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MATHEMATICAL ASPECTS OF FINITE ELEMENT
METHODS FOR INCOMPRESSIBLE VISCOUS FLOWS

Max D. Gunzburger
Carnegie-Mellon University

Pittsburgh, PA 15213
We survey some mathematical aspects of finite element methods for
incompressible viscous flows, concentrating on the steady primitive variable
formulation. We address the discretization of a weak formulation of the Navier-
Stokes equations; we then consider the div-stability condition, whose
satisfaction insures the stability of the approximatidn. Specific choices of

finite element spaces for the velocity and pressure are then discussed.

Finally, the connection between different weak formulations and a variety of

boundary conditions is explored.
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MATHEMATICAL ASPECTS OF FINITE ELEMENT

METHODS FOR INCOMPRESSIBLE VISCOUS FLOWS

One of the most successful and well developed mathematical theories
concerning finite element methods is that connected with incompressible flow
problems. The success of this theory lies not only in the accumulated elegant
mathematical results, but also in its impact on practical computations. The
outstanding monographs by Girault and Raviart [GR1,GR2] give a rigorous account
of this theory and to this day remain the definitive sources.

In this sufvey we examine certain mathematical aspects of finite element
methods for the approximate solution of incompressible flow problems. Our
principal goal is to present some of the important mathematical results wﬁich
are relevant to' practical computations. In so doing we also discuss ugeful
algorithms. Due to space limitations we focus on thevsteédy primitive variable
formulation. Moreover, even within this narrow context, we will concentrate on
only one of the very many different known approaches. Somé other approaches are
discussed in, e.g., [GR1,GR2,Tol.

We state at the outset that we make no attempt at being comprehensive in

our coverage or 1in our attributions. To anyone who takes offense, we sincerely

apologize.

I - The Primitive Variable Formulation

Let Q denote a bounded, possibly multiply connected, domain in Rd, d=2 or




3, and let I denote 1its boundary. As a prototype for incompressible flow

problems we consider the Navier-Stokes equations
(1.1 uegradu+grad p=v Au+f inQ
together with the incompressibility constraint
(1.2) divu=0 1in Q

and the boundary condition

(1.3 u=0 onTl

where u is the velocity field, p the pressure, f the given body force, and v
the given constant kinematic viscosify. In (1.1) the constant density has been
absorbed into the pressure. Whenever u and' p represent non-dimensionalized
variables, then v is the inverse of the Reynolds number Re.

'Following our detailed discussion of the approximation of solutions of
(1.1)-(1.3) by finite element met;,hods, we will consider other in;:ompressibie

flow formulations, especially as they concern boundary conditions other than

(1.3).

I.1 - Function spaces, norms and forms

In order to introduce a Galerkin type weak formulation through which a
finite element approximation is determined, we first need to define some
function spaces, associated norms and forms involving functions belonging to

those spaces. Lucid and more detailed accounts concerning these spaces may be




found in, e.g., [(BaC,GRZ,0R].

First we denote by LZ(Q) the space of functions which are square integrable

over @ and which is equipped with the inner product and norm

(p,q) = f pq and ﬂqu = (q,q)l/2 ,
Q

respectively. We then define the constrained space

L2 = (qe @ 1 [q=0)
2
Thus LO(Q) consists of square integrable functions with zero mean over Q. This
space 1is used in connection with the pressure; such a constraint is needed
sincé it is clear frbm (1.1)-(1.3) that the pressure can be determined only up
to an arbitrary constant. Other constraints, e.g., fixing the pressure at a
given point, may be used instead without effecting any appreciable change in

the results discussed below.. Next we define the Sobolev spaces
@ = (qe 2@ 1 D°q e L2@ for s=1,...,k )

where D° denotes any and all derivatives of order s. Thus HR(Q) consists of
square integrable functions all of whose derivatives of order up to k are also

square integrable. Hk(Q) comes equiped with the norm
N ! - P 2 N 2 1/2
"qu = ( Jqdo + Z: N qﬂo )

where the summation extends over all possible derivatives of order k or less.

0
Clearly H (Q)=L2(Q). Of particular interest is the space Hi(ﬂ) consisting of




functions with one square integrable derivative and the subspace
H‘i)(m=(qu1(Q)lq=OonI')
whose elements have one square integrable derivative over 2 and which vanish on

the boundary I'. These spaces have the associated norm

d /2
(1.4) lal, = uqn Z )
i=1

We note that for functions belonging to Hé(ﬂ) the semi-norm

1/2

ON

d 5
q
(1.5) Z a—'
i=1

is actually a norm equivalent to (1.4) and thus, for such functions, (1.5) may

be used instead of (1.4).

For vector valued functions we use the spaces

@ = @®=(vive H @) for 1=1,...,d )
and .
1,,,d _ 1 ,_
Hy@ = tHy @1 = (v 1 v, e Hy@ for i=1,...,d )

For example, Hk(ﬂ) consists of vector valued functions each of whose components

belongs to Hk(Q). Hk(Q) is equiped with the norm

alternately, Hé(Q) has the norm




L ]
—
[y
~
N

IvI1 = [ if Ivil

i=1

Also, the inner product for functions belonging to L?(Q)QHO(Q)=[L2(Q)]d is

given by

(u,v) = u-v

Dy

where there is no émbiguity possible resultihg from using the same notation for
both the inner product of scalar and vector valued functions.

We now define the bilinear forms

1
(1.6) alu,v) = v [ gradu:gradv for all u, véH (Q)
9] 0
and
(1.7 b(v,q) = —f qdivv for all veHé(Q) and qng(Q),
Q

and the trilihear_form

(1.8) c(wv,u,v) = f v-gradu-v for all u,v,weHé(Q).
R
&

In (1.6) and (1.8) we have that (gradu)iJ.:auj/axi and

d - aui avi d ou
gradu:gradv =. 3% 3% and w-gradu-v = iy

| ———

-
1,751 37 1,71 7%%;




Using the bilinear form b(.,.), we can define the subspace
z=(ve H‘i)(ﬂ) | b(v,q) = 0 for all q € Lg(ﬂ) )

which consists of (weakly) divenrgence [Jree Jfunclions, i.e., functions whose

divergence is orthogonal to all Lg(Q) functions. Certainly any divergence free

function, in the strong sense, belongs to Z.

'I.2 - d Salesrkin type weak formulal ion

The most commonly used weak formulation of (1.1)-(1.3) is the following.

Given fELz(Q), we seek usHé(Q) and peLglo) such that

(1.9) atu,v) + c(u,u,v) + b(v,p) (f,v) for all veHé(Q)

]
(=]

(1.10) ‘ - b(u,q) = for all qeLg(Q).

By virtue of (1.10) we see that the solution u belongs to Z.

We note that LZ(Q) is not the 1arges£ function space for the data f such
that the problem (1.9)-(1.10) makes sense; indeed, all that is réquired of the
data is that.the right hahd side of (1.9) be bounded and this is possible for
some functions which are not square integrable. However, for our purposes,
fELz(Q) is sufficiently general.

