deg

F|gure 03-32 - SBUVmnthlW zonal mean ozone cross sect|on for December 1978
(contour lnterva] ts 1.0 ppmv).

I
90



/

/
r

/
/

.oo -6.oo

109

4 _ .00 .00

8

90



ii0

10_ I --

2-

4-

6

8

_D 10°

J

a_._lO 1 8

2

4,

6 -

8-
102

-90

f
/

- .IZ .00 _Z.O0

I I I I I
-60 -30 0 30 60

LATITUDE, deg
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Figure 03-40 - SBUVmnthly zonal mean ozone cross section for August 1979
(contour tnterval ts 1.0 ppmv).
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Figure 03.41 . SBUVmonthly zonal mean ozone cross sectton for September 1979
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Figure 03-42 - SBUVmonthly zonal mean ozone cross section for October 1979
(contour tnterval ts 1.0 ppmv).
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Figure 03-45 - SBUV monthly mean ozone polar stereographlc projection at 2 mb

for November 1978 (contour interval Is 0.2 ppmv).
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Figure 03-46 - SBUV monthly mean ozone polar stereographic projection at 2 mb

for Decker 1978 (contour Interval I$ 0.2 ppmv).
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Figure 03-47 - SBUV monthly mean ozone polar stereographic projection at 2

for January Ig7g (contour interval is 0,2 ppmv).
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Ftgure 03-48 - SBUV monthly mean ozone po3ar stereographtc projection at 2 mb

for February 1979 (contour lnterva| ts 0.2 ppmv),
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Figure 03-49 - SBUV monthly mean ozone polar stereographlc projection at 2

for Harch Ig79 (contour Interval Is 0.2 ppmv).
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Figure 03-50 - SBUV monthly mean ozone polar stereographlc projection at 2 mb
for April 1979 (contour interval ls 0.2 ppmv).
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Figure 03-51 - SBUV monthly mean ozone polar stereographtc projection at 2 mb
for May 1979 (contour interval is 0.2 ppmv).
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Ftgure 03-52 - SBUV monthly mean ozone polar stereographtc projection at 2 mb
for June lg7g (contour tnterval Is 0.2 ppmv)o
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Figure 03-53 - SBUV _nthly mean ozone polar stereographlc projectlon at 2

for July 1979 (contour Interval I$ 0.2 ppmv).
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Figure 03-54 - SBUV monthly mean ozone polar stereographlc projectlon at 2

for August Ig7g (contour Interval Is 0.2 ppmv).
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Figure 03-55 - SBUV monthly mean ozone polar stereographic projection at 2 mb
for September 1979 (contour interval Is 0.2 ppmv).
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Figure 03-56 - SBUV monthly mean ozone polar stereographlc projection at 2 .W)

for October 1979 (contour interval Is 0.2 ppmv).



133

o

%

L
5.93

.s

o

270.0

LRTITUDE O. TO 68.

Figure 03-57 - SBUV monthly mean ozone polar stereographicprojection at 2 nf_
for November 1979 (con+our interval is 0.2 ppmv).
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Figure 03-58 - SBUV monthly mean ozone polar stereographlc projection at 2 mb
for December 1979 (contour Interval is 0.2 ppmv).
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Figure 03-59 - SBUV moMthly mean ozone polar stereographtc projection at 10 mb
for November 1978 (contour Interval is 0.5 ppmv).
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Figure 03-60 - SBUV monthly mean ozone polar stereographlc projection at I0

for December 1978 (contour interval I$ 0.5 ppmv).
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Figure 03-61 - SBUV monthly mean ozone polar stereographic projection at 10 mb

for January 1979 (contour interval is 0.5 ppmv).
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Figure 03-62 - SBUV monthly man ozone polar stereographtc projection at 10 mb
for February 1979 (contour Interval is 0.5 ppm).
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Figure 03-63 - SBUV monthly mean ozone polar stereographic projection at 10 mb

