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SUMMARY
/1%

In this work, numerical methods are developed for
control of three~dimensional adaptive test sections. The
physical properties of the design problem occurring in the
external field computation are analyzed, and a design
procedure suited for solution of the problem is worked out.
To do this, the desired wall shape is determined by
stepwise modification of an iniiial contour. The necessary
changes in geometry are determined with the aid of a panel
procedure or, with incident flow near the sonic range, with

a TSP procedure.

The poor convergence properties of the classical
iterative adaptation process in the 3D case are demonstrated
by means of a numerical simulation and a theoretical study.
At the same time it is shown that by means of a simple
replacement of the constant control factor by a matrix which
considers the incident Mach number and test section
geometry, computation of the adapted wall contour can be
determined practically in one step, 1. e., on the basis of
a single wind tunnel test. The capability of this one=step
method is demonstrated by means of measurements from the
adaptive octagonal test section of the Berlin Technical
College.

Finally, a new method is presented for testing three-
dimensional models in wind tunnels with two flexible walls.
Wall designs are presented by means of which the

interferences on the model axis can be eliminated.

*Numbers in margin refer to fqreiqn pagination.
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1. SYMBOLS

(x,y,2) /2
(¢,n,z) Cartesian coordinates
(x,r,0) - Cylindrical coordinates

(XD-YD,ZD) . Coordinates of plotted point p

(XQ’yquQ) 1 Coordinates of origin point ¢

(Xd’yd’zd) ' Coordinates of wall pressure holes d

x"= (x,y,z) Location vector
S,S1 ‘ Control surface
Region within the control surfaces

Bi’ Bereich I
(near-model region)

Be’ Bereich I1 Infinite region outside the control surfaces
N, Ny (external field)
Iy } External normal of S
XA Internal normal of S
Xg Beginning of test section
Fa End of test section
FE | Initial cross section
R Final cross section Octagon Test Section
A g Mean wall distance from the tunnel
J | axis for the j-th surface panel
N Number of panels
dF Surface element
h Height of test section
h(x) i Wall deflection
L \ Half-length of the basic wave (design rule)
w 1 Circular frequency
M, ) Incident flow Mach number (uncorrected)
8= ""e  Compressibility factor
U, : Incident flow velocity (uncorrected)
¢’ Perturbing velocity potential (normalized /3
with Um)
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g(p.q)
Ly0 ‘
A=(Ag; )
B=(8, )
A'sE-A

0
€
Indices:
w
A
I
(o)

Perturbing velocity in the x direction

Perturbing velocity normal to S

Total axial velocity

Additional potential (perturbation
computation)

Flow function

Pressure coefficient

Lift coefficient

Dreg coefficient

Pitch moment coefficient at 25% of the

aerodynamic wing depth

Ratio of specific heats

Model angle of incidence

Compressible source potential

Source strength

Influence coefficients (u-component)

Influence coefficients (v-component)

Influence coefficients for internal flow

Unit matrix

Weighting factor in the iterative wall
adaptation method

Modified Bessel functions

Landau symbol

Tolerance magnitude

wall-induced
model-induced, interference-free

in the direction np

- in the direction np

' upper tunnel wall



u lower tunnel wall

eff, kor effective (incident flow)
design

D
design methods

E Idesign

Strokes above a value indicate averaging or transition to

conjugated complexes.




2. INTRODUCTION

In a wind tunnel, the flow field must satisfy a
kinematic boundary condition along the test section wall, in
contrast to a laterally inbounded flow around a model. For
instance, in test sections with impermeable walls the course
of the flow lines near the wall is determined solely by the
wall contour. The flow lines in the wall region, therefore,
do not generally correspond to those which would be there
with free flow around the model. This leads to
interferences in the whole test section flow and introduces

errors into the aerodynamic data measured with the model.

The wall-induced perturbation velocity field is normally
very complex, but it can be at least approximately repres-
ented as a superimposition of various independent effects.
The two most important of these are the axial additional
velocity (blocking) produced by the changed lateral bending
of the flow lines in the region of the model, and the
change in model lift due to the diversion of the downflow
field at the tunnel walls (lift interference). For example,
in test sections with flat impermeable walls the blocking
effect leads to an increase of the effective incident flow
velocity and, thus, of the stagnation pressure (in the
subsonic region), while there is generally an increase in
lift and therefore an increase of the effective model
incidence angle. The measured data, with interferences,
then as a first approximation describe the actual
aerodynamic behavior of the model studied with somewhat
altered incident flow conditions. Many numerical methods
have been developed in the course of time for computing the

corrections sy and Ae *
- '

i
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For wind tunnel studies in the transsonic range, where
the test section walls must be slotted or perforated to
avoid the transsonic blocking, though, application of
these correction methods encounters great difficulties. The
boundary condition for partially permeable tunnel walls can
only be approximately described mathematically, so that the
corrections determined on the basis of this information (and
a representation of the model investigated by means of
suitable singularities) are likewise troubled with great

uncertainties.

Furthermore, one must consider that the "global"
consideration of the wall interferences in the form of the
two incident flow parameters AM_ and Ao . as described
so far, is justified only if the wall-induced perturbation
velocities are nearly constant in the region of the model.
This is generally the case only with very small blocking
ratios. On the other hand, in view of ability to transfer
the model data measured in the wind tunnel to the full-scale
design, one must certainly try to test the largest possible
model (Reynolds number similarity). Because of the
continuously increasing requirements in recent years for
quality of wind tunnel measurements in the high subsonic
region, the design of new test sections which can provide
model measurements which are free of interferences, or at
least correctable, with maintenance of a high blocking

ratio, is becoming more and more pressing.

This requirement was the cause of the development of the
so-called "adaptive" wind tunnels, which early in 1970
realized in design the obvious idea of eliminating
the cause of the wall interferences by matching the test
section walls to the laterally unbounded flow around the
model. First, test sections with two adaptive walls were

19



produced for profile studies, based on highly developed
computer and control technology. The adaption was produced
either by deforming the flexible walls into free flight flow
surfaces or, in the case of ventilated tunnels, by
appropriate adjustment of the local wall permeability. The
necessary displacement of the test section walls or the
adjustment of their porosity must be completely automatic to
have short test times. For this, it was necessary to solve

basic design and control technology problems.

Furthermore, application of this new wind tunnel
technology would be promising only after a practical method
had been found for determining the adapted wall shape (see
Chapter 3). That is, direct calculation of the free flight
flow surfaces would be very costly because of the normally
complex model geometry and the friction and compressibility
effects which occur, and it would not be possible with
sufficient accuracy, especially in the transsonic speed

range.

Testing of the 2D adaptive test sections using some
standard profiles (NACA @@l2, CAST7) categorically
confirmed that wall adaptation could be done practically,
thus justifying the added design and electronic cost. On
the basis of this great success, design of three-
dimensional adaptive wind tunnels was begun in 1979. Of the
three designs which have been realized so far, the test
section with eight flexible walls, constructed at the
Berlin Technical College, is described in more detail in
the 4th section.

11




The principal objective of this work, though, is
presentation of the numerical methods developed at the
Berlin Technical College for three-dimensional wall adapt-
ation. 1Initially, we shall consider generally the
functional principle of adaptive wind tunnels for
determining the adapted wall shape.

12



3. PHYSICAL FUNDAMENTALS OF THE TECHNOLOGY OF ADAPTIVE
WIND TUNNELS

The basic functional principle of adaptive wind tunnels
was developed by Ferri and Baronti [1] and by Sears [2]. By
comparing the tunnel flow with the laterally unbounded flow
around the model they were successful in stating an analytic
relation by means of which one can determine the wall
interferences in the test section without explicit knowledge
of the model being investigated. Derivation of this
relation and of the iterative wall adaptation process based
on it is carried out in the following for the general case

of three-dimensional flows.

An important point of view here is the division of the
laterally unbounded flow field (initially seeming rather
arbitrary) into a region near the model and the so-called
far- or external field. 1In Figure 1 these two flow
regions, which fuse into each other, are delimited by an
imaginary control surface. Within the control surface
(region I) the flow field is very complex for the reasons
already stated, and can only be approximated with the
presently known computation methods. In the infinitely
extended exterior field (region II), though, the model-
induced perturbations have already decayed sufficiently, at
sufficiently great lateral distance, that the flow here can
be considered free of rotation, and the perturbation
velocity potential can be matched to a good approximation by
a simple differential equation. Experience has shown that

the linearized potential equation, or its transsonic

variant, is sufficient for this.

13
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Approximation of the far field by a potential flow now
leads immediately to an analytical criterion for freedom
from interference. On the basic of mathematical uniqueness
rules (see, for instance, [3]) the velocity potential is
already unambiguously determined if along with the condition
of vanishing perturbations at infinity, either the model-
induced perturbation velocity in the incident flow or in the
normal direction on the control surface S is specified. (S
can initially be considered as infinitely long.) 1If one
calculates the perturbation velocity potential (§\ with the
u-component as a boundary condition on the control surface
%%W(S) = U(SY, then the matching normal velocity follows
from differentiation Vjp [u] = %% (S) and conversely. With
laterally unbounded flow around the model, the perturbation
velocity components on the control surface then fulfill a

compatibility relation which can be evaluated analytically.

By means of this criterion one can now determine easily
whether a wind tunnel flow is interference-~free, and if
necessary undertake an adjustment of the adaptive test

section walls. For this we measure two independent velocity

components, e. g., the u- and v-flow on the control
surface which is now assumed to be in the test section. If
both these measured velocities fulfill the compatibility
relation above, then the flow around the model in the
tunnel can be expanded continuously to a laterally unbounded
flow field, and it is therefore interference-free.
Conversely, an interference-free tunnel flow can be
considered part of an unbounded flow field, so that the
equation derived above applies for the velocity components
on the control surface. If we designate the measured u- and
v-flows as uy(S) and vy(S), then the flow in the test
section is exactly interference-free if the relation

14



Va [ugd - Vi (3.1)
applies on the control surface.

But if the calculated normal velocity va on the
control surface, for flow around the model which is
considered to be extended laterally without 1limit, is not
identical with the corresponding measured component vy,
val(s) - v(8) #0, then the tunnel flow has interferences
and correction using the adaptive test section walls is
necessary.

The difference, v,(S) - vi(S) is obviously a measure of
the magnitude of the wall interferences, and it therefore
appears reasonable to adjust the contour or the porosity of
the tunnel walls so as to produce an averaged (with a
weighting factor K) normal velocity distribution on the

control surface:

new

Vi = vy o+ K(vA‘- VI)’ Ke(0,1) (3.2)

Now the resulting tangential velocity u;"®¥(s) is
measured and another test made by means of an external field
computation to see whether the flow field within the control
surface already matches that for laterally unlimited flow
around the model. The difference, VA[uIneW] - VIneW is
again used to correct the adaptive test section walls, and
the entire process is repeated until the wall-induced flows

have become negligibly small.