It can be easily verified that whenever a pair u,p satisfies (1.9)-(1.10)
and is sufficiently smooth to all§w for the appropriate integrations by parts,
then u,p is also a solution of (1.1)-(1.3). Of course, (1.9)-(1.10) admit
solutions which are not sufficiently smooth to be solutions of (1.1)-(1.3);

. hence the terminology weak fosmulation and genesral iged soclution are applied to




(1.9)-(1.10) and their solution, respectively. On the other hand, it is also
clear that any soluﬁion of (1.1)-(1.3), 1i.e., a atrong sotution, satisfies
(1.9-(1.10).

For the weak formulation (1.9)-(1.10), the boundary condition (1.3) is an
essential one, i.e., it must be imposed on the candidate solution functions.
Below, in section 1IV.3, we will discuss the nafuraf boundary conditions
associated with the weak formulation (1.9)-(1.10).

We will not enter into details concerning the existence, uniqueness,
continuous dependence on data and regularity of solutions of (1.9)-(1.10). Such
results may be} found in, e.g., the definitive treatise of Teman (Tel.
Furthermore, many of these results are similar to those discussed below for the

approximate problem.

IT - The Finite Element Problem and the Div—-stability Condition

I11.1 - The discrete finite element problem

Once the Galerkin formulation (1.9)-(1.10) is established, the approximate
problem which determines the finite element solution is defined in the usual
manher. First.one choqses the approximating finite element spaces, or more
precisely, a family of finite element spaces, Vh and Sh for the velocity and
pressure, respectively. Here h is a parameter which is usﬁally related to the
size of the grid associated with the finite element partitioning of 2. Then oﬁe
requires that (1.9)- (1.10) hold for functions belonging to these finite
dimensional spaces, i.e., one seeks uhevh'and pheSh such thaf

(2.1) a(uh,vh) + c(uh,uh,vh) + b(vh,ph) = (f,vh) for all vhevh




and

(2.2 ba®,dM = o for all qles™.

If Vh and Sh are subspaces of the underlying infinite dimensional spaces of

(1.9)- (1.10), i.e., if thHé(Q) and Sthg(Q), then the finite element solution
defined by (2.1)-(2.2) 1is said to be confosmming. Otherwise, i.e., if Vhdﬂé(ﬂ)
and/or ShdLg(Q), then the method is said to be non-confosming. We will restrict

our attention to examples of the former.
Once one chooses specific bases for Vh and Sh, (2.1)-(2.2) are equivalent
to a nonkineas spatem of algebraic equations. Indeed, if {qj(x)}, j=1,...,J and

{vk(x)}, k=1,...,K, denote bases sets for Sh and Vh, respectively, we may then

urite

h J h K
p = 2: ajqj(x) and u = Z: Bkvk(x)
Jj=1 k=1

for some constants aj, j=t,...,J, and Bk’ k=1,...,K. Substituting into (2.1)-

(2.2) then yields

K K
) atv,v,) B, + 2: ctv ,v,,v,) 8, 8
k=1 k,m=1

(2.3)

1

1b(vz,qj) aj = (f,vz) for €=1,...,K
J= ’

and
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K
(2.4) :L_ib(vk,qi) B, =0 for i=1,...,J.

which constitute a nonlinear algebraic, in fact, quadratic, system of J+K
equations for the J+K unknowns aj’ j=1,...,J, and Bk’ k=1,...,K. Note that the
" the discrete continuity equation (2.2) yields the JxK rectangular finean system

(2.4).

I1.2 = The div-stability condition

In the positive definite case, e.g., for the -equations of 1linear

elasticity, the mere inclusion of the finite element spaces within the
underlying function spaces is essentially sufficient to assure that the
approximations are well defined and are as accurate as possible for the type of
) . ) . . vh Hi _ h .2
finite elements functions being used. Here the inclusions c O(Q) and S cLO(Q>
are not by themselves sufficient to produce stable, meaningful approximations.

We find ourselves in the realm of what are known as mixed finite element

me thods.

There are number of conditions which the elements belonging to the finite
element spaces should satisfy. Most of them, e.g., the boundedhess of the
various bilinear and trilinear forms, are easily satisfied by conforming finite

element spaces. The one condition which presents a problem has the following

mathematical realization:

given any qheSh,

b(vh,qh)

h

(2.5) sup ( ] > riql
" hl 0
O#vhth (A4 51
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where the constant y>0 may be chosen independent of h and of the

particular choice of qheSh.

This condition may be equivalently expressed in the form:

given any qheSh there exists a non-zero vheVh such that

(2.6) v, » ruq”nonv"n1

where the constant y>0 may be chosen independent of h and of the

particular choice of‘qheSh.

Of course, for each qh a different vh may be used in order to satisfy (2.6).
The condition (2.5), or equivalently (2.6), is variously known as the

Ladpgzhe nskopo~Babuska-Bregg i or the «£3B or the inf-sup condition, the latter

"deSignation following from the third equivalent- form:

there exists a y>0, independent of h, such that

b, q™M
(2.7 inf —————] >y .

sup
T h . h,
OatqheSh L R LPEL P

We will refer to any of the equivélent statements (2.5)-(2.7) as the condition
for div-stabifitp. Note that these have nothing to do with the non-linearity of
the Navier-Stokes. equations and, in fact, the possible problems its

satisfaction poses is shared by the linear equations of Stokes flow.

Associated with the finite element spaces Vh and Sh and the bilinear form
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b(.,«) we have the subspace

Zh = [ Ve Vh | b(vh,qh) = 0 for all qh € Sh )

h
of diacretely divergence free funclions. In general Zhdz, even when V cHé(Q)

h .2

and S cLo(Q), i.e., discretely solenoidal functions are not necessarly

solenoidal. This is, of course, entirely analogous to the finite difference

case, e.g., a  function satifying a difference approximation to the

incompressibility constraint is not in general solenoidal. A measure of the

"angle" between the spaces Zh and Z is given by

h
- 3 " - ';
(2.8) e = iuph inf 'z z iy
zez' - 22
h
iz Hi-i

In general, 0s9<1, which is easily seen by observing that for ZheZ, =0, and
that by choosing z=0, 8=1.
- : h Zh . h |
Note that because of (2.2), the approximate velocity ueZ , it.e., u is

discretely solenoidal. Howevef, since in general Zhdz, divuhto. Loosly

speaking, the div-stability condition (2.5) ensures, as h»0 at least, that

discretely solenoidal functions tend to solenoidal functions.

I1.3 - Bmvor estimates and othesn results concerning the approximate solutl ion
We now present some of the available mathematical results concerning the

h h .
solution u ,p of the finite element problem (2.1)-(2.2). Here we assume that

the chosen finite element spaces Vh and Sh satisfy the div-stability condition
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(2.5). Subsequently, we will look into the issue of verifying that condition.