for March 1979 (contour interval is 0.5 ppmv).
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Figure 03-64 - SBUV monthly mean ozone polar stereographlc projection at 10 mb

for Aprtl 1979 (contour tnterval Is 0.5 ppmv).
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Figure 03-65 - SBUV monthly mean ozone polar stereographlc projection at I0

for May Ig7g (contour Interval Is 0.5 ppmv).
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Figure 03-66 - SBUV monthly mean ozone polar stereographl¢ projectlon at I0

for June ig7g {contour Interval I$ 0.5 ppmv).
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Figure 03-67 - SBUV monthly mean ozone polar stereographlc projection at I0 mb

for July 1979 (contour interval is 0.5 ppmv).
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Figure 03-68 - SBUV monthly mean ozone polar stereographtc projection at 10 mb
for August 1979 (contour interval ts 0.5 ppmv).
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Figure 03-69 - SBUV monthly mean ozone polar stereographlc projection at I0
for September 197g (contour interval Is 0.5 ppmv).
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Figure 03-70 - SBUV monthly mean ozone polar steneographlc projection at I0 n_)

for October Ig7g (contour Interval Is O.S ppmv).
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Figure 03-71 - SBUV monthly mean ozone polar stereographlc projectlon at 10
for November Ig7g (contour Interval Is 0,5 ppmv).
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Figure 03-72 - SBUV mnthly man ozone polar stereographlc projection at I0

for Oece_er Ig7g (contour Interval Is 0.5 ppmv).
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Figure 03-73 - SBUV monthly mean ozone polar stereographlc projection at 30 mb

for November 197B (contour Interval Is 0.2 ppmv).
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F|gure 03-74 - SBUVmonthly man ozone polar stereographtc projection at 30 mb
for December 1978 (contour |nterval Is 0.2 ppmv).
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Figure 03-75 - SBUV monthly mean ozone polar stereographlc projection at 30 mb

for January 1979 (contour interval Is 0.2 ppmv).
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Figure 03-76 - SBUV monthly mean ozone polar stereographic projection at 30 mb
for February 1979 (contour tnterval is 0.2 ppmv).
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Ftgure 03-77 - SBUV monthly mean ozone polar stereographtc projection at 30 mb
for March 1979 (contour tnterval Is 0.2 ppmv).
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Figure 03-78 - SBUV monthly mean ozone polar stereographtc projection at 30 mb

for Aprll 1979 (contour Interval Is 0.2 ppmv).
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Figure 03-79 - SBUV monthly mean ozone polar stereographlc projection at 30 mb

for May 1979 (contour interval is 0.2 ppmv).
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Figure 03-80 - SBUV monthly mean ozone polar stereographlc projection at 30 mb
for June 1979 (contour interval is 0.2 ppmv).
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Ftgure 03-81 - SBUV monthly mean ozone polar stereographlc projection at 30 mb
for July 1979 (contour tnterval Is 0,2 ppmv).
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Figure 03-82 - SBUV monthly mean ozone polar stereographlc projection at 30 mb
for August 1979 (contour Interval is 0.2 ppmv).



159

¢)

%

gO.O0

L

4.20

4.18

2"/0.0

o

LQTITUDE O. TO 80.

Figure 03-83 - SBUV monthly mean ozone polar stereographic projection at 30 mb

for September I979 (contour interval is 0.2 ppmv).
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Figure 03-84 - SBUV monthly mean ozone polar stereographic projection at 30 mb
for October 1979 (contour interval is 0.2 ppmv).
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Figure 03-85 - SBUV monthly mean ozone polar stereographtc projection at 30 mb
for November 197g (contour tnterval ts 0.2 ppmv).
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Figure 03-86 - SBUV monthly mean ozone polar stereographlc projection at 30