In summary, we have the following iteration scheme for

wall adaptation, Figure 2:

15



n i
Va = VA[uI( )] external field calculation n={,2, .,

(ne1)_. (n) n .

it e Mk, My 00y keo,y B0
The tunnel flow is considered to be interference-free if the
change of the v-component in two successive iteration steps,
and thus the correction of the adjusted wall configuration,

remains within a specified tolerance ,g .
IVI(n+1) - vI(n)I <g (3.4)

One should consider that use of the adaptation process
(3.3) provides no direct information about the model being
investigated, and is therefore universally useful. The
complex flow field within the test section is represented
only by two independent flow quantities, such as the u- and
v-perturbing velocities, along a control surface near the
wall. Their repeated measurement along with the so-called
external field calculation makes possible stepwise reduction

of the wall interferences.

It must be emphasized, though, that the convergence
properties of the control algorithm (3.3) depend strongly on
the selection of the weighting or control factor K. As a
result, there is a special practical importance to
determination of an optimal value KOpt which leads to the
adapted wall configuration with the fewest possible steps.
Investigations of this sort are performed in Chapter 6 for
three-dimensional wall adaptations. They show
simultaneously how (3.3) must be modified with respect to

rapid convergence (single-step method).

16




The numerical methods for the external field calculation
required in each adaptation step are considered extensively
in the 5th Chapter. 1In the following section we shall first
explain the basic problems in the design of three-
dimensional adaptive wind tunnels. Then the test section
with eight flexible walls, built at the Berlin Technical

College, is described in detail.

17




4. 3-D ADAPTIVE TEST SECTION AT THE BERLIN TECHNICAL
COLLEGE
/13

In the design of three-dimensional adaptive test
sections we could utilize the experimental results already
gained with adaptive profile tunnels. Evaluation of the
test results was particularly successful with respect to the
practical feasibility of wall adaptation either with
flexible impermeable walls or with ventilated test section

walls.

The principle of partly permeable walls with locally
controllable through-flow volumes (controlled either by
variation of the wall porosity or by individual matching of
the counterpressure in the sectionally divided plenum
chambers) has been applied particularly in the USA. It
appeared advantageous, especially economically, because the
usual transsonic test sections are slotted or perforated,

and could therefore be re-equipped relatively easily.

In comparison to the adaptive profile tunnels with
flexible walls, built in Europe, this technique showed
significant practical disadvantages from the beginning.
This became particularly apparent in the measurement of the
near-wall perturbation velocity distribution at both sides of
the profile in the flow, required at each adaptation step.
With impermeable walls, the two desired velocity components
can be determined directly from the wall shape (v = h') and
the pressure distribution prevail ing there (u = - Cp/2).

ut with ventilated tunnels, measurements within the flow

18



field are necessary because of the severly inhomogeneous
flow near the walls. These can, to be sure, be performed
without contact by means of lasers, but this method is
relatively time-consuming and is defensible only for

adaptive profile tunnels.

The problem of rapid and precise measurement becomes
more important in design of a three-dimensional adaptive
test section because of the increased amount of data
(longitudinal and normal perturbing velocity distribution
along a control surface surrounding the model). It was
principally for this reason that in Germany (at the Berlin
Technical College and later at DFVLR, GWttingen) the
decision was for design on the basis of impermeable,
deformable walls [4]. (Other reasons were the higher power
consumption and the higher noise level of ventilated test

sections.)

At about the same time in the USA, though, work was
started on construction of a three-dimensional adaptive
tunnel with four ventilated walls [5]. A new kind of
measuring system, which has become known as the "Calspan
Pipe" was developed to determine the perturbing velocity
components. It consists essentially of two metal tubes with
static pressure holes, which can be turned about the
longitudinal axis of the wind tunnel model, Figure 3. To be
sure, experience so far has not been satisfactory. That,
along with other problems, has as yet prevented a

convincing functional demonstration of this test section

[e].

In contrast, it has been possible to carry out initial
successful wall adaptations with the two other 3D adaptive
test sections, and to demonstrate the general applicability
of the technique, which has in the meantime been established

19




for profile studies, for three-dimensional flow cases as
well (see Chapter 9). The so-called "extensible adaptive
test sections" built by the DFVLR in GO&ttingen is

described in [7] along with the most important experimental
results. In the following we shall consider the design
details of the test system developed at the Berlin Technical
College.

Design of the test section began with the basic idea
that an ideal three-dimensional wall adaptation is hardly
achievable in design, and not achievable at all at least
for subsonic flows. Important viewpoints for the design,
then, were the provision of the least possible mechanical
cost while simultaneously providing adequate deformability
of the test section walls. This compromise which was
attempted led finally to design of the "octagon" test
section with eight flexible walls [8].

Figure 4 shows the octagonal test section cross section
formed from the eight walls and the layers between them
(the model is described in Chapter 9). The principal
dimensions (height 15 cm, width 18 cm) were chosen in the
ratio of 1:1.2 with respect to a planned full-scale
"European Transsonic Wind Tunnel", ETW. The test section
length of 83 cm arises from the dimensions of the
connections to the Technical College wind tunnel. Each
flexible wall is individually deformable by means of 10
positioning elements in each (9 in the upper and lower
walls), positioned longitudinally. The deformation and
position control are fully automatic [8]. Figure 5 is an
i g the arrangement of
the positioning motors. The wall pressure distribution is
measured by a total of 192 (6 x 25; 2 x 21) pressure holes

along the center lines of the flexible walls.

20




It was practical to choose the flow tube formed by the
straight, undeformed test section walls as the control
surface for the external field calculation (see Chapter 3).
(Selection of a fixed interation-independent control surface
is important for performing the adaptation quickly.) The
perturbation velocity components needed there can be taken
unchanged from the wall measurements because of the expected
small contour changes. (The effect of the wall boundary
layer is considered approximately by calibration of the
empty test section, Chapter 9.2.)

The next sections describe extensively the numerical

methods developed for the external field calculation.

21



5. NUMERICAL PEFORMANCE OF THE EXTERNAL FIELD
COMPUTATION

5.1 Basic Comments

/17
The boundary value problem to be solved in the external

field computation is, using the "theory of small
disturbances" (Chapter 3), Figure 6:

(1-M2)¢ + " = 0 . subsonic (a)
® T XX yy 422 = : . ‘ ]
(K+1)Mi¢x¢xx‘ transsonic (b)

X
o (X7) = s uI(t,y,z)dt , X €S (5.1)

- 00

LR ] -

We seek the normal perturbation velocity components

VA[UI] =%%on the control surface S. Clearly explained,
this is a matter of calculating that wall shape which would
experience the measured pressure distribution in the fictive
external flow.

Then the (unfavorable) physical properties of this

three-dimensional design problem are demonstrated by means

of a singularity representation for the solution in subsonic
flow. In the next chapter we then present the design method
supported by computation developed for this purpose.

22




We generate the desired potential by a source-sink
distribution over the control surface. (Sources and sinks
are preferred to a dipole coverage because of the lesser
"leakage" [34]). Then we get the unambiguously solvable
integral equation of the first type [3],

I%E S olq)g(p,q)dq = ¢(p), peS (5.2)

S

for which the kernel g(p,q) of the (compressible) source

potential corresponds to

= 1 - 2 -
g(p,q) = { BT (xp xq) + (yp yq)z

(5.3)

Using the relation (5.2), we can demonstrate the conjecture
already stated in [16], that the three-dimensional design
problem is ill-posed for this particular case, by means of

a simple perturbation computation:

In order to be able to investigate conveniently the
effect of small pressure fluctuations on the resulting wall
shape, we approximate the control surface, Figure 6, by a
circular cylinder, and limit ourselves to local
rotationally symmetric perturbations in the basic uj
component. The induced supplemental potential 'S¢ is then
constant downstream from the perturbed site. In this
region, according to Equation (5.2) it produces a likewise
(nearly) constant source distribution. Differentiation of
(5.2) and then partial integration leads to the relation

'Zl—s g —a%;((ﬂlg(%q)dq =ug(p) , pes (5.4)
q

23
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and accordingly 0 = constant for uy = 0@.) Its
induction effect in the external field can be expressed by a

line source on the center axis of the control surface Q
running from X * *® t0 X = j» . Then, from ¢ * 77 ?nr

which is linear at the location of the control surtECE

one obtains for the perturbation-induced v-component

/
vpa(s¢) = sh' x 2t . |
alde (x) IR const, (5.5)

As conjectured, a local pressure perturbation finally leads
to large global contour changes, &h .

This situation is particularly important for practically
performing the external field computation because the
control surface potential ¢(p) ‘, because the uj;
distribution is known only at the pressure holes, can be
determined only up to one constant:

Xp Xp
¢(p) = s uI(t,yp,zp)dt+ S our(t,y ,z. )dt peS
. I propiT e '(5.6)
Xp :

Xp: beginning of test section

The initial potential ¢(XA’yp’sz which must be
determined by extrapolation can exert a considerable effect
on the desired wall shape. With the C5 model, for example,
there can be differences of 30% even in the interference-
free case in the wall deflections at the end of the
test section, depending on whether or not its flow effect
is considered (¢(xA,§) = 0) . (See Chapter 8.2.)

Furthermore, the numerical integration of the ug

distribution on the basis of the relatively small number of
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support points (25 or 21 pressure holes per flexible wall,
see Section 4) leads to an error (which grows in the
direction of flow) in the potential determination, and
therefore leads to an incorrect wall contour, especially at
the end of the test section.

Direct use of the (extrapolated) u; component as a
boundary condition, on the other hand, 1leads to an

integral equation which cannot be solved unambiguously:

I :
T o(q) % 9(p.q)dq = u;(p), pes (5.7)
S ;

and therefore, after discretizing, to a singular equation

system for the source intensity ¢ (see (5.4)).

Nevertheless, in order to be able to test the computed
wall deflections in the simplest possible way in the present
application case, the design problem is once more solved
iteratively using a design method. Here the desired wall

shape is determined by stepwise modification of a starting
contour. The necessary geometry changes are determined from
the deviation of the actual pressure distribution induced by
the particular existing contour in the external field from
the specified final values uj. The design rule developed
for this is derived in the next chapter.

To compute the wall pressure distributions one can
select either the singularities method or the TSP method.

This computation problem in the subsonic range leads to a

numerically advantageous integral equation of the second
type (Section 5.2.2). Even in the transsonic range it is
significantly easier to solve than the comparable design
problem [5,11] (Chapter 5.2.3.)

25




In the subsonic range the initial contour can be the
straight, undeflected test section wall. In using the TSP
method, though, it is better with respect to computing time
to provide a good starting value using the panel program.
/21
5.2 Design Process

5.2.1 Derivation of the Design Rule

In Figure 7 we show the outer field calculation VA[uI] carried
out using the design process. In this chapter we will give a
detailed description of the design rule.

The basic idea in the derivation was the observation that the
pressure distribution along the (slightly) deflected test
section walls corresponds’ approximately to that along the outer
side of a geometrically similarly deformed circular cylinder.
If we approximate the wall contour (averaged in the circumferential

direction) by means of a sine half wave

¢ = const. (5.8)
]

h(x) = csin (Ex) s 0 sx gL

then for subsonic flow (Mm<1) we obtain a simple analytical relation-

ship between the flow angle change vé = h* and the axial perturbation

speed u., Figure 8:

Dl
First, for the potential distribution in the outer field we
have [12]

Ko (T87)
K, (£8R)

¢D(x,r) = - % cos(%x) s r >R (5.9)

and from this after differentiation at the position r = R and

then solving for vb we find

26
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. o BnK1(% BR) -
vD(x) = — up(x,R)
L Kolr BR)

(5.10)

(5.10) corresponds already essentially to the desired design rule
for the wall contour calculation, but the wavelength L has to be
matched to the prevailing test conditions.

