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ABSTRACT
We consider the problem of identifying the spatially varying coefficient
of elasticity using an observed solution to the forward problem, Under
appropriate conditions this problem can be treated as a first order hyperbolic
equation in the unknown coefficient, We develop some continuous dependence
results for this problem and propose a spline-based technique for

approximating the unknown coefficient, based on these results. We establish

the convergence of our numerical scheme and obtain error estimates.
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1. INTRODUCTION

A class of control and identification problems for which the models are
based on the equations for elastic structures are those dealing with large
space antennas. Mathematical models of these problems are based on the

partial differential equation

(1.1) g—x(e%}‘%)+%§(e-g-‘§_)=f
where u(x,y) 1is the vertical displacement of the antenna surface, f(x,y) 1is
the distributed loading force per unit area, and e(x,y) is the distributed
coefficient of elasticiy of the antenna surface [1].

The identification of e using measured u and f values for the
antenna surface 1is an important inverse problem. A common identification
strategy is the "indirect" one in which one minimizes via an iterative process
the deviation between a computed forward solution u, and the observations

(see, for example [1]). Alternatively, e can sometimes be identified by a

direct approach involving approximate solution of the hyperbolic equation
(1.2) Ve » Vu + eAu = £,

for example, by seeking the finite dimensional representation for e which
minimizes the residuals of a difference approximation for equation (1.2).
This is referred to as the "equation—-error' method.

A practical limitation to the direct approach for identifying e is that
the coefficients of the hyperbolic problem (1.2) involve derivatives of the
measured quantity u. However, when it is feasible it is simpler and cheaper

than the indirect approach.



In [2] Richter presented a systematic analysis of the inverse problem
(1.3) Ve « Vu + eAu = f, xQ B,

in which the coefficient e 1is to be determined on the basis of an observed
(f,u) pair. He showed that the hyperbolic problem (1.3) has a unique
solution assuming prescribed values along the inflow portion of

30 for feL”(R), provided

(1.4) inf [max{ |Vu(P)| 2, Au(P)}] > O.

Ped
He also proved that if condition (l.4) holds, then e depends continuously
on f in L7(Q).

In this paper, we show that if condition (l1.4) holds then e depends
continuously on f in LP) for all p [1,=). We then use this
continuous dependence result in LZ(Q) to propose a spline-based technique
for approximating the unknown coefficient e 1in equation (1.3). We prove
that our scheme converges to the actual solution e of (1.3) and obtain error
estimates.

In [2] Richter proposed especially favorable '"test conditions" for

observing a forward solution u to the elliptic problem for (1.3):

(1.5) inf £ >0, u=0 on 3R.
Q

Under these conditions (1.4) will be satisfied and the hyperbolic problem

(1.3) with the resulting (f,u) pair will require no Cauchy data for e

e -




because the characteristics of e will originate at points of degeneracy
within Q, rather than on 3Q.

Typically, condition (1.5) holds for antenna problems. Thus, the
numerical algorithm we propose in this paper, and which is based on a
continuous dependence result in LZ(Q), would be particularly suitable for
antenna problems. In a companion paper [4], we present a multigrid algorithm

for approximating e numerically.

2. CONTINUOUS DEPENDENCE OF THE HYPERBOLIC PROBLEM

Let B(u)e be the operator
(2.1) B(u)e =V ¢ (eVu) = £, x0C B,

where e and u are defined in a connected, bounded domain QC .,
Throughout this paper we shall assume that u€C2(§_) and e€C;(§), where

C;(ﬁ) denotes the class of piecewise continuously differentiable functions
in Q.
We shall denote the boundary of @ by y. Let
d
u }’

Yl={xY:_a—ﬁ<O

where g_g is the outward normal derivative of u along . Yy is the

inflow portion of the boundary .

Suppose that u satisfies the condition



(2.2) inf[max{IVu(P|2, Au(P)}] =
PQ
where IVu(P)l2 = ) (a_u_ Z, Then Q
IxX,
i=1l,n i
subregions 91 and 92 such that

and Q = Ql 92.

problem (2.1).