The summary presented is based on the detailed analysis found in [CR, JR, GR1,

GR2, and GP1.
First off, for any féLg(Q), (2.1)~(2.2) has a solution uh,ph, provided that
the div-stability condition (2.5) holds. However, one can prove that the

solution is unique only for "sufficiently small™ data f or "sufficiently large"”

viscosity v. More precisely, let

h b h
alw ,u ,v)

- sup
ul ol ey U et et

K =

For standard choices of finite element spaces k can be shown to be independent
of h and, in fact, depends only on ﬂth and 4. Then, one can show that (2.1)-

(2.2) has a unique solution whenever

f'f-vh
X su [9
2 p

_h
v vhth v Ii

K

This condition is very similar to the one which is needed to show the
uniqueness of the solution of (1.9)-(1.10) and in fact the latter implies the
former, i.e., whenever (1.9)-(1.10) can be shown to have a unique solution,

then, provided the div- stability condition is satisfied, (2.1)-(2.2) also have

a unique solution.

When one can show that (1.9)-(1.10) has a unique solution, it can also be

shown that the finite element solution of (2.1)-(2.2) converges to that
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solution. In addition, something can be said about the convergence of the

finite element solution even when (1.9)=(1.10) does not posses a unique

solution. For details, see [GR1 and GRZ2].

Error estimates can also be derived. Provided that the div-stability

condition is satisfied, we have that

(2.9 la - uhﬂ < C, inf llu - vhﬂ +C®O® inf lp - qhH
iihvh 1 727 h ' hn 0
ve q €S
and
(2.10)

: h h h

- I - ' ; 'y - "

lp-p o € C5 %nf fu - v, +C, inf ip-aqt,
Ve q €S

where 8 is defined in (2.8) and Ci’ i=1,..,4, are constants independent of h.
These estimates are optimal for the "graph norm" HuH1+HpH0 of functions
belonging to Hé(Q)XLg(Q) in the sense that the rate of convergence of the
finite element solution, measured in this norm, is the same as that of therbest
approximation to u and p out of Vh and Sh, respectively.

If the solution of (1.9)-(1.10), or more preciseiy, of the* linearized

adjoint problem corresponding to (1.9)-(1.10), is sufficiently regular, then

one can obtain an improved velocity error estimate in the LZ(Q)—norm, namely
h h

(2. - -

2.1 lu -~ u ”0 < Cshnu u II1

where again C5 is independent of h.

We see that once the div-stability condition is satisfied, the error in the

finite element approximation depends only on the ability to approximate in the
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chosen finite element subspaces. In general, (2.9)-(2.10) indicate that the

velocity and pressure errors are coupled. Furthermore, one finds that it is

" efficient to equilibrate the rates of convergence of the two terms on the right

hand side of (2.9)-(2.10). For this reason, one would like to use, for example,
polynomials of one degree higher for the velocity components than those used
for- the pressure. As a final comment, we note that the constants appearing in

(2.9)-(2.10) are 1in general proportional to 1/y where y is the stability

constant appearing in (2.5).

IT.4 - Yenifping the div—stalil ity condilion

=
i1

For particular choices of Vh and S, it is usually nof? an easy matter to

verify that the div-stability condition holds. To accomplish this task for
‘families of such spaces is even more difficult. Here, we sketch three
techniques for verifying the div-stability condition.

a) Fortin's method - One seemingly attractive method of showing that the

div—- stability condition holds is due to Fortin. He has shown [F] that the div-
stability condition (2.5) is equivalent to the existence of a linear operator

Hh from Hé(Q)avh such that given any VEHé(Q)

h h

bl v,qh) = b(v,qh) for all qheS

and

1wl , < Civl

where the constant C>0 may be chosen independent of h and of the particular
choice of veHé(Q). Thus the task of verifying the div-stability condition (2.5)
is reduced to the task of showing the existence of the operator I ;

unfortunately, although the latter task has been accomplished in a few specific
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settings, in general, it is also a difficult thing to do.

b) Verfiirth's method ~ Verfirth [V1] has deveioped a method for verifying

the div-stability condition (2.5) which applies to the case of continuous

discrete pressure spaces.

h 1

‘Specifically, if S cH (Q)ﬂLg(Q), he starts out by combining the inverse

inequality, see, e.g., €Cil,

(2.12) W, s o oty for ann ved?
and the result

) b(Vh,qh) h h _.h
(2.13) sup ——— 2 C,lq | for all q €S

h .h o hl| 2 1
Oxv eV vVl
to yvield
b(Vh,qh) Cz h. h _.h

(2.14) sup ———— 2 =~ hlg I1 for all q €S

h C
oxvllev? IVl 1

The inequality (2.13) can be shown to hold for many element pairs involving

continuous discrete pressure fields; see, e.g., [BPJ. Note that (2.13) has a

similar appearance to the div—sﬁability condition (2.5), but that it involves
the "wrong" norms.

Next, one combines the result, which can be found in,

given any q esthg(Q), there exists a wEHé(Q) such that diirw=qh

e.g., [GR1,GR2, LI:

and

lullsCaﬂqhHO, with the approximation theoretic assumption concerning the space

Vh: for any weHi(Q) there exists a whth such that
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h 1-k
(2.1 lw—w Ik < C4h |w11 for k=0,1 ,
to yield
h h
(2.16) b ) o - chigh,  for all es™ with 1q™ =1
. sup T 5 chia 1y or all q €S with iq 1l =1.

O#VhEVh Iv ‘1

Verfiirth then shows that the div-stability condition (2.5) follows from (2.14)
and (2.16) provided the constants Ci""’CG are independent of h.

Thus the main task of applying his method, once the inverse inequality

(2.12) and the approximation theoretic result (2.15) have been shown to hold

for the discrete velocity space Vh, is to show that (2.13) is wvalid.

¢) The Boland-Nicolaides method — A more useful method, in the sense of

having wide applicability and relative ease of use, has been developed by
Boland and Nicolaides [BN1l. One diffiéulty with verifying the div-stability
condition (2.5) is its gfobal nature; Boland and Nicolaides have shown how to
Local ige the difficult part of the verification process.

Specifically, consider a subdivision of Q@ into disjoint macnro-ekements Qr,
r=1,...,R, each of which consists of one or a few elements in thé the finite
element triangulation associated with Vh and Sh. The number of elements within
a macro— element is independent of h, i.e., as we refine the mesh the macro-
elemenﬁs are also refined so that they always contain the same number of
elements. Let Fr denote the boundary of the macro-element Qr.‘

Now, first suppose that the div-stability condition holds for the pair Vh
and Sh Locally over a macro—-element, i.e., there exists a constant §>0,

independent of h and of the particular choice of macro-element, such that
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h h
b(v ,q ) ~ h h _h
(2.17 sup 5 ] 2 7lq “0 for all q eSr
OxvheV¢ vy

where
V? = ( vevhlg | v=0 on Fr ] and S? = ( quh|Qr ).
r

Since V? and S? have fixed small dimension, independent of h, (2.17) may often

be. verified by a direct computation.