In general the measured wall pressure distribution (and also
the desired wall contour) cannot be exactly defined by a single

sine halfwave.  Instead it will contain high frequency contri-

butions VW= nf, n=2,3,... in the sense of a Fourier series

expansion. 1In order to nevertheless be able to obtain a proportionality

between vﬁ and up the influence of L on the proportionality factor

in (5.10) was investigated in detail. The results are given for

M_ = 0.7 as an example and a "basic wavelength" L = 1000 in
the following table which is matched to the length of the octagon
test section (half wavelength).

K, (2) Ky(2)
=T R 1 _ Bm
L =t ® |\ ¥ T X ()
125 1.492 1.29 - 0.023
250 0.746 4 1.55 - 0.014
500 0.373 2.04 - 0.009
1000 0.186 2.89 - 0.007
As can be seen, the proportionality factor increases in /23

magnitude for the harmonics but the overall change remains
relatively small., Considering the dominance of the basic wave
at least for pure displacement flows and in order to provide
monotonic convergence of the design cycle, we decided to use the

design rule given above with a fixed value L = 1000 (see Chapter 8.2
for a discussion of convergence behavior).
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nBﬁ . .
Because of L < 0.3 for L = 1000 the Bessel functions in

(5.10) can be expressed by their symptotic expansions for a small
argument [13]. The desired design rule therefore has the following

final form

vp(x) = ! : up(x,R), M_<1
R In (+gpp /T-M.2H) (5.11)

This corresponds essentially to the differentiated form of (5.5)
and therefore not only validates this approximation formula but also
the discussion there about the "ill posedness” of the design problem

(5.1) . The constant C

which occurs in the integration of v!

1 D
vp(x) = £ vplxddx y (5.12)
can be ignored for sufficient upstream extrapolation.
5.2.2 Post-computation process for the subsonic region (Panel method)

The calculation of the axial perturbation speed along the wall
contours obtained during the individual design steps can be reduced

to the following Neumann boundary value problemn.

BZ6yx * byy * 0,, = 0, 82 =1 - M2 50

1 (5.13)

where ;1 is the outer normal along the control surface S (Figure 6).

If we produce the desired potential ¢ by a source-sink distribution
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which is continuous on S (Formula 5.2, 5.3), then we obtain the
source density o as the solution of the following integral equation

of the second kind

1

1 .
z o(p) - 3= 1 o(a)L g(p,q)dg =
B on 9UPsaldg = svph(p), peS
s D (5.14)

. Y . . .
The quantity 7 describes the induction effect of the source
intensity o(p)dF located at the target point which is not con-

tained in the integral.

As an illustration, consider a source occupation in the plane zq

with a target point contained in it (x 0). Then we have

p’YP’
- 1 -
g(p,q) = {ET (Xp - Xq)2 + (yp - yq)z } %

and therefore

1 3 = 0
- f olq)s— al(p,q)dg .
Iq8 BZp

-0
Zq

The integral, even though it expands over the entire plane,
therefore only gives the influence (zero in this case) of the source
distribution outside of the target point. The local part has to
be determined separately. Application of the Gauss theorem [3],
on the charge element located in p, then immediately gives the

relationship

(2= (p) + §h (p)) dF = o(p)AF
A

and therefore
2 (p) = 5 alp)
an, 2

With this extra term, the linear equation system which approxi-
mates (5.14) takes on a very favorable numerical property (see

below) .
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In order to perform the discretization, the control surface
is divided up into flat quadratic surface elements Aj, the so-called

panels

N
S= Uy (5.15)

J=1

and the desired singularity intensity is approximated by a Step

function (panel method of first order)
B(q) = oj ~_-Const., qEAj’ J = 1’ tee N (5.16)

For the normal speed V“induced in 'PeS, we then find

1 ~
- = 4 o(p)
v(p’ 01’ o o o ) ON) 2- p
o ’; o f%ﬁg(p,q)dq (5.17)
InB J
j=1 B
/26
The constants Oqs..s0y have to be matched so that the
boundary conditions Vp are approximated as well as possible.

This is done most simply by the so-called "point-matching", [31],
in which the approximation function is determined in such a way
that it exactly agrees with the prescribed distribution at fixed
points of the definition region. 1In the present case one selects

a "control point" p; on each panel and then from the requirement

V(pi;o1, ceesoy) = dvD(pi) A P ' (5.18)

one finds the linear equation system

N
j§1 Aij oj = 5vD,1 , i=1, ..., N (5.19)
with the influence coefficient
Jz i=13
Aij = L, s oy
- T = g(pi,q)dq if (5.20)
A -

J
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The calculation of Aij is performed in the Appendix (Section 13).
In addition to the exact formulas, we give simple approximations
in the form of a multipole expansion, which can be used for a large
distance between the target point and the induced panel, [17].

1 /27

The diagonal elements Aii%= Vi are much larger compared
with the other coefficients and are very advantageous for the
numerical solution of (5.19). Therefore iteration methods can be
used for this. This is important for practical applications, because
due to the memory requirements of direct methods (Gauss-Elimination,
etc), there can be restrictions on the number of surface segments.
(The coefficient matrices which occur during the discretisation of
the integral equations of the first kind, see for example (5.2),

have as a rule no dominating diagonal and can only be solved directly).

However, we should not forget the fact, that the values Gys «-os Oy
calculated from (5.19) only represent a usable approximation for the
desired force intensity ¢ (Equation (5.14) if the panel coverage

of the control surface is appropriate). This discretisation error

§Q = sy |o (q) - S(q)]| dq
S (5.21)

can be simply reduced by increasing the number of elements. But
especially in the present application, restrictions can be

brought about by the limited performance of the wind tunnel computer.
However, the deflections of the test section walls only have to be
determined within the adjustment accuracy of the past transducers

( maximum | ) (it is 0.03 mm in the model area and 0.07 mm for the
octagon test section). (The influence of the wall contour accuracies

on the model flow is discussed in Section nine).
In order to find a panel coverage which is efficient for this,

we first determine the adapter wall shape for two typical flow:

cases (C5 and F4 model represented by singularities).
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This was done with a very fine segmentation of the control surface. /28
(16 x 30 elements) using a large computer. After this the number of
panels was reduced with consideration of the local source gradient
according to the tolerance specified above. The optimized paneling

is given in Figure 9. It consists of 16 strips (according to the

8 flexible walls with intermediate lamella pieces (Figure 6), which

are 15 elements each of different lengths. The detailed discretisation
in the circumferential direction is required because of the

necessity for covering the vortex train which induces lift along the
rear test section region. However, since only symmetric models with-
out slip angles are investigated, the resulting linear equation

system (5.19 can be reduced to only 9 x 15 - 135 nonredundant individual

equations.

The numerical solution of the boundary value problem (5.13)
is
3p) = - = s 3(a)g(p.a)dq ,  peSuB, (5.22)
S

o~

where 9 1is the calculated approximation according to (5.16) and
(5.19). The desired perturbation speed éﬁe along the control

surface is then obtained by differentiation

~ _ % 1 ~ 3
sUg(p) = 535 (0) = - g7 7 o(q)—ax—p 9(p,q)dq, pes (5.23)
S
An evaluation along the control points P;» i=1, ..., N
gives
su N (5.24)
= T .. )
Es] J=1 -'JOJ
/29
with the influence coefficient
3.. = - 1 Is 3
13 L g 3x- 9(p;.q)dq (5.25)
As p
J
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and the calculation is also given in the Appendix.

A combination of (5.19) and (5.24) then leads to the
very simple linear relationship
_> -1 -—_>
suE = BA GvD
(5.26)

where the matrix BA—l formed from the influence coefficients
can be determined before the test. The post calculation task in
the subsonic case therefore can be reduced to the use of a panel

method and a simple matrix vector multiplication.

5.2.3 Post-computation process for the subsonic region (TSP method)

In order to also discuss the case of incident flow near the
speed of sound, the post calculation part of the design cycle
can also be done using a TSP method. The corresponding computer pro-

gram was made available by AEDC 5] and will be briefly discussed.

We solved the classical Guderley-von Karman equation {[10] in the

conservative formulation

1 101 -
[(1-H2)e, - %—1 Mi,«»lex + = [re, 3r + w+l ¥ ¢9]9 =0
with the boundary condition /30

99 5 _
¥ (x, R, ©) = 8vp (x,0)

and the circular cylindrical assumed control surface
(Radius R) and

¢ ->0 r => <

(5.27)
¢X ->0 \X\ -> @

in the far field.
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Based on the symmetry relationships (¢(x,r,8) = ¢(x,r,-0))
we finally find

¢e(x’r,0) = ¢e(x9rs'ﬂ) = 0 s r » R

The difference network was matched to the present application

case and now extends in the range

|0<x<940| x |83<r¢ 332| x |0<o<r| with 31 x 10 x 11 = 3410

points. The discretisation of the space derivatives and the

solution of the resulting difference equations is done using standard
technique (finite difference method of Murman, SLOR-relaxation
method) which are discussed in detail in [10] and [18].

The numerical complexity for calculating the desired perturbation
speed distribution GuE(S) = %% (S) is of course much more than
for the subsonic case. Therefore, considering the desired Online
wall adaptation, one should use the simple relationship (5.26) as
much as possible.

The range of the validity of the linear potential equation is dis-

cussed in detail in Section 9.

6. OPTIMIZATION OF THE RATE OF CONVERGENCE FOR THE WALL /31
ADAPTATION PROCESS

6.1 Subsonic Case

6.1.1. Convergence Behavior for Constant Regulation Factor

By a suitable selection of the regulation factor K we wish to
increase the convergence rate of iteration wall adaptation method

(3.3) similar to the two-dimensional case.
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A first indication about the effect of K on the adaptation
method was found from demonstration tests in the octagon test
section of the TU Berlin. It was found that an adaptation of the

test section walls was only possible with very small regulation

factors (K < 0.10) and relatively numerous (»10)  iteration
steps. For larger values of K one found oscillating wall contours

with rapidly increasing deflections, which already lie outside of
the permissible displacement paths of the past transducers after a

few iteration steps.

In order to make a systematic investigation of this experimental

finding, we performed a numerical simulation of the regulation
algorithm (Figure 2). The wall pressure distribution uI(n+l) is

not determined by means of the wind tunnel tests in the individual

adaptation steps, but instead using a natural assumption about the

given wall contour VI(n+l).

(1) (1)

Let us start the simulation with the measured values uI . vI

and define

(2) _, (1) (2)

6vy TV Yy (6.1) /32

(2)
I
in the following iterations) an analytical

(2)

Then one can establish between Su

{n+1) (n+1)
duI and 5VI

relationship corresponding to (5.26), if we assume that the flow

(2)

and GVI (accordingly for

field induced by contour change 6vI is irrotational and the
potential 6¢(2) satisfies differential equation (5.la). These
conditions are satisfied because of the assumed small wall deflections,

to a great degree of accuracy [7,9].