for December ig7g (contour Interval Is 0.2 ppmv).
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Figure 03-92 - SAGEsunset monthly zonal mean ozone cross section for October
1979 (contour tnterval ts 1.0 ppmv).
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Figure 03-95 - SAGE seasonal sunset zonal mean ozone cross section for
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Figure 03-96 - SAGE seasonal sunset zonal mean ozone cross section for
September, October, and November 1979 (contour tnterval ts 1.0
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Figure 03-97 - SMEmonthly zonal mean ozone cross section for January 1982
obtained with the UV spectrometer (contour Interval is 0.2
ppmv).
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obtelned wtth the UV spectrometer (contour tnterval ts O.Z
pl_v).
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Figure 03-102 - _E _nthly zonal mean ozone cross sectton for June 1982
obtained with the UV spectr_e_r (conCur Interval is O.Z
ppmv).
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Ftgure 0s-103 - SHEmonthly zonal meanozone cross sectton for July 1982
obtatned with the UV spectrometer(contour interval ts 0.2
ppmv).
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Ftgure 03-104 - SME monthly zonal mean ozone cross sectton for August 1982
obtatned with the UY spectrometer (contour Interval ts 0.2
pp=v}.
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Figure 03-105 - SHE_nthly zonal meanozonecress sectton for September 1982
obtained with the UV spectrometer(contour Interval |s 0.2
ppmv).
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Figure N-3 - LIMS monthly zonal mean dayttee 1t02 cross section for
January 1979 (contour tnterval ts 1.0 ppbv).
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Figure N-25 - SAGEsunset monthly zonal mean NO2 cross section for August
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Figure I(-26 - SAGEsunset monthly zonal mean NO2 cross section for September
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Ftgure N-29 - SAGE sunrtse monthly zonal mean NO2 cross sectton for March
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Aprt1, and May 1979 (contour tnterval ts 1.0 ppbv).

I
9O



229

10 °

2-

4-

4-

6 -

8-

10 2 I

[3
_0 6

E
8

CY 101

O0
O0
LLJ
CY
Q._ 2

I
9O

Figure N-33 - SAGE sunset seasonal zonal mean NO2 cross section for June,
July, and August 1979 (contour Interval ts 1.0 ppbv).



230

10 °

\

-60 -30 0 30 60

LATITUDE, deg

Ftgure N-34 - SAGEsunset seasonal zonal mean NO2 cross section for
September, October, and November 1979 (contour |nterval Is
1.0 ppbv).

I
9O



231

E
,e

O

1

J

45

40 m

35--

30--

25

0.I

I I I II

3 579

I0

' LIMS

\ \ ------ SAGE

I

//

//,, II i
3 579 3

I0.0

NOz MIXING RATIO (ppbv)

I I I
579

I00.0

Figure N-35 - Comparison of LIMS monthly zonal mean daytime NO 2
mixing ratio with the SAGE sunset seasonal zonal

mean for January and February at 31°N.



232

45

4O
E

35
p.

30--

25

0.1

\ o

• ------ LIMS

; \ "1,--.._ _ SAGE

\

, , ,,1 _,_ I Ill ,
3 579 3 579 3

1.0 I0.0

NO 2 MIXING RATIO (ppbv)

I I I

579
I00.0

Figure N-36 - Comparison of LIMS monthly zonal mean dayt£me NO 2

mixing ratio with the SAGE sunset seasonal zonal

mean for March, April and May at 31°N.



233

I0°

4

K_
0
-Q 6

E
8

101
_-_-)
GO
GO
LLJ
L-_
EL 2

4 -

6 -

8 -

102
-90

I I I i I
-60 -30 0 30 60

LATITUDE. deg
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(contour tnterval ts 1.0 ppbv).

I
9O



235

10 °

4

8

_I0 _

CO
Ill
C12
f-I 2

4 -

6-

8-

102
-90

I I I I I
-60 -30 0 .30 60

LATITUDE, deg

Figure N-3g - SME monthly zonal mean NO2 cross sectlonfor March 1982
(contour interval I$ 1.0 ppbv).

