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OXYGEN AND MICROMETEOROID IMPACT 

Daniel A. Gul ino 
Na t iona l  Aeronautics and Space A d m i n i s t r a t i o n  

Lewis Research Center 
Cleveland, Ohio 44135 

SUMMARY 

So la r  dynamic power system m i r r o r s  f o r  use on Space S t a t i o n  and o the r  
spacecraf t  f l own  i n  low e a r t h  o r b i t  (LEO) a r e  exposed t o  t h e  harshness o f  t h e  
LEO environment. Both atomic oxygen and micrometeoroids/space d e b r i s  can 
degrade t h e  performance o f  such m i r r o r s .  P r o t e c t i v e  coat ings w i l l  be requ i red  
t o  p r o t e c t  o x i d i z a b l e  r e f l e c t i n g  media, such as s i l v e r  and aluminum, f rom 
atomic oxygen a t tack .  Several p r o t e c t i v e  c o a t i n g  m a t e r i a l s  have been i d e n t i -  
f i e d  as good candidates f o r  use I n  t h i s  a p p l i c a t i o n .  The d u r a b i l i t y  o f  these 
coa t ing /m i r ro r  systems a f t e r  p i n h o l e  defects  have been i n f l i c t e d  d u r i n g  t h e i r  
f a b r i c a t i o n  and deployment o r  through micrometeoroid/space debr i s  impact once 
on-orhft t s  o f  rnnrern Stud!es nf the e f f e c t  nf ry! nxygor! g l a s m ~  env!renment 
on p r o t e c t e d  m i r r o r  surfaces w i t h  I n t e n t i o n a l l y  induced p i n h o l e  defects  have 
been conducted a t  NASA Lewis and a r e  reviewed i n  t h i s  paper. I t  has been found 
t h a t  o x i d a t i o n  o f  t h e  r e f l e c t i v e  l aye r  and/or t h e  subs t ra te  i n  areas adjacent  
t o  a p i n h o l e  defect ,  b u t  n o t  d i r e c t l y  exposed by t h e  p inhole,  can occur. 

ELECTRIC POWER GENERATION ON SPACE STATION 

E l e c t r i c  power generat ion on the Space S t a t i o n  i s  planned t o  be accom- 
p l i s h e d  by two means: t r a d i t i o n a l  pho tovo l ta i c  panels w i l l  account f o r  about 
one - th i rd  o f  t h e  t o t a l  power generated, and s o l a r  dynamic modules w i l l  account 
f o r  t h e  o the r  two- th i rds.  Solar  dynamic systems generate e l e c t r i c i t y  by focus- 
i n g  t h e  sun's r a d i a t i o n ,  e i t h e r  by r e f l e c t i n g  m i r r o r s  o r  r e f r a c t i n g  lenses, 
onto t h e  r e c e l v e r  o f  a heat engine. The c u r r e n t  c o n f i g u r a t i o n  c a l l s  f o r  a 
r e f l e c t i v e  system, w i th  e i t h e r  aluminum o r  s i l v e r  as t h e  r e f l e c t i v e  medium 
( r e f .  1). 

F igu re  1 i s  a schematic diagram o f  a s o l a r  concentrator  which u t i l i z e s  a 
m i r r o r  made up o f  19 hexagonal elements which a r e  i n  t u r n  made up o f  24 t r i -  
angular,  s p h e r i c a l l y  contoured facets .  
t r i a n g u l a r  f ace ts .  One proposal c a l l s  f o r  these facets  t o  c o n s i s t  o f  an a l u -  
mlnum honeycomb core w l t h  a graphite-epoxy laminate on each s ide.  
t i v e  metal  (most l i k e l y  e i t h e r  aluminum o r  s i l v e r )  i s  deposi ted onto t h e  
graphite-epoxy, fo l lowed then by the  p r o t e c t i v e  coa t ing .  This paper i s  con- 
cerned w i t h  the  p o t e n t i a l  e f f e c t s  o f  the l o w  e a r t h  o r b i t  environment on the  
performance o f  these m i r r o r s .  