The trial solution (the loop index is omitted)

- 1
8¢(p) = - g2= 7 z(a)g(p,q)dq , PeB.US (6.2)
S
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then leadsto the following integral equation of the second kind for
4

1 1 :
7 ¢(P) - 13 ; z(q) 3%; g(p,q)dq = - sv (p), peS (6.3)

when we finally find the desired increment GuI as

1

sup(p) = - 475 / c(a) 32— g9(p,adda, peS  (6.4)

p

w

After performing the discretisation discussed in Chapter (5.2.2)

we then find the two linear relationships

AT = - eV
6u; = BZ
and the influence coefficients F'ij can be expressed by the /33
already defined A,. (5.20)
ij A
ij i= ]
Aij = |
-A.. i j 6.6
A1J it j \ ( )

A comparison of (6.5) with the corresponding relationships
(5.19) and - (5.24) for the outer flow

As” = &V,
(6.7)
su, = B3
( _> -—
immediately shows that the same wall contour change 6VA =+ SV )
in the outer field produces a much lower pressure fluctuation
than inside the test section. This then makes . understandable
the adaptation behavior discussed above.
This state of affairs is found from the estimation
Aij>0 s i, =1, ..., N (6.8)
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which follows immediately from the convex nature of the volume
inside the control surface, Figure 9. 1In the outer field
calculation (6.7) the singularities therefore mutually support one

another with their induction effect. This means that for producing a

prescribed deflection vao » a smaller charge density o is
required. However, for the inner flow we find

N

) A'..ﬁ 0 i =

j=1 13 H) 1 1, e ey N (6.9)
Equation (6.3) for 6vy(p) =0 has a nontrivial solution

/34
=const because a constant source distribution produces a constant

potential along the control surface and therefore inside of it as well.
See (5.4)). 1In this case the induced normal Speeds approximately
cancel and one requires a large source-sink intensity in order

to obtain the same contour change +6VI. Since GuI and GuA are deter-
mined from the same matrix B, we obtain the assumed physical state

of affairs.

The results of the simulation are given in Figure 10 for a
typical flow case [19]. (In the Appendix we also give an analytical
investigation of the convergent behavior). As expected, the adaptation
method only converges for very small regulation factors K< 0.06 .
One remarkable feature is the large increase in the number of
iterations for factors larger than the optimum value Kopt = 0.056
and the ensuing transition to divergence. Report [9] gives an
account of a similar result during the adaptation of three-dimensional
flows around wings. The numerical simulation therefore not only
confirms the experimental results but also shows that even if one
uses an optimum regulation factor, the matching of the test section
walls requires an excessive number of intermediate steps and there-

fore long wind tunnel testing times.
In the next section we will show that by means of a differentiated

weighting of the channel line flow and the outer flow, one can

achieve a drastic increase in the convergence rate.
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6.1.2 Single~-Step Method /35

We again start with the measured values uI(S), vI(S) and the
outerfield calculation vA[uI]. We then investigate how one can
obtain the best possible approximation for the desired adapted

wall shape.

For the mathematical description of the problem we will
formally decompose ug and Vi into the model part without inter-
ference and the influence of the wall.

UI=U +uw

VI = V“_‘0 + Vw (6.10)
Based on the linearity of the outer flow we then find
Valugd = vy = v e vplud -y - vy - Valud - vy (6.11)
The design task VA[UH] can then be solved in two steps
according to (6.7). In this case the singularity‘-intensity o©

is of course unknown. On the other hand, the wall-induced pertur-
bation speed field satisfies the linear potential equation (5.l1l.a),
to a good approximation, so that we can also use the relationships

(6.5) discussed in Section 6.l1l.1.

Overall, we obtain the following four equations

Ac = v, lu Yro= -
aluyd Ale = - vy (6.12)

Bo = uw BC -
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and from this because of (5.4), (6.9), (6.6), (5.20) /36

L =0 + C , c = const. (6.13)

"
Q

valuyl - vy = Ao'+'A'(0+C) = (A + A')o = Eo (6.14)

where E is the unit matrix.

Together with (6.11) we then obtain the following formula
for the wall dependent perturbation potential

.o 1 -
(for VA[UIJ we will write v, in the following.as an
abbreviation).
The (known) difference vals) - vi(s) therefore is not

only a "measure" for the wall interference (see (3.2)), but

also determines it uniquely. It should be noted that this statement
does not require any additional assumptions about the model-

induced perturbation field.

Application of (6.14) directly leads to the

Single step form

Vo = Vp -V T Vi Y A'(vA-vI) = vy + (E-A) (vA-vI) (6.16)
The adapted wall contour can therefore be determined already
from the measured values of a single wind tunnel test (within the

range of validity of the linear potential equation). /37

This can be done even without numerical additional complexity
because the matrix A already has to be calculated once (Chapter
5.2.2). As a comparison which (3.3) shows, the enormous gain in
convergence is based on the replacement of the constant regulation
factor by the "regulation matrix" E - A which considers the inci-
dent Mach number and the control surface geometry.
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In this connection we should emphasize that already before a
single step method for three-dimensional wall adaptation was
developed at the DFVLR and was used successfully [7]. The
Fourier trial solution selected there for representing the wall-
induced perturbation potential however, has substantial practical
disadvantages compared with the singularity method, such as for
example a complicated formalism and the fact that one cannot
transfer to other control surface cross sections. A comparison of
the two methods using measured values from the "expandable
adaptive test sections" of the DFVLR is performed in Section 8.3.
After this, we report about experimental results in the octagon
test section.

Since relationship (6.15) can be used without model representa-
tion, it is very useful even alone. One can therefore develop a
high performance correction method. 1In addition, it is the
foundation of the new method for testing 3D bodies in wind tunnels

with two flexible walls, discussed in Chapter 10.

6.2 Transsonic Case

The regulation matrix E - A defined in the previous section
depends continuously on the intimate Mach number and for M_— 1
goes to a well defined limit value (formerly discussed in Appendix).
Since the TSP method (Chapter 5.2.3) only can be used for
flow near the speed of sound, considering (6.16) the following
algorithm of wall adaptation promises a fast conversion.

vI(n+1) - v

I(") + (E-A) (vA[uI(")] - vI("))

M_=1 (6.17)

In contrast to the subsonic case, more iteration steps will be

necessary in general.
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7. EXTRAPOLATION AND CORRECTION OF THE MEASURED PRESSURE DISTRIBUTION

In order to transfer the Cp distribution determined along the
wall pressure traps to the panel control points, Figure 9,
the measured values have to be interpolated in two dimensions
and have to be extrapolated beyond the test section region.. By
a continuation upstream at the same time, we wish to specify the
effective incident speed Ueff and if necessary a correction to the

boundary conditions u., have to be performed.

I
In the derivation of the extrapolation method developed for
the octagon test section, we started with the usual singularity

representation of the model and the flow [21]:

Point Dipole for Simulation of Model Displacement

Horseshoe Vortex for Representing the Model Lift

Point Source for Representing the Wake (Including
Model Spear)

Because of the different induction behavior of these singulari-
ties, it is immediately found that the perturbation pressure distri-
bution which prevailed at both test section ends can be attributed
mainly to the influence of the wake. In the extrapolation of the
wall measured values, we only have to consider the source effect.
(The vortices in the wake are assumed to align parallel to the
incident flow. Transverse flow components are ignored). This pro-
cedure not only gives physically reasonable results, but also
avoids the numerical difficulties associated with a detailed flow

simulation [22].

The calculation of the wake source has no problems because due
to the impermeable channel walls, it is given independent of their
deflection, by the fictitious mass flux difference between the

test section beginning (x=xA) and the final cross section (x=xE).
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If we call the axial total speed distribution measured at the

5ot =108, 3=1,...,26 U (d;)), then

by introducing the nominal (uncorrected) incident speeds (Mach number
M_) we find

pressure caps di

Uo = Uges(dyy) (7.1)

for the (model and wall-induced) perturbation part

By using the Gauss theorem we find [3] the following for the

desired force intensity

g = f UI'(XE,y’Z)df = S UI'(XAQYQZ)df

8
~ 1 ] -
Ty I (d5 26) = Fg = up'(xp 56) « F

(=1

(7.3)
and this can be calculated without any problems during test operations.
The induction effect of this source of course depends on the

contour of the test section walls and therefore we will separately

investigate the two cases of strong and weak wall influence:

(aerodynamically) straight walls: /41
The source produces a constant perturbation speed which is the

same (in magnitude) over the cross section at the two test section

ends due to symmetry, du. Together with (7.3) we find

Gu(xE) = - du(xA) = % GI.(XD,ZG) (7.4)
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In this wall configuration, consequently we find a non-
vanishing full effect of the model in the flow, which has to be
considered by a corresponding correction of the incident flow
conditions. Because of (7.1) and (7.4) the corrected (effective)

incident speed Ueff is then calculated as

= - - 1‘[
Verr = U = Sulxg) = U+ 5 Ut (x4 | (7.5)

which brings about a change in the incident flow Mach number of

M= (1 Sy % i (xp p6) (7.6)

[21].

From (7.5) and (7.2) we finally obtain the corrected axial
perturbation speed

- - 1 1 -

which according to (7.4) can be continued beyond the test section
region using

1 T
-7 oup'(xp g6) s X < Xp 4
UI(X) =

1'| 3
7 up'(xp 26) > X > Xp 26 (7.8)

The transfer of this extrapolated u, distribution to the panel

I
control points is then done using a two-dimensional cubic spline

[23].
Deflected walls:

Based on the single step formerly discussed in Section 6.1.2,

section walls.
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We obtain the following for the perturbation speed induced
upstream by the weight source

- q
5u(xA) r—————yz-xA_xNL (7.9)

where (xNL = 600, 0, 0) is the position of the singularity in the
tunnel.

A connection of the incident flow conditions therefore is in
general not necessary if there is only a weak wall influence. Almost
the entire source induced mass flux (7.3) therefore passes the

rear test section cross section, so that the following extrapolation

of the perturbation speed distribution (7.2) makes physical sense. /43
0 X < XD’1
uI'(x) = (7.10)
a
1" (xp,26) X > Xp, 26

The interpolation of the boundary conditions to the panel control

points is again done using the already mentioned 2D-spline method.
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8. TESTING OF THE ADAPTATION SOFTWARE

8.1 Structure of the Program Systems

Figure 11 shows the programming system for the three-dimensional
wall adaptation in the subsonic case. It consists of three separate

main programs, which are coupled with data transfer.

The geometry program "GEO" defines the panelling of the
control surface using the readind. surface points (Figure 9). The
calculated coordinates of the panel corners are transferred together
with the selected incident Mach number M_ using the program "EINFL"
i (Chapter 5.2.2).
The storage of the calculated values is done in the form of the two

for determining the influence coefficients Aij’ B

matrices BA-1 and A considering their further use in the Program
"ADAP1l". The structure of ADAPl is given in Figure 12. The three

important features are:

(1) Extrapolation and correction of the measured pressure
distribution (Chapter 7)
Transfer of ug and vy to the panel control points

(2) Outerfield calculation vA[uI] using the design method
(Chapter 5.2).