Second, suppose that the div-stability condition holds g¢felaffy for the

spacés Vh and §h where

[ Few

1 §h N Lg(Q) piecewise constant functions with respect ]
to the macro-elements Qr’ r=1,...,R ’

(2.18)

i.e., suppose that there exists a constant ¥>0, independent of h, such that

b(vh,qh)
(2.19) sup —_—

h

h
i h ‘
0yl T v 1

] 2 7ﬂqhﬁo for all qhe§

Sumarizing the Boland-Nicolaides method, suppose we know that the pair
Vh,Sh is Rocally diu—otabze with constant ? independent of h, i.e., in the
sense of (2.17). Further, suppose that the compastison spaces ih,§h, which
satisfy (2.18), are globaffy div-stable with constant ¥ independent of h, i.e.,
in the sense of (2.19). Then the spaces Vh,sh are globally div-stalle with a
constant y independent of h. Thus, through the uée of the comparison spaces the

div-stability of the pair Vh,Sh need only be checked locally, i.e., over a

macro-element.
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This method has been succesfully used, e.g., in [BC,BN1,BN3,GR21, to show
the div-stability of a variety of well known elements and some novel ones as

well, both in two and three dimensions.

I1.5 = Examples of unstable spaces including the bLilinear—constant pair

There are different ways in which arbitrarily chosen finite element spaces
may fail to satisfy the div-stability condition. Here we discuss some of these
and then give specific examples, focusing on the much studied and much
misunderstood bilinear velocity-constant pressure pair.

The most catastrophic type of failure is for (2.2), or equivalently (2.4),

to imply that uh=0, i.e., the only discrefely solencidal field belonging to Vh

is the zero vector. The approximate solution is useless sincé, of course, uh=0
cannot be a good approximate solution of the Navier-Stokes equations. This type
of situation can usually be detected by a cdunting argument, i.e., the discrete
divergence matrix b(vk,qj), j=1,...,J and k=1,...,K, appearing in (2.4)7 has
more independent rows than columns.

Less catastrophic is the situation wherein for one or a few, but not all,
qhesh we have that b(vh,qh)=0 for all vhgvh so that y=0 in (2.5). This kind of
failure of the div-stability condition is usually easy to detect since it
results, in practice, in the discrete divergence matrix being rank deficient.
Furthermore, if these type of pressure modes qh are the sole reason for the
invalidity of (2.5), one may often still obtain, through a filtering process,

useful approximations.

A more subtle failure of the div-stability condition is the case where for

at least some qheSh
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h b(vh qh) h
o e S 1
(2.20) Cthq ”O < %yp [ h ) < Czth AO
02V eV v "1

for some constants C1 and C2 independent of h. In this case y=0(h) where y is
the constant appearing in (2.5). In practice this may result in a loss of
accuracy, especially for the pressure approximations. Such instabilities are
harder to detect because, of course, computations are usually carried out using
a finite value of h. In particular no problems such as those caused by rank
deficient approximations to the continuity equation are encountered. This type
of situation points out the dangers of calculating on onl& one grid and of not
at least performing serious mesh refinement studies. It also points out the
usefulness of rigorous results concerning the stability, or lack thereof, of

finite element spaces.

a) - An unstable linear-constant pair - An example of the first and most

catastrophic instability is the following seemingly natural choice for the
velocity and pressure .finite element spaces. Let Q be a square which is
triangulated as in the figure below. For the velocity approximations we choose
piecewise linear functions with respect to the

given triangulation which are continuous over ’

and which vanish on I'. For the discrete pressures

we choose piecewise constant functions with

respect to the same triangulation and having zero

mean over Q. Clearly thHé(Q) and sthg(m. For

this choice the only discrete velocity field

uhevh satisfying the discrete incompressibility

constraint (2.2) is uh=0, i.e., the only

discretely solenoidal velocity field is the zero
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vector! One easily sees that if tﬁere are N cells to side, that the number of
equations in (2.4) is J=d1m(Sh)=2N2-1 which is greater than the number of

columns K=dim(Vh)=2(N—1)2.

In the above example we see that the discrete incompressibilty condition
(2.2) imposes too many constraints relétive to the available velocity degrees
of freedom. " In fact, dim(Sh)>dim(Vh). In order to remedy the situation one
must, at least, increase the dimension of Vh relative to that of Sh.

b} The bilinear—constant element pair - We next consider the bilinear

velocity- constant pressure pair which is often refered to as the Qi—Po element
pair. Again consider the case of 2 being a square and consider the
"triangulation" of the figure below. We now choose Vh to consist of piecewise
bilinear functions with fespect to this triangulation which are continuous over
2 and which. vanish on I. For Sh we choose piecewise constant functions over
the game triangulation and which have zero mean over Q. Once again the

h .2

inclusions thﬂg(ﬁ) and S cLO(Q) hold. The simplelcounting argument used for

the first example does not ‘yield any definitive information since dim(Vh)=
2(N-1>2, the same as before, while now dim(Sh)zNz—i.

It is well known, e.g., see [F, BH, SGLGE,

JP, GNP], that this bilinear-constant element T

pair exhibits the disastrous 'checkerboard" mode,

i.e., for the particular discrete pressure field

qheSh which is +1 in the "red squares"” and -1 in

the: "black squares” we have that b(vh,qh)=0 for

all vhth. This is an example of the second type

of instability discussed above. The single "bad"
pressure mode can be easily filtered out, and

therefore some have suggested that once this mode
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is taken care of, the bilinear-constant element pair can be safely used.

However, this is not the whole story for the bilinear-constant element
pair. Boland and Nicolaides [BNZ] have shown that there exist other pressure
modes for which (2.20) is satisfied. The 1left hand inequality of (2.4) was
previously known [Jf], at least in the different context of penalty methods. Of
course, the left inequality does not imply the right, and certainly doesn't
imply that for those modes the stability constant y=0(h). However, Boland and
Nicolaides have shown that this is indeed the case. Moreover, they have shown
[BN3] that there exist data f for which the pressure approximations do not
converge and that it is also possible to set up problems for which the velocity
approximations do not converge as well. At the least, since the constants in
the érror estimates (2.9)-(2.11) are proportional to Y—i, there will likely be
a loss of accuracy due to these pressure modes. Their conclusions are worth
noting, especially in view of the fact that the bilinear- constant element
pair, with thevlcheckerboard .mode filtered out, has been used on numerous

ocassions in "practical” computations.

III - Finite Element Spaces for the Primitive Variable Formalation

In this section we discuss pressure and velocity finite element spaces
which have been rigorously shown to satisfy the div-stability condition. There
are many such pairs known, especially for two dimensional problems; therefore
we will restrict our attention to pairs which have proven to be of the most
éractical utility.

Throughout, Pk(w) denotes the space of polynomials of degree less than

equal to Kk with respect to the set chd and [Pk(m)]d denotes the space of d-
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vector valued functions each of whose components belong . to Pk(w). Analogous
definitions hold for Qk(i)) and [Qk(ﬂ))]d in the case of functions which are
polynomials of degree less than or equal to k in each of the coordinate
directions, e.g., Qi(ﬁ) denotes piecewise bilinear functions with respect to
the set 9. Likewise we define the épaces ck(w> and [Ck(ﬁ)]d of k-times
continuously differentiable functions with respect to the set 9.