F igu re  2 I s  a diagram o f  one o f  t h e  

The r e f l e c -  

THE LOW EARTH ORBIT ENVIRONMENT 

The low e a r t h  o r b i t  (LEO) environment presents severa l  hazards t o  the long  
term s u r v i v a b i l i t y  o f  l a r g e  m i r r o r s .  The dominant chemical c o n s t i t u e n t  between 
200 and 650 km i s  atomic oxygen ( f i g .  3) ( r e f .  21, and, s ince both aluminum and 
s i l v e r  a r e  suscep t ib le  t o  ox ida t i on ,  p r o t e c t i o n  of t h e  r e f l e c t i v e  metal f rom 
atomic oxygen a t t a c k  i s  v i t a l  t o  the s u r v i v a b i l i t y  o f  these m i r r o r s .  



Another potential hazard to space-borne reflectors in LEO is the particu- 
late matter environment. Micrometeoroids, as well as other such "natural" 
phenomena as space debris, are a potential source of pinhole defects in the 
protective coating of a reflecting mirror. Other potential sources of such 
defects include the fabrication, handling, transport, and deployment of the 
mirror facets. Once a pinhole defect has been inflicted, by whatever mecha- 
nism, a pathway is provided for direct attack of the reflective layer and/or 
the graphite-epoxy substrate by atomic oxygen. 

CANDIOATE PROTECTIVE COATINGS 

Several materials have been proposed for use as protective coatings over 
Any material chosen for such an application must meet a the reflective layer. 

number of requirements. The material must be transparent to solar radiation 
in the wavelength region of interest, generally 200 to 2500 nm. 
be easily applied, strongly adherent, have low toxicity, and be of low cost. 
Finally, of course, it must be resistant to atomic oxygen. Materials proposed 
for such use include several metal oxides, such as aluminum oxide, silicon 
oxide, and indium-tin oxide. Other materials under consideration include mag- 
nesium fluoride and silicon nitride. This paper will discuss some of the 
experiments that have been conducted at NASA Lewis to determine the effective- 
ness of these coating materials in both the presence of and absence of inten- 
tionally Introduced pinhole defects. 

It must also 

EXPERIMENTAL ASPECTS 

The sample mirrors studied were prepared both at NASA Lewis and at Harris 
Corporation. The NASA Lewis samples were prepared on a variety of substrate 
materials, including aluminum, electro-formed nickel, beryllium-copper alloy, 
graphite-epoxy composite, and fused silica. They were fabricated by ion beam 
sputtering of targets o f  the various protective coatings in a deposition system 
described elsewhere (ref. 3). The Harris samples were prepared on both glass 
and graphite-epoxy substrates. 
ion beam sputtering and vacuum evaporation. 

The protective coatings were deposited by both 

The atomic oxygen environment was simulated with a Structure Probe, Inc. 
Plasma Prep I 1  plasma asher. This device generates a plasma by 13.56 MHz RF 
excitation of the carrier gas, which in all cases was ambient air. While such 
information does exist for a handful of materials, direct comparisons between 
lifetime in the asher and lifetime in LEO are difficult; however, the asher is 
very useful for making gross determinations of the likelihood of survivability 
of a particular material in LEO. 

Pinhole defects were induced in protective coatings with an S.S. White 
Airbrasive high-speed abrasive particle system. This unit accelerated the 
particles, 27 pm diameter alumina i n  this case, to a calculated velocity of 
approximately 340 m/sec at a flux of approximately 6x1012 cm-2 sec-1. This 
differs from the actual, LEO micrometeoroid envjronment in at least two impor- 
tant respects. First, particle velocities are considerably higher in LEO, 
being on the order of 10 to 60 km/sec (refs. 4 and 5). The effect of particle 
impact at velocities of this magnitude are very different. Second, micro- 
meteoroids impacting at these velocities have been shown to become briefly 
fluid-like in their behavior for a short time after impact. 
the particle can actually line the interior of the impact crater (refs. 5 

The result Is that 
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and 6). Thus, self-protection of the underlying material from atomic oxygen 
exposure as a result of the micrometeoroid itself is possible. The signifi- 
cance of the present experiments thus lies more in the atomic oxygen exposure 
response of pinhole defects (from whatever source), than in accurate micro- 
meteoroid simulation. 