(3) The evaluation of the single step formula (Chapter 6.1.2).

With the calculation of the two influence matrices the program
Parts (2) and (3) are reduced to a simple matrix vector multiplication,
so that a fast calculation of the adapted wall contour is assured.

(see Chapter 9). /45

For the adaptation in the transonnic case, a separate computer
program "ADAP2" was written. Its structure issimilar to that
of "ADAP1", but within the framework of the outerfield calculation
we used the difference method developed by AEDC for the transsonic
case (Chapter5.2.3). The regulation matrix (E - A) Ml = 1 (Chapter
6.2) is determined in another sub-program (as can be Seen from the
formulas in the Appendix, this can be reduced to the size 5 x 5 for
M= 1).
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However, in this case, the wall contour calculation requires
a large amount of calculation time and memory and therefore cannot

be done on line. (Chapter 9).

8.2 Analytical Test Case

Ths computer programs for wall adaptation are tested using
analytical test cases and by close calculation of known experimental
results. The calculations used for control of the TSP method are
discussed in detail in [29]. 1In this section we will discuss the
theoretical test runs withi "ADAP1l".

The simulation . of an interference flow field in the octagon
test section was performed using singularities. As a model we used
the rotationally symmetric ONERA C5 body, Figure 1l6a, which has
displacement effects which can be represented in a known way by
sources and sinks along its axis of rotation ([14]. We then

find the following closed solution for the model induced potential.

£
o) = =gy BB g el gy
o [(x-g)2+p2r2?| > (8.1)
where F ' (&) is the cross section area change and % is the length
of the body. If we introduce
Fre) = 3 nd(£)d' (g) (8.2)

the model thickness distribution d(£) as a geometric quantity in
(8.1), then we find from it after partial integration the easy to

evaluate formula

1 A d%(e) (x-g)
¢(x,r) = 16 é [(X“E)2482r21§
) 42(2) (8.3)

[(x-2)2+82 rzji
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The term outside of the integral occurs because the
rear model diameter (d(2) was not made zero in order to simulate

that model sphere.

From the two velocity components obtained by differentiation /4T
of (8.3) we can calculate as usual the static pressure and the

interference -free streamline course everywhere in the flow.

In order to represent the influence of the wall, we used the
panel method discussed in Chapter 5.2.2. The singularity intensity
along the panels was determined in such a way using Equation (6.3) so
that after superposition with the model induced flow field (8.3),

the kinematic boundary condition

_ae . o¢
v = - X + W =
I 3
rooeny (8.4)

i
is exactly satisfied along the control surface.(C5-body in the \
|
\

octagon test section with non-deflected walls).
The resulting u-distribution at the points of the wall pressure
shafts

= 0¢ ddw ‘
U1 7 3x t X ~ (8.5)

together with the incident flow Mach number M_ and the values

vy = 0 (Equation 8.4) were then the input data for the adaptation
program "ADAP1". The adapted wall shape calculated with (single
step) method in addition to the corresponding pressure distribution
was then compared with the exact interference free variables calcu-
lated from (8.3) as a check.

Figure 13 gives results for a test section wall at M, = 0.7.

The agreement of the calculated wall pressure distributions is

satisfactory overall, even though the extreme values were not

exactly achieved. The variation of the wall deflections calculated

47




using "ADAP1" agree also quite well with the corresponding adapted
contour, The somewhat larger ' deviations at the end of the

test section are still acceptable considering the past transducer
tolerance of 0.07 mm there. Also, one can achieve an improved /48
reproduction by an exact determination of the uI—distribution
input to "ADAP1" (8.5) (more panels for representing the influence
of the wall).

Figure 14 shows the typical convergence behavior of the
design method represented using values for the analytical flow
case discussed above (M_ = 0.7). The accuracy € is defined by the
mean relative deviation between the actual and nominal distribu-

tion at the individual designed steps (see Figure 7)

1 N lul(k)-uE(k)I
e=yx =z MaX ]ul(k)] (8.6)
k=1 1< kN
(N = number of control points).-

One can see the continuous improvement of the designed wall
contours. The convergence range decreases continuously during the
iteration. This phenomenon is to be attributed to the existence of
harmonics in the approximating Uy distribution. As already dis-
cussed in Chapter 5.2.1, these contributions can be found by
iteration using an adapted design rule. However, in practice it
has been found that already after three to four iteration steps,
the designed wall shape is sufficient for calculating an adaptive
contour (see Chapter 8.3 and 9). Therefore, no modification to the

design rule (5.11) was necessary.
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8.3 Result Comparison with DFVLR Adaptation Program

As already mentioned in 6.1.2,the DFVLR has their own
single step method based on the Fourier method for regulation of
its three-dimensional adaptive test section (DAM). It has been
used successfully., The wall contours calculated with this program
are therefore "experimentally verified" and can be used to test

the present adaptation algorithm.

The two flow cases post calculated with ADAPl from the "DAM"
are shown in Figures 15a and 15b together with the DFVLR reference
values [7, 31]. We show the results for the first adaptation
step, that is, the wall deflections and pressures calculated based
on wall pressure distributions measured for aerodynamically straight

walls.

Figure 1l5a shows the comparison for the FFA model (parabolic
spindle) for 0° angle of attack and the nominal incident Mach num-
bers M_ = 0.5. Since this is a flow with rotational symmetry, we
only show the wall contour and the pressure distribution averaged
in the circumferential direction. As can be seen, the runs
calculated with ADAPl agree well with the corresponding reference data.
The remaining small deviations can be attributed to the additional
physical correction of the input pressure measured values in the TUB

method. (see Chapter 7). The effective incident flow Mach number in

this case is found to be M = 0.5036 (blockage 3.1%), a value /50

kor
where the upstream of the model has been removed.

Figure 15b shows corresponding comparison calculations for a
wing-fuselage combination. This is the AGARD calibration model
B with 4° incidence angle and M_ = 0.5. The reference values again
are well reproduced. The Mach number correction is now AM = 0.006

for a blockage ratio of 3.5%.

49



The good agreement of the calculated results in both flow
cases therefore clearly verifies the numerical methods of wall

adaptation developed here, (design algorithm, single step formula).

9. EXPERIMENTAL RESULTS

9.1 Tested Models

Three models were made for testing the 3-D adaptive test section.

A rotationally symmetric body, the ONERA C5 calibration model,
is used for pressure measurement. It has 21 static pressure caps
distributed over the entire model length of 166.27 mm, Figure lé6a.
Its maximum diameter of 24 mm leads to a blockage ratio of 2% in the
octagon test section. With this model, the first successful 3D

wall adaptation was achieved at the TUB.[30].

The ZKP-F4 model, Figure 1l6b, has an Airbus-like cross section
with a transsonic wing (Span 120 mm). It is designed for
force measurements which are performed with a three component
balance installed in the fuselage. Its blockage in the 3D test
section is 1.2%.

Figure 16c shows the Canard configuration used for pressure and
force measurements. The Delta shaped wing has an area which is
about 4 times larger than the F4 wing with the same span of 120 mm
(aspect ratio, 2.29). 1In this way one obtains not only much larger
normal forces, but also remarkable risk differences between
measurements for straight and adapted channel walls. Also large
changes in the moment variation produced by the effect of the
Canard control surface, so that the model is especially well suited

as an indicator for wall interferences.
The static pressure can be measured from 10 pressure caps

distributed over the fuselage. The blockage of the model is 1.3%

in the octagon test section.

50

/51

/52



9.2 Calibration of the 3D Test Section

Before installing the model, the test section has to be cali-
brated, that is,the perturbation of the parallel basic flow due
to the wall boundary layer has to be compensated for by a
preliminary deflection of the flexible walls. In the case of
the octagon section, an additional expansion was necessary in

order to equalize the displacement effect of the model sphere.

The resulting (aerodynamically straight) wall contour is
shown in Figure 17 for an incident Mach number of M, = 0.8, Here
we are dealing with a photographic picture of the color monitor,
which is used for the graphic recording of adjusted wall shapes
during the tests. The deflections are given in mm. (wall 1-4 top,
wall 5-8 lower part of the image). The values are interpolated

linearly at the actuators over the test section length.

By means of the same preliminary adjustment shown in the
circumferential direction, (the deviation in the sphere region is-
produced by the missing ninth actuator term along the top and
lower wall) we obtain an almost constant pressure distribution
at least in the region of the model. Large differences occur
at the test section beginning before the first actuator because
of residual wall boundary layer influences. They also occur at /53
the rear part by the not exactly compensated for displacement

influence of the sphere.

In order to assure a reliable wall adaptation later on, we
decided to only use the wall pressures measured between the first
and eighth actuator for calculating the external field. The other
measured values are in place by an extrapolation according to

Equation 7.10:

0 X<XD’4

upt(x) =4 (9.1)
l.
urt(xp 20) X > Xp g
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The also described correction of the pressure distribution
for aerodynamically straight test section walls discussed in
Section 7 did not seeh to make sense considering the poor pressure
measured values at the two test section ends discussed above.

9.3 Measurement Results with the Canard Model

In this chapter we will use the example of selected results
for the Canard model to demonstrate the high performance capability
of the adaptive octagon test section. An extensive documentation

of test results is obtained in [32].

For the test execution, one important feature was the definition
of a practical truncation criterion for wall adaptation. One possible
indicator for this is the convergence behavior of values measured
on the model. (forces, pressures) or axis - the change in the adjusted
wall shape in following regulation steps. Of course, eventually /5¢
constant wall contour also then leads to constant model measured
values. However, in the last analysis, removal .of the inter-
ferences is only required in the region of the configuration in the
flow. Since the wall-induced perturbations towards the mode de-
creased (M < 1), this has a direct influence on the accuracy limit
with which the adapted wall shape has to be determined. (see
Equation 3.4)). This effect is discussed in the next section for the
special case of a rotationally symmetric flow. The estimation
obtained there is too "sharp" in practice, because a possible
extinction of wall interferences in the model region is not
considered. A5 a basis for evaluating the adjusted wall deflection,

we therefore use the behavior of the model measured values.

The typical sequence of wall adaptation is illustrated in
the following table.
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Flat
watie | 1wk | 20wk | 3. WK
Cy 207 | .159 172 .168
Canard- Model
C, 030 | .025 027 025 = 0.7, a = 4.50°
Cyps | -031 | 035 034 034 :

This shows the change in the forces measured on the Canard Model
at the individual adaptation steps for the incident flow conditions
M =0.7, o = 4,54° . The difference in the coefficients from the
second to the third wall contour already is within the range of
the reading accuracy of the balance reading, so that the test section

walls can be considered to be adapted.

As a check, we compared the measured wall pressure distribution /55
after the last regulation step with those calculated for the outer
field. As discussed in Chapter 3, they have to agree for the
adapted wall contour. For the flow case under consideration, a
comparison like this is given in Figure 18 for the upper flexible
wall. For clarity of the wall interferences, we also show the
pressure distribution measured for aerodynamically straight walls.