_

|Vu|2 2a in @

1’ —

U g = max u(P),
PQ

Ui s min u(P),
PQ

[u]l = Ymax ~ “min’

s = max |g—uﬁ ®]| ,

Pey
~Au(P)
B = max 1
PeR; |Vu(P)|

Au >«

a > 0,

can be divided into

in @

We introduce some notation we shall need later. Le

2’

t

compact

We now obtain an a priori bound on the stability of the hyperbolic




Theorem 1: Suppose u

which B(u)e = £

satisfies condition (2.2). Then for any f for

has a solution e assuming prescribed values along Yy

the solution is unique, and

(2.3)

for all

Pagyl/P
tel , < A (WIfN + Dp(u)(£ le|Fds)
1

pell,=). Here

_ 1 ,1.1/p,p - 1 P
W e G T > e

Co(“) is defined as

Proof: Let g(u)

later,

over

(2.4)

¢, (@ = min{S, 1 -2} exp(-pBlul) if 8 >0,

Cp(u) = min{l-, 1 - %} exp(-[u]) if B8 < 0.

be a smooth function of wu; which we shali specify

Multiplying equation (2.1) by g(u)|e|p-1sgn(e) and integrating

8, we obtain

f g(u)|elp_1sgn(e)f dx f g(u)lelp—lsgn(e) (Ve (eVu))dx.
Q .

Q



Here sgn(e) 1s the function defined as

-1, e <0,
sgn(e) = 0, e =0,
1, e > 0.

Integrating the r.h.s, of (2.4) by parts gives

/ g(u)lelp_lsgn(e)(V-(eVu))dx = -f %§-|Vu|2|e|pdx
Q o
(2.5)

~[ (p = 1)(g(u)Vu)(le| P sgnle)ve)dx + [ glw)|e|P %%‘ds.
# Y

Now

- L) (g(u)Vu)9(|e| P)dx.

(2.6)-f (p - 1)(g(u)Vu)+(|e| P tsgn(e)ve)dx = - (2
Q Q

Integrating the r.h.s. of (2.6) by parts,we obtain

-f &= 1)(g(u)Vu)-(|e|p'-lsgn(e)Ve)dx -2 / e |‘7‘1|2|e|pdx
: > P Q du
(2.7)

1

+ 2 ; ) [ (g(u)du)|e|Pax - (EliflJ { g(u) %% |e|Pds.

f

Combining (2.,5) and (2.7) gives




[ glw|e|P tsgn(e) (Ve (evu))dx = | [-%g_ﬁ- |va]? + (1 - %)—)g(u)Au]leIpdx

f 2

(2.8)
+ -l—f (g(u) -aﬂ)le|pds
P Y on *

We wish to choose g(u) so that

g(u) > 0, and

(- =35+ (1 - Dglwaal >0,

for all X€EN.
' :;élﬂfl__ Let

We first treat the case 8 > 0, where

g(u) =é exp(-pR(u - umin)).

Then

2
2L jou? v -5 gtwsa = 18 18 v (- D 2 exntopte - ug )

If Au > a it is easy to see that

dg |Vu|2 + (1 - —Il;) g(wiu > (1 - %—)exP(-pB[u]).

-1 dg
p du
Next, suppose Au < a. Then |Vu|2 2 . From the definition of B we

have



au > - g|vul?.
Hence we obtain

-1 dg g2

— & + (- Dguae > & exp [-pslul).

P
Clearly

exp(-p8[u]) 1
PRl < gw) <o

Next, we treat the case B < 0. Then Au > 0 for all XEQR. Let

glu) = é-exp(—(u - umin))'

Then

-ldg

2
S el + (- Dgoss = ATy - L By,

It is easy to see that in this case

-1

> %% |\7u|2 + (1 - %Jg(u)Au > min (%-, 1 - %) exp(~=[u]).

Also

exp(—{u])
[s 3

<glu) <

Q| —




Substituting g(u) in (2.8) we obtain the following inequality

P 1 du ]
Cp(u) é |e| dx + S-{ (g(u) gg)lel ds

(2.9)
<1 g e|P  sgnedt axdy],
Q
where
¢ (w) = min((1 - % ), %) exp(-pBlul) if 8 > 0,
= min(l-, 1 - l)exp(-[u]) if B < 0.
P P -
Now

I/ gw|e|P  sgnle)f dax| < L [ |e|P7 || ax.
Q *Q
But by H;lder’s inequality

[ lelP Y lax < (S |e|(p'1)qu)1/qufnp,
Q Q

(2.10) If g(u)|e|p_lsgn(e)f dx| < l-ﬂenp/q"fﬂ .
Q - a P P

Applying Young”s inequality to the r.h.s. of (2.10),we obtain
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C (u)
|/ g(uw) |e|p_lsgn(e)f dx| < pz Heug

(2.11) ( 2 )p/q (l)p
C quq —
+—EB > 2 nfng.
Thus
2 p/q
C_(u) s 1/ (C u q) (%JP
L—re? < = [(f |e| Pds) p]p + (P 1£1P,
P —ap Yl . P
Since p 2> 1, this implies
C (uw) 1/p
P s \1/p P, \1/p 1 2 1/q,1,1/p
>—) tel | < (5 ({llel ds)™ P + {Z (W) ) } 1
Hence

2s 1/p P, 1/p 1 1\1/p,1\1/q 2
(2.12) Hellp_(_ (W) ('{ Iel ds) + (a (p) (q) E-I;ET ||f"p.
1

And this gives us the required result.

Remark 1: It is interesting that the continuous dependence estimate
(2.3) breaks down for p = », Richter [2] proved that the result holds
for P = %, Combining Richter”s results with Theorem 1, we conclude that
e. depends continuously on f in LP(Q) for all pell,»], assuming the

value of e 1is prescribed along the inflow boundary.
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We would now like to investigate the rather general situation where at
least one of the coefficients of the hyperbolic problem is nonvanishing at
each point of Q, i.e., we wish to see. whether the continuous dependence

results remain valid if we replace condition (2.2) by the condition

(2.13) inf [max {|vu(®)|%, |su(®)|}} > O.
PeQ

First suppose that

(2.14) tnf [max {|Vu(®)|%, -au(®)}] > 0.
PEQ

Replacing u by -u and f by ~f in (2.1) so that it takes the form

"

B(-u)e = ~-f,

it 1is trivial to see that Theorem 1 remains valid if the following

modifications are made:

(1) inf [max {|Vu(P)|?, - Au(®)}] = a > O.

PEQ
(1) sup [(2HEL) -
PEQ. | Vu(P)]
(i11) @, = {PeR: - Au(P) > a}
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(iv) Y, = {Pv: %% > 0}, i.e., Y, now represents the outflow
portion of the boundary Y.

Richter notes in [2] that if Au is not always positive or negative
where Vu =0 it may or may not be the case that B(u)e = £ has a unique
solution for all feLw(Q), with appropriate initial data for e. For the
sake of completeness we cite two examples from his paper illustrating this.
In Figures 1 and 2, the curves indicate characteristics of u, with arrows

pointed in the direction of increasing | u. Both configurations have one

maxima and one minima.

TA
4
Figure 1
The first depicts a situation where Q can be separated along a

characteristic (any one from Y, to YB) into two subregions

Ql and 92 such that

(2.15) |[Vu] or Au > 0 in 2, |Vu] or - Au> 0 in 2,.
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Thus the corresponding hyperbolic problem can be solved uniquely for e with

initial data specified along Yy OF Yge Clearly the continuous dependence

result (2.3) remains valid for this situation.

s — e —

- —t— —

A

Figure 2

This is not so for the second configuration because of the presence of
characteristics going between the maximum and minimum points. This difficulty
can be circumvented by cutting the domain across characteristics by a line

Ya into subregions 1} and 92. The resulting e would in general be

1

discontinuous at the interface YA' Clearly such a solution depends on the

choice of and hence is not unique. Note that Cauchy data would not be

Ya

required at such an interface.

3. THE NUMERICAL SCHEME
Our method uses the results of Theorem 2.1 with p = 2. We describe our

method for the two dimensional parameter estimation problem restricting

ourselves to the case where the domain Q is the unit square, i.e.,
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Q = [0,1] x [0,1].

The results described would carry through for the more general situation

where the boundary of 2 is piecewise smooth, with some technical

modifications.
The two dimensional problem can be formulated as follows:

Let L be a grid of points
L= {Gy, ¥ (1,3) €hl,

where A is a finite index set in Z2. Given a data set of observations
{u(xi, yj)}, {f(xi, yj)} for  u and f at the points (;i, gj)GL
determine e(x) that satisfies the equation

3 d

u) ] ( u

] , —
= 5? e 'a-';, = f, (XQY)€QQ

(3.1) B(u)e = §§(e %

assuming that the inflow section of the boundary Yy is void.

We assume that u, e, and f are smooth and that u satisfies condition
(2.2).

Divide the square [0,1] x [0,1] 4into a grid of points

Ly = {Gxguy ) (1,00en ],

where

Ay = {(1,3): 1 <4< wL, 1 < j < W1},

We assume that th_ L.

I
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The grid is depicted in Figure 3. Consider now the case where the inflow

portion of the boundary Yy * o, Let

-

3
v; = {Pev: z=(B) < 8}

for any &8 > 0, We assume that we are provided Cauchy data for e at a set

of points

B = {(x{, ’}j): (1,3)eA C A},

Here (i,j)€A whenever (;i’ yj)eYi, but A may contain other elements

besides. We define A precisely below,

y
1
Pl
AP
R
\ P 1.h
71——— 3
P4
B s
P
6
L 1

Figure 3
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Consider the situation in Figure 3 where Yi is the line segment AB
of the boundary x = 1, Here A and B do not belong to the grid of
points Ly. We extend AB to the smallest possible line segment

P, P

Yin P1 P in. this case, such that
b

(1) Y[ S Yy he

(ii) the end points of belong to the grid L.

Y1,h

Then

B = {(x,, ?J.): (i,3)es A}

where

A =kt_1){(i)j): (xi)Yj)EYI’h}°

Here the union is taken over all h such that th; L.

Thus we are provided with Cauchy data for e
e(xi,yj) = w(xi,yj), (i,j)eaA.

We assume the function w 1is smooth.

Let
Bh = {(xi,yJ): (i’j)EAh})

where

A, = {1,5): (xg.y90€v) 4}
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In the situation depicted in Figure 3, By consists of the points Py

through P6'

From the data set of observations {fij} for f where
fij = f(xi,Yj)s
we construct the piecewise bilinear interpolant £, (x,y) of f(x,y), 1.e.,
fh(xi,yj) = fij

and £, 1s plecewise bilinear in Q.
We approximate the unknown function e(x,y) by a piecewise bilinear
function ep(x,y). In case Y| n is not void there would be M grid
?

points belonging to By. Then e,(x,y) 1is the bilinear spline function that

assumes the values
= i )E
eh(xi,yj) w(xi,yj) for (1,3) Ah
and whose values at the other mesh points {(xi,yj): (i,j)eAﬁ\Ah} have to
be determined.
Let .Sh denote the space of piecewise bilinear functions vy (x,y) where

Vh(xi’yj) = Vi3 for (i,J)GAh\Ah, and

vh(xi,yj) = w(xi,yj) for (i,j)GAh.
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Let E; and denote the vectors

L=

T
B, = {(eg} (1,3)€A A, °

T
{(vij)} (1,3)€ANA

Ya

Clearly there is a one to one correspondence between the 1linear spline
functions e, (x,y), vVvu(x,y), and the vectors E, and V;. Ep and V,
belong to a vector space of dimension K = (1)2 - M,

Finally, we approximate u(x,y) by its cubic B-spline interpolant
up (x,¥). The cubic B-spline o (x) in one dimension is the function

sketched below [3]:

Figure 4




-19-

Let ¢?(x) = ¢(% - j). Then

o) =1 gy $3(x)03(y)

where {qij} are obtained by solving a linear system of equationms.
The piecewise bilinear approximation for the unknown function e(x,y)
that we choose is the function eh(x,y) that minimizes
1 1 2
(3.2) [ [ [BCup) v, - £, |"dxdy
0 0
over all vpeSy.

Substituting the explicit form of the functions u,(x,y), f,(x,y), and

vp(x,y) 1in (3.2), we obtain

1 1
(3.3) é é |B(uh)vh - fhlzdxdy =V CV. =-2VG +2A
where

Ch, 1is a symmetric matrix of dimension K by K depending only on

uy, (x,¥);

G, 1is a vector of dimension K depending on uy(x,y), fn(x,y), and

w(x,y);

Xh is a vector of dimension K that corresponds to the linear sﬁline
function vp(%,¥);

and A is a scalar depending on fh(x,y) and w(x,y).

h
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We shall prove in Lemma 2 that C; 1is positive definite for all

h S_ho, where hy 1is a positive constant.

The piecewise bilinear function eh(x,y) that minimizes (3.2)
corresponds to the vectog E = {(eij)}(i,j)eh \A that ginimizes
(3.4) vic v, - 2vig

over all vectors gheng. Thus E;, 1is obtained by solving the linear system

of equations

(3.5) ChEh =-9h.
Since C, 1is positive definite, for h small enough, there exists a unique
solution E of (3.5); and hence the minimization problem (3.2) has a unique
solution.

Let eh(x,y) be the linear spline function that corresponds to the
vector E,. We claim that e, (x,y) converges to the true solution e(x,y)
in the L2 norm at a 1inéar rate of convergence, To prove this result we

need first to prove a lemma.

Lemma 1: Let u(x,y) be a smooth function that satisfies condition

(2.2) in the unit square Q. Let  u,(x,y) be the cubic B-spline

interpolant of u(x,y). Then for h S_ho, where h; is a positive

constant, and all functions v(x,y) that are piecewise continuously

differentiable in @, the following inequality holds:

2
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(3.6) 1v1, < 2A,Cu)UB(u Vi, + 2D2(u)(£ lv(x,y) | 2as) /2
1,h

where A5(u) and Dy(u) are defined in (2.3).

Proof: Since wuy(x,y) 1is a cubic B-spline interpolant of u(x,y),

uh(x,y) is twice continuously differentiable.

By a standard result in approximation theory, the following inequalities

4

(3.7a) lu - u,| <Ko,

(3.7b) [V - vu, | <Kh’, and
2

(3.7¢) |au - Auhl < Ksh

hold, for all (x,y)€§: Here the constants Kl through K3 depend on
higher derivatives of u(x,y).
Since u(x,y) satisfies condition (2.2), there exists subregions

Ql and Q, of Q such that |Vu|2_2 a in @

2 A“.Z a in Q,. For

1’ 2

any € > 0 we can choose hy so small that

Au, >a —-€ 1in Q

2
(3.8) |Vuh| 2a-€ in Q, n2 9

for all h_s ho.

Recall that

B = max —-AE££2-7
PeQ, | vu(P)



[u] = max {u(P)} - min {u(P)}, and
Peq PEQ

s = max |%E(P)|.
Pey

We can now choose hy so small that (3.8) and

Auh(P)
max {- —2 ) > -,
PeR, |vuh(1>)|
(3.9) [uh] 2 [u] -€, and

max |-g—;:(P)| 2 s -€,
Pey

hold simultaneously for all < ho. Now

- a
Y] = {Pev: -5% < 8§}

for some § > 0. Let Y, = YI\YI' Then

If we choose hy smaller, if necessary, we can obtain

du

§
E—Eh P) _>_§ » for all Pey,,

whenever h hO' Clearly the inflow section of the boundary for

“Yhe Y1 & Yne
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If we choose € small enough (and hg correspon&ingly small), we can

always arrange

(3.10) Az(uh).s 2A2(u), and

D, (u; ) < 2D, ()

to hold for all h < h.. We then obtain a cruder version of estimate (2.3)

0
(3.6) ivl, < 2A,(u)B(u, v, + 2D (u)(f |v(x )|2ds)1/2
y 2 2% n’V'2 2 24
Y1,n
replacing ?& = {Pey: %% h (P) < 0} by Y1 n in the second term on the
k]

r.h.s, in (2.3).

We shall use Lemma 1 to prove that the matrix C,, defined in (3.3) is

positive definite for all h < h

< hy, where hy 1is a positive constant.

Lemma 2: Let C,, be the matrix defined in (3.3). Then C, 1is positive

definite for all h S.ho’ where hy is a positive constant.

Proof: Since the matrix C,, depends only on u,(x,y), we may, without
loss of gemerality, choose w(x,y) £ 0. Then by (2.3)

1 1

2 T
é é |B(uh)vh| dxdy = thﬁvh°
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By Lemma 1

(3.11) v 15 < 4G, )% 1BGa Iv 12

since v, (x,y) = 0, for all (x,y)€vy, ,.
h 1,h

By elementary means one can show that

» 2
2 h T
Combining (3.11) and (3.12) we obtain
(3.13) VGV L G
h h _'96A2(u)2 h'h

The lemma is proved.

We can now prove the main result of this section.

Theorem 2: Consider the parameter estimation problem

9 Jdu ] du
3.1 B a— ——— i =
(3.1) B(u)e 5 (e ax) + 55 (e 5;) f
in the unit square @, and assume that we are provided with

Cauchy data

for e on RY
b




e(X,y)l(x = w(x,y).

;Y)EYI h

Here u, e, w, and f are smooth functions, and we assume that u satisfies

condition (2.2). Let ey (x,y) be the piecewise bilinear function that

minimizes
1 1 2
(3.2) é é |BCuy)v, = £, dxdy

over all piecewise bilinear functions v, (x,y)€S,. Then ey (x,y) converges

to the true solution e(x,y) in the L2 norm at a linear rate of

convergence,

Proof: Let eﬁ(x,y) be the piecewise bilinear function € S, that
interpolates e(x,y) at the mesh points {(xi, yj): (i,j)eAh\Ah}. Then
eﬁ(x,y) interpolates e(x,y) at all the mesh points {(xi,yj): (i,j)€Ah}.

Since eh(x,y) minimizes
1 1 9
(3.2) [ ] [BGupv, - £ [“dxdy
0 0
over all piecewise bilinear functions vy(x,y)€S,, the inequality

1 1 1 1
(3.14) (f f |B(uh)eh - fh|2dxdy)1/2 ﬁ'(f f IB(uh)ez - fhlzdxdy)ll2
0 0 0 O

holds.
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By a standard result in approximation theory, we have the inequalities

(3.15a) le - eﬁn2 S_K4h2, and

a
h'2

Here K, and Kg; are positive constants depending on higher derivatives of

[S3Y

Further, since £, 1is the piecewise bilinear interpolant of f we have

2
(3.16) If - £0, < Kb,

where Kg 1s a positive constant depending on higher derivatives of f.
Using these and the earlier results (3.7) from approximation theory, it is

easy to show that

11
2
(3.17) é é |BCu,de - £, | “dxdy < 0(h).

By the triangle inequality
a a _
(3.18) IlB(uh)(eh eh)ll2 _S_IIB(uh)eh £, + IIB(uh)eh £1,..

h'2 h'2

From (3.14) and (3.17) we conclude that

(3.19) 1B(u, )(ep = e ), < 0(h).




Pp—

Since both eﬁ(x,y) and eh(x,y) interpolate e(x,y) at the points

{(xi,yj): (i,j)EAh}, it is easy to see that

(3.20) [ led - e |%s = o.
Y1,h

From Lemma 1 we have that

(3.6) IV, < 24, ()BCu Vi, + 2D, () 1f  |v]%ds] /2
"1,h

for all functions v that are plecewise continuously differentiable in

Using (3.19) and (3.20) we conclude that

(3.21) be, = epll, < 2A,(w)IB(u,)(ef = e )1, < O(h).

h

By (3.15a)
a 2
||eh - e||2 < o(h™).

Using the triangle inequality once more we obtain the result

(3.22) he - ehH2<s o(h).
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Remark: If we were to interpolate e(x,y) by piecewise Hermite cubics
or by a B-cubic spline, our method would converge at a quadratic rate of
convergence, It is easy to modify the method to obtain higher orders of

convergence,

Finally we indicate how the numerical method we have proposed can be
adapted in case u does not satisfy condition (2.2) but the more general

condition

(2.13) inf [max{]Vu(P)lz, |au(P)|}] = a > 0.
PeQ

Consider the situation depicted in Figure 2 where u has both a maximum

and minimum. Let us suppose that f is such that a unique solution e to

(2.1) exists. We do not need to specify any Cauchy data for e 1in this

situation. As before, we cut the domain Y] across characteristics into two

subdomains 2, and Q such that u satisfies condition (2.2) in Q

1 2
and condition (2.14) in @

1
2.
Let .

a(x,y) = e(x,y) for (x,y)€Ql, and

b(x,y) e(x,y) for (x,y)EQz.

We can find a solution a of 2.1 in the domain Ql without any Cauchy

data. The same holds for b in the domain Q Clearly if a solution e

2.

to problem (2.1) exists in Q then e must be continuous along YA'

e .
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Hence we must have

a(P) = b(P) for all PGYA.

Let ap and by denote piecewise bilinear approximations for a and

b respectively. Then a, and by are the piecewise bilinear functions

defined in 91 and 92 respectively which minimize

2 2
é [ IBGuv, - £ |“dxdy + £ [ IBCup)e, - £, |“dxdy
1 1

2
+0 | |th - vhl ds
Ta
over all piecewise bilinear functions v, and ty defined in

4 Ql and 92 respectively. Here 0 is a weighting parameter.

In case a smooth solution e to (2.1) exists, it is easy to show that

the function en defined as

eh(x,y) = ah(x,y) for (x,y)eﬂl,

e (x,y) = bh(x,y) for (x,y)En2

converges to the true solution e(x,y) in the L2 norm at a linear rate of
convergence.,

In a companion paper [4], we present a multigrid algorithm for parameter
estimation problems. In this algorithm we seek a finite dimensional

representation for e which minimizes the 22 norm of the residuals of a
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second order difference approximation of (2.1). Extensive numerical
experiments indicate that the method converges to the true solution in the

22 norm at a quadratic rate of convergence.
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