All reflectances reported herein were measured on a Perkin-Elmer Lambda-9 
UV/VIS/NIR spectrophotometer equipped with a 60 m diameter, barium sulfate- 
coated integrating sphere. Integrated solar reflectances were measured by 
obtaining the spectral reflectance over the wavelength range of 200 to 2500 nm 
and then convoluting this into the AM0 solar spectrum over the same wavelength 
range. Both specular and total reflectances were obtained, the former of which 
was measured at an acceptance aperture solid angle of 0.096 sr. 

DISCUSSION 

Defect-free Samples 

The effect of the asher plasma environment on the specular solar reflec- 
tance of several reflector/substrate systems is shown in figure 4. For compar- 
ison, the effects on an unprotected silver surface and an unprotected aluminurn 
surface are also shown. Clearly, silver requires protection. (There Is no 
apparent effect of Substrate.) Any of the protective coatings displayed in 
figure 4 would appear to be satisfactory. While the unprotected aluminum 
sample continued to have a high specular reflectance, and hence would not 
appear to require protection, there is concern (ref. 7) that the self-generated 
oxide layer which protects the aluminum surface would not be satisfactory. 
Specifically, the physical structure of aluminum oxide is such that neutral 
atomic oxygen could diffuse through it and continue to oxidize the aluminurn 
surface. Thus the oxide thickness would continuously increase, resulting in a 
gradual, but steady, decline in specular reflectance. It is perhaps safer and 
wiser to intentionally apply a coating of known thickness and properties under 
controlled conditions, rather than rely on the natural growth of an oxide with 
uncertain properties. 

Tables I and I1 summarize some of the experimental results that have been 
obtained on the effect o f  the asher plasma on various protective coating/ 
reflective layer/substrate combinations. For comparison purposes, a quantity 
defined as the fractional loss of reflectance per unit asher exposure time was 
developed as a way of comparing the relative degree of protection afforded the 
reflecting layer by the various protective coatings. While this quantity is 
based only on the start and end values of reflectance, it does give qualita- 
tively useful information. 

Samples with Pinhole Defects 

Figures 5 through 13 present results showing the effect of pinhole defects 
on the asher plasma environment durability of both silver and aluminum reflect- 
ing surfaces with protective coatings on both graphite-epoxy composite and 
fused quartz substrates. The protective coatings for most of the samples con- 
sisted of 700 A of A1203 followed by 2200 A o f  Si02. The generally observed 
effect is that oxidation of the reflective layer and/or the substrate occurs 
in undamaged areas surrounding a defect site. 
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I n  t h e  case o f  m i r r o r  samples const ructed on o x i d i  zable (graph1 te-epoxy) 
substrates,  ox ida t i on  o f  both t h e  r e f l e c t i n g  l a y e r  and t h e  subs t ra te  surround- 
i n g  t h e  d e f e c t  occurs. 
t i o n a l l y  induced p inho le  defects .  
F igu re  6 shows a s i m i l a r  sur face a f t e r  90 h r  o f  exposure i n  t h e  plasma asher. 
Several o f  t h e  defect  s i t e s  a r e  now surrounded by a d isco lored,  ( i n  t h i s  case, 
darkened) border. These d i s c o l o r e d  areas a re  t h e  r e s u l t  o f  o x i d a t i o n  o f  t h e  
s i l v e r  and/or the graphite-epoxy subs t ra te  i n  t h e  area surrounding t h e  de fec t  
s i t e .  