It can be seen, that the third wall contour canalso be considered

to be almost adapted even in the "strict® sense. The remaining
pressure differences in the front area of the model suspension
apparently are truncation effects, which are caused by the effective
shortening of the test section along the section between the

first and eighth actuator (see Chapter 9.2). For the two rear actuators
9 and 10, we also did not calculate any deflections, but instead
retained the constant preliminary adjustment used for the prevailing

incident Mach number .

As an example for the wall deformations to be adjusted,
Figure 19 shows the adapted cbntour for the Canard model at
M, = 0.8 and o= 8.04°. The dominating influence of the downwind
field is especially remarkable, which requires a relatively large
dropping of the rear test section cross section. (eighth actuator).
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The necessary moving back of the wall shape in the torward region
does not have any important effects on the data measured on the

model, as the corresponding wind tunnel tests show.

The next experimental proof of the high quality of the wall
adaptation is shown in Figure 20. It shows the pitch moment
polar measured at M| = 0.7 for the Canard model for straight and
adapted test section roles. For comparison, we show also the
measured polars in the adaptive profile T2 of the ONERA and the
polars obtained at the "DAM" for the model. /56

These measured values can be considered to be free of inter-
ference because of the very small blockage ratios (DAM 0.06 %, T2
0.18%). The T2 tunnel was adapted according to the method developed
by Wedemeyer (see Chapter 10). The very accurate reproduction
of the interference - free moment variation in the octagon test
section is especially remarkable, because the polar indicates
strong wall interferences for straight walls. A corresponding

comparison for the CA(a) and CA(CW) polar is given in [32].

In order to determine the adaptive wall shape, the panel method
was used for all tests performed.- (Program "ADAP1l"). The average
calculation time per adaptation step was 45 seconds in the wind
tunnel computer HP 1000F. In order to adjust the test section walls,
in general 1-2 intermediate steps were required. The adaptation
was always started with aerodynamically straight walls in order to
demonstrate the wall interference. It was only at the incident
Mach number M_ = 0.95 that oscillating wall contours occurred at
higher incidence angles of the Canard model, so that a reliable
adaptation could not be reached. This unfavorable regulation behavior
was certainly attributable to the very poor flow quality in the test
section for flow near the speed of sound (turbulent separation in the

nozzle).
/57
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On the other hand, the measured wall pressure distribution
showed local supersonic zones for aerodynamically straight walls.
This means that the contour determined with the panel method could
have been wrong. An additional calculation with the TSP adaptation
program indeed showed somewhat different deflections as is shown

in Figure 21 for the upper and lower test section wall.

After improving the flow quality in the test section
we wish to examine with experiments to what extent these differences
affect the model flow.

9.4 Influence of the Wall Contour Inaccuracies on the Floor
on the Model

In this chapter we will estimate how accurately the test section
walls have to be adjusted in order to reduce remaining interferences
in the model measured values through a specified amount. For
clarity, we will investigate only the effects of perturbations

in the adapted wall contour which has rotational symmetry
- \
6h (X,R) =z An Sin(mnX), w = kil = 1’2,.._ (9.2)

The perturbation flow induced inside the test section then satisfies

the two-dimensional potential equation

Bt F et 0, BT= 1 -M>0 g
with the boundary condition
¢p (x,R) = sh'(x) =1 Ape, cos(w x) (9:i4)
The solution is (see Chapter 5.2.1)
$(x,r) = %— £ A cos(wy X) iﬂiﬁﬂi;l , r< R (9.5)
Il(wnBR)
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For the perturbation speed along the tunnel axis

= 0

and therefore in the region of the model in the flow we have

Apwp

1
U({x,0) = ¢ _(x,0) = - = L —or—ro

sin (v x) (9.6)

The comparison (9.6) and (9.2) shows that the wall contour

perturbations decay towards the center of the tunnel, and

the damping factor is given by

Do) -

Because of Il(x) > % for X 3 O /13/, we find

D(w < —
X B2R

and from this

2
B2R

| u(x,0)]< szn)lAnls

where AS is the minimum path transducer preparation.

Use of the Parseval equation /33/
L
2 o 2 st (x)dx § 2:C°
LA S T J h® (x)
0
for

o

| 8h(x) | <

finally gives the simple estimation

|u(x,0)| FS ZR /ﬁﬁ?
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(9.7)

(9.8)

(9.9)

(9.10)

(9.11)

(9.12)



If the maximum permissible remaining interference in the model

region is given by
lu(x,0)] < su (9.13)

then from (9.11) and (9.12) we obtain a tolerabie contour error

| of
‘ (1-M, 2) R /=
lsn(x)l < = . %% Sy (9.14)

It can be seen that the adapted wall shape has to be adjusted
more precisely with increasing incident flow mach number, which

is physically understandable.

Quantitatively, for example, for M, = 0.7, &u = 0.006 (R = 83 mm,
AS = 35 mm, L = 400 mm) ' we have the accuracy requirement

|sh(x)! <« 5 ¢« 8u = 0.03 mm - (9.15)
which at least has a realistic order of magnitude.
10. A NEW-METHOD FOR TESTING 3-D MODELS IN WIND TUNNELS
WITH TWO FLEXIBLE WALLS

10.1 Introduction

Wind tunnels with two adaptive walls have been used for about
ten years successfully for profile tests /4/. Therefore it is
natural to also use these test facilities for testing three-
dimensional models. Even though in this case one cannot achieve
a completely interference free flow field in the test section
by deflecting the upper and lower tunnel wall (for example,
matching of porosity) one can attempt to at least reduce wall

interferences in the model region.
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This agrees with the idea that in order to avoid blocking
effects it should be sufficient to produce a stream tube with
the same cross—sectional area variation as is used for a complete
three-dimensional wall adaptation. As Wedemeyer demonstrated with
a numerical simulation, the resulting symmetric wall shape removes
exactly the blocking speed on the tunnel axis /24/.

Based on this result, he developed a single step adaptation
method. With it, by super position of one deflection and an
opposite deflection of the two flexible test section walls,
one can bring about an interference-free flow along the tunnel
access (x, y = %, 0), Figure 22. (Symmetric models without slip
angle are assumed.)h The wall induced perturbation speeds uw(x, %, 0)
blocking and vu(xs vE 0) (downwind) to be compensated for are
then calculated using a singularity representation of the channel
flow from the previously adjusted upper and lower wall contour

and the prevailing pressure distributions there /25/.

The first experimental testing of this adaptation method
was performed in the adaptive profile tunnels of the TUB and
the ONERA/CERT /4/. A body of rotation at 0° incidence angle and
a Canard model which produces lift (see Chapter 9) were tested.
The pressure distribution measured along the top side of the body
of revolution also agreed very well at high subsonic flow Mach
numbers (M, = 0.84f with the corresponding interference-free
values. This then confirms the possibility of already being able
to essentially remove the blocking effect with a two-dimensional
wall adaptation. In the more general case of flows with 1lift
it was also possible to achieve a reduction of the perturbation
speed, see Figure 20.

Based on the very low blocking ratios of 0.18% assumed,
these results, however, only give conditional conclusions about
the quality of the wall deflections calculated with the Wedemeyer

program.
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Independent of this, a theoretical analysis of the adaptation
method in general leads to the conclusion of an increase in the
remaining interferences with increasing model incidence angle.
This is primarily due to the fact, that the wall influence is
removed independent of the actual position of the investigated

model, always along the tunnel axis.

In order to overcome this advantage, we will now introduce
a new adaptation method based on the 3-D single step method,

with which it is possible to do the following

(1) to exactly determine the wall influence in the test
section;
(2) with which one can achieve an interference-free flow

along the model axis.

The calculation of the interfeérences and the required wall

displacement will be described in the following sections.

10.2 Determination of Wall Interferences in the 2-D Test Section

The wall induced perturbation speeds are obtained immediately
by using the general representation formula (6.15) for the wall
dependent potential, derived within the framework of the single
step method

oy(P) = - 11—8 5 {vpla) - vi(a)} g(p,qldg

54

(10.1)

-—

- 12 _ 2 _ 2,-%
a(p,q) = {3z (xp xq) + (yp yq) + (zp zq) }

BZ= 1-M2
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where the control surface Sl again corresponds to the test
section geometry, Figure 22.

The normal speed distribution v_ is then determined in a

known way by the variation of the up;er and lower flexible walls
and the two fixed side walls (VI = 0) . The VA—component is deter-
mined within the framework of an outer field calculation based

on the measured wall pressure distribution (see Chapter 5).

It is assumed that a measurement of the static pressure along

the central lines of the two flexible walls and along the

side wall is sufficient.

By differentiation of the relationship (10.1) we can then

directly determine the perturbation speeds in the test section

3¢
u(p) = 5 (p)
p
20 (10.2)
vw(p) = 55 (p)
p
3¢
w(p) = -a—% (p)

without any assumptions about the model-induced flow field
(Chapter 6.1.2) directly from the measured wall pressures and
the previously adjusted wall contour.

This procedure has the following advantages compared with

the Wedemeyer procedure discussed above:

a calculation of the channel inner flow is not required.
In this way, we avoid assumptions about the model-induced

perturbations. The division into model effect in a
synmetric displacement and asymmetric lift effect for
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high model incidence angles used in this method of

Wedemeyer is certainly only approximately valid.

The case of already deflected test section walls does not
require any special calculations. In the Wedemeyer method
on the other hand, the measured wall pressure distribution

always has to be "corrected" on (aerodynamically) straight walls.

10.3 Calculation of the Adapted Wall Shape

10.3.1 Fundamental Remarks

By the deformation of the upper and lower flexible walls,
the three-dimensional model flow in the test section is super-
imposed with a two-dimensional flow field. Let us assume
small (additional) deflections

X

ho(x) = 1 v(g,h)deg (upper wall)
- (10.3)
; (low all)

h,(x) = 7 v(g,0)de ower w

-0

Then the induced velocity field again can be assumed to be
irrotational. The corresponding potential ¢(x,y) then satisfies
the following linear differential equation for subsonic flow.

BEo y * byy =0 5 82 =1 - M z (10.4)

with the boundary conditions defined by (10.3).

24 (x,h)

5y = v(x,h) = Vo(x)
(10.5)
g% (x,0) = v(x,0) = : v, (x)
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The wall displacementsho(X)iand hu(x)ﬁ will then have to be

determined so that the speeds which result from (10.4,5)

u(x,y) = 3% (x,¥)
(10.6)
vix,y) = %% (x,y)

will compensate for the wall interferences (10.2) as much
as possible in the model region

(u. + u) l min

w Model | (10.7)
(v. + v) Lo

W MoLe] min

The components in the span direction W, can apparently

not be directly reduced. 1In the following we will therefore

assume symmetric models without slip angle.

For the practical application of the 2-D wall adaptation,

the physical requirements (10.7) however, have to be formulated

so that the specified values of u and v will lead to an explicit
calculation of the wall deflections hO(X) and h,(x) The

condition which makes sense for this case is the following

u, (x,yys0) + ulx,yy) =0
i (10.8)
V(Xsyys0) + vix,yy) 20
where
h
yy(x) = - x tana + > (10.9)
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is the model axis (Figure 22).

In the next section we will first calculate the adapted

wall shape for the special case o = 0 (model with no incidence).