I
_u



236

14_,, , I , , I I I I , I I ,, a', I I I I I I_l
12I- A SAGE -1

,_ ]'- _LIMS 1
o I°t-" o SME -I

z°
0 2 4 6 8 10 12 14 16 18 20 22 24

TIME (hours)

Figure N-40 - NO 2 diurnal calculations by Solomon et .1 (1985)

usln8 NO constrained to LIHS daytime NO_
X ,

values compared to satelllte measurements by LIMS,

SAGE, and SHE for March at the 10 mb level and the

equator,



237

I 0 -i

10 o
E_

._.Q

E

f-y

(/3
O0
Ld
El:

O_ 101

! 0 2

2 m

4-

6-

8-

2-

4-

6-

8-

2-

4-

6-

8- I
-90 -60

I I I I
-30 0 -_n _n

LATITUDE, deg

Figure CHN-1- SN4Smonthly zonal meanCH4 cross sectton for January 1979
(contour Interval ts 0.10 ppmv).

I
9O



238

I0-I

10 o

.(3

E

u./
cY"

O3
03
L_
rY"
(3._

101

102

_

6-

8-

2-

4-

6-

8-

-90 -6O

I I I I
-30 0 30 60

LATITUDE, deg

Ftgure CHN-2 - SANSmonthly zonal mean CH4 cross section for February 1979
(contour tnterval ts 0.10 ppmv).

I
9O



239

10-I

10 o
E_

..£)

E

EK
Z3
(./3
(/3
L.d
EK

£1_ 101

102

2

2-

4-

6-

8-

2-

4-

6-

8-

-90 -6O

I I ! !
-30 0 30 60

LATITUDE, (:leg

Figure CHN-3 - SAMS monthly zonal mean CH4 crosssection for March 1979
(contour interval is 0.I0 ppmv).

I
9O



240

10-1

2

4

6

8

10 °

_10' 8

_

6-

81--

10 _
-90

I I J I I
-60 -30 0 30 60

LATITUDE, deg

Figure CHN-4 - SARSmonthly zonal mean CH4 cross sectton for Apt11 1979
{contour interval Is 0.10 ppew).

I
9O



241

10-1

100
o

..o

E

LE
N-
EE)
O0
0'3
IJJ
Of,,

13.._101

102

4, -

6-

8-

2-

4-

6-

8-

2-

4-

6-

8-
!

-90

! ! I I 1
-60 -30 0 30 60

LATITUDE, deg

Ftgure CHI_-5- SAMSmonthly zonal meanCH4 crosssectton for May 1979
(contour tnterval Is 0.10 ppmv).

I
9O



242

1 0 -1

100
E_
...(3

E

rY

Of)
CO
LG
n,"
13_

101

102

4

6

8

2

I

6-

8-

2-

4-

6-

8-

-90

I I I I I
-60 -30 0 30 60

LATITUDE, deg
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(contour interval ts 0.5 ppmv).
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Figure A-II - SAM II measurements in the Northern Hemisphere.

Data show isopleths of weekly averaged aerosol

extinction at 1.0 Din, w ....................

on the horizontal axis is the first day of the

week to which the average value corresponds.

(a) Latitude of SAM II measurements; (b)

Aerosol extinction isopleths in units of 10 -5

km -I. Dashed line shows averaged tropopause

heights; (e) Corresponding temperature field

at the location of aerosol measurements.
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Figure A-12 - SAM II measurements in the Southern Hemisphere.

Data show isopleths of weekly averaged aerosol

extinction at 1.0 _m, where the date marked on

the horizontal axis is the first day of the

week to which the average value corresponds.

(a) Latitude of SAM II measurements; (b)

Aerosol extinction isopleths in the units of

10 -5 km -I. Dashed line shows averaged

tropopause height; (c) Corresponding tempera-

ture field at the location of the aerosol

measurements. Figure A-If covers the same

time interval as Figure A-12, but the latter

was divided into two halves which were inter-

changed so that similar seasons in the two

figures are aligned.
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