F igu re  5 shows a s i l v e r  m i r r o r  sur face w i t h  i n t e n -  
A number o f  t h e  d e f e c t  s i t e s  a r e  v i s i b l e .  

F igu re  7 shows a s i m i l a r  e f f e c t ,  b u t  through an elongated de fec t .  

F igu re  8 shows an eroded sur face a f t e r  approximately 240 h r  o f  plasma 
Ox ida t i ve  undercu t t i ng  occurred t o  a l a r g e  asher exposure (about 240 h r ) .  

ex ten t  i n  t h i s  sample. The d i s c o l o r a t i o n s  now cover a s u b s t a n t i a l  p o r t i o n  o f  
t h e  t o t a l  sample sur face area. F igure 9 shows t h e  lower r i g h t  p o r t i o n  o f  
f i g u r e  8, b u t  a t  a h igher  m a g n i f i c a t i o n  and a h ighe r  (60")  angle o f  tilt. I t  
can be seen t h a t  wherever t h e r e  a re  d i s c o l o r a t i o n s ,  t h e  sur face o f  t h e  c o a t i n g  
had become d i s t o r t e d  (caved i n ) .  This i s  most l i k e l y  t h e  r e s u l t  o f  t h e  i n t r i n -  
s i c  compressive s t ress  i n  t h e  f i l m  being released by t h e  l o s s  o f  subst rate.  

Sample m i r r o r s  const ructed on fused s i l i c a  subst rates showed d i f f e r e n t  b u t  
r e l a t e d  o x i d a t i v e  behavior.  
fused s i l i c a  subst rate a f t e r  about 90 h r  o f  plasma asher exposure. Here can be 
seen a l i g h t  colored, p u f f e d  m a t e r i a l  p r o t r u d i n g  through almost every d e f e c t  
s i t e .  This ma te r ia l  i s  ox id i zed  s i l v e r  expanding i n  t h e  on ly  d i r e c t i o n  a v a i l -  
able,  which i s  through t h e  de fec t  opening. U n l i k e  graphite-epoxy, fused s i l i c a  
does n o t  o x i d i z e  i n  t h e  asher environment. Hence, no space i s  created beneath 
t h e  coa t ing  by ox ida t i on  o f  t h e  subst rate.  F igu re  11 shows t h e  same sur face as 
seen i n  F igu re  10, b u t  a t  a 60" angle o f  t i l t . Here, t h e  ex ten t  o f  growth o f  
t h e  ox ide through t h e  opening i s  more e a s i l y  appreciated. 

F igure 10 dep ic t s  a s i l v e r  r e f l e c t o r  sample on a 

F igure 1 2  shows a sur face s i m i l a r  t o  t h a t  o f  F igu re  10, b u t  a f t e r  
mately 240 hr o f  exposure. S i l v e r  ox ide p r o t r u d i n g  through t h e  d e f e c t  
c l e a r l y  seen. I n  a d d i t i o n ,  o x i d a t i v e  undercu t t i ng  (perhaps more descr 
r e f e r r e d  t o  as " t ransverse ox ida t i on81)  o f  t he  s i l v e r  l a y e r  beneath t h e  
t i v e  coa t ing  i s  seen, as i n  f i g u r e  6, as a d i s c o l o r e d  ( i n  t h i s  case, 1 
border surrounding the  de fec t .  The ex ten t  o f  t h i s  undercu t t i ng  i s  n o t  
ever, as g r e a t  as on t h e  graphite-epoxy subs t ra te  samples. 