10.3.2 Model at 0° Incidence Angle

For o = 0 we wish to exactly cancel the interferences along
the tunnel axis Dby deflecting the two-flexible test section walls
according to (10.8) ,
|
|

h Block
U(X"E") ='uw(x,-2,0) ( ockage)

‘ (10.10)

|
I

] j(Downwind)

h
V(X,-rz") =-vw(x’7’o)

In order to calculate the required displacement paths
ho(x), h,(x)we will start with the boundary value problem
(10.4,5) and wish to establish an analytical relationship between

u(x,%), V(x,%)‘ and v (x), v (x) .

For this purpose we will transform (10.4,5) using the usual

coordinate transformation

X = §
1 (10.11)
y = B

into the equivalent incompressible flow problem.

”JF
-

N
Bie,en) = % ov (E)
(10.12)
B—?"v’(s o) =+ v (&)
on ' °°? B "u
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n ‘
By introducing the stream function ¥ (g,n)

i ( ) = EE (Eyn) = EE (g,n)
Esn 3E s N = a1 o N
(10.13)
n, n,
v 3% = . oY
v (g,n) = T (g,n) = 5E (g,n)
it follows that '
Y o+ ¥ =0 - 00 <E < + 00 ; €0 < n < Bh
EE nn . ‘
" 1§ dt = - L h (&) (10.14)
‘Y(Eth) = = B -fw Vo(t) = B 0O |
£ 1
W(E,O) = - % -£> Vu(t)dt =-3 hu(E)

The Dirichlet problem (10.14) occurs in a similar form also in
connection with two-dimensional wall interference correction
procedures, so that we can derive the solution from the appropriate
references /26,27/. For the speeds induced along the tunnel axis
we obtain the following clear relationships /26/

$+ o
v Bhy _ 3& ghy _ _ 1 vo(t)'vu(t)
U(E,z—) = (g, ?—) = 2h S 1+82ﬁ (E=F) dt‘
- —h ;
(10.15)
N e v (t)+v _(t) |
v Bhy _ 23¥ 8hy _ 1 u o' "’dt
V(gs'z—) = 3€ (E..s 2 ) E’Tﬁ‘ f 2 cosh 'ﬂ(t'57
- R

A reverse transformation into the x,y-plane, because of

e, By -ux, B
(10.16)
V(E,—Z—h)=%v(x,{})

gives the following coupled integral equations for calculating

the adaptive wall shape




T ()-v (t)

hy _ 1 ! h
u(xaf) = = _BY‘H f 1+e‘,21{(t‘X) dt = uw(x9290)
- 00 Bﬁ
(10.17)
+(!)
hy 1 vo(t)+vu(t) ! h
V(xsz) =g S e dt = - v (x,5,0)
-0 Bﬁ

The numerical solution of (10.17) poses no difficulties and then
immediately leads to the desired deflections by subsequent integra-

tion of v. and v_ .
u o

As expected, in order to compensate for the blocking speed,
one reqguires a wall deformation which is symmetric with respect to
the tunnel action (cross-section change). In the case of models
with 1ift, in addition one has to displace the test section cross-

section parallel in the rear region (asymmetric deflection).

As already mentioned in Section 10.1, this result was already
achieved before by Wedemeyer /25/. However, his calculation of
the adapted wall contour in the form of a series expansion is

less favorable than the exact solution (10.17).

10.3.3 Models with Incidence

With increasing incidence angle a the models move away
from the tunnel central line. Therefore it is more accurate
to remove the wall interferences along the model axis (see
(10.8.9) ). The calculation of the deflections required for

this can then be done in many ways.

With boundary value problem (10.14) in general, a relation-
ship is established between a wall contour change and the subsequent
induced velocities in the test section. As Mokry shows, it can
be solved in closed form by separating the variables (Fourier
method) /27/

| :y (E’n) = f (g,n; a1, az, ) b19 bz’ -o-) ‘(10‘18)
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where a; and bi are the Fourier coefficients from the (formal)

expansions for ho(ﬁ) and hu(E) In order to determine these

constant desired wall displacements, apparently one can again

prescribe %% and %% along the symmetry axis or any other line

in the tunnel. This procedure for example has been investigated
within the framework of a study paper /28/.

On the other hand , one can start with the exact relationships

(10.17) for o =0 and from this obtain an approximate solution

for o ¥ 0 using a Taylor series expansion for u(X,yM(X)L and
V(X’YM(X)) ‘

u(x,yy(x)) U(x,-g) - x tan auy (x,% )

x2tan?o hy _
+ -———2——’ Uyy (xg 2) +

= u(x,%) - x tan a v, (x,% ) (10.19)

82x2tan2a h
- S, (x, 2) + ...

n

h
V(x,yy(x)) = vx,5) + 82 x tan @ (x7)

2x2tan?a hy _
-—B————-E———Vxx (X, '2)_'_"‘

and in order to replace the derivatives with respect to y one uses
the equations

g2u_ + v, =0 (continuity)

(10.20)
u, = v, = 0 (irrotationality)
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ORIGINAL PAGE 5
OF POOR QUALITY

If we now introduce the abbreviations
= -V t
v1(t) Vu(t) 0( )

Vz(t) - Vu(t)+ vo(t)

1

i
K1(t‘X)= Bzh

2u(t-X) (10.21)
1+e———é-ﬁ—-——
1 1
Ko(t-x)= =p¢ -
2! B 2 cosh Ei%ﬁél
then the adapted wall shape
1 | -
hy(x) =5 7 {v,(t) v1(t)} dt
(10.22)
X
1
h,(x) =5 f fv,(t) + v (t)} dt

finally results by replacing (10.17) in (10.19)
+ oo te

d
/ v1(t) K1(t-x)dt - x tan o [ vz(t) a§~K2(t-x)dt

- 00
. o OO

+oo
2 d?
i B2x;tan o s V1(t) a%z K1(t—X)dt toee.

(10.23)

!
: - uw(x,yM(x),O)
+ oo
t- 2 d _
! vz(t) K2(t x)dt + B2%x tan o [ v1(t)a?K1(t x)dt

- 00

4+ o
BZXZtanZQ, d2
- Bxtante ooy ()3 Ky(t-x)dt ;...

- 00 -

- VW (X,.YM(X),O) o7



For o = 0 (10.23) of course reduces to solution (10.17).
The number of terms to be considered for o # 0 has to be determined
by experiment. The linear equation system which approximates
(10.23) always has the form

-2> -2 _ - -2

A vi # B,v2 = u.
(10.24)

-> => ->

C vy ¢ D Vo = -V

and can easily be solved by inversion
-1
Y1 A B Yw (10.25)
Vo cC D Vu

11. SUMMARIES

The ever increasing requirements for quality of wind tunnel
results in high subsonic flows led to the development of so-called
"adaptive" test sections around 1970. One uses the natural idea
of removing the cause of wall interferences by matching the test

section walls through the side ways unlimited model flow.

After the use of this new technology for profile tests,
in 1979 we started building three-dimensional adaptive test sections.
OQut of the three realized designs, the special construction features
of the octagon test section with eight flexible walls has been

discussed in detail which was built at the TU Berlin.

After this, we gave a detailed discussion of the newly
developed numerical methods for 3-D wall adaptation developed here.
Starting with conventional iteration adaptation methods, we first
investigate the three-dimensional design path (outer field calcula-

tion) which has to be solved at each regulation step. Using a
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simple perturbation calculation, the ill-posedness of this

inverse problem is demonstrated. Then we introduced the design
method developed to solve this problem. In this, the desired

wall shape is calculated directly from the prescribed pressure
distribution, but instead by stepwise modification of an initial
contour. The required geometric changes are determined using

a design rule from the difference between the actual and nominal
pressure distribution. Each of the actual values can be determined
with the panel or the TSP method as desired. The post calculation
task can be solved numerically without problems and in the linear
case can be reduced to a simple matrix vector multiplication.

The design method therefore does not only allow a simple check

of the calculated wall deflections, but has addition numerical

advantages.

Use of the iteration wall adaptation method with the prescribed
outer field calculation method in 1982 gave the basic functional
proof of the octagon test section. But in order to regulate the
eight flexible walls, in general more than ten intermediate steps
were necessary even after matching up the regulation factor which

determines conversion.

In order to make a systematic investigation of the adaptation
behavior, we performed a numerical simulation. The wall pressure
distribution in the individual regulation steps is not determined
by a wind tunnel test, but using physically reasonable assumptions
about the given wall contour, This numerical study did not only
verify the experimental results, but also shows that even if one
uses an optimum regulation factor, one can not achieve fast

conversions.

In a further theoretical analysis, the allowable regulation
range finally was determined exactly. It is found that the
iteration 3-D wall adaptation method diverges itheoretically for

all regulation factors. The conversions found in practical
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wind tunnel tests or in numerical simulations are only caused by
the (inaccurate) numerical approximation of the boundary

conditions!

On the otherhand, using the relationships derived during
the simulation for the channel inner flow, we were able to
establish a basic formula for the wall dependent perturbation
potential in the subsonic case. This allows a calculation of
the interferences in the test section based on the known wall
contour and the prevailing pressure distribution. A representa-

tion of the model flow is not required.

Use of this formula leads directly to a single step
adaptation method. The calculation of the adapted wall contour
from the wind tunnel measured values is then possibly based on
a simple.linear relationship. As a comparison with the iteration

.method shows, the single step formula is found formally by
replacing the constant regulation factor by a matrix which
considers the incident flow mach number and the test section
geometry. In the case of flow near the speed of sound or

very large wall interferences, the assumptions used in this
formulation, however, only apply approximately, so that in these

cases several adaptation steps may be necessary.

An experimental testing of the single step adaptation method
in the octagon test section then clearing confirms the assumed
fast conversions. The wall contour in general was already
adapted after two regulation steps in general. We use the
change in the data measured on the model as the truncation
criterion. The high quality of the adjusted wall shape is
demonstrated as an example for a tested model (Canard configura-
tion) for a incident Mach number M_ = 0.7 using interference-

free comparison measurements.
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The outer field calculation required in any adaptation
step was always performed using the subsonic panel method
during the testing, in order to save calculation time. It
was only in one flow case, where the local supersonic regions
extended to the test section walls, that one could not achieve
a reliable adaptation. A comparison calculation with the
TSP program then resulted in a somewhat different wall
deflection for the first adaptation step. After improvement
of the poor flow quality which occurs for incident flow near
the speed of sound in the model test section, one should
then perform a complete wall adaptation with the TSP method.

At the conclusion of this paper we then developed a new
method for testing three-dimensional models in wind tunnels
with two flexible walls. By using the already mentioned
general representation formula for the wall dependent
perturbation poténtial,one can then calculate the interferences
in the test section without any additional assumptions about
the model induced flow field. It is shown that by a.suitable
deflection of the upper and lower flexible walls, one can always
femove the perturbation speeds along the model axis. The adapted
wall shape for models with incidence is then determined from a

series expansion from the deflections for o = 0,
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13. APPENDIX

13.1 Calculation of the Influence Coefficients

Using the abbreviation

1
455 = - 775 ¢/ 9(py>a)dg
%3

the following is obtained for the influence coefficients
(Formulas (5.31) and (5.36) ) in the body-fixed (xX,y,2)-
coordinate system, Figure 9

3
9 =n. "V = n, | 2 e+ Ny o b
Aij ) BNy %55 = M V45 7 M,y 3y ®ij i,z 9z "1J
—a s o
Bij = ax iy

i
The calculation of V¢1j is done however, in the panel-related
system (x', ¥y', Z{%in the most simple way

PIXyx)

sl
| .

¢ (X

- g
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The reverse transformation into the body-fixed coordinates

is then given by

%¢ _ 3¢

29X 9 X

3¢ _ . 29 26
sy T Mz,5 syT t My, %
30 _ 3¢ 54
32- "y,idyT t Mo, 3z

Depending on the distance between the target point P and
the induced panel, after this three different formula collections
are used for the perturbation speeds. The range of validity
was limited as follows according to a suggestion by Hess and
Smith /17/ (see Figure above)

_>'
X
| d | € 2.45 exact formulas
245 |Y>'| < multipole expansion up to including
‘ < d 4 quadrupole term
—, source approximation
B0,

In the first two cases, the already mentioned transformation

into the panel coordinate system is required. Exact formulas:

With the abbreviations

1
d = {3_2 (x'-a)2 + (y'+b)? +2'23 2
1
e = {§; (x'+a)2 + (y'sb)2 + z2'2} 7
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1

f= (g (x'-a)2 + (y'-b)2 + 2'2} 2
1 1
g = {Er (x'+a)2 + (y'-b)2 + z'2} 2
We find
3¢ 1 y'+b+d y'+b+e} o i

Yl (X',Y',Z') = z;g {In yT:B:T - 1In yTjBIE
2% (0,0,0) = 0.

3 X

X't+atgg_ ] x‘+a+3e)
xT-a+pf x"-a+gd

3¢ ] t [} _ _1
EYT (X Y 2 ) = i (In
3¢ (0,0,0) = 0.

%%T (X',y',Z') = %; sign (Z') {Sign (x'+a).

Ix'+a(y'+b) _ |x'+a|(y'-b)
[arc tg Tz Twe aTc tqg . FTTES )
- sign (x'-a) larc tg lxlg?!(§d+b)
i |x'-al(y"'-b)
arc tg B ]}

3% 1
szT (050’0) = ?

Multipole expansion:

Since the coordinate origin is at the panel center of

gravity, no dipole term results. With the separation

e Sy
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it follows that

26 oot a1y ] .4ab 1 3a2+b2g2
SYT(X y's2')= Tv8 {x (- —_T 787 T r.c
. .9 (aX')2+(82by')2]}
28" 7
ro
1 a2+3b2p?2
SyT(X Y' 2 )— {y 4ab ['—_T 787 T v,
.5 (aX')2+(62bY')2]}
Z2R" ro'
1 2 bZ 2
%( ', 2 )=-r- {Z'4ab [-—3—+.2.-_2- a_+_..5£_

- (aX')2+(82bY')2]}
28" ro'

Source approximation:

In the body-fixed reference system we assume that the

panel center of gravity has the coordinates (XosYos Zo) and

the target point is given by (x,y,z).

] /;1 (x-x0)2 + (y-ya)? + (2-2,)2

we find that

3¢ _ 1 4ab xo-X
3% (x,y,2) = T+ 8 [ B2 % ]
3¢ __ A Yo-¥y
3’9‘ (Xs.VsZ) = m [ 4ab 7‘03 ]
3¢

i

(X,y,Z) = - I:T—B. [4ab Ta»
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Influence coefficients A;; for M, —1 (8 —0)

For M —>1; the upstream and downstream effects of the induced

o

panels vanish. The speeds induced in the circumferential direction

are

%%; (0,y',z2')= r»— sion (z') {arc tg %7;r - arc tg Tji?}
z' $0
3¢ 1
_a_iT (090’0) = '2'
13.2 Analytical Investigation of the Conversions of the
Iterative Wall Adaptation Method
We will start with the iteration scheme (3.3)
(n) _ (n)
Va = vy [ut)
n=1,2, (13.1)
(n+1) _  (n) (n) _ , (n) ;
vy = vy + K (vA Vi } Ke:(0,1)
and we will define the increments
(n+1) _ (n+1) _ {n)
Sup = Ug Uy
(13.2)
(n+1) _  (n+1) _ . (n) _ (n) _ , (n)
8V = Vp Vi = K (vA Vi )

80




The purpose of the following analysis is to establish a re-
cursion formula for the &Vp;

6VI(n.}.Z) = K (VA(n+1) - VI(n+1))

(n) (n+1)] _ VI(n) _ 6VI(n+1))i

- .3
(1-K)5v1(“+” + Ky [GUI(""”] (13.3)

Using relationships (6.12)-(6.14) we then find

(n+1)] - le(n+1))

VA[GUI(n+1)] = Ao = Alvgbu (13.4)

and from this

A'vA[GuI("+1)] = - AavI("+1) (13.5)

(13.3) and (13.5) give the important intermediate result

arev (™2 o iark(anan)y ev (MY 2 arekeyev (D),
n=1,2,...

(13.6)

The iteration rule (13.6) apparently can be carried out exactly
uniquely when the free constant in the solution collection of
A' is suppressed, i.e. we only consider the subspace

sv " Hergr = L@ cokonst., & = (1,1,...,1), 0= 1,2,..,
This additional assumption amounts to VA(n)E R, because cf
(13.2). This only means that out of the first incident number
of solutions VA[GUI(n+1)] "physically correct" solution Va [6¢(n+1)]

has to be taken (see Chapter 5.1).
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Since A' of the subspace Rot can be inverted, using the

abbreviation A'| = A' from (13.6) we find the desired recursion

relationship Ro*

a~ _ A|'1 2
sv (M2) < (E-kA: v (1) = (e-kir e, (2D, (13.7)

n =1,2,...

with which one can then investigate the conversion properties
of (13.1). Because of

GVI("+2) —0 <=> (E-KZ\"1)n —>0((0 Matrix) (13.8)

then according to a well known mathematical theorem /16/,

(13.1) converges. Then the following estimation applies for

the spectral radius of the iteration matrix g = g - KA'-1
t(6) = max Ixil < 1 (13.9)
1<igN-1

The Eigen values *;j of G are
Ay = 1 - Kui s i=1,...,N-1 (13.10)

where v, = %f are the Eigen values of A' .
i

According to the theorem of Gerschgorin /16/ we have the

following inequality for the vy

1
2 s i=1, ..., N-1 (13.11)

(This follows from (6.6), (6.8), (6.9) and the fact that the
Vj are also Eigen values of A).

From (13.11) we find Re(“i)>0 and therefore the following
conversion theorem follows.

82




Let Uy = Re(uM) + 1.I"‘(UM) be the Eigen value of A’
with the smallest real part. Then the iteration procedure (13.1)

converges exactly for all K with

0 < K < ZRe(UM) (13.12)

Proof:

From (13.10) it follows that

l)\iI2=l.i-)T.i=(1-K1_1.i)(1'KH1)=1'2KRE(Ui)+K2 |U-i Iz

Re(v.) 2KRe(v;)-K?
=1-2K o + K T—le =1 - L
= v v IVilz

and therefore because of
[a;12< 1<=> 2KRe(vy) - K2 > 0 , i=1,---5N-1 (3313
the theorem is immediately proven.

The matrix A'éis a discrete form of the integral operator
(6.3) (restricted to the partial space of the functions which
are not constant on S). One then has to ask how VMi and
therefore the magnitude of the permissible regulation range
'2Re(vM) depends on the selected paneling.

From literature we can derive the general fact that
Fredholm integral equations of the second kind have an infinite
number of Eigen values, which can at the most accumulate at the
origin /20/. 1In our case the Eigen values (6.3) are also restricted
(estimation (13.11) applies also for the continuous operator).
Therefore they have to have an accumulation point  (theorem of

Bolzano-Weierstrass). Therefore we have

Re(vM) -> 0 for N -> o - (13.14)
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and therefore using (13.12) we find
K -> 0 for N -> = (13.15)

The conversion of the iteration method (13.1) deteriorates
as the accuracy of the inner and outer field calculation increases.
It even fails completely in the case of infinitely fine paneling!

The "conversions" found during practical wind tunnel testing

or during numerical simulation therefore are only caused by the

inaccurate numerical approximation of the boundary conditions!
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Figure 1. Flow Regions for 3

Key:

1) control surface S.

D Model Flow.
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Figure 2.
Key:

1) outer field calculation;

3) new;

4) yes; 5) no.
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Figure 3. Calspan Pipe: Velocity Measurement System.
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Figure 4. Octagon Test Section with Canard Model.

Figure 5. External View of the Octagon Test Section.
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Figure 6. Three-Dimensional Design Task in the Subsonic
Case.
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Figure 7. Design Methods,

Key: 1) input data; 2) iteration starting values; 3) initial
contour; 4) yes; 5) no; 6) design; 7) post calculation;
8) design cycle.
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Figure 9. Paneling of Control Surface.
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Figure 10. Convergence of Iteration Wall Adaptation.

Key: 1) regulation factor K; 2) iterations.
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Figure 11. Subsonic Programming System.

Key:

1) definition of surface points; 2) paneling of control
surface; 3) panel coordinates; 4) determination of influence
coefficients; 5) control points; 6) measured values;

7) component if; 8) adapted values; 9) calculation of

the adapted wall shape.
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Figure 12. Adaptation Program ADAP 1.

Key: 1) matrices; 2) post calculation with panel method;
3) single step formula.

95



—~ DRUCK cp

-0.010 u | 1 |

-00081 Vv ADAPTIERT * -
0006 @ EINSCHRITTVERF 3 Mg, = 0.

©
S
+

-0.002+

0.002+
0.0041 |
0.006 } t % 1 i

——
——

0.6 i 1 1 1 1 T T

0.5
0.4+
0.3+
0.2¢+
0.1+

¥ WANDKONTUR [mm]

0 | ?

83mm

-L-——CH I -

1 1

1

0 100 200 300 400 500 600 700
5 WANDPOSITION [mm]

Figure 13. Analytical Test Case C5-Body.

Key: 1) pressure; 2) adaptive; 3) single step method;
4) wall contour; 5) wall position.
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Key: 1) accuracy.
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Figure 15a. FFA-Model.

Key: 1) wall deflection; 2) wall position; 3) pressure coefficients.
Mo=0.4994  (Myo=05036) o=0°
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Figure 15b. AGB-Model 3.5%.

Key: 1) wall contours; 2) wall position; 3) pressure distribution.

Meo=0.4998  (M,,,=05060) a=4°
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b) ZKP F4-Model.

c) Canard Model.
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Figure 17. Preliminary Adjustment of Walls (M_ = 0.8).
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Key: 1) pressure coefficient; 2) wall position; 3) flat wall;

4) adapted wall

M= 0.7
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Figure 19.
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Adaptive Wall Contour, Canard Model. M
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Figure 20. Canard Model. oo
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Figure 21. Canard Model.

Key: 1) deflection; 2) wall position; 3) lower wall;
4) upper wall.

Meo=095; «=3.61°
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Figure 22.

Key:

1) control surface.

ORIGINAL PAGE IS
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3D-Mode]l in Test Section with Two Flexible Walls.
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