For the most part, the results below hold for polygonal domains in Rz and
polyhedral domains in R3. Thrdugh the use of, e:g., isoparametric elements,
they will alsé hold for domains with curved boﬁhdaries provided the latter
satisfy the wusual smoothness criteria. Furthermore, we assume that all
subdivisions of Q into finite elements which are employed below satisfy the

standard . conditions. For details concerning these issues, one may consult,

e.g., [Cil.

I1T1.1 - Piecewise Linean and bLikinean veloc ity [fields
We begin with somé examples involving piecewise linear or bilinear velocity
fields with respect to a subdivision of  into triangles or rectangles,

respectively. In all cases the discrete velocity fields are continuous overia.

.

In combination with these type of velocity finite element spaces we will

consider both discontinuous piecewise constant and continuous, over 2,
piecewise linear pressure fields. Every element pair listed satisfies the div-
stability condition (2.5). Moreover, provided the solution u,p of (1.9)-(1.10)

1

satisfies UEHZ(Q)ﬂHé(Q) and peH (Q)nLg(Q), the following error estimates for

the discrete solution uh,ph of (2.1)-(2.2) hold uniformily in h:

f u - uhﬂi = 0O(h)

(3.1) 1 "u - uhPO = O(hz)
e o_ o hyo

p-pi, =0
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Thus, these elements yield first order accurate pressure approximations and

second order accurate velocity approximations.

a) Piecewise constant pressures 1 - For the linear-constant element pair
mentioned in section II.5 the discrete continuity equation overconstrained the

approximate velocity field. However, by employing different grids for the

pressure and velocity fields, the linear-constant element pair may be made

stable. For example, consider a given triangulation fh of a polygonal domain R

into triangles. Then divide each triangle in fh into four triangles by joining
the midsides, thus defining a refined triangulation Th/Z' An example is

provided in the figure below.

A pressure triangle in 7

The four associated velocity
h triangles in T
g h/2
Now define
h _ -
JS = (a1 qePy) ,BeT fa=0)
(3.2) 1 Q
) L2 _ 0= .2 Y
V= (v overe @i?, ner, 5 werc®@i® 5 w0 onr)

so0 that the pressure is sought among piecewise constants with respect to the




[
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triangulation 7, while the velocity is sought among continuous piecewise linear

h

fields with respect to the finer triangulation T The pair of finite element

h/2°
spaces defined by (3.2) are known to satisfy the div-stability condition (2.5)
and thus yield optimally accurate approximations satisfying (3.1)

b) Piecevwvise constant pressures II - For the wunstable linear-constant

element pair of section II.S there was one velocity element for each pressure
element; for the stable 1linear-constant element pair (3.2) there are four
velocity triangles for each pressure triangle. Stable linear-constant element
pairs may be defined wherein the ratio of discrete pressures to velocities is
not so high. For example, let the velocity space Vh be as in (3.2); now define
the pressure space Sh through the following choice of basis. For each triangle
of 7}1 we define three basis functions, namely piecewise constants which are
unity in the shaded areas in figure below énd zero -in the unshaded areas. Of
course, outside the particular triangle of Th, the basis functions vanish as

well. This pressure space consists of three out of the

four possible piecewise constants associated with the four triangles in Th/z
contained within a single triangle in fh. Moreover, there are essentially three

. . . h
times as many pressure degrees of freedom for this choice of S as there are
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for the choice made in (3.2). However, this element pair is also stable, i.e.,
satisfies the div-stability condition (2.5) and the error estimates (3.1).

c) Piecewise linear pressures - One may also couple a piecewise 1linear

velocity element with a piecewise linear pressure element and still satisfy the
div-stability condition (2.S) and the estimates (3.1). Such a pair was

introduced in [BP], analyzed there and in [V1], and is given by

) f Sh [ q | qui(A) , Aefh ; quO(Q) ; f Q=0 )
(3.3)
1 Vh as in (3.2). Q

Due to the coupling between the pressure and velocity errors one cannot také
advantage of the better approximating ability of the linear pressure space.
Thus, insofar as the rates of convergence, this linear-linear element pair is
no better than the stable linear-constant element pairs. However, in practical
calculations we have found this to be the best element combination involving
linear velocity fields, better in the sense of-giving more accuracy for useful
values of h. Furthermore, this linear-linear element pair usually results in
fewer unknowns, for the same grid, than do the 1inear-constant pairs. For

example, suppose the pressure triangulation 7,  is given by the first figure of

h

section II.4 with N intervals on each side. Thus there are ZNz triangles in Th
and the element pair (3.2) has 2N2-1 pressure unknowns; on the hand, the number
of nodes in this triangulation is only (N+1)2 and thus the piecewise linear
pressure space of (3.3) has only (N+1)2—1 degrees of freedom. Both element
pairs have 2(2N—1)2 velocity unknowns so that the linear-linear element pair
(3.3) has roughly Nz less degrees of freedom, for the same grid, as does the

linear-constant element pair (3.2).

d) Piecewise bilinear velocity fields - Entirely analagous to the

triangular elements described above, we have the following elements involving
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bilinea} velocity fields with respect to rectangular elements. More general
quadrilateral elements may be found from these through, e.g., isoparametric
mappings.

We start with a subdividivision 2h of Q2 int§ rectangles, or more generally
quadrilaterals. Subsequently we divide each rectangle into four smaller
rectangles by joining the midsides, thus creating another subdivision 2h/2 of Q

into rectangles. See the figure below. In all three velocity-pressure element.

pairs

A pressure rectangle in Zh The fo:;cizioiiatgd velocity
gles in thz
about to be described we choose the approximating velocity space to consist of
piecwise bilinear functions with respect to the subdivision 2h/2 which are
continuous over 5 and which vanish on [, i.e., v
[ ]

2 0, =

h 2 -
, 0e2, o 5 velC (17 5 v=0onT J.

(3.4) vi={v] velQ, (@]

For the first pressure space we choose piecewise constants with respect to

the larger quadrilaterals of the subdivision Zh and which have zero mean over
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2, i.e.,

gh - (a! Q@ , ez, ; fa=0 )

As indidicated in the figure below, for the second pressure space we choose

three

::;/'

Z R /

out of the four possible piecewise constants associated with the rectangles

belonging to 2 and which have zero mean over 2. Finally, the third pressure

h/2
space consists of piecewise bilinear functions with respect to the subdivision

Zh which are continuous over 2 and have zero mean over 2, i.e.,

h 0, =
(3.5) s7={ q qeQ, () , De2, 5 qeC (@) ; fa=0 )
The three velocity-pressure elements just described satisfy the div-
stability condition (2.5) and the error estimates (3.1). Similar to the case
for triangles and for the same reasons, the prefered element pair involving

bilinear velocities is (3.4) coupled with (3.5), i.e., the bilinear velocity-

bilinear pressure pair.
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I11.2 - The Taplorn-Hood elemenl pain
We next turn to quadratic and biquadratic approximate velocity fields.
Suppose we have a triangulation fh of 2. Then, the Taylor-Hood element pair

[TH] is defined by

2

f v
1 s"

(v ve[Pz(A)]z , b7 5 welC@1° ; v=0onT )

h

(3.6) -
(a! aePyd) , ter, 5 qec@ ; fo=0)
Q .

Note that we are now basing Vh andASh on the same grid but on different degree
polynomials, in contrast to (3.3), which uses the same degree polynomials but
different grids. The element pair (3.6) satisfies the div- stability condition
(2.9). Furthermore, if the solution (u,p) of (1.9)-(1.10) has the indicated
smoothness, then the following error estimates hold

uniformily in h:

J fa - uhn1 - on™1, 1 J uenm(9>nng(n> l
(3.7 1 lua -'uhﬂo = o(h™ I vhenever 1 and I’ m=2 or 3.
Ip - tho = on™ peHm_i(Q)ﬂLg(Q)

These results have been established by many authors, including [BP,V1,BN1l1. We
see from (3.7) that if ueH (NHL(Q) and peH @NLZ(@) then, in L%-norms, ve
have third order accurate velocity approximations and second ordéer accurate
pressure approximations. This is an improvement over any of the elements
involving linear velocities. |

One should note that thesnumber of degrées of freedom, both of velocity and
pressure type, associated with the use of (3.6) is identical to that associated
with the use of (3.3), the most efficient linear velocity element. In fact, the

structure of the discrete system resulting from a Taylor-Hood discretization is
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in every way identical to that resulting from the use of (3.3). Therefore, the
solution times for the Taylor-Hood and the linear-linear discrete systems are
roughly the same if one uses the same pressure triangulation in both cases. Of
course, the Taylor-Hood element pair will yield better accuracy than the linear-
linear pair, provided the exact solution is sufficiéntly smooth.

On the other hand, on the same grid, the assembly costs of Taylor-Hood will
in general be higher éince one needs to use higher order quadrature rules to
integrate the higher degree polynomial integrands resulting from the Taylor-
Hood element pair. For many solvers, the assembly time is overwhelmed by the
solution time; therefore the increased assembly cost associated with (3.6) is
not a serious drawback. Of coursé, this is further mitigated by the fact that
for the same .accuracy, one may use a coarser grid for (3.6) than for (3.3).

Summarizing, provided the exact soiution is sufficiently smooth, the Taylor-
Hood element pair, when compared to any of the linear velocity elements, yields
better accuracy for essentially the same work, or alternately, will yield a
desired level of accuraéy for less cost.

For rectangles or quadrilaterals we have the analogous pair
2

(v 1 vet,@n®, Dez, ; vetc@1? ; v=0 oA T )

( q |l qui(U) , Dezh ; qu(ﬁ) ; fq=0 )
Q2

H

I
(3.8)
| st

where Zh denotes a subdivision of Q into rectang%es. This element pair
satisfies the div-stability condition (2;5) and the error estimates (3.7).

One may well ask if further efficiencies may be gained by using higher
order elements, e.g., cubic velocities coupled with quadratic pressures. Here
one needs to consider the trade-off between the increased accuracy of higher
order elements and the increased complexity of those elements. As in other

settings, e.g., structural mechanics, one generally finds that the optimum
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seems to be achieved by quadratic elements. Furthermore, it is questionable
that in general settings the exact solution of the Navier-Stokes equations 'is
sufficiently smooth to enable the potential better accuracy of higher -order
elements. In our overall experience, we have found the best‘choice of velocity-
pressure elements‘ to be the Taylor-Hood element pair (3.6), or its

quadrilateral counterpart (3.8).

I11.3 - Divengence free elements

Ideally, one would like to choose the finite element spaces Vh and Sh so
that the functions belonging to Vh are at least discretely divergence free.
Certainly if the functions belonging to Vh are divergence free then they are
discretely divergence free as well;.i.e., divvh=0 for all vhevh implies that

Vh=Zh. Such a case effects a great simplification since the velocity and

pressure uncouple. Indeed, we need only solve

a(uh,vh) + c(uh,uh,vh) = (f,vh) for all vhevh

for the discréte velocity field uh since in this case the term b(vh,qh) in.
(2.1) vanishes for any vhevh=Zh. Also, since ZheZ, note that in the velocity
estimate (2.9), 0=0 so that the velocity error depends only on the ability to
approximate in Vh.

Unfortunately, although there are known some finite elemént pairs such that
the functions in Vh are at least locally divergence free, these have proven to
be impractical, and we will not consider them here. We do mention that one
obvious method of generating divergence free discrete vector fields is to take
the curl of a piecewise polynomial field, i.e., of a piecewise polynomial

streamfunction. One problem with this approach is that if one wants a
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conforming velocity field, 1i.e., thHé(Q), then the discrete streamfunction
field must be chosen to be continuously differentiable over Q2. In Rz this, of
course, necessitates the use of at least quintic streamfunctions over
triangles, or cubic polynomials over macro-elements, e.g., the Clough-Toucher
element. Non-conforming velocity fields can also be generated in this manner.

See [Ca,CN,GR1, and GR2] for details.

I11.4 - Three dimensional elemenls

Compared to the two dimensional setting, there are known much fewer stable
element pairs for three dimensional problems. However, there is great interest
in this subject and theref&re there has been substantial recent progress. Here
we mention a few of the known stable three dimensional elements.

In the first place, the three dimensional analogue of the Taylor-Hood
element 1is known to be stable in 3-D; this may be shown by the methods of
Verfrth or Boland-Nicolaides. Specifically, we subdivide Q into fetrahedrons
and use continuous piecewise quadratic polynomials for the velocity and
continuous piecewise linear polynomials for the pressure. The accuracy of this
combination is the same as in the two dimensional case.

Next we consider linear-constant elements. Again, subdivide 2 1into
tetrahedrons. For the pressure space we choose piecewise constants with
respect to this initial subdivision. Now we subdivide each tetrahedron into 12
smaller tetrahedrons by first joining the centroid of the faces to the
vertices, and then joining the centroid of the large tetrahedron to the
vertices and the .centroids of the faces. For the velocity space we choose

continuous piecewise linear polynomials with respect to the smaller

tetrahedrons.

Another stable linear-constant element pair is defined by first subdividing
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Q2 into rectangular prisms, or more generally, into distortions of such prisms.
For the preésure space we choose piecewise constants over the rectangular
subregions. We subdivide each rectangular prism into 24 tetrahedrons by first
drawing the two diagonals of each face, then joining the centroid of the prism
to the verfices and to the six intersection points of the face diagonals.

Both these 1linear-constant element pairs are known to be stable and yield
the same accuracy results as those for the two dimensional linear-constant

pairs. See [BoCl for details.

IV - Alternate Weak Forms and Boundary Conditions

In this section we examine sbme variants of the weak formulation (1.9~
‘(1.10), mostly from the viewpoint of how different boundary conditions may be
incorporated into a finite element method using primitive variables. We again
emphasize that there are many radically different weak formulations involving u
and p which we will not be able to consider; we are restricting ourselves to
variants of the most commonly used weak formulation. 4

Before considering boundary éonditions, we briefly consider am alternate

formulation of the convection term in (1.9).

" IV.1 - dn akternate formufation of the convection lesm

For the purpose of simplifying the analysis of the approximate solution it
can be useful to introduce a slightly different weak formulation wherein the

trilinear form c¢(.,.,+) appearing in (1.9) is replaced by the skew-symmetrized

form introduced by Teman
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(4.1) Ew,u,v) = ( c(w,u,v) - c(w,v,u) ).

N =

One may easily verify that &(u,u,v)=c(u,u,v) whenever divu=0 in Q and u-n=0 on
', where n denotes the outward normal to I'. Therefore, due to (1.2)-(1.3), it
seems irrelevant whether one uses (1.8) or (4.1) in a weak formulation of the
Navier- Stokes equations. From an analysis point of view, the advantage of
(4.1) is that ¢®(w,u,v)=-¢(w,v,u) for any u,v,weHi(Q) while the analogous result
for (1.8) holds only when divw=0 in Q2 and one of u=0, v=0 or w-n=0 on I.

We emphazise that, insofar as the accuracy of the approximations is
concerned, it makes no difference whether one uses (1.8) or (4.1); we merely
point out that many of the results concerning finite element-approximations of
solutions of (1.1)~ (1.3) were first obtained through the use of (4.1). On the

other hand, any implementation of (4.1) will result in more computational work

than the analogous implementation of (1.8).

IV.2 -~ Fnhomogeneous veloc ity bLoundary conditions

‘There are many different ways to treat inhomogeneous velocity boundary
conditions. In practice, the overwvhelming choice is to use the boundary
interpolant. We describe this method for polygonal domains QCR?; entirely
analogous ideas may be used in three dimensions and for domains with curved
sides, the latter through the‘aid of, e.g., isoparametric elements.

Consider the boundary condition

(4,.2) u=g on I’

and the set

(4.3) vg = (ueﬂi(m | u satisfies (4.2) )
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Note that :V0=H(1)(.m. The weak formulation which we will discretize is as
follows: seek uevg and peLg(m such that (1.9)v and (1.10) hold. Note that the
test function v still belongs to Hz(ﬂ), i.e., v=0_ on I'.

In order to pose our discrete problem we choose finite element spaces
thﬂi (2) and Sth(Z)(Q). .We denote by Vhlr the restriction of Vh to the boundary
r, i.e., Vhlr consist of functions defined on I' and which can agree with the
boundary values of at least one function belonging to Vh The finite element
functions belonging to Vh, being, for example, piecewise polynomials, cannot in
general satisfy the boundary condition (4.2); certainly, in general g¢VhIr.
Therefore we choose an approximation to g, which we denote by gh, belonging to
Vhlr. The most common choice for gh, and the one we consider here, is the
interpo.iant of g in Vhlr,.

This choice is trivial to implement, which at least partially accounts for
its popularity. For example, suppose Vh is a Lagrange finite element space,
i.e., one whose degrees of freedc.m are exclusively function values at points.
Let {v, 1}, k=.1-,...-,K denote the usual finite element basis for |7h Let the first

k

K of these basis functions be associated with interior nodes xk so that for

k=1,...,K, vk=0 for- xeI'. The remaining basis function {vk}, k=K+1,...,K, are
associated with nodes xk lying on I'. In practical implementations' there are

more efficient node numbering schemes than the one we are using; however, the
latter simplifies the explanations being attempted here.

Choosing gh to be the boundary interpolant -of g is then equivalent to

writing
: . K K
(4.4) ux) = ) BV, (X) + ) g(x, )V, (x) .
k=1 k=K+1
In (4.4) B k=1,...,K, are the unknown coefficients to be determined; the

k’
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coefficients of the basis functions associated with boundary nodes are simply

set equal to g evaluated at the corresponding node. Note that (4.4) implies

that

K
h _ .
g (x) = z: g(xk)vk(x) for xel .
k=K+1

The contribution to tJ’ emanating from the second summation of (4.4) becomes

part of the data of the discrete system of equations.

Once an approximation gh is chosen, one may define the set

V: = ( VEVh ! v=gh on ]

Note that Vg is the finite element subspace of Hé(ﬂ) used in conjunction with
the homogeneoﬁs boundary condition (1.3); also, clearly V:cﬂi(Q) is not a
subset of VgA. Now, the approximate problem may be defined as follows: seek
uheV}; and phes“ch(m such that (2.1)-(2.2) hold for all vhevg and q'es™,
respectively. Again, the test functions vh vanish on the boundary .

The whole discussion of the div-stability condition (2.5)- carries over
intact to the case of the inhomogeneous boundary (4.2); in (2.5) we still use
the subspace Vg of finite element velocity fields which vanish on the boundary.
Results analagous to those of section II.3 can be derived in a fairly
straightforwvard manner with the exception of some technicalities encountered
for the LZ(Q)-error estimate for the velocity approximation. See [GP, FGP, GRZ]
for details.

In particular, if gh is chosen to be the boundary interpolant of g in Vhlr,

then all the results, e.g., error estimates, concerning the finite .element

spaces discussed in section IIT are essentially still valid for the
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inhomogeneous velocity boundary condition (4.2). Again, see [GP, FGP and GR2]

for details.

IV.3 - dAtternate bLoundanp conditions and formulot ions of the viacousd tesm

In this section we examine how different choices fof the viscous term in
(1.1) affect the natural boundary conditions of corresponding weak formlations.
Some of this material can be found in [GLNI.

Due to (1.2), when v 1is constant, the viscous term in (1.1) may be written

in the various equivalent forms

(4.5.1) vAu =

. (4.5.2) div[ v( (grad u) + (grad u)T )] =
(4.5.3) -vcurl(curlu) =
(4.5.4) v( grad(divu) - curl{curlu) )

Although these different realizations are equivalent insofar as &the partial
differential equations are concerned, we shall see that each generates a
different numerical method.

If for some reason v is not constant or divu#0, then only (4.5.2) may be
used. Indeed, (4.5.2) is the form of the viscous term which arises naturally
in the derivation of the Navier-Stokes equations from the principle of
conservation of ‘linear momentum and the Cauchy-Poisson constitutive equation.
The other three forms (4.5.1), (4.5.3) and (4.5.4) are derived from (4.5.2)

with the aid of (1.2) and the assumption that v=constant. In (1.1) we have used
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(4.5.1) only because this is the most popular choice in the literature; all of
the results obtained so far hold equally well if one chooses (4.5.2) instead.
As will be seen from the discussion below, (4.5.2) is, in general, to be
prefered to (4.5.1).

Denote two segments of the boundary I' by Fn and FT. These segments may be
empty, are not necessarily disjoint and, in fact, may be equal. Now, for fixed

given functions 8, and gr, define the set

Vg = ( VEH1 | v-n=gn on Fn ; Dxvxn=g_ on FT )
and the spaces
Vo = ( VEH1 | v-ﬁ=0 on T ; wxn=0 on I’ )
n T

and

S = Lg(Q) if rn=r R S=L2(Q) otherwise.

where ven denotes the component of v normal to the boundary I' and
nxvxp=v-(ven)n 1is the projection of v onto the plane tangent to I. In the
definition of Vo we may use wvxn=0 duye to the relation wvxp=nx(mwwxn), i.e.,

nxvxn=0 implies that nxv=0. In Rz, nxvxn=v.T where T is the unit tangent vector

to .

Suppose that we wish to specify the boundary conditions

(4.6.1) u-n=g_ on
n n
and
(4.6.2) nxuxn=g_on I_ .
T T
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i.e., the normal velocity on Fn and the tangential velocity on Fr,

respectively. For all the weak formulations which we will consider involving
any of the choices in (4.5), (4.6) will be eassential boundorny conditions. Thus
the trial solution functions u will satisfy (4.6), i.e., ueVg, and the test
functions satisfy veVo.

Consider the following weak formulation: for i=1,2,3 or 4, seek UEVé and

peS such that

4.7 ai(u,v) + b(v,p) + c(u,u,v) = (Ff,v) + d(v) for all VEVo
and
(4.8) b(u,q) = 0 for all qeS.

Here, b(.,«) and c(e,-,«) remain as in (1.7) and (1.8), respectively, and f
continues to denote the body force appearing in the momentum equation. The

linear functional d(.) is given by

(4.9 d(v) = f~rv-n + f Sevxn
r/r r/r
n T
where the functions r and s are additional data for the problem. Im (4.9), for
example, F/Fn denotes the complement of Fn inl, i.e., xerlrn implies that xel’
but x#Fn. Also, since v is an arbitrary test function, in direction wxn can be
taken to be vectors spanning the tangent plane to T.
The bilinear forms a («,¢), i=1,...,4, depend on the choice made in (4.5)

i

and, corresponding to the four choices possible in (4.5), are given by

(4.10.1) ai(u,v) = vf gradu:gradv
Q
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(4.10.2) az(u,v) = % f u( gradu + (grédu)T ):( gradv + (gradv)T )
. Q
(4.10.3) a5 (u,v) = vf (curlu). (curlv)
Q
and
(4.10.4) a4(u,v) = vf (curlu)- (curlv) + (divu)(divv)

Q

In the customary manner, should u and p be sufficiently smooth, one can,
through formal integration by parts procedures, ascertain what differential
equation problem the weak formulation (4.7)-(4.8) corresponds to. To begin
with, we know that the boundary conditions (4.6) are satisfied since these are

being required of the candidate trial functions u. We also find that the

differential equations (1.1) and (1.2) are satisfied, where in (1.1) the

viscous term is replaced according to (4.5), depending on which choice is made
in (4.10). Finally, one finds the natural boundanp conditions corresponding to
the particular weak formulation. We will now discuss these in some detail for

each possible choice in (4.10). ) ’

Corresponding to the paired choices (4.5.1) and (4.10.1) we have the

natural boundary conditions

(4.11.1D) p — vnegradu-n = r on I‘/I‘_n and vne-graduxn = § on F/FT.

Unfortunately, these boundary conditions have no phpsical meaning. Thus the
choice (4.5.1), or equivalently (4.10.1), can only be used in conjunction with

the boundary condition (4.6) specified on all of ', i.e., u given on Fn=FT=F.
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Next, consider the choices (4.5.1) and (4.10.1). The natural boundary

conditions are then

(4.11.2) [P * v (gradu + (gradu)T).,,

-r on I'/T" and
n

un-(gradu + (gradu)T)xn =-s on[/T_.

Thus -r and -s are the normal and tangential stresses, respectively, on the
boundary. Then, for the choice (4.10.2), the possible combinations of boundary
conditions at a point on the boundary I' are as follows: we may specify the
velocity, or we may specify the normal velocity and the tangential stress, or
we may specify the tangential velocity and the normal stress. The latter
combinations are useful, e.g., for free surface problems or at artificial
outflow boundaries. Details may be found in [GLNI.

The third choice (4.5.3), or (4.10.3), vyields the natural boundary

conditions
(4.11.3) P=r on F/Fn and w = s/v on F/FT

so that r and s are the pressure p and v times the vorticity w=curlu,
respectively, on the boundary. The possible combinations of boundary
conditions are now: we may specify the velocity, or we may specify the normal
velocity and the vorticity, or we may specify the tangential velocity and the
pressure. The pressure is often used as an outflow condition; the vorticity-is.
useful in exterior problems when matching to an inviscid irrotational flow
since it is well known that the vorticity decays to its wvalue at infinity
faster than does the velocity. Again, details may be found in [GLN].

Unfortunately, although the boundary conditions associated with the use of

(4.10.3) can be useful, 1in practice we cannot employ this particular
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férmulation of the viscous term. The reason for this is that the choice
(4.10.3) requires the use of divergence free finite element velocity fields in
order for the form 33(.,.) to be coercive on Zh. This condition is also needed
to guarantee the stability of the approximations and, for the other three cases
(4.10.1), (4.10.2) and (4.10.4), is trivially satisfied for any choice of
conforming discrete velocity space.

Fortunately, the boundary conditions (4.11.3) are approximatefy the natural
boundary conditions associated with the choice (4.11.4). In fact, for (4.10.4),

we have the natural boundary conditions
(4.11. %) p - vdivu = r on F/Fn and w = 8/v on F/I“r .

The second of these is identical to the second'ofb(4.11.3). If v is "small",
and/or if we assume the‘incompressibility constraint holds up to portions of
the boundary where the normal velocity is no? specified, then (p-vdivu) is
essentially equal to p. Thus we recover, at least approximately, the first
_boundary condition of (4.411.3).

In summary, when one has velocity and/or stress boundary conditions, one
should use (4.11.2) in (4.7). and when one has velocity and/or pressure and/or
vorticity boundary conditions the choice (4.11.4) is preferable.

The discretization of (4.7)-(4.8) follows the usual procedures once one
chooses the finite element spaces for the velocity and the pressure
approximations. The natural boundary conditions are automatically acounted for
by the inclusion of the linear functional d(.) in (4.7). The essential boundary
conditions on the components of the velocity can be enforced- -in a manner
analogoué to that described in section IV.2 for the case where the complete

velocity is specified on the whole boundary. All material relating to the div-
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stability condition (2.S) is essentially still valid, and thus, insofar as that
condition is concerned, the particular choices of finite elements discussed in
section III may still be used.

In actuality, there are very few rigorous error estimates availablé for
boundary conditions other than. the wvelocity. For polygonal or polyhedral
domains 2, the error estimates of section II.3 are still valid. However, for
domains with cuwrved bLoundaries, using the‘type of weak formulations discussed
here may result in a loss of accuracy. For example, for (4.10.2) with normal
velocity and tangential stress boundary conditions, it was shown by Verfiirth
[V2] that there is a loss of accuracy due to a Babuska type paradox, i.e., the
limit of solutions of problems posed on polygonal approximations to QCRZ is not
the solution of the problem poséd on Q. Verfiirth (V31 has also shown how
through the use of additional Lagrange multipliers on the boundary, a different

weak formulation yields optimal accuracy.
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