approx i -  
i s  again 
p t i v e l  y 
p ro tec -  
g h t e r )  

h OW- 

C lea r l y ,  a p r o t e c t i v e  coa t ing  cannot cont inue t o  p r o t e c t  i n d e f i n i t e l y  
a f t e r  p i n h o l e  defects have been introduced. 
would normal ly  be expected t o  occur as a r e s u l t  o f  t h e  presence o f  t h e  p inho les  
themselves. A s  po inted ou t  e a r l i e r ,  t h e r e  i s  a d i f f e r e n c e  between how t h e  p i n -  
h o l e  defects  were produced i n  these samples ( l o w  v e l o c i t y  impact by p a r t i c l e s  
o f  constant s i z e  and composit ion) and t h e  a c t u a l  r e s u l t  o f  a micrometeoroid 
impact i n  LEO (where t h e  p a r t i c l e s  a r e  o f  many d i f f e r e n t  s i zes  ( r e f .  8) and o f  
va ry ing  composit ion). Also, as s ta ted  e a r l i e r ,  s e l f - p r o t e c t i o n  i s  poss ib le .  

Ox ida t i ve  damage goes beyond what 

I n  l i g h t  o f  these d i f f e rences ,  t h e  usefulness o f  t h e  r e s u l t s  discussed 
here i s  p r i m a r i l y  i n  t h e  e f f e c t  o f  p i n h o l e  de fec ts  on t h e  cont inued atomic 
oxygen d u r a b i l i t y  o f  p ro tec ted  m i r r o r  surfaces. 
holes e x i s t ,  and these  i n c l u d e  the  f a b r i c a t i o n ,  t r a n s p o r t ,  and deployment o f  
l a r g e  m i r r o r s ,  as w e l l  as space debr i s .  F igu re  13 i l l u s t r a t e s  t h i s  p o i n t .  I t  
shows an aluminum r e f l e c t o r  on a graphite-epoxy subs t ra te  w i th  a HgF2 protec-  
t i v e  coa t ing  a f t e r  about 270 h r  of exposure. The d e f e c t  shown was n o t  i n t e n -  

Other p o s s i b l e  sources o f  p i n -  
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tionally induced, but was present simply as a result of the fabrication and 
handling of the sample. 
ing the defect has occurred. 

It is clear that oxidation of the substrate surround- 

Figure 14 is a schematic diagram showing both the oxidative undercutting 
and the related, transverse oxidation processes discussed above. Figure 14(a) 
depicts oxidative undercutting. Here, the atomic oxygen passes through the 
defect site and erodes both the reflective layer and the substrate around the 
opening. Thls process apparently leaves sufflclent space for the growing, 
expanding oxide, as none was seen protruding through the defect sites in the 
graphite-epoxy substrate samples. Figure 14(b) depicts transverse oxidation. 
Here, the atomic oxygen passes through the defect site and oxidizes only the 
silver reflective layer. Since in this case the substrate is not oxidizable, 
the expanding silver oxide has no place to go but out through the defect. It 
would also be expected that the rate of transverse oxidation would be slower 
than that of oxidative undercutting, since the protruding oxide would tend to 
hinder the diffusion of the atomic oxygen to the oxidation froht between the 
oxidlted and elemental silver. This slower rate was observed in the relative 
sizes of the discolored borders (discussed above) between the graphite-epoxy 
(larger border) and fused silica (smaller border) substrate samples. 

CONCLUSIONS 

In this paper, an attempt has been made to indicate the effects of a LEO 
environment on the durability of space-borne reflectlng mirrors. Atomic oxygen 
presents a hazard to silver and aluminum solar dynamic power system reflectors. 
Therefore, protective coatings are necessary to prevent atomic oxygen degrada- 
tion of these metals. Several suitable candidates have been identified and 
discussed here. Pinhole defects, resulting from a variety of possible causes, 
are pathways for direct atomic oxygen attack of both the reflective metal and 
the substrate. It has been found that atomic oxygen degradation is not con- 
fined to that portion of the reflector surface directly exposed as a result of 
the presence of the pinhole. 
strate can occur. The effect o f  this process on the long-term, on-orbit per- 
formance o f  large mirrors needs to be determined. 

Oxidation of the reflecting layer and/or the sub- 
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TABLE I. - CHANGE I N  INTEGRATED SOLAR REFLECTANCE OF SILVER M I R R O R  

SAMPLES WITH VARIOUS PROTECTIVE COATINGS OEPOSITED ON 

VARIOUS SUBSTRATE MATERIALS 

P r o t e c t i v e  
coa t ing  

Subs t ra te  Asher 
exposure 

time, 

NlCkel  

N i c k e l  

N i c k e l  

Glass 

Glass 

Glass 

Glass 

Glass 

Gr/Epoxy 

Gr/Epoxy 

Be/Cu a l l o y  

I hr 
I ---------- 

‘A1 203 
a 

a 
3N4 

s i  o2 
aS i02 /  b MgF2 

IT0  a 

a b  I T O /  MgF2 

P T F E - ~ S ~  o2 

s i  o2 

s i  o2 

a 

bMgF2 
a 

2.1 

7 5  

400 

634 

634 

225 

225 

159 

180 

180 

62 

So la r  specu la r  
r e f l e c t a n c e  

S t a r t  

0.952 

,911 

-916 

.972 

.970 

.E99 

.925 

.971 

.945 

.930 

.914 

F i n i s h  

0.654 

-91 1 

.E81 

.931 

.927 

.908 

.902 

.951 

.910 

.925 

.a59 

Frac t i onal  
l o s s  o f  

s o l a r  specu la r  
r e f l e c t a n c e  
per  1000 hr 

142 

0 

.088 

.055 

.068 

------- 

. l o 2  

.126 

.194 

.028 

.E87 

aCoatings deposi ted by i o n  beam s p u t t e r i n g .  
bcoat ings  deposi ted by vacuum evapora t ion .  



TABLE 11. - CHANGE I N  INTEGRATED SOLAR REFLECTANCE OF ALUMINUM M I R R O R  

SAMPLES WITH VARIOUS PROTECTIVE COATINGS DEPOSITED ON 

VARIOUS SUBSTRATE MATERIALS 

Subst ra te  

Glass 

Glass 

Glass 

Glass 

Glass 

Glass 

Gr/Epoxy 

P r o t e c t i v e  
c o a t i n g  

Asher 
exposure 

t ime, 
h r  

150 

150 

634 

634 

225 

225 

180 

So la r  specu la r  
r e f l e c t a n c e  

S t a r t  

0.976 

.927 

.E91 

.E82 

.E50 

.a47 

.925 

F i n i s h  

0.931 

.927 

.a19 

.a34 
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FIGURE 1.- SCHEMATIC DIAGRAR OF A SOLAR DYNAMIC MODULE WHICH IN- 
CLUDES A CONCENTRATOR MADE UP OF HEXAGONAL ELERNTS, EACH OF 
WHICH I S  COMPRISED OF SPHERICALLY CONTOURED TRIANGULAR FACETS. 

FIGURE 2.- DIAGRM SHOWING ONE PROPOSAL FOR THE COMPOSITION OF AN 
INDIVIDUAL FACET. 
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FIGURE 3.- ATMOSPHERIC COMPOSITION AS A FUNCTION 
OF ALTITUDE. 
PROPOSED SPACE STATION ORBIT ARE SHOWN. 
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FIGURE 4.- INTEGRATED SOLAR SPECULAR REFLECTANCE AS A 
FUNCTION O f  PLASMA EXPOSURE T I M  FOR SEVERAL REFLECTOR 
SYSTEMS. 



FIGURE 5. - MICROGRAPH SHOWING DEFECTS DUE TO PARTICLE EROSION. THE 
DEFLECTIVE SYSTEM !S S!~Z/ALZ[lr3/A'3~'3!?ADu!?E-~D~~Y. 

FIGURE 6. - MICROGRAPH SHOWING THE PARTICLE ERODED SURFACE OF A 

A SAMPLE IDENTICAL TO THAT OF FIGURE 5 AFTER 90 HOURS OF PLASMA 
ASHER EXPOSURE. SEVERAL DEFECT S I T E S  ARE SURROUNDED BY DISCOLORED 
BORDERS, WHICH INDICATE OXIDATION BENEATH THE PROTECTIVE COATING. 



FIGURE 7. - MICROGRAPH OF THE SURFACE OF A SAMPLE IDENTICAL TO THAT 

OF FIGURE 5 AFTER 90 HOURS OF PLASMA ASHER EXPOSURE. OXIDATIVE 
UNDERCUTTING AROUND THE ELONGATED DEFECT I S  CLEARLY V I S I B L E .  

? 

FIGURE 8. - MICROGRAPH SHOWING THE PARTICLE ERODED SURFACE OF A 

SAMPLE IDENTICAL TO THAT OF FIGURE 5 AFTER 240 HOURS OF PLASMA 

ASHER EXPOSURE. 

EXTENT. 
OXIDATIVE UNDERCUTTING HAS OCCURRED TO A LARGE 



FIGURE 9. - MICROGRAPH OF THE LOWER RIGHT PORTION OF FIGURE 8 TAKEN 

AT A HIGH TILT ANGLE (bo"), WHEREVER OXIDATIVE UNDERCUTTING HAS 

OCCURRED, THE SURFACE HAD BECOME DISTORTED. 

FIGURE 10. - MICROGRAPH OF AN ERODED SURFACE ON A FUSED S I L i C A  SUBSTRATE 

AFTER 50 HOURS OF PLASMA ASHER EXPOSURE. THE PROTECTIVE COATING I S  

SI02IAL203. OXIDIZED SILVER PROTRUDING THROUGH THE DEFECT S I T E S  CAN 

BE SEEN. 
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FIGURE 11. - MICROGRAPH OF THE SAME SURFACE AS THAT OF FIGURE 10. BUT 

AT A HIGHER MAGNIFICATION AND 'AT A HIGHER ANGLE OF T I L T  (600). THE 
EXTENT OF OXIDATION OF THE SILVER IS MORE E A S I L Y  SEEN. 

FIGURE 12. - MICROGRAPH OF THE ERODED SURFACE OF SAMPLE IDENTICAL TO 
TO THAT OF FIGURE 10 AFTER 240 HOURS OF PLASMA ASHER EXPOSURE. 

SILVER OXIDE PROTRUDING THROUGH THE DEFECT S I T E S  I S  CLEARLY SEEN. 

I N  ADDITION, TRANSVERSE OXIDATION OF THE SILVER LAYER BENEATH THE 

PROTECTIVE COATING I S  SEEN AS A LIGHTER BORDER SURROUNDING THE 
DEFECT SITES. 
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FIGURE 13. - MICROGRAPH OF AN ALUMINUM REFLECTOR AFTER 270 HOURS OF 
PLASMA ASHER EXPOSURE. THE PROTECTIVE COATING WAS M G F ~  AND THE 

SUBSTRATE WAS GRAPHITE-EPOXY. THE DEFECT SHOWN WAS NOT INTENTIONALLY 
INDUCED. BUT WAS CREATED DURING THE FABRICATION OR HANDLING OF THE 
SAMPLE. OXIDATIVE UNDERCUTTING HAS OCCURRED. 
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(B) TRANSVERSE OXIDATION. 

FIGURE 14.- SCHEMATIC REPRESENTATION (A) OF OXIDATIVE UNMR- 
CUTTING OF BOTH THE REFLECTIVE LAYER AND SUBSTRATE WHEN 
THE SUBSTRATE ITSELF I S  SUSCEPTIBLE TO OXIDATION AND (B) 
OF TRANSVERSE OXIDATION OF THE REFLECTIVE LAYER ALONE WHEN 
THE SUBSTRATE I S  RESISTANT TO OXIDATION